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Abstract— The notion of pulsation concerns a possibility of a 

particular kind of intelligent controlled and secured evolution 

in dynamic real-world systems. It is related to fundamentals in 

intelligent systems and applications as well as to the topic of 

intelligence by design. In this paper we present a model of 

pulsation based on Ackermann’s function. This brings more 

clarity to understanding Symbiotic Recursive Pulsative 

Systems that are important, for instance, for designing and 

implementing intelligent security systems or for automating 

robots’ programming in incomplete domains and unknown 

environments. One particular application for these systems is 

our Constructive Matching Methodology for automating 

program synthesis from formal specifications in incomplete 

domains.  
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intelligent systems; intelligence by design; Ackermann's 

function; control; security; progress; practical completeness. 

 

I.  INTRODUCTION 

For more than three decades now, we worked on 
automation of programs synthesis in incomplete domains via 
inductive theorem proving [2] [8]. Our approach differs from 
standard computer science approaches based on modularity 
of developed parts. This standard is called Newtonian 
Science in contrast to Cartesian Intuitionism [6] that provides 
a basis for Symbiotic Recursive Pulsative Systems (SRPS) 
roughly described in [6]. 

The notion of SRPS is very rich and complex. In our 
latest work [4] [5], we are trying to progressively disentangle 
this symbiotic complexity by presenting notions individually 
(as much as possible for symbiotic parts of a whole). Such a 
disentangling is important for perceiving the usefulness of 
working on particular SRPS for real-world applications 
where Newtonian Science has shown its limitations. 

In this paper we focus on a model for the notion of 
pulsation. Such a systemic approach influences the overall 
perception, the guidelines for research and development and 
elaboration of details of SRPS. We will show in this paper 
that meta and fundamental levels in SPRS are symbiotic. In 
other words, their separation leads to a non-sense or an 
irrecoverable mutilation. This is important for understanding 
our work on Constructive Matching Methodology (CMM) 
for automating program synthesis from formal specifications 
in incomplete domains via inductive theorem proving. 

The paper is organized as follows. In Section II, we recall 
the definition of symbiosis we work with and we present an 
example illustrating symbiosis of information that is present 
in recursive representations.  In Section III, we present a way 
to construct Ackermann's function and to replace, for given 
two numbers a and b, its non-primitive recursive 
computation by a computation via an on-purpose generated 
sequence of primitive recursive functions that has to be used 
for a and b. In Section IV, we show that prevention and 
control can be modeled by Ackermann's function. Section V 
shows that even pulsative systems can be modeled by 
Ackermann's function. In Section VI, we speak about 
pulsative development of our Constructive Matching 
Methodology. Section VII presents an example of a 
technological vision for which the work presented in this 
paper is important. 

II. SYMBIOSIS OF INFORMATION IN RECURSION 

As specified in [6], by symbiosis we understand a 
particular composition of two or several parts that make an 
indivisible whole. In other words, a separation of one sole 
part is a reason for extinction or for irrecoverable mutilation 
of the all other parts as well as the whole.  

Let us point out that we speak here of symbiotic 
information and not of symbiotic computation.  

Let us consider the following simple problem. On a 
sufficiently big table consider a stack of blocs a, b, c, d and e 
as shown in Figure 1.  
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Figure 1. The stack of blocks before the intended action is taken 
 
We say that a bloc m is clear if there is no other bloc on 

m. (In Figure 1, the bloc e is clear.) There can be at most one 
bloc on the top of the other. If n is on the top of m we say 
that n is top of m written as: n = top(m).  Let us consider the  
primitive recursive procedure “put on table” as being 
hardware defined in the robot that will execute the following 
informal primitive recursive program makeclear: 
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makeclear(x) = 

  if  x is clear then procedure ends 

 else  

   if   top(x) is clear 

   then  put(top(x)) on table 

   else  first  makeclear(top(x)) and 

      then   put(top(x)) on table 

It can easily be checked that makeclear(b) results not 
only in clearing bloc b but also in the situation where blocs c, 
d and e are on the table. This means that the procedure 
makeclear contains in its description not only its direct 
effects (such as: the bloc b is cleared) but also the full 
description of all the secondary effects of any action 
performed. In Figure 2, these secondary effects are that the 
blocks c, d and e are on the table.  
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Figure 2. The stack of blocks after the action ‘makeclear’ is taken  
 
