
A Framework for Progressive Trusting Services

Oana Dini
University of Besanҫon, France

oana.dini@univ-fcomte.fr

Pascal Lorenz
University of Haute Alsace, France

lorenz@ieee.org

Hervé Guyennet
University of Besanҫon, France

guyennet@lifc.univ-fcomte.fr

Abstract – The web-based transactions, web services,
and service-oriented platforms require appropriate
mechanisms to announce, select, and use different
services. A user is always under the dilemma of ‘use
and trust’ or ‘trust and use’ for different services
based on the notion of service reputation. The
interaction between every service provider and its
users is regulated by the service level agreement and
customer satisfaction feedback. The former is the basis
for the technical audit, while the latter subjectively
validates the user perception. Selection of a most
appropriate service by correctly invoking is a
challenge. This is due to the difficulties to correctly
expose proper way to invoke a service, to the variety of
services, from on-line services, software pieces, to
shopping, and to different invoker behavior. When
considering invoker feedback, service ranking based
on user perception, or based on recommenders’
statistics are relevant. A significant aspect is played by
service similarity. The paper presents a framework
and appropriate mechanisms to evaluate the
services/providers in the light of their respective direct
impact on user perception. To accurately evaluate the
feedback after service/product consumption, we will
refine the user profile by considering the dynamics of
the feedback. The approach we propose deals with
peaks in feedbacks. We consider quick negative and
quick positive feedback as well as late vs. early
feedback with respect to the time of the transaction.
We propose formal concepts used in selecting an
appropriate service. The paper presents adapted
approaches to select services based on distance and
similarity, and introduces a similarity taxonomy to
better tune various kinds of service invocation under
specific constraints, such feature relaxation, type of
similarity, context, and service ranking. Selection is
based on the feedback from the user. The proposed
model is used for building a selection algorithm that
allows variations on service invocation. The proposal
is validated through use cases.

Keywords – recommenders; reputation; dynamic
feedback; services similarity; temporal similarity; use
profiles, dynamic patterns.

I. INTRODUCTION

With the overwhelming amount of information,
products, and services available over the Internet, it has
become harder for the users to select the ones that fit
best their needs or requirements. First of all, it is too
difficult and time consuming to sort through hundreds
of items and select the needed one. Also, there is the
problem of trusting the provider for that item and not
only that, but trusting that the provider is offering a
product that meets the user’s requirements. In order to
assist the user in selecting the product or service that it
needs, recommender systems have been proposed.

Recommender systems (RS) have been the subject of
many studies and products over the last decade. The
term was first brought up by Resnick and Varian [1],
which, as mentioned in [2], it was mostly a replacement
for “collaborative filtering” proposed in [3].
Recommender systems are defined as systems that
collect ratings from users and then analyze the data to
produce recommendations to other users [4]. There are
several techniques used to generate recommendations,
but the main categories are Content-based Filtering
(CBF), Collaborative Filtering (CF), and Hybrid
approaches [5].

RS are important in electronic commerce, especially
for marketing [6] and they have been widely used in
order to attract and retain customers. The relation
between the loyalty of users and RS was studied in [7]
using data from Amazon.com. Their findings showed
that the presence of consumer reviews helps with
retaining customers and also attracting new ones. In
time, the business gains reputation, which usually
translates to increase in business. There are a few
challenges in optimally using the recommenders due to
the variety of user’s profile and its volatility and the
reputation of different service providers. For dealing
with these aspects, recommenders usually use product
rating, confidence in service providers, and regularly
update this information for an accurate suggestion for a
given request.

In all the existing approaches, some improvable
assumptions are considered for the purpose of easily

326

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

computing the reputation. Aspects like partial feedback,
ignorance of customer confidence, and most
importantly, lack of information on the service provider
identity are major challenges for an accurate reputation
per product, per service provider, per context, or per
user profile. In this paper, we propose an approach
taking into consideration the above challenges and
deriving mechanisms for a more accurate reputation.

Classically, two notions concerning the quality of a
delivered service are correlated for an accurate service
evaluation, i.e., QoS (Quality of Service), and QoE
(Quality of Experience). Specific to each service, there
are particular service parameters that are agreed upon
between a provider and a subscriber, commonly settled
by the SLA (Service Level Agreement). On the
provider side, the SLA parameters are used for technical
audit and litigations (leading to penalties or bonuses
towards a given user or class of users). Specific on-line
and off-line measuring mechanisms for SLA metrics and
specialized audit techniques have been proposed. On the
consumer side, the subscribers’ satisfaction is gathered
and mapped to the audit results to validate a given
service, to detect flaws in delivering a service, and to
ultimately build a view on service reputation. In general,
a record is handled per service or per products, with
respect to a given subscriber or a class of subscribers.
Customer feedback can be ‘by request’, or ‘at will’, and
embraces various forms of on-line questionnaires. As a
result, a customer might decide not to answer, or to
answer exhibiting a particular behavior. Ultimately, a
service provider might fake some feedbacks to increase
its reputation. There are various factors that influence
the computation of an accurate reputation, e.g., the
volume of ordered services, the diversity of the
subscriber classes, customer trust and loyalty, and the
dynamics of the feedbacks. Practically, the main
problem we try to find a solution for is to dynamically
and accurately compute the reputation of a
service/product, based on the system transactions. We
propose a simple formula for reputation updates (1).
The challenge is to identify the correct metrics in
computing the updated reputation.

rreal = (1+ λ) x rcurrent (1)

where:
rreal represents the updated reputation, considering
rcurrent represents the known and accepted reputation,
and
λ represents the correction based on customer
perception and feedback behavior, λ belongs to {(-α, α)
| α > 0}, usually having values in the vicinity of ‘0’.

The main achievement of our proposal is the following.
The recommenders systems have a powerful

mechanism to accurately indicate the real reputation,
when selecting the best service provider from a service
directory. Except some studies on QoE [17][19] that
mainly consider technical metrics, we introduce and
evaluate the customer behavior.

The paper focuses on dynamic aspects of customer
feedbacks and formalizes mechanisms for a more
accurate evaluation the reputation of a given service
delivered by a given provider in establishing policies

for λ.

The large spectrum of user behaviors (and, in general,
the variety of needed services) leads to the need of
similarity-based matching, when a given service is
required. Traditionally, the notions QoS and QoE deals
with these aspects. However, the perfect matching and the
approximate-matching depend on a large number of
factors. For example, if we consider Web Services
dedicated to weather forecast, location, month/day/year,
parameters (rain, wind, temperature, and pressure) can be
appropriate parameters when inquiring. Definitively, there
are several forecast services, and the experience of a
particular user might differ from one forecast service to
another. Some provide information that is more accurate
than others (i.e., data is more frequently updated), history
is better preserved by particular services, via backward
search, e.g., Weather Underground, etc. A similar
problem is observed when choosing and downloading a
particular piece of software, when inquiring for a
specialized on-line book shop, or for looking for a service
providing the most updated world-wide information.
Finally, some services offer a friendlier interface to
search, order, and get delivered a particular need (i.e.,
personalized interface, myAccount, etc.).

