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Abstract—The paper presents the creation of mathematical
models from experimental data, which are nonlinear and
multidimensional. Such approach is required in many
computer-based simulations for a variety of technical objects.
It is well known that modern mathematical methods are not
able to define, at the same time, both the needed numerical
accuracy and the analytical properties. The presented
approximation method for non-linear experimental data is a
highly accurate mathematical model which contains interesting
analytical properties. The method correctness has been
validated analytically and experimentally for 1-dimensional
and 2-dimensional objects. The method accuracy is based on
the data “piecewise” approximation, i.e. their local
fragmentation. However, in contrast to the “piecewise”
approximation, the numerical model fragments are combined
by multiplicative-additive transformation, and not by fulfilling
coordinate-logical conditions. Therefore, such numerical model
has analytical properties, which are used in the mathematical
transformations, as multiplicative transformation of the
created analytic functions, called “cut out” functions. These
functions are locally approximating the data fragments and
have analytical properties, which enable them to be added,
when the combined analytical model is defined. The method
implementation consists of the following successive and
relatively independent stages: (1) splitting the data array into
fragments, (2) their polynomial approximation, (3) the
multiplicative transformation of fragments and (4) their
additive combination into only one analytical function. The
proposed method is appropriate for the experimental
mathematical modeling of complex non-linear objects, in
particular, for their use in the physical and technical
simulation processes. The authors envisage that this proposed
method would be especially useful for the mathematical
modeling of the physics occurring in turbulent flows.
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analytical transformations.
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I INTRODUCTION

The creation of Mathematical Models (MM) for various
simulations, objects, systems, etc., involves acquiring their
experimental raw-point data having a certain structure.
Usually, the experimental input data is acquired on a regular
basis, and often the principle of so-called variation by
coordinates is used. The processed variables can have
duplicate values, which allow the use of matrix algebra and
matrix-vector data representation, as multidimensional tables
and multidimensional matrices. Difficulties of formally
presenting the data arise, but this can be overcome by
applying the proposed mathematical methods. However, the
complexity increases when the data do not have a smooth,
but a fragmented structure. The term "fragmented structure"
is related to the point data arrangement, when there are
clearly separated fragments with significantly different
slopes along the lines of their interfacing boundaries. The
tabular or matrix representation does not always allow
evaluating the fragments data structure nature. However, this
property is clearly shown in Fig. 1.

Figure 1. An example of 3-dimensional dependence y = f (x,, Xa, X3)
with fragment structure

The methods used can describe the "kink" with the
desired accuracy. The most simple and effective approach is
to apply the piecewise approximation [1] - [3] with any
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required accuracy. However, the resulting MM has
discontinuities in its derivatives along the fragments
interfacing boundary lines, and thus excludes analytical
transformations. The fragments spline approximation [4] -
[6] disables the use of analytical MM transformations. In
addition to the "fragment-oriented" approaches, there are
methods aimed to build a single analytical MM, such as
regression analysis [7] - [10], polynomial expansions [11]
[12], methods of radial basis functions [13] [14] and others.
It is important to note that they do not provide accurate data
approximation for “kinks”, discontinuities and finding
multiple extremes.

In order to eliminate the existing approximation methods
drawbacks, as mentioned above, the Cut-Glue-
Approximation (CGA) method was developed, having the
first significant results published in [15] [16]. The CGA
method combines the MM analytical properties and their
quantitative accuracy. The MM approximation is based on
processing the Experimental Data (ED) points arrays
acquired for complex non-linear and multi-dimensional
objects.