For some other primitive recursive procedures the 

secondary effects do not modify the environment, but this 
should not be a barrier for general perception of primitive 
recursive procedures to be seen as invisible procedural 
‘seeds’ containing symbiotically related the effects (i.e., the 
results of the computations) and the secondary effects (i.e., 
the consequences of the computation of a particular value). 
Therefore, implementing recursive procedures is interesting 
in all the environments where the control over the secondary 
effects is important.  

The above procedure makeclear is an example of 
primitive recursion. A recursion that is not primitive goes 
even further in representing symbiotically information that 
concerns control, rigor and reproducibility. Ackermann’s 
function is a suitable representative for explaining how non-
primitive recursion modelizes a particular kind of pulsation 
in SRPS.  

In the following sections, we shall give a formalized 
presentation of the pulsation starting by a presentation of a 
construction procedure that results in Ackermann’s function. 
It will become clear how this construction and the notion of 
pulsation are linked together. Then, we shall present a 
practical application of this notion. 

 

III. ACKERMANN’S FUNCTION 

The idea to model pulsation by Ackermann’s function 
comes from the understanding how this function can be 
constructed. The practical use of this function becomes then 
exploitable by a particular ‘simplifying’ the computation of 
its values. 

 

A. A Construction 

Let ack be Ackermann’s function defined by its standard 
definition, i.e., 

ack(0,n) = n+1 

ack(m+1,0) = ack(m,1) 

ack(m+1,n+1) = ack(m,ack(m+1,n)). 

We shall show here how this function can be constructed.  
By definition, each primitive recursive function f is a 

composition of a finite number of primitive recursive 
functions and of f itself. 

Since ack is a non-primitive recursive function (see a 
proof in [12]), by definition of non-primitive recursion, it is a 
particular composition of an infinite sequence of primitive 
recursive functions. We shall build a function ack’ as a 
particular composition of an infinite sequence of primitive 
recursive functions built so that the definitions for ack and 
for ack’ (defined below) are identical.  

Let us construct such an infinite sequence of primitive 
recursive functions f0, f1, f2, …, fn, fn+1, …. respecting the 
following relationships 

f0(n) = n+1 

fi+1(n+1) = fi(fi+1(n)) 

for each i from 0, 1, 2 …. We are thus able to define a 
new function ack’ as follows:  

ack’(0,n) = f0(n) and  

ack’(m+1,n+1) = fm+1(n+1).  

This definition is still incomplete since the value for 
ack’(m+1,0) is not yet known. 

Since we want ack’ to be a non-primitive recursive 
function, we need to guarantee that it cannot be reduced to 
any of fi. In order to do so, we shall simply perform a 
progressive diagonalization on this infinite sequence of 
functions by defining the value of fi+1(0) as being the value 
of fi in 0+1, i.e., 

fi+1(0) = fi(1). 

In other words, we define  

ack’(m+1,0) = fm(1).  

By this construction we see that fi+1 is more complex than 
fi for each i. It is obvious that  

ack’(m,n) = ack(m, n) = fm(n).  

This construction is at the same time a guarantee that ack 
is not primitive recursive, since it is indeed a composition of 
an infinite sequence of primitive recursive functions each of 
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them more complex than those before it and ack cannot be 
reduced to any one of them. As a by-product, we have thus 
simplified also the standard presentation of the non-primitive 
character of ack, which is usually done by a proof by a 
projection of Ackermann’s function ack into a sequence of 
primitive recursive functions am(n) = ack(m,n) and showing 
that ack grows more rapidly than any of these primitive 
recursive function (see [12]). The difference thus lies in our 
use of an indirect construction (instead of a projection) and 
relying on a particular diagonalization.  