There are meta-services, providing the service at
choice. Such examples are those for buying flight tickets,
where the cheapest, the quicker, or other selection criteria
are used for service selection. Other meta-services are for
selecting the most appropriate software to download, or to
book a hotel. In most of the cases mentioned above, one
criterion is usually considered to select from an existing
service pool.

Two phases involve service features, (i) service
discovery (locating) and (ii) service selection (in the case
of a set of services, relatively satisfying the needs with
similar degrees of satisfaction). Both phases require
special mechanisms to assess service similarity. Meta-
services have a restraint number of known services, well
localized, the parameters of which are also in small
number. Then, selection appears to be less complex. With
a well known service and limited (usually one search/
selection criterion) similarity is relatively easy to be
determined. The above considerations are not longer

327

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

valid for a large spectrum of properties a service might
expose to satisfy a given service request. To satisfy a
request, service similarity plays an important role for
timely identifying and delivering, and for an optimal
(maximal) customer (invoker) satisfaction. Customer
satisfaction is expressed by QoE, on-line feedback,
service ranking, and manifested by variations of QoS to
keep service costs and satisfaction in synchrony.

The paper is structured as follows. Section II covers
related works. An enhanced recommender model is
presented in Section III. In Section IV presents a
taxonomy of the dynamic feedback and a dual
architecture. Section V introduces computation
mechanisms for an accurate reputation of a service via
dynamic reputation update policies and heuristics. A
context-based similarity model, including distance and
similarity metrics, a similarity taxonomy, and other
facilities to consider service ranking and feature
relaxations is introduced in Section VI. Section VII
presents an algorithm to compute a minimum set of
existing services satisfying a given query, following the
newly introduced model. Section VIII concludes the paper
and presents future investigations.

II. RELATED WORKS

As the proposed approach touches the
recommendation and reputation on recommenders,
service providers, and products, we first introduce some
basic concepts.

2.1 Concepts

The core information of a recommender is a list of
offers (products) and ratings of those products based on
feedback received after a series of recommendations.
The rating is subject to incomplete, fictitious feedback,
volume of transactions for a given product or provider,
and confidence in feedback. Based on the ratings, the
recommender computes its own ranking per product.

s[r], P[r] represents a service or a provider with the
rank r, where r is an integer.

Associated with the ranking is the notion of
reputation that in fact determines the ranking. The
reputation formula, while product oriented, it might not
be accurate, as its computation cannot avoid some
realities, such as some service providers have private
relationships with recommenders (e.g., publicity,
sponsorship) or indirect servicing (recommended
product might not be produced by the front end
provider, but simply delivered by it).

Reputation is an index associated with the service or
a product based on user feedback that is taken into
consideration when the ranking is calculated. The
reputation index usually belongs to a set, {outstanding,
very good, good, acceptable, bad}. A recommender
might increase the rank of a service when its reputation
index, for example, passes from very good to
outstanding [8]

Similarity is another concept used in generating
recommendations. In order for a recommender to
suggest products to a user, it needs to find a
commonality among users (this applies in the
collaborative approach) or among the products that
were rated in the past by the user (this applies in
contend-based approach). There are different
techniques used to compute the similarity measure, but
the most used are correlation-based and cosine-based
techniques [5] [9]. Similarity is an index associated
with two services or products. For example, s1 [~/80%]
s2 means s1 is similar with s2 with an acceptance of 80%
based on the service’s features or in the same range of
ranking.

2.2 Current approaches for recommenders

Recommenders are usually classified based on the
approach for making the recommendations. There are
three main categories of recommender types: content-
based filtering, collaborative filtering, and hybrid
filtering.

The content-based filtering recommends to users
items that are similar to the ones searched by the users
in the past [5][9]. This type of recommendation
technique is mostly used to recommend text-based
items such as documents and newspapers. In order to
produce the recommendations, the system needs a
profile of the user, which is represented by a set of
terms. The profile can be obtained from the user
through a questionnaire or it can be learned from their
past transactions. This type of filtering has its
shortcomings. Since it is content-based, it needs to have
the representation of data in a matter that can be
machine-parsable (e.g., article). It is harder to apply this
technique in the case of movies, music, images, which
are not machine-parsable.

The collaborative filtering (CBF) [3] tries to predict
the relevance of an item based on the ratings done by
other users. It accumulates ratings of products and
whenever a request comes, the system identifies similar
users and recommends the products rated by them. In
this type of filtering, the user profile is defined by a
vector of items and their ratings, which is updated over
time. As opposed to the CBF, this type of filtering can

328

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be applied to any kinds of items, not only to machine-
parsable items. However, there are limitations with this
approach, mostly caused by the lack of data points in
initial stages: new user and new item.

The hybrid algorithms usually combine the content-
based and the collaborative algorithms to overcome
some of the limitations of the other two approaches.
This approach has been adopted by some RS [10], [11].
There are different ways to combine the two algorithms
and [5] present the different approaches in detail.

As we mentioned above, the reputation of a business
is gained in time, mainly based on reviews from users.
This brings up another point and that is obtaining
accurate reviews from users. Many users are not
willing to leave feedback after a transaction is
completed. One reason for not leaving feedback is the
lack of incentives. If there isn’t some kind of payoff for
the feedback, the user won’t put the effort into posting
one. An incentive mechanism is addressed in [12]
where incentives are given to users who provide honest
feedback through a side payment mechanism.
Examples of incentives mechanisms are Amazon’s
“Top Reviewers” practice and Epinions.com referral
fees practice [13]. Another reason for not leaving
feedback is to purposely withhold information about a
product that gives its user an advantage [14].

Another concern related to the validity of the reviews
is the manipulation of the reviews by parties with direct
vested interests. Businesses can review their own
products in order to boost the sales. Also, the
competition can leave or fabricate negative feedbacks
to undermine the competitor’s reputation. There are
ways to filter out biased feedbacks and to prevent
manipulation [15], but preventing coordinated collusion
attacks is still an issue. eBay, for example, does not
have a problem with feedback manipulation. The
feedbacks can only be left by users who are registered
with them and who made a purchase on eBay.
However, if a group of users agree with a seller to leave
positive feedback for fictitious auctions (e.g., the seller
can post multiple 1 cent auctions on which the users can
bid), the seller’s ratings can be positively affected.
These users are usually called shills. This approach
would require quite an effort (the larger the number of
shills, the bigger the impact), but it can be achieved.

Reputation is very useful in RS and eBay is one
example of a reputation system that proves that their
approach works well. However, having a centralized
reputation system, such as eBay, can bring other issues,
such as vulnerability and inflexibility of the system
[14]. In [14], the authors propose a distributed trust and
reputation management framework. The users choose a

trust broker and after each transaction with a service,
the user sends its rating to its trust broker. This way, the
trust broker builds a reputation about a service based on
the user’s feedback. The brokers exchange reputation
information among themselves in order to collect more
information about the available services. This
framework relies on the user’s feedback only, ignoring
the business model of the provider.