One important CGA method feature is the description of
the nonlinear piecewise dependence by a single Analytical
Function (AF), which has an additive structure consisting of
multiplicative components. Multiplying the 2 CGA structure-
forming functions: (1) the local approximating fragment
(LAF) function of the ED array, and (2) a Multiplicative
Isolating Function (MIF) applied to LAF, creates each
component. The analytical multiplication of LAF by MIF
“cuts out” the LAF section along the boundaries of the ED
Fragment (EDF). This leads to a new AF, called Interval-
Isolated Function (IIF), having the following unique
properties:

1. The IIF fragment boundaries values coincide with
LAF;

2. The IIF values beyond the EDF boundaries are
almost zero;

3. IIF retains the analytical property [16].

These 3 enumerated IIF properties determine the fourth
property: the possibility of IIF addition obtaining only one
United AF (UAF), which approximates the whole piecewise
dependences and fulfills the imposed accuracy for all IIF-s.
The parametric tuning of the coefficients is enabled through
the MIF arguments and they allow adjusting the overall
approximation accuracy [15] [16].

In [15], the CGA method base was developed and
applied in solving the 1-dimensional case. In [16], this
method is generalized to the 2-dimensional case. However, it
is often necessary to approximate multidimensional
dependencies [1] [4] [9] [10]. For example, the strength
properties of the composite materials depend on both the
concentrations of the components and the technological
parameters of their production [17]. For example, the
positioning of the robot multilink working body is described
by essentially non-linear and multidimensional dependencies
[18] [19]. In some medical applications, the positions of
detected organs, modeled as mathematical objects, may have
discontinuous derivatives. Finally, the solution related to

Copyright (c) IARIA, 2019.  ISBN: 978-1-61208-732-0

controlling nonlinear objects, by obtaining their MM in any
form, is not enough to find practical solutions. What is
required is that such MM, with their AFs, have the
possibility to find an analytical solution by the synthesis of
these objects control laws [20] - [23].

Thus, the follow up presented solution to such problem is
applying the CGA method to essentially nonlinear problems
of high dimensionality; this is an extremely relevant and
promising approach [24] [25].

II.  PROBLEM FORMULATION

The CGA method is applied to create MMs of arbitrary
objects dimension, having nonlinear dependencies [15] [16]
[24] [25] for the acquired experimental data sets. In addition,
the paper addresses the generic CGA methodology, which is
unique and does not have any similar analogs in the modern
approximation theory, as MIF can be constructed for any
dimension n of the model under consideration, which ensures
that the construction of any n-dimensional IIF, as well as
combining them into a single analytic differentiable UAF
function, is made possible to describe any nonlinear
dependence, which, in addition, might have discontinuous
derivatives. It is also important to mention that EDFs have
common boundaries taking into account any factor space
dimension, which ensures the full coverage of the definition
domain, for approximating dependence without affecting the
approximation accuracy. Finally, the multidimensional I1Fs
are assembled into UAF (object’s MM) by applying the
algebraic summation to combine them.

III. THE CGA METHOD PROSPECTS

The ED object modeling, when applying CGA, is
implemented in 4 stages, each applying various
mathematical methods and using significantly different
information technologies. Currently, the Russian Foundation
for Basic Research supports the CGA method development.
All its 4 development stages are carried out independently,
and the future plan is to supplement the developed
algorithms with feedback loops. The envisaged feedbacks
are representing the corrective actions for the previously
developed CGA stages. Such general approximation
algorithm structure should improve their quality and the
applicability to model MM for the experimental data. In this
paper the applied CGA version has independent stages
divided into 2 blocks. The first preparatory block contains
the first and second stages of the ED preprocessing to
approximate fragments. The second modeling block contains
the third and fourth stage, which are responsible for
assembling fragments into a single MM of an object
modeling the acquired experimental data.