To our best knowledge, this construction with a use of 
progressive diagonalization was not presented so far. Note 
that the notion of pulsation that refers to this construction of 
Ackermann’s function has no relation to measures of the 
computation complexity of a function, such as Ritchie’s 
hierarchy [11]. 

B. A  ‘Simplification’ of the Computation 

The above construction of the Ackermann’s function 
shows immediately that the computation of its values for 
given m and n using non-primitive recursive definition can 
be ‘simplified’ - or, rather, replaced - by a definition of m 
primitive recursive functions obtained by a suitable macro-
procedure. 

Our recursive macro-procedure will simply compute, step 
by step, each of the values fi+1(0) (for i < m) in advance and 
will define the whole fi+1 with this already computed value. 
This may not lead to a fast computation but we are not 
concerned now with computational efficiency of this way of 
proceeding, only by its practical feasibility and 
reproductiveness. In no way is our presentation an attempt to 
optimize Ackermann’s function. On the other hand, 
computing in advance some values is a known technique, we 
have just adapted it here for our macro.  

Note that there exists efficient algorithms that go further 
with the computation of the values of Ackermann’s function 
than our macro-procedure, but these known algorithms are 
based on a relation of Ackermann’s function with a kind of 
usual exponentiation function. Our way of proceeding is thus 
useful for practical applications that will be based on use of 
SRPS. Indeed, not many practical applications (such as 
security information system or robots programming 
themselves in unknown environments, for instance) can be 
modeled by exponential functions. Therefore, our macro, 
even though less efficient, aims at general use of different 
systemic non-primitive recursive functions in the framework 
of SRPS. 

We define a macro-procedure, ack_macro, that uses a 
standard program of LISP which adds a text at the end of the 
file that will contain the programs generated by ack_macro. 
We thus create an auxiliary file F that stores the functions fi 
generated by ack_macro. Our ack_macro uses thus the LISP 
procedures add_to_file and load_file. The procedure 
add_to_file(text,F) adds the text at the end of the file F. The 
procedure load_file(F) loads the file F in order to make 
computable the functions written in the file. Our macro-
procedure ack_macro(m,n) uses the infinite sequence of 
functions defined above as being representative of 
Ackermann’s function. 

Step 1:   

 text:= { f
0
(n) = n+1 }  

Step 2:  

 Create the file F (empty at start) and 

 add_to_file(text,F)  

 load_file(F) 

Step 3:   

 i:=0 

 aux:= compute the value of f
i
(1) 

Step 4:  

 text := {  f
i+1
(0)= aux and 

      f
i+1
(n+1)= f

i
(f

i+1
(n))} 

 add_to_file(text,F) 

 load_file(F) 

 aux := compute the value of f
i+1
(1) 

 i:= i+1 

 if i < m  

 then Go to step 4 

 else stop 

Figure 3. A macro-procedure for computing particular values of ack 
 
ack_macro(m,n) is now completed and file F collects the 

definitions of m primitive recursive functions. We are now 
able to compute ack(m,n) = fm(n). 

In the next section, we shall explain how prevention and 
control are modeled by Ackermann's function. 

IV. PREVENTION AND CONTROL IN RECURSION 

We have seen above in the example of the program 
makeclear that primitive recursion captures the effects 
(computation) and the secondary effects (consequences of 
the computation). We have also seen that the non-primitive 
recursive Ackermann’s function is obtained using a 
diagonalization procedure. This diagonalization brings 
forward complementary information about the process of this 
symbiotic information in the recursion. Since diagonalization 
is a meta-level procedure, we understand this complementary 
information as a kind of meta-level prevention. In particular, 
we interpret it as a prevention factor simply because 
diagonalization prevents ack to be reduced to computation 
and consequences of computations of functions from which 
it is constructed.  