Recommender mechanisms [18] rank the products or
services based on feedback received after a series of
recommendations and successful transactions. The
rating is subject to incomplete, fictitious feedback,
volume of transactions for a given product or provider,
and confidence in feedback. Based on the ratings, the
recommender computes its own ranking per product,
defining the reputation (r) of a service/product. A
computational mechanism including user’ confidence
(c) and feedback expectation (e) was proposed in [16].
An attempt, rather static, of considering a static
subjective evaluation of the quality of the voice service
is described by the MOS (Mean Opinion Score). The
MOS is an arithmetic value ranging between 1 and 5,
expressing individual perception [17]. However, MOS
apply strictly to voice-related services, on an individual
basis. The metrics are purely technical and related to
codec use, packet loss, packet reorder, packet errors,
and jitter. Another standard for evaluating the speech
QoE, also considering technical metrics, is captured by
PESQ algorithms [19].

A dynamic approach for customer input is presented
by byClick system [20][21], where there is an on-line
click-counting on the number of service accesses. No
customer behavior, subscription status, or feedback
patterns are considered. However, in the current
approaches, no correlation with the frequency of users’
report and transaction peaks, as well as with the users’

report patterns were considered.

Finding similar services (approximate, but satisfactory
matching) is somehow similar to (i) text matching, (ii)
schema matching, or (iii) software-component marching.
For some text matching solutions (information retrieval)
mechanisms based on term frequency are used [28][29].
In schema matching, special techniques are using
semantics of the schemas to suggest schema matching
[30]. Mainly, linguistic and structural analyses, as well as
domain knowledge, are methods to handle schema
matching. When expanding to software component
matching [31] (considerably used in software reuse)
component signature and program behavior (usually
formally defined) are considered; in this case, data types
and post-conditions should be considered for matching.
However, these techniques are not suitable for Web

329

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Services [27], as data types and post-conditions are not
available. Usually, such a service has a name and text
description in UDDI (Universal Description, Discovery,
and Integration) registry, operation decryptions, and
input/output descriptions; the last two are usually
specified in WSDL (Web Service Description Language).

Dong et al. [27] proposed criteria for associating
similar terms. They introduced the cohesion/correlation
score, as a measure of how thing two terms are. However,
they do not consider particular characteristics of a term.
They applied the score only to Web Services. We start
from the point that services similarity has a meaning only
between services than can be context-oriented and belong
to a cluster (e.g., invoking a service gives a list of similar
operations with similar results). Other approaches
consider both diversity and similar at the same time
having the distance as a metric [32]. We adopt these
metric (see Section III) and adapt them to the service
similarity computation.

In fact, specific to each service, there are particular
service parameters that are agreed upon between a
provider and a subscriber, commonly settled by the SLA
(Service Level Agreement). On the provider side, the
SLA parameters are used for technical audit and
litigations (leading to penalties or bonuses towards a
given user or class of users). Specific on-line and off-line
measuring mechanisms for SLA metrics and specialized
audit techniques have been proposed. On the consumer
side, the subscribers’ satisfaction is gathered and mapped
to the audit results to validate a given service, to detect
flaws in delivering a service, and to ultimately build a
view on service reputation. In general, a record is handled
per service or per products, with respect to a given
subscriber or a class of subscribers. Feedback can be used
to enforce service similarity.

In this paper, we also expand the cluster-based
similarity to service similarity and introduce similarity
taxonomy, where the service consumer has a weight in
deciding service similarity. The idea is to establish service
ranking (and reputation) inside a given cluster, and define
similarity considering service-provider and service-user
feedback.

III. AN ENHANCED RECCOMENDER MODEL

In this section, we present a recommender model that
can handle the sub-contract mechanism, yet keeping an
accurate information on a given provider reputation
(leading to an accurate ranking).

3.1 Setting the case

A simple scenario is presented in Figure 1, where the
user is interested in service s1 from P1. The user asks
the Recommender for the best provider for service s1
within specific parameters. The Recommender replies
with either a provider that has the best reputation for
service s1 or with a list of providers {Pi} for s1. Let us
assume P1 is registered of being capable to deliver s1

(others might be registered for s1 as well). The
Recommender cannot know if P1 has the service or if it
contracts it from a different provider. If P1 is
contracting s1 from P2, the transaction between P1 and
P2 is transparent to both the Recommender and the user.
At the end of the transaction, the user sends the rating
of P1 to the Recommender and P1 receives all the credit
for the transaction. This leads to an inaccurate
reputation and altered ranking.

Figure 1. Indirect reputation

If the reputation of the provider is based only on the
user’s feedback, there is no way to assess the ultimate
role of each provider. In order to have a more accurate
picture of the providers’ involvement, we propose that
feedback from the providers be taken into account when
establishing reputation. This includes both the front
end provider (in our case P1), as well as any
subcontracted providers (in our case P2). All feedback
goes directly to the Recommender.

The ideal scenario would be when all the users and
providers report 100% of the transactions. In reality,
users don’t always leave feedback and providers do not
always report rendered services. In such a case, the
Recommender is left to deal with an incomplete set of
data. Moreover, some of the reported data may be
fabricated by both users and providers.

reply [s1]

Reply [P1]

Reply[s1]

R u1

User

P1

S1 S2

P2

S1 S2

request [s1]

Req [s1]

Request

Pi

S1 S2

330

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3.2 Recommender representation model

Apart from the mechanism of collecting the feedback
and interfacing with the users, the core information
present in a recommender is stored in a service
database. This allows a request to be replied to with a
service or a list of services, eventually with a degree of
similarity associated with each service. Usually, the
recommender keeps information on relative ranking
among these entities.

We propose an enhanced model, which takes into
account the user’s profile and behavior, and a list of
potential providers for a given service. This allows a
more refined ranking scheme where providers can be
rated per service.

While ranking is based on user feedback, there is no
appropriate mechanism to consider the user’s
expectation (e) and credibility (c). By user expectation
we mean the probability of having the user leave
feedback after a service was delivered. The credibility
refers to the user’s ability to give a trusted rating.
Usually both, expectation and credibility are expressed
as percentage.

In Figure 2, we present the enhanced recommender
model. The recommender stores information about the
available services, the providers and their services, plus
the user profile, which includes its expectancy and
credibility. Both services and providers are associated
with a rating. The providers’ rating is done within the
context of a service. This way, the rating can be done
per product and per provider for a specific product.

Figure 2. Enhanced Recommender Model

By keeping the relationships between the providers,
their services, and also the users who requested the
available services, the recommender can provide better
suggestions and answer to more complex queries.

We classify queries in two categories, i.e., U-R and
P-R. Some salient queries U-R might be:

Query 1:

input: [s1]
output: [s1/P1, s1/P2]

The user asks for service s1 and the
recommender replies with a list of providers
that offer s1.

Query 2:

input: [s1] & [s1 (~/Ɛ)]
output: [s1/P1, s1/P2] & [si/Pi]

The user asks for service s1 and/or a service
similar to s1. The recommender replies with a
list of providers that offer s1 and/or a list of
providers who offer services similar with s1.