The first CGA preparatory stage is pre-partitioning the
experimental data into EDF. The second CGA preparatory
stage is the applying the EDF created in the first stage. The
processing result of the preparatory block is a set of LAF,
fragments of the ED array. The third stage, which is part of
the CGA modeling block, performs the conversion of LAF
into their local fragments - IIF. In the fourth stage, all IIF are
combined in UAF, which is the MM of the object.
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The fragmentation process divides the ED into areas
which can be well approximated. For each variable, its
multidimensional dependencies are divided into intervals.
This is already difficult for 2-dimensional problems, since
the dependency curvature of any coordinate can vary
significantly when other coordinates change. This property is
well illustrated by in Fig.1. For 3 -dimensional dependencies,
it is practically impossible to show the fragmentation
graphically. In addition, the CGA method uses the regular
ED coordinate grid with the rectangular EDF faces structure.
Their curvature is approximated as nonlinear hyper-surfaces,
in general, arbitrary oriented. Therefore, it is extremely
difficult to define an effective distribution of hyper-
parallelepipeds. With an increase in the modeled dependence
dimension, the complexity is related to the distribution of its
properties in the factor space, and, accordingly, the
fragments complexity increases the manifold dimension.
From above mentioned, it can be concluded that the
automation of the ED fragmentation procedure of any
number of dimensions, and not only for n > 3, is challenging.
The software supporting the CGA method is needed,
especially to process the dependencies of 3 or more
arguments. It should be noted that in the CGA methodology,
the fragmentation of the ED multidimensional arrays differs
significantly from the remaining CGA stages, which mostly
perform mathematical analysis. Therefore, the CGA
fragmentation can be considered as a separate task and it is
not discussed in this paper.

In accordance with the CGA method paradigm [14] [15]
[23] [24], its second stage performs the approximation of
each k-th fragment, selected within the n-th dimension
experimental data array. The fragments are approximated by
explicit analytical LAFs defined with #»-independent
arguments, and forming the vector

a
X = (JC], xn) >

which for each 4-th is

T
Xi = (ka, x,,k) .

The functions of the vector argument x; approximates the

k-th  fragment, which is denoted by n-LAF, and
mathematically described by the expression
Vi = Qju(xp),

The analysis of the results from [4-9] shows that
constructing  analytical  functions to  approximate
experimental data having fairly smooth fragments of
nonlinear objects should be carried out with a well-
developed Classical Regression Analysis (CRA) [12] — [16].
When CRA is applied to the polynomial functions, the
regression coefficients obtained from the Least Squares
Method (LSM) can effectively optimized their parametric
structure variation. In addition, Power Polynomials (PP) are
extremely convenient to order the variation of their structure
by including/excluding their respective polynomial
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members. This allows finding the appropriate accuracy by
describing the MM for each EDF, with an effective
parametric (in accuracy) and structural (MM complexity)
optimization of the EDF approximation. The related
implementation has structural regularity, which enables
creating the Complete PP (CPP) with an arbitrary dimension
n for the function yy, and approximation degree m, applying
the following convenient recursive scheme:

Y(x) = byt 2Zibixit Zybyxixi+ Ziphyexixyxt... (6)
where by are multiplicative compositions coefficients
defining variants of polynomial members (containing 1 to m
multiplied members), while the composition form «x;x;x;...»
may also include the power functions of independent
variables, up to one variable in the degree, which
corresponds to the PP member order (for example,
b222 - (x2) 3); the number of forms that define such
polynomial structure is 7.

To simplify and generalize the algorithm for calculating
the optimal accuracy of the EDF approximation, by using
such PP, a pseudo-extension of the polynomial dimension in
accordance to the number of pseudo-independent variables x,
is done. In this case, the nonlinear expression (6) turns into a
pseudo-linear polynomial of the following form:

y(x) = byt 2bix;+ Z‘(rrJrJ),Nbp’xp

where p=n+l, N; N-n is the number of possible
multiplicative combinations x; /=e(1, n) from 2 to n
combination members; x,, - pseudo-arguments.

In the case of non-degeneracy of the matrix (X'X), the
vector b coefficients of the pseudo-linear polynomial (7) are
optimized by the LSM criteria using the following universal
matrix formula:

b= (XTX)-IXTI/,

where Y is the output vector, and X is the input matrix under
study, consisting of columns of independent variables x;, the
rows are the values of these variables x;; in the i-th tries when
acquiring the experimental data modeled to support the
related MM object.