It is interesting to note that some scientists may 
intuitively ‘feel’ that Ackermann’s function provides a 
model of human thinking of ‘everything’ for a particular 
situation. The makeclear program mentioned shows that this 
intuition can be presented in terms of symbiosis of the 
information included in a particular situation. Note that the 
above macro-procedure (Figure 3) simplifies only the 
computation of thinking of ‘everything’. In order to illustrate 
this particular ‘simplification’ of the computation we may 
mention that, as it can be checked, the trace of the 
computation of the value for ack(3,2) using the standard 
definition shows (see [3]) that the value ack(1,1) is computed 
twenty-two times for obtaining the result of ack(3,2). This is 
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not the case for the computation of simplified f3(2). 
However, it is necessary to understand that the overall 
complexity of this situation remains the same since, in order 
to be able to ‘simplify’ (i.e., to define the above macro-
procedure), we already need to have available Ackermann’s 
function equivalent to the constructed sequence of fi. In other 
words, the principle and effectiveness of ‘thinking of 
everything’ remain on the global level. The simplification 
concerns only focusing on one particular local level defined 
by the two values a and b instantiating Ackerman’s 
variables. Of course, the macro-procedure is general, but for 
a and b given, it generates only the finite sequence of 
primitive functions f0, f1, …, fa.  

This makes explicit that ‘thinking of everything’ keeps 
its theoretical order of complexity after presented 
simplification. It is only the computational complexity that is 
simplified. Systems requiring a simultaneous handling the 
prevention and control factors such as information flow 
security systems [7] [10] are practical examples of a problem 
requesting to think of ‘everything’. 

V. PULSATIVE SYSTEMS 

The above sections will help us explaining how 
Ackermann’s function enables us to formally specify the 
notion of the pulsation. This is interesting not only from the 
point of view of building particular formal theories for 
unknown domains, but also for understanding the difference 
between revolution, innovation and evolutive improvement 
in this building process. 

In the context of program synthesis, we have defined the 
notion of oscillation in [5] and [6]. Since the notion of 
oscillation provides an informal background for the notion of 
pulsation, we shall recall this notion here. 

In scientific fields, the obvious basic paradigm is, for a 
given problem, to find an idea leading to a solution. For 
instance, in program synthesis, for a given problem one tries 
to find a heuristic that solves the problem. This can, in 
general, be expressed by the formula 

∀ Problem ∃ Idea Leads_to_a_solution(Idea,Problem). 

We shall call this formulation: “first paradigm.” 
However, another and rather unusual (except in Physics) 

paradigm is to find an idea that provides a solution for all 
problems. We shall show how Ackermann’s function 
provides a model for this last paradigm. First, however, let us 
express this second paradigm by the formula 

∃ Idea ∀ Problem Leads_to_a_solution(Idea,Problem). 

We shall call this formulation: “second paradigm.” 
The difference between these two formulas lies in the 

fact that in this second case the ‘Idea’ obtained is unique, 
while in the first formula each problem can use its own Idea. 

We have explained in [6] that the goal of CMM is to 
build a program synthesis system (Idea) that solves the 
problem of program construction in incomplete theories 
(e.g., unknown environments in space). We thus globally 

work with the second paradigm. However, in our everyday 
research (which means to acquire fruitful experiences 
enabling to build relevant knowledge), we work locally with 
the first paradigm while keeping in mind the second 
paradigm. This means that we mentally oscillate between 
two paradigms. The second paradigm presents a global 
vision and the direction of the solution we seek and, to make 
this goal achievable, we perform our everyday work in the 
framework of the first paradigm following nevertheless the 
direction imposed by the second paradigm. We call 
oscillation this approach of symbiotic switching between the 
two above paradigms. We speak here about symbiotic 
switching, since both paradigms are in reality considered 
simultaneously and cannot be separated. 