“~/Ɛ” represents the similarity of services
with Ɛ as proximity

Query 3:

input: [s] [P1, P2]
output: [s1/P1, s2/P1] [si/P2, sj/P2]

The user asks for a list of services offered by
certain providers. The recommender replies
with a list of services offered by those
providers.

Query 4:

input: [s | r > x]
output: [s1/r1, s2/r2]

The user asks the recommender for a list of
services, which has a ranking “r” higher than a
certain value. The recommender replies with
the list of services.

Some relevant queries P-R might be the following:

331

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Query 5:

input: [ui]
output: [ui [e/c]]

The provider asks the recommender about
user ui. This may be relevant to the provider in
order to assess the user’s credibility. The
recommender replies with the ui expectation
“e” and credibility “c”.

Query 6:

input: [all Ui, e > α, c >β]
output: [ui [e/c]]

The provider asks the recommender for a list
of users whose expectation and credibility are
higher than a certain value. This may be
relevant to the provider in order to assess the
user’s credibility. The recommender replies
with the list of user(s).

Based on the formula presented in the following
section, complex information can be gathered and more
accurate answers to different queries can be provided.

3.3 Computation mechanism

The enhanced model allows a more comprehensive
schema for computing the reputation.

Figure 3. A computation schema for recommenders

In our framework, a recommender has mechanisms
for representing services (S) with their reputation (r)
and similarities (~), provider (P), with their reputation
(r) linked to the reputation of their service providers (s),
associated with user’s (u) expectation (e) and
credibility (c). A particular relation is valid at a
moment (t). For example, a user x is expected to

provide feedback with e = 80% and the confidence on
its feedback is 70%. The feedback is on a provider (p)
providing a service (s) at the time (t). The schema
allows having a reputation view of a user at a given
time, on a given provider delivering a given service.
The schema also allows having a reputation of a
provider, as perceived by a user at a given time, if
delivered by a given service.

We are now going to concentrate on different
scenarios dictated by the amount of data reported by
users and service providers.

For example, a user sends a request to the
recommender for the best cell phone provider that
would meet certain parameters. The recommender
replies with provider P1. The user makes a request for a
number of cell phones from P1. After the transaction is
completed, all the involved parties have the option to
send feedback to the recommender. The recommender
collects the data and based on the feedback, it updates
the reputation of the involved parties. The nature of the
collected data can be divided in three main cases:

3.3.1 Matching reports

The number of feedback reports from the user
matches the number of reports from the service
provider within a particular time window relevant to the
service type. To continue with the example from
above, the user sends the feedback to the
Recommender, including the number of cell phones that
it purchased. P1 reports to the Recommender that the
user purchased a number of cell phones from it. The
numbers reported by both the user and P1 match.

A subclass of this scenario would be when P1 sub-
contracts from a different provider, P2. If P1 receives a
request for cell phones, it can send the products from its
own stock, send part from its own stock and part from
P2, or get the entire order from P2. In this case, the
Recommender would receive reports from both
providers, P1 and P2. The exact number reported would
not match since P1 will report that it sent the entire
order to the user, and P2 would report that it sent a
certain number of phones to P1, but the data can be
correlated. The correlation is done by using the
transaction completion time, the user identifier, and the
provider identifier.

3.3.2 Over-reporting providers

The number of feedback reports from user and
provider does not match. This can be caused by either
providers exaggerating the amount of transactions
completed, or by users who underreport. In this case,

S[r/~]  P{[r/s]} / u (e, c)

report
ur {s, p, t}

pr [{s, u, t}]

332

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

some of the data can be correlated by the
Recommender.

3.3.3 Underreporting provider

The number of feedback reports from user and
provider does not match. This can be caused by either
providers that do not report every transaction, or by
users who exaggerate the amount of transactions
completed. In this case, the Recommender can correlate
some of the date.

3.3.4 Case study for reputation correction

Let us consider the following situation:

u -> [t] [p1] [s1], where u is the user, p1 and p2 are
providers, t is the time of the request, and s1 is the
service;

p1-> [t] [u] [s1], with p1 [r1/s1]
p2 [t][s1], with p2 [r2/s1]

and the following transaction reports:

|u|: reports  transactions
|p1| reports transactions (with  < )
|p2| reports  transactions


then

k = ( –) / 

In this case, for a given user u, and for the
considered service s1, the real reputation is r1’ = k x r1,
as there is an indirect service delivery form p2 via p1 to
the user u. The schema allows having a more accurate
view on who is delivering a service. Note that the
number of transactions can be either reported or
obtained by audit. In this use case, we consider that the
providers are subscribed to an automated transaction
report when delivering a service.

3.3.5 Discussion

In this section, we are comparing existing
recommender systems with our proposal, on the basis
of three main features: expectation, credibility, and
user profile, as defined in Section 3.2.

We consider a few well known recommender
systems and only selected those three main features as a
basis of comparison. The existing recommenders do not
incorporate in the user profile the expectation and
credibility of a given user.

Table 1. Feature based comparison of several
recommender systems as well as the proposed one

eBay Amazon.com Barnes
&
Nobles

proposal

expectation Not in
profile

Not in profile Not in
profile

Included
in profile

credibility Not in
profile

Not in profile Not in
profile

Included
in profile

User profile yes yes yes yes

While the considered systems (eBay, Amazon.com,
Barnes & Nobles) make use of the notion of profile
when recommending a product, the main target is to
identify potential similar services and products to either
satisfy a request or recommend a particular service
unknown to the user (using the similarity concept).

By including these features, the recommender can have
a more complete view on user’s satisfaction based on
more accurate information maintained by the system on
the user’s behavior (the degree of responsiveness of the
user ability to give trusted rating).

The performance and accuracy of a recommender
system can be enhanced by including in the user’s
profile the user’s expectancy and credibility. By having
the expectancy of a user to leave a review and also its
credibility, a recommender can better tune its
suggestions to a user’s requests with increased
certainty. Ongoing experiments will identify the
thresholds from where these features increase the
accuracy of recommendations. Particular consideration
will be given to the dynamics of user’s feedback in
terms of relationships between the frequency (volume)
of the used services or products and the accuracy of the
timely feedback.

IV. DYNAMIC FEEDBACK

The mapping QoS~QoE principally involves SLA’
metrics. In our approach, we also introduce temporal
and ethical metrics to quantify more accurately the
customer feedback. Additionally, long term and short
terms feedback patterns are identified, including spikes
feedback.

We consider the basic introduced in [16], where by
user expectation we mean the probability of having the
user leave feedback after a service was delivered. The
credibility refers to the user’s ability to give a trusted
rating. Usually both, expectation and credibility are
expressed as percentage. The new mechanism proposed
includes the status of the user and the feedback history.

333

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Finally, we drive feedback-based polices for service
reputation updates, by considering these metrics, based
on extreme behaviors of customers in terms of feedback,
e. g., feedback too late, too quick, too frequent, too rare,
etc.