Since formula (8) is obtained from the Fermat's theorem
conditions for the quadratic error function approximating the
point data by a power polynomial (7) of any structure, the
parametric optimum of the vector b is guaranteed. However,
in the general case, each JV structure is characterized by its
optimum value. As a result, the discrete structural and
optimized approximation polynomial for the set of all
possible structures (6) arises. Thus, the EDF approximation,
based on the universal polynomial MM, is a convenient tool
for its structural-parametric optimization.

The polynomial MM structural optimization and the need
to search for its structural and parametrical optimal
approximation variant is found interesting to simplify the
model. Studies of the authors have shown that, often, having
defined the complete polynomial is not the guarantee to have

)
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the best approximation accuracy. This effect is due to the
fact that the properties of some nonlinear terms contradict
the nature of the approximated dependence. However, it is
difficult to predict in advance, what are these polynomial
terms, due to the peculiarities of the hyper surfaces
curvature, which approximate the experimental data of each
individual fragment.

The solution to such structural optimization problem
requires separate explanation. 3 points require attention: 1)
the methodology for solving a discrete optimization problem
on a finite set of PP structures; 2) the technology for the
formation and variation of these structures, which is
associated with symbolic transformations, 3) the
formalization and quantitative representation of the criteria
for the PP complexity, which is heuristic in nature.

The first problem has two solutions. With a small number
of dimensions for modeling the object input space and with a
small order of the approximation EDF polynomial, these 2
factors together give a multitude of structures that can be
considered in the foreseeable time, and the problem can be
solved by the full enumeration method, i.e. being
combinatorial. When the cumulative properties of the same
factors make a similar NP-complete problem impossible to
solve in a reasonable time, it is necessary to apply heuristic
search engine optimization, and the best is to apply the
modified evolutionary-genetic algorithm for this problem. Its
de research and development is discussed in a separate
publication.

The solution of the second problem is necessary both for
the combinatorial and the search optimization approaches.
For coding of the nonlinear members of the PP with the
dimension of the ED array n <= 9, it is convenient to use
structure (6) for PP. The index of the independent variable x
indicates the presence of this variable in the multiplicative
term of PP, and the degree to which this variable is raised is
indicated by the number of repetitions of this index in the
code in the PP term. Thus, the free term b, in the polynomial
code description, is denoted by “0”, the first order term by; is
denoted by “/” (for example, bsx; is “3”), the second order
term b,xx; is denoted by “ij”, the third order term by, is
denoted by “ij;”, etc. The variant itself of the coded structure
CPP of the polynomial P to be evaluated is indicated by a
sequence of numeric codes separated by spaces.

For example, a 4-order incomplete 3-dimensional
incomplete PP is encoded as follows:

P = bbpx rbsxstbon(xs) +bya(x) xotbsxo(xs) +
Fb1apX (%) H bz (o)’ (63 + bssasles) ~
~Kp=0132211223312222233 3333

Their correspondence is shown in (9) by the equivalence
SlgIl "NH'

Due to the fact that there is not yet a universal and
reliable theory for estimating the complexity of such
mathematical expressions, the structure of PP has 2
heuristically formulated criteria, which have been proposed
and tested when creating the CGA method. The first one is
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based on the expert evaluation, in the hierarchy of which the
difficulty of using a first-order term (see Table 1, column 2)
is taken as a unit, while the rest are estimated as shares of it
(see Table 1, column 3). The second criterion, although
heuristic, has physical justification, since its scale is based on
experimental estimates of the time resources spent on the
calculation of each PP term (see Table 1, column 2) on the
PC used by the authors of the configuration (see Table 1,
column 4). Table 2 is a fragment of a general table that can
be constructed for any dimension and order of the PP. The
fragment is limited to the fourth order of the 3-dimensional
PP. The heuristic approach to estimate the complexity
applies an average hybrid complexity estimate by scaling the
dimensional resource time estimate with a factor of 0.01
(Table 1, column 5).