Let us consider now a potentially infinitely incomplete 
theory. In unknown environments that may be seen as a 
framework for potentially infinitely incomplete theories, 
building a formal theory becomes then a process of suitable 
completions of a particular initial theory T0. We shall say 
that this theory T0 is practically complete when it 
formalizes solutions for the problems met so far. Since the 
theory is potentially incomplete, sooner or later we shall 
meet a problem that cannot be solved in the framework of T0. 
In the vocabulary of scientific discoveries we may say that 
we need a conceptual switch (a new axiom or a set of 
axioms) that completes T0. Note that we speak here about 
completion and 

• not about a revolution - which would mean in a 
sense rejecting T0 

• not about a innovation - which would simply mean a 
particular reformulating T0. 

Thus, in fact this completion T1 contains T0 and it is 
coherent with T0. However, since a new conceptual switch 
guarantees that T1 is more powerful than T0, we consider this 
particular kind of completion as a suitable model for one step 
of improvement, or pulsation, in our search for suitable 
completions. Since we consider here a potentially infinitely 
incomplete theory, we can then see the pulsation (particular 
improvement) as an infinite sequence of theories T0, T1, …, 
Tn, … . In this sequence, Ti+1 completes and thus is coherent 
with Ti for all i = 0, 1, 2, …  

We have seen that, in the infinite sequence from which 
Ackermann’s function is built, the function f1 relies on (is 
coherent with) f0, and fi+1 relies on fi for each i. It means that 
Ackermann’s function really provides a model for evolutive 
improvement (or progress in Bacon’s sense [1]). We 
understand it different from revolution and innovation. 

Let us now come back to our notion of pulsation. We 
have seen that, in the informally specified notion of 
oscillation, we switch coherently between two paradigms. In 
our interpretation, the second paradigm, i.e., 

∃ Idea ∀ Problem Leads_to_a_solution(Idea,Problem) 

represents the idea of Ackermann’s function and the first 
paradigm, i.e., 

∀ Problem ∃ Idea Leads_to_a_solution(Idea,Problem). 
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represents particular primitive recursive functions from 
which Ackermann’s function is constructed. In the definition 
of Ackermann’s function we have seen that  

fi+1(0) = fi(1). 

Analogously, we shall state that the sequence of 
completing theories can be written as:  

Ti+1 = Ti + Ai+1, 

where Ai+1 is an axiom (or a set of axioms) representing 
the conceptual switch that enables solving the problem 
unsolvable in Ti. Let us stress the fact that by pulsation we 
understand an infinite sequence of theories T0, T1, …, Tn, 
Tn+1, … with the just mentioned property and not only one 
particular step in this sequence. This means that pulsative 
systems are systems that are formalized progressively and 
potentially indefinitely. 

We have seen above that Ackermann’s function is also a 
model for symbiotic consideration of prevention and control. 
We could see that f0 must be defined in a way that guarantees 
the non-primitive recursion of the constructed infinite 
sequence. We could see that, with respect to our requirement, 
f0 must be defined in a way that guarantees the non-primitive 
recursion of the constructed infinite sequence. Indeed, if f0 
were a constant, for instance 3 (which would mean that f 
f0(n) = 3 for all n), the resulting infinite composition would 
also be the constant 3. This means that, even though f0 is the 
first function of this infinite construction, since it must be 
defined as a symbiotic part of the final composition, the 
prevention and control factors must be taken into account in 
this function.  

So, we can see that Ackermann’s function provides in 
fact a model for the improvement that guarantees symbiotic 
handling prevention and control already from the start. 

VI. ON PULSATIVE DEVELOPMENT OF CMM 

Roughly speaking, CMM is developed as a methodology 
for automation of program synthesis in incomplete domains 
via inductive theorem proving (ITP). It represents an 
experimental work that illustrates this paper. For 
understanding this section it is not necessary to present a 
formalization of this particular application (it can be found in 
[5]). However, it is useful that we describe what we 
understand by a methodology.  

Given a non-trivial goal, its methodology is a full 
formalized description of all the problems that arise in 
achieving this goal and, of course, of the complete solutions 
for these problems. In other words, a methodology is a full 
‘know-how’ of a successful achieving the given goal. 