A. Dual reputation update architecture

Two views on reputation must be correlated for a given
service/product, i.e., the provider view and the
customer view. On the provider view, the perception of
the service reputation, rexpected, represents the variation
of several metrics, as the volume of sales, the number
of new customers or lost customers in a given period.
From the customer side, rfeedback gathers customer
perception on the reputation of a service.

Therefore, we propose a dual architecture to
correlate and synchronize the two views. From the
uniformity reasons, the update heuristics will follow a
similar computation approach for both views,
implemented by specialized engines.

Figure 4 depicts the main architecture and decisional
and computation engines.

Figure 4. Dual reputation update architecture

The architecture considers two customer-facing
interfaces (I1 and I2) handling the off-line (by_request,
or at_will), and on-line (at_will), respectively,
reputation updates. I3 is considering the provider-
facing reputation updates. Three appropriate off-line,
on-line, and run-time engines deal with the updates, by
receiving and computing them via I1, I2, and I3,
respectively. In the current paper, we only focus on
aspects related to data collected via I1 and I3. For data
collected via I3, an interesting implementation, nor
related to our model, is presented by byClick [20][21].
While dynamic is different, the dual architecture can
also support this approach. Hereafter, we will only
refer to the off-line and run-time engines.

The reputation update polices and heuristics layer
implements mechanisms to synchronize the two views,
and to correlate the newly computed values. For
example, a specific function is to trigger an update of
rfeedback, when the, rexpected, has an unexpected variation,
or when its variation trespass some thresholds. A
concrete case could be when the volume of sales
increases dramatically, with no appropriate variation of
rfeedback. Appropriate heuristics will be presented in the
next sections.

It is assumed that the customer and service records
follow the model presented in [16] and enhanced in this
proposal.

Without losing the generality, but for simplicity of the
computation, we adopt the same formula, i.e., (1), as a
core mechanism for reputation update engines; only the
metrics will be specific to each view. Let us assume
that a given service has a starting reputation r0, on both
views. We use the formula (2) for computing an
updating value of the reputation:

rcurrent = r0 Π (1 + λi) (2)

where: { λi = ki x wi i = 1…..M}

M: the number of considered metrics
i: a given i-th metric [I belongs to N]
ki: basic normalized update due to the variation of the i-
th metric [ki belongs to R]
wi: weight factor associated with the i i-th metric [wi

belongs to R]

The off-line and run-time engines compute the rfeedback

and rexpected, respectively, using (2) and appropriate
heuristics for adopting λi. In the next section, we
introduce a customer dynamic model and show how the
λi are computed.

4.1 History metrics

We recall the main concepts of the enhanced
recommender model [16], which we consider as the
basis for dynamic feedback metrics:

s <r>: each service <s> has an associated reputation <r>
Pi<s,ri>: each provider offers a service with its

associated reputation
Pj<s,rj>: another provider can offer the same service

with a different associated reputation
u <e, c>: a user has a credibility and confidence metrics

associated with

off-line
feedback

on-line
feedback

run-time
system

I1 I2 I3

services,
sales

service metrics, customer

reputation update policies and heuristics layer

334

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Note: for simplicity, we consider that <e, c> are the
same for any service.

In evaluating the customer feedback, we consider
individual metrics and metrics for a class of
subscribers. In both cases, the feedback mode, i.e.,
‘by_request’ or ‘at_will’ helps to differentiate between
different extreme feedbacks.

feedbackMode::= {by_request, at_will}

4.2 Individual metrics

For individual metrics, ‘subscription seniority’,
‘feedback timing’, and the ‘satisfaction’ are relevant.

Seniority in profile::= {long term, regular, new}
FeedbackTiming::= {quick, regular, late }
SatisfactionDegree::= { x% | x = 0 - 100}

For policy-specification, we define satisfaction by
metrics

satisfaction = satisfied, when x > β1

= regular, when β2 ≤ x ≤ β1

= dissatisfied, when x < β2

seniority = long term, when term > τ1

= regular, when τ2 ≤ term ≤ τ1

= new, when term < τ2

feedback = quick, when t < t2

= regular, when t2 ≤ t ≤ t1

= late, when t > t1

With the above definitions, we assume that the
architecture handles the seniority of the subscribers and
the timestamps of their feedbacks after a service was
consumed.

The following patterns of interest can be identified for
each seniority profile:

a. &&<quick><satisfied>]
b. &&<quick><dissatisfied>]
c. &&<late><satisfied>]
d. &&<late><dissatisfied>]

The profile metrics quantified as ‘regular’ do not alter
the computation of the reputation.

With the new metrics, a user is characterized by
- expectation
- credibility
- seniority

and a ‘per service’ feedback pattern. The feedback
patterns comprise:

- feedback timing
- satisfaction degree
- feedback dynamics (#satisfied, #dissatisfied,

repetitive replies, observation period)

There is a calibration phase for each system, where the
appropriate values are tried and settled for the
thresholds. For example, the following steps are
considered by a calibration procedure for the feedback
timing:

(1) An ‘average’ reply time is observed and
recorded for both feedback modes for a given
service.

(2) After the calibration period, the customer
reaction is observed for that service, called
‘average’.

(3) A policy can be defined by heuristics, as
follows:

START
IF feedback mode = at_will

IF ‘feedback timing’ is ‘three times’ than the
‘average’

THEN feedback = late
IFNOT (feedback mode = at_request)

IF ‘feedback timing’ is ‘twice’ than ‘average’
THEN feedback = late

END

Heuristic #1. Settling the feedback values
In a similar way, and based on calibration, policies for
settling each threshold can be defined.

4.3 Metrics for classes of subscribers

For a class of subscribers to the same service, we
propose feedback metrics capturing the community
behavioral. In the case of a community, the individual
profiles are aggregated. In order to capture the
dynamicity of the feedback, we introduce a few
feedback metrics describing a pattern structure. In a
given observation period (Δ), we define the number of
repetitive replies (m) and the number of satisfactions
(ni+) an dissatisfactions (ni-), as well as n- = max {ni- | i
= 1…} and n+ = min {ni+ \ i = 1….}. For example, in
Figure 2, on the top, m = 2, n1+ = 4, n2+ = 5, and n+ =
4. In the third basic pattern, when both satisfactions and
dissatisfactions are present, a pair (n+, n-) is attached to
it.

Based on a series of observations periods, a profiling
system is able to classify customers and have a coarse
granularity on the feedbacks.

335

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Basic feedback patterns

With these metrics, a reputation engine can trigger
appropriate reputation update mechanisms.
Definitively, they can be combined with the user history
metrics to build more complex (and more accurate)
updates.

4.4 Dynamics on service subscriptions

Service reputation is a main metric to justify the
existence of that service, new investment in developing
new features of the service, and new marketing
activities to promote a given service.

In our model, we consider a few metrics that portray the
dynamics of service sale, e.g., the volume of
transactions, the number of new customers in a given
period, and the number of lost customers in that period.
For the last metric, we also consider the seniority,
therefore distinguishing between long term and new
customers.