TABLE L QUANTITATIVE ESTIMATES OF THE POLYNOMIAL
STRUCTURES COMPLEXITY
NoNe The structure of a Expert Resource Hybrid
polynomial term evaluation | evaluation | evaluation

1 0 0.5 ~150 2.0
24 1,2,3 1 ~275 3.75
5-10 | 11,12,13,22,23,33 2 ~315 5.15
11-20 | 111,112,... 233,333 3 ~375 6.75
21-35| 1111,1112,... 3333 4 ~450 8.5

The use of all 3 criteria showed their consistency, but the
actual adequacy of any of them is difficult to prove. The
research in this direction is ongoing.

The structuring of ED in the form of the EDF boundary
set and building the LAF for all EDF allows moving from
the CGA preparatory stages to the experimental MM
construction stages.

IV. MODELING OF NONLINEAR OBJECTS FOR
EXPERIMENTAL DATA USING CGA METHOD

The final stage of the CGA method is implemented in 2
operations: 1) obtaining an IIF from LAF, and 2) obtaining
an UAF from IIF. The first operation is named "Cut the
Fragments of LAF" (CF), and the second - "Glue the
Fragments of LAF" (GF) [12] - [14] [17]. These 2 operations
for one EDF describe LAF of the form (1), and can be
represented by the following expressions:

CF: Jix) = \K(x) Iy, nkEJ(xa XLiks XRik> ELik> EriK)>  (10)

Fx) = Z 1 u(X), an

where fi(x) is the 4-th IIF; @ (x) is the i-th LAF; n is the co-
ordinate dimensionality of the object; E'(*) is the i-th one-
dimensional MIF for the 4-th LAF with approximation
tuning arguments: Xz, Xg; —the margin values of the
approximation ranges of the 4-th EDF in the i-th variables;
€1it, Erik - parameters of the steepness of the fronts of the 4-th
IIF with respect to the i-th variables; K is the number of EDF
and their IIF, respectively; x is an independent vector
argument of the modeling object.

In other words, to create IIF of AF that locally
approximates EDF, it is required that this function is
multiplicative isolated along each independent variable

GF:
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coordinate xi with 1-dimensional MIF, denoted as 1-MIF.
Their multiplication output forms n-MIF and supports their
multidimensional LAF isolation. Thus, in expression (10)
this multidimensional MIF is formulated as:
Eﬂ(xa X, XR, €L, ER) = HIZI,,,WEJ(xa XLis XRi> €Li» 8Rl)a (12)
where E"(*) is n-MIF; x;, X, &, €; — its n—vectors settings.
The multlphcatlvely forming E"(*) 1-dimensional MIF E'(*)
is the main system-forming artifact of the CGA method. In
this regard, it is necessary to study the properties of 1-MIF,
which determine the result of the CF operation.

The developed 1-MIF functions in the first stages, when
creating the CGA method had the following structure:
E'(x, xp, £5) =L(x, X, &) RO%, g, er)/BX, X, £) =

(13)
where  L(x, x;, £/) =x - x; + [(x - x) +(sL);‘/2
L(x, xg, €g) = Xp - x+[(xR x)"+ (e lm

B(x, xp, £5) = 4{[(x-x)+(er) L(xr-x) +(er)1}

Expressmn (13) contains 2 pairs of xz= (x;, xp)" and
e5= (g, er)" settings to implement the conditions of
additional LAF approximation, when transforming it into an
IIF using 1-MIF:

e Values of the left and right EDF interval boundaries
x;, and x; along the x; axis;

e Coefficients €; and e; of the steepness of the left
and right edges of a one-dimensional pulse, which
is the 1-MIF, which cuts out the IIF fragment from
LAF.

The interval parameters x; and x; of the function E’(*) in
(13) are determined by the results of the execution of the ED
fragmentation stage and strictly fulfill the conditions of
boundaries identity of the neighboring EDFs:

=xi e, (R)

which is due to the continuity requirement of the
constructed MM.