Automating program synthesis in incomplete domains 
via ITP is far from a simple problem. This is because a 
unified know-how is not available even for by-hand 
construction of inductive proofs that are necessary for 
program synthesis. This means that a unified know-how 
must first be found. This is the goal of our CMM.  

It is important to note that we are still at the level 0 of 
pulsative development of CMM. In other words, we work on 
defining a powerful primitive recursive f0 with respect to the 
overall goal of resulting non-primitive recursive SRPS for 
CMM. This means that already level 0 has required several 
decades of research and many useful results not known in 
automation of ITP were obtained so far. A full bibliography 
of these results can be found in [9]. We have described above 
the process of building f0 by oscillating between two above 
mentioned paradigms. However, we still need to work on 
transmission of the technical details of this oscillation. We 
have explained in [6] that Cartesian Intuitionism, and thus 
CMM as well, cannot use tools developed by Newtonian 
approaches.  

Understanding the process of oscillation between the two 
paradigms described above is very important for the 
development of SRPS (namely the systems on level 0) in 
various domains. However, a detailed illustration in the 
framework of program synthesis would be too much 
complex for readers that are not expert in this particular 
topic. We intend to present a compact but detailed 
illustration on an example that concerns a ‘safe’ transmission 
of relevant scientific knowledge. This problem was already 
pointed out by Francis Bacon. By a ‘safe’ transmission of 
knowledge we understand a transmission that guarantees that 
no mutilation is possible during such a transmission and that 
all the creative potential of the knowledge and know-how to 
be transferred is preserved. Our book [3] is an example of 
such a safe transmission. We shall tackle this topic also in 
one of our future papers. 

VII. A PULSATIVE TECHNOLOGICAL VISION 

It is interesting to be focused on the topic of SRPS in 
general and of CMM in particular because, in long term 
consideration, this seems to be the only way how robots will 
be able to 
 

• formalize recursively unknown domains (e.g., in 
space research) handling perfectly control, rigor and 
evolutive improvement;  

• perform experiments necessary for finding such 
suitable formalizations; 

• program themselves autonomously with the help of 
the formalizations found. 

 
By formalizing an unknown domain we mean its 

progressive exploration and acquiring experiences – through 
experiments – that lead to facts enabling a progressive 
formalization of this domain. 

Of course, a successful achievement of this technological 
vision will require not only CMM but also the tools 
developed in Machine Learning, Big Data, Computational 
Creativity and some other maybe not yet known scientific 
fields that will become known as soon as scientific 
community overcomes artificial human factors that are a 
barrier for seriously investigating this technological vision.  
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Let us recall once again that each unknown environment 
is potentially infinitely incomplete and thus the notion of 
pulsation really has an enormous importance for Science. 

 

VIII. CONCLUSION  

There are technological visions that need to be solved in 
the framework of Symbiotic Recursive Pulsative Systems 
and thus, they need to be tackled by Cartesian Intuitionism. 
This means that all the notions of SRPS and their algorithmic 
elaborations should become widely known so that really 
symbiotic long-term collaborations become possible. This 
need for symbiotic collaborations requires also a replacement 
of Newtonian management strategies by the management 
strategies that are proper to Cartesian Intuitionism. This 
paper extends thus our preliminary work on transmission of 
fundamental notions of Cartesian Intuitionism and SRPS by 
presenting the origin and the motivation for the model of 
pulsation inherent to SRPS. By its practical applications and 
already existing use mentioned in the paper this notion 
shows its importance for Science already now and not only 
for future technological visions. Indeed, this notion allows to 
consider progress as different from innovation for which a 
control of negative secondary effects appearing in future is 
not handled systematically. The Ackermann’s function as a 
model for pulsation allows to provide such a control since 
the control of the secondary effects is built in SRPS 
themselves and already from the start of their design. This 
paper shows that Ackermann’s function should not be 
considered as a simple abstract mathematical curiosity but as 
a legacy with a rich scientific potential. 
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