Therefore, apart its features from the quality point of
view, from the reputation perspective, a service is
described by:

- r: reputation
- vol: variation in transaction volume [± %]
- new: new customers [%]
- lost_new: lost new customers [%]
- lost_long: lost long term customers [%]

(% is considered versus the numbers at the beginning
of the observation period; usually every update
represents the start of a new period)

A revision of the reputation of a service is always based
on the above metrics.

An example of using heuristics for updating the
reputation based on the number of transactions can be:

START
IF vol = - 10%

THEN rreal = (1- 0.1) x rcurrent

ELSE
rreal = rcurrent

END

Heuristic #2. Updating the reputation versus
variations of transactions

4.5 Conclusion on the reputation update model

We presented a model for updating the reputation of
a service considering the user profile, its dynamic
feedback, on the one side, and the dynamics of service
subscriptions. In general, the reputation updates is
triggered by a significant variation of one of the service
subscription dynamics. This moment defines the origin
of an updating period. It is assumed that a
recommender system records other customer feedback
information that is considered when updating the
reputation.

In the following section, we present some basic
heuristics to update service reputation, considering the
metrics described above.

V. DYNAMIC REPUTATION UPDATING

There are several classes of updates, based on what
metrics are used.

n1+ n2+
Δ

……..

n1-

Δ

n2-

Δ
n1+

n2-

336

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

5.1 Satisfaction and feedback based policies

The simplest way of updating the reputation is
considering the first four patterns

a. [<quick><satisfied>]
b. [<quick><dissatisfied>]
c. [<late><satisfied>]
d. [<late><dissatisfied>]

Following Policy #1, we associate with (a) and (b) a
correction θ1 and with (c) and (d) a correction θ2, with
θ2 < θ1, when the feedback_mode is ‘at_will’ and with
θ4 < θ3, respectively, when the feedback_mode is
‘by_request’, with θ4 < θ3 < θ2 < θ1. The subjective
justification of these values is given by the customer
attitude in terms of promptness of reactions and their
qualification.

The correction, in this case, is expressed by the
following policy [Policy#1]

START
IF feedback_mode = at_will

IF feedback = quick
IF satisfaction = satisfied

THEN rreal = (1+ θ1) x rcurrent

IFNOT (satisfaction = dissatisfied)
THEN rreal = (1- θ1) x rcurrent

IFNOT (feedback = late)
IF satisfaction = satisfied

THEN rreal = (1+ θ2) x rcurrent

IFNOT (satisfaction = dissatisfied)
THEN rreal = (1- θ2) x rcurrent

IFNOT (feedback_mode = at_request)
IF feedback = quick

IF satisfaction = satisfied
THEN rreal = (1+ θ3) x rcurrent

IFNOT (satisfaction = dissatisfied)
THEN rreal = (1- θ3) x rcurrent

IFNOT (feedback = late)
IF satisfaction = satisfied

THEN rreal = (1+ θ4) x rcurrent

IFNOT (satisfaction = dissatisfied)
THEN rreal = (1- θ4) x rcurrent

END

Policy #1: Reputation updates #1

The values of all weights are done by validated
calibration. For example, if the orders of a given service
do not increase (or decrease), it means that the
reputation is too high. Therefore, reputation is always
‘in question’, when the transactions for a service vary,
or the service orders show a quick increase or decrease
(in terms of volume, and in terms of new customers).

5.5 Satisfaction, feedback, and seniority based policies

Let us assume that a mechanism is in place for
complying with Policy #1; additionally, the seniority
must be considered. There are two strategies used in
our model to update the reputation: (i) an optimistic
one, and a (ii) pessimistic one.

Let us assume we have the following situation:

vol = +15%
new = 10%
lost_new = 2%
lost_long = 1%

In an optimistic strategy, would credit the ‘vol’ and
‘new’, while downplaying the ‘lost_new’ and
‘lost_long’. Following the same approach of correcting
by fraction representing the percentage, i.e., 10% is a
correction of 0,1, we have the following heuristic:

START
IF vol = +15%

new = 10%
lost_new = 2%
lost_long = 1%
THEN rreal = (1+ 0,15) (1 + 0,1) (1 – 0,02) (1-

0,01) x rPolicy#1

END

Heuristic #3. Considering variations in transactions and
subscribers (optimistic)

In a pessimistic approach, losing new subscribers or
long term subscribers is an indication of service
degradation from the quality point of view, of a
violation of the SLA with a significant number of
subscribers, or simply that the service was not upgraded
at the expected standard.

In this case, a multiplicity factor can be used to
consider the loss, e.g., k1 for loosing new subscribers
and k2 for loosing long term subscribers.

START
IF vol = +15%

new = 10%
lost_new = 2%
lost_long = 1%
THEN rreal = (1+ 0,15) (1 + 0,1) (1 – k1x0,02)

(1- k2x0,01) x rPolicy#1

END

Heuristic #4: Considering variations in transactions and
subscribers (pessimistic)

337

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Calibrating the values for k1 and k2 in this case follows
also a given heuristic, as expressed below:

1T 2T 3T
k1 3 2 1
k2 6 6 6

Heuristic #5: Multiplicity correction factors

In Heuristic #5, an example of selecting the multiplicity
correction factors is presented. Assume that the
unsubscribe event occurs in 1T, 2T or 3T time units for
the enrolment, the example gives more weight to the
loss of long term customers (3T < τ2 to correctly
evaluate the ‘new’).

Note1: In the model presented above we considered no
difference between the types of service, assuming that
the QoS, from the provider perspective was delivered
according to the SLA.

Note2: In the heuristics and the metrics presented
above, we didn’t consider any emotional feedback that
might influence the feedback (such as accompanying
gifts, bonuses, or penalties for QoS violations), nor
particular interests of a customer in a service provider,
such as stocks.

5.2 Reputation update considering feedback patterns

A fine grain reputation update considers the feedback
patterns presented in Figure 5. While only one pattern
can be considered to update the reputation, Heuristic #6
considers all three patterns (see Figure 5).

START
IF (Δ, m, n+) [Δ > τ1]

THEN rreal = (1+ m+xn+/100) x rcurrent

IF (Δ, m, n-) [Δ > τ1]
THEN rreal = (1+ m-xn-/100) x rcurrent

IF ((Δ, m, n+, n-) &&Δ > τ1]
THEN rreal = (1+ m-xn-/100) x

(1+ m+xn+/100)x rcurrent

END

Heuristic #6. Reputation updated considering the
feedback patterns

5.3 Reputation updating policies and heuristics

By their own nature, from both views (customer,
provider), the reputation values on each view is a list,
similar with time series, with

rfeedback = {r1, r2, r3, ……….}, and (3)

rexpected = {r’1, r’2, r’3, ……}

at {t1, t2, t3, …..}

The reputation values can have the following position,
as shown in Figure 6.

Figure 6. Relative position of reputation values

While computing the real reputation on both views, and
considering the dynamics of customer feedback, we can
observe a channel trend (Figure 6a) or local anomalies
(Figure 6b). Formally, there are several cases for
defining updating heuristics.