More difficult is the problem of choosing the adequate
values of the coefficients ¢, and €. When moving from zero
to a level equal to unity, on the left border of the x;
fragment, the slope of the pulse front and the smoothness of
the transition to an asymptote parallel to the x; axis are
affected by the ¢; value. During the transition from the unit
to the zero level on the right border of the x; fragment, the
same characteristics of the 1-dimensional pulse are affected
by the setting exz.. Moreover, the smaller ¢ is, the closer is
the function front to the threshold transition, and the
narrower is the transition region between the vertical and
horizontal asymptotes. For clarity, Fig. 2 shows a family of
1-MIF graphs for 3 values e, =¢ez=€ {0.01; 0.1; 0.3},
decoding the curves belonging.

The effect of € on the accuracy of rectangular pulse
reproduction is clearly distinguishable. It can be seen that
already at e<=0,01in the range between x; and xz
multiplication by 1-MIF of fragmentary LAF ¢u(x)
practically does not affects its values, fulfilling the
accuracy sufficient for the engineering calculations. For

eL=xreny (L) xw
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€<=0,001, the analytical “cutting out” of the LAF fragment
does not practically differ from the conventionally logical
one. In this case, also, all LAF values outside the boundaries
x; and xp become little distinguishable from zero, which
allows additive combining of the independent fragments
without having noticeable distortion of their eigenvalues.

(5] — ;
ik [ _ ] I

9 I I 0 ]

0.8/ T .

0.7} 1 E(x.14.21.0.3.0.3)

06— - 5

0.5 — T E(x.14.21.0.1.0.1) =

o fl~—t—t—t— — 11

0.3 1} E(x.14.21.0.01.001) |

02| — g — :

i : J e
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b

Fig. 2. llustration of the approximation of the 1-MIF of the form (13)
to an ideal rectangular pulse with a decrease in €

An analytical study of the 1-MIF was carried out in [12]-
[14]. These results showed that 1-MIF in the form of (13)
have a number of properties that are useful for performing
the analytical isolation of approximating functions sections.
These properties are compactly summarized in Table II.

TABLE II. MAIN PROPERTIES OF 1-MIF, SUPPORTING
THE MULTIPLICATIVE PROCESSING OF LAF
Ne Property Description Values
Function (13) is analytic, since decomposable in a
1 Taylor series at any point in its domain of xe]-, oof

definition:

Function (13) has a continuous range of values

(14)

2 from zero to one: E1(x)€]0.11
3 Fupction (13) hqs a single maximum x,,,<1 at the Elextr=E1(x0)
point x,, depending on x;, &5
4 The supremum E' supr(€)=1 for e—>0 and for any VXL,xR&e—>0
range [x;, xg]: x,<xg. — El(e)>1
5 Function (13) has zero infimum on the set Elinf=0
X |x]>o0
The function (13) at small &5 even near the boundary | €=0.01—
6 of the interval (for example, at a distance in 0.05 of | AE1<0.01;
the scale division) deviates very little from zero £=0.001—>
outside the interval and from the unit inside it. AE1<0.0001

The function (13) with &;=¢x is symmetric about
7 | the midpoint of the x, range of the approximated
region, i.e. Xy E'(xp-Ax)= E' (xy+Ax)

x0=(xL+xR)/2

At g #¢€g, function (13) becomes asymmetric, which

3 makes it possible to adapt the shape of the front of E'(xp-Ax) #
the IIF pulse to the boundary properties of E'(xy+Ax)
neighboring EDF.

The values of function (13) at the pulse boundaries
9 | are within 0.25+0.5 and depend only on the pulse E1Be[0.25.0.5]

width and on &g
E'5(Ax,) = 0.25 [Ax + (AX* + £5) " (A + £5)™°

Analysis of the identified 1-MIF properties showed that
all the formulated multiplicative paradigm tasks of the CGA
method are performed.

First, the multiplicative processing preserves the
analyticity property of the approximating function. That is,
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IIF like LAF, a continuous analytic function (properties 1
and 2).

Second, 1-MIF has range values limits (infimum and
supremum) 0 and 1. Multiplication of LAF and 1-MIF
represents the cutouts of the LAF fragment, i.e. storing its
values within the interval (with possible slight distortion -
properties 3, 4). The same multiplicative operation isolates a
fragment within its interval, making the LAF values outside
the interval practically zero (property 5) for the entire ED
definition domain.

Third, 1-MIF has the range limits (infimum and
supremum) 0 and 1. When LAF and 1-MIF are multiplied,
this provides a solution to the problem of cutting out the
LAF fragment, i.e. storing its values within the interval (with
possible slight distortion - properties 3, 4). The same
multiplicative operation provides a solution to the problem of
isolating a fragment within its interval, making the LAF
values in the entire ED definition domain outside the interval
practically zero (property 5).

Fourth, the magnitude of the distortion of the LAF values
arising from its multiplicative processing manifests itself
only near the fragment boundary, and is effectively regulated
by the tuning arguments 1-MIF - €B = (eL, €R) T. In this
case, the error can be made arbitrarily small (property 6).
This property is illustrated in Fig. 3.

11
1
E(x.0.5.0.075.0.1)
0.9 E(x.0.5.0.025.0.1)
0.8
0.2
E(x.0.5.0.01.0.1)
0.1 E(x.0.5.0.001.0.1)
0
X

-0.1
-0.25 -0.2 -0.15 -0.1 —-0.05 0 005 01 015 02 025

Fig. 3. Deviation dependence of 1-MIF values from 1 within the interval and
from 0 beyond its boundaries

Five, the properties of symmetry and asymmetry,
declared in clauses 7 and 8, offer ample opportunities for
varying the 1-MIF settings to improve the quality of
approximation of ED by the experimental MM as a whole.
This is due to the fact that varying the value of eB can
change the edge configuration of the IIF, reducing the error
in joining the neighboring fragments. This factor is
complemented by the special properties of the boundaries of
1-MIF, which are shown in paragraph 9.

The last of the 1-MIF properties considered is the
variability property of the boundary settings. It plays a
crucial role when used as the main tool of the CGA method.
It makes it possible to formulate two important points. First,
all the EDFs bordering on each other, formed at the first
preparatory stage of the CGA method from the initial ED
array, should have common borders (necessarily common,
but not adjacent). Secondly, the tuning arguments of 1-MIF
can be used for search optimization of the final error of the
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experimental MM obtained at the last stage of the CGA
method.

The requirement postulated above for the fragmentation
of ED at the EDF with an obligatory commonality of
boundaries needs to be clarified in particular. Analysis of
expression (13) for 1-MIF shows that the ordinate of
crossing the border xB by its graph depends only on the
pulse width Ax= x; - x; and on &3, here (Be {L, R} depending
on the boundary under study) . The formula for this
dependence is given in the condition line 9. In Fig. 4, several
curve graphics are plotted for several ¢ for this dependence.
It is clearly seen that even with a sufficiently large € = 0.2
ordinate, the intersection of the boundary abscissa is almost
0.5 already for Ax=2. When & = 0.01, this is true in almost
the entire range Ax=1. The value 0.5 is a supremum for
E'(xs, xp ¢&3). Therefore, only additively combined
boundaries of the EDF can reconstruct the values of the
boundary experimental points with averaged accuracy of
their description of LAF for neighboring fragments.

The considered rule is valid when implementing the GF-
operation of the additive “gluing” IIF into a single UAF
function, which is the experimental MM of the object under
study. This is true not only for 1-dimensional ED. Studies
have shown that E"(x, x;, Xz, €, €), is formed by the
product of n 1-MIF for all coordinates, according to (12).
When multiplying by n-dimensional LAF, this n-dimensional
MIF also forms n-dimensional IIF, which has common
borders with neighboring IIF of various types. This is
reflected in their boundary values.

In the 1-dimensional version, as shown above, 1-MIF has
only 2 boundary points — the edges is a curve fragment,
which gives a coefficient of ~0.5 for multiplicative
processing.