A channel trend is considered when | rexpected – rfeedback| <
ε and an anomaly occurs when | rexpected – rfeedback| > δ,
where ε << δ, for all ti (ε and δ are thresholds that are
established per services).

The model allows implementing five heuristics for
synchronizing the feedback and expected reputation
(see (3)). This allow to adjust the market from some
actions; with no lost generality, we only consider three
potential actions, i.e., ‘increase/decrease the storage
order’, ‘increase/decrease the price’, and
‘increase/decrease the offered QoS’. These actions are
main contributors for the service costs.

t0 t1 t2 t3 t4….. tn

r

t

rexpected

rfeedback

r0

ti tj

b)

t0 t1 t2 t3 t4….. tn

r

t

rexpected

rfeedback

r0

a)

rfeedback

1

2

rfeedback

338

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Synchronization

In this case, both expected and feedback reputations are
in synchronization with small variations.

IF
| rexpected – rfeedback| < ε

AND
ri > r’i for all i
OR
ri < r’i for all i

THEN “keep same storage order”
AND
“keep same prices”
AND
“keep same QoS/SLA agreements)

END

Heuristic #7. Regular computation

No particular actions are triggered, but regular
reputation computation by off-line and run-time
engines.

2) Pessimistic anomaly (from the provider)

In this case, the feedback reputation is much higher
than the expected reputation; it is a situation to increase
the objective function (benefits).

IF
| rexpected – rfeedback| > δ

AND
ri > r’i for all i

THEN
IF ‘no QoS violation”

THEN “increase storage order”
ELSE
“offer lower QoS/SLA provider metrics”

(less costs)
END

Heuristic #8. Pessimistic policy

3) Optimistic anomaly (from the provider)

In this case, the expected reputation is much higher than
the feedback reputation; it is a situation to decrease the
objective function (benefits).

IF
| rexpected – rfeedback| > δ

AND
ri < r’i for all i

THEN
IF ‘no QoS violation”

THEN “reduce storage order”
OR “reduce price”

ELSE
“offer better QoS/SLA provider metrics”
(more costs, to attract customers)

END

Heuristics #9. Optimistic policy

4) Under estimation (by the provider)

This case refers to the situation where the expected
reputation decreases, but the feedback reputation
increases.

IF
| rexpected – rfeedback| < ε

AND ri = r’i for a given I &&see ti in Fig. 3b]
AND ri-1 < r’i-1

AND ri+1 > r’i+1

THEN
(expectation decreases, customer satisfaction increases)

IF ‘no QoS violation”
THEN “increase storage order”
OR “increase price”

ELSE
“offer lower QoS/SLA provider metrics”
(less costs))

END

Heuristics #10. Under estimation policy

5) Over estimation (by the provider)

This case refers to the situation where the expected
reputation increases, but the feedback reputation
decreases.

IF
| rexpected – rfeedback| < ε

AND rj = r’j for a given I [see tj in Fig. 6b]
AND rj-1 > r’j-1

339

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

AND rj+1 < r’j+1

THEN
(expectation increases, customer satisfaction decreases)

IF ‘no QoS violation”
THEN “decrease storage order”
OR “decrease price”

ELSE
“offer better QoS/SLA provider metrics”
(more costs)

END

Heuristics #11. Over estimation policy

VI. A CONTEXT-BASED SIMILARITY MODEL

Then main idea of our approach is (i) having well defined
service clusters, (ii) compute the distance between
service feature, (iii) evaluate service similarity, based on
service features, (iv) consider user-, service,- and
producer-based similarity reflected by the appropriate
reputations, and (v) evaluate how interchangeable two
services are. When a service query is issued the algorithm
we propose select the most appropriate service,
considering both distance and similarity between services.

5.4 Identifying clusters of similar services
Expanding what was mentioned in [27], service cohesion
of a service cluster must be strong (best potential to be
similar), while correlation between two service clusters
should be weak (service independence). We say that
service s1 is similar with s2, and note s1 ~ s2, if the
similarity confidence is greater than a given threshold δ.
In a cluster S with ||S||, where ||x|| is the cardinality of x,
we redefine cohesion and correlation as follows:

CoheS = {(si, sj) | si ~ sj (~thres > δ)} / (||S|| x (||S|| - 1))
(4)

and

CorrelS,S’ = (A (S, S’) + A (S’, S)) / 2 x ||S|| x ||S’||, (5)

where

A (S, S’) = || {si, sj | si ϵ S, si ϵ S’ si ~ sj | ~thres > δ}|| (6)

with ~score = CoheS / CorrelSS’ (7)

defining the similarity score.

We notice that ~score defines similarity classes based on
the preexisting service clusters. To enhance the similarity
score, clusters aggregation and clusters split operations
are possible. Conditions and assessments for doing these
are presented in [27].

6.2 Distance metrics for service similarity

Let us assume that a service s has n features (usually
called data-points, as they are expressed by concrete
values in an n dimensional space). The following
distance methods are adapted for comparing services:

(a) Service Euclidian distance between two services in the
n dimensional space

d(s1,s2) = 1/n Σ (a1i – b2i)
**2, for all i = 1…n (8)

where ai, bi are service features.

(b) Service city-block distance
d(s1,s2) = 1/n Σ |a1i – b2i|, for all i = 1…n (9)

(c) Service Pearson correlation coefficient

r(s1,s2) = 1/n Σ ((a1i – a)/σa) x ((b2i – b)/σb), (10)
where a and b are the sample mean of ai and bi

respectively, and σa and σb are the sample standard
deviation of ai and bi.

The service Pearson distance is defined as
d(s1,s2) = 1 - r(s1,s2) (11)

(d) Service Cosine similarity
d(s1,s2) = cos (θ) = (s1 ● s2) / (|s1| |s2|) (12)
where ● is the vector product of s1 ans s2.

By selecting a service distance metric, a clustering
algorithm computes the distance matrix between two
services. Mostly, (a) and (b) of the above are satisfying
the triangle inequality, as true metrics.

6.3 Classes of similarities

In order to select the most appropriate service, we
introduce producer-based similarity (~prod), recommender-
based similarity (~recc), and user-based similarity (~user).
Producer similarity is based on the expectation,
recommender’s similarity is statistics-based, and user
similarity is based on user feedback. In this taxonomy, s1

~prod {s2, s3, …} define a cluster of similar services, as
defined by the producer.

To refine service similarity, we introduce the notions of
primary service features and secondary service features,
as shown in Figure 7,

Figure 7. Similarity classes.

s1

s2

~s ~w
~n

(a1i)

(b2i)

340

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where the bold items represent primary service features
(A1 set), and the dashed items represent secondary service
features (A2 set) (similar for s2)

We introduce strong, weak, and normal similarity,
represented by ~s, ~w, and ~n, respectively.