0.5 -

. T
, i
. -
0.45+ —=
! s E(Ax.0.01)
] -
0.4 T E(Ax.0.2)
[} . -
035: P E(Ax 1)
b E(Ax.3)
R -
03—
& Ax
0.25

1] 1 y 3 4 5 6 7 8 9 10
Fig. 4. Dependence of the 1-MIF borders properties on the pulse width and €
This leads to the fact that the addition of two neighboring
IIF  fi(x) and f;.,(x), provided that xg=x;.; and

Ej(ka-/kaang)zE ez 15 X1 €14-1)70.5, is determined by the
expression

Jexr) + filxre ) =
= (Px(ka)’EJ(ka,ka,ka) + (Prc+1(ka+1)'E1(ka+1: Xpkeos €1k1) =

= 0.5(0(xr) + Qrers(Cxris 1))

s)
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those will be equal to the average value of the output
variable in LAF of these fragments in their common
coordinate point.

As the dimension of the modeled dependencies increases,
the number of different types of boundary sets increases
linearly. So with » = 2 and the regular construction of the
ED, which was declared at the beginning, its fragment will
be a rectangle that is connected not with two segments along
the x axis, but with 8 adjacent rectangles on the x;-x, plane.
At the same time, he forms 2 types of boundaries: straight
line segments - 4 sides, and points - 4 vertices. At
experimental points located on adjacent sides and common
to 2 EDF, E’(xgixswes) will have a value of ~ 0.5, and at
points that are vertices common to 4 EDF, the value 2-MIF
will be equals ~ 0.25. This is easily verified by performing a
mathematical analysis (13). At each such point four values
are averaged to approximate this point for different EDF.

Table III shows the values of the MIF edge coefficients
at the boundaries of various types for the dimensions of the
objects being modeled up to and including 4. Very
characteristic and useful for solving problems by the CGA
method is the fact that the decreased coefficient of n-MIF for
any of its boundary (boundary) point is always equal to the
value close to the result of dividing one by the number of n-
EDF bordering at that point.

The revealed phenomenon of MIF properties in the form
of (12) allows, along with the main function of CF - the
isolation of LAF values o(xz) along the fragment
boundaries, to use CF to filter experimental errors and local
approximation.

This allows to some extent reduce the overall
methodological error of the ED approximation when
performing a GF operation: the additive formation of the
final UAF. The possibility of minimizing the error arises
from the alternative trends in the dependence of the
boundary values of 1-MIF on ¢;. When ¢;; and €, approach
zero, the steepness of the isolated fragments fronts increases,
i.e. improves the fragment isolation accuracy. The optimal
values of the MIF settings - €; can vary over a wide range of
values, sometimes quite far from zero [12].

TABLE IIIL. BOUNDARY VALUES N-MIF
FOR EDF - PARALLELEPIPEDES UP TO 4 DIMENSIONS
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However, the discussion on how the CGA method could
be improved is too voluminous to be considered in this

Copyright (c) IARIA, 2019.  ISBN: 978-1-61208-732-0

paper. Its follow up developments are envisaged in the
coming future as extensions to the achieved results in this
work.

V. CONCLUSION

The following 2 conclusions summarize the results
achieved in this paper:

1. The presented CGA has a completely logical and has
largely original structure, as follows:

e Collection of experimental data (ED);

e Fragmentation of ED to multiple EDFs;

e Approximation of each EDF by a unique LAF;

e Multiplicative transformation of each LAF using
its unique function MIF with related IIF isolated
in the argument space;

e Algebraic summation of all IIFs forming UAF,
which is MM of the studied object, created
according to non-linear ED, but being, in this
case, AF.

2. It was found that the CGA method characteristics are
promising and motivate its application in solving the
variety of engineering problems. The method has no
analogues within the existing mathematical tools. It has
practically unlimited application areas, especially
adopted for modeling the non-linear n-dimensions
dependencies. So far, the development and testing of
the CGA method is validated for objects of the first and
second order, which has been revealed and partially
described in this paper, together with many of its
promising developments aspects, to be undertaken in
the future.
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