Therefore, (s1 ~ s2) =

= ~s, iff all a1i ϵ A1 and b2i ϵ B1

= ~w, iff all a1i ϵ A2 and b2i ϵ B2

= ~n, iff there are a1i ϵ A1 and b2i ϵ B2 or
there are a1i ϵ A2 and b2i ϵ B1 (13)

Similarity composition allows to capture all possible
combinations, e.g,, ~prod/s represents a strong similarity
defined by the producer, based on the primary service
features.

A refinement of feature-based similarity is can be
expressed when service features do not show a direct
semantic matching, but feature composition might lead to
such a match. Considering that a subset a service feature
for a given service is equivalent with a feature for a
service the similarity is computed for, we introduce
feature composition-based similarity, as shown in Figure
2.

Figure 8. Feature composition-based similarity.

s1 ~a1k,a1m / b2z s2 (14)

with the semantic that the values of a1k and a1m composed
are similar to the values of b2z. Composition might be any
arithmetic or Boolean operator, according to the nature of
the features, e.g., if sets, then ‘U’ (union), if values, then
‘+’ (addition), etc. If type, and a1k:T1 and a1m:T2, and
b2z:T3, then, then T3 is a subtype of either T1 or T2.

Combination between ~s, ~w, and ~n, and feature
composition-based similarity can be applied following
(13).

6.4 Updating similarity

When evaluating service similarities, perfect match of
service features is desired, but rarely found, due to some
continuous values of the features. For example, looking
for a service offering the weather temperature with an
accuracy of 0.1oF is not feasible. A query on what month
the temperature is 67.3F might have no match; but, for a
given location, a query on what moth shows [75-80] oF
might be answered by April or May, if a Mediterranean
area. We identify two possible relaxations when
performing the matching.

6.4.1 Context-based feature migration

In time, and based on business models or customer
feedback, some primary features become secondary, and
vice-versa. Even more, in the same time, in different
contexts, a feature can belong to either primary or
secondary feature sets.

Let C = {ci} a set of contexts and

s1 ::= (A1U A2)context = c1, with A1 ∩ A2 = ϕ

s1 ::= (A’1U A’2)context = c2, with A’1 ∩ A’2 = ϕ (15)

then, the following is possible:

s1 ~context = c1 s2

s1 ~context = c2 s3 (16)

6.4.2 Feature relaxation-based similarity

Service features are not always perfectly matching (so
goes for query matching, as well). Most of the time, the
exact matching is not mandatory, e.g., if a service feature
has a numeric value a variation of a1i (usually symmetric,
but not necessarily) of +/- α1i is allowed. As a result, the
similarity metrics presented in II.B can be relaxed. The
same relaxation can be applied for similarity on data
type/subtype, for similarity concerning the set of interface
operations, or similarity concerning variations of an
algorithm implementation. For example, when a query
(with explicit relaxation of +/- 2ms) targets a service with
a response delay of 10ms, any service offering a delay
within [8ms, 12ms] is a desired matching. With no
explicit relaxation delay, 10ms is mandatory. In this case,

s1 ~a1i +/- α1i s2 <=> b2i ϵ [a1i - α1i, a1i + α1i] (17)

where a1i and b2i are the corresponding features of s1 and
s2, respectively.

s1

s2

a1k a1m a1w

b2p b2z

…

… …

341

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

6.5 Recommender-based similarity

Recommender mechanisms rank [22] the products or
services based on feedback received after a series of
recommendations and successful transactions. The
ranking is subject to incomplete, fictitious feedback,
volume of transactions for a given product or provider,
and confidence in feedback. Based on statistics, the
recommender computes its own ranking per product,
defining the reputation (r) of a service/product.

Considering a set of service clusters a recommender
build based on type of services/products,, we define:

Cluster = {clusteri}
with s1 ϵ clusteri and s2 ϵ clusteri, for a given service
feature

s1 ~feature = ai s2 ::= |ranks1 – ranks2| < εai (18)

In general,

s1 ~Uai s2 ::= max {|ranks1 – ranks2|} < min {εai} (19)

6.6 Customer feedback reputation-based similarity

Based on customer individual metrics, context, and
potential query with relaxation, a reputation is associated
with a service/product. Heuristics for updating the
reputation have been presented in [22][23]. In general,
the following information is available:

s <r>: each service <s> has an associated reputation <r>
Pi<s,ri>: each provider offers a service with its associated

reputation
Pj<s,rj>: another provider can offer the same service with

a different associated reputation
u <e, c>: a user u has a credibility and confidence metrics

associated with
For simplicity, we consider that <e, c> are the same for
any service.

For a given user, we define similarity in terms of rs

s1 ~feedbacks2 ::= |rs1 – rs2 | < ε0 with e> e0 and c>c0 (20)

In the following, the newly introduced model is used by
an algorithm to identify the most suitable service to
satisfy a query for a service.

VII. ALGORITHM FOR SERVICE RETRIEVAL
USING SIMILARITY

We introduced a similarity model and classes of similarity
that allow a user (invoker) to use for a service in a given

context, allowing or not precise relaxation for some
service features, and under different types of similarity
(strong, weak, normal). Distance metrics were also
adopted for services, in order to cluster the most suitable
services for a particular query, before computing the
similarity.

Based on the model previously introduced and on the
user model [23] and reputation [22], a query for a service
s can be expressed as

Q (s, similarity type, context, with/without relaxation on
{a1i})

The algorithm presented below illustrates the main
steps to reach a service proposal that can be a set, a given
service, or no service at all.

Algorithm for finding a requested service query Q, based
on similarity between potential satisfying services

1: begin
2: identify the service cluster &&&see (4)]
3: select a distance metric &&&see (5)-(9)]
4: calculate distance between all si in the cluster
5: select a subset {sk with min {d(si, sj) < ε}
6: if Q with relaxation
7: apply (10) and (11) for all mentioned features
8: if not
9: if Q with context
10: apply (12) and (13)
11: if not
12: compute a subset {si} of the set found before

step12
13: select {sl} from the subset of step 12, with

rank (sl) > δ1 and rfeedbakc > δ2 &&&see (16) and
(17)]
14: select a subset for the subset of step 13
15: return the subset of step 14
16: end

Note that the output of step 15 might be an empty set,
or a set having many recommended services complying to
the query conditions.

The complexity of the algorithm is given mostly by the
number of services features that can be considered with
relaxations.

A variation of the algorithm was experimented with
relaxation conditions for a set of contexts. The number of
features with relaxation, the number of contexts, and the
number of services into a cluster determine the
performance of the algorithm.

342

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Different experiments on the on-line Barnes&Nobles
system (on-line book shopping) show a reasonable
improvement on the precision the algorithm returns after
running various numbers of queries and varying different
conditions.

Figure 9. Precision of service returned to queries with
different types of similarities

With no surprise, a service satisfying a query with
relaxation riches quicker and with a higher precision the
query expectation.

6.8 Similarity issues

We presented an approach for service invocation using
similarity taxonomy where weak, strong, and normal
similarity. Practically, services are clustered and service
distance/similarity metrics were adopted from text-based
domains. A reputation-based mechanism (introduced in
[22][23]) is used in combination to context-based
similarity and feature relaxation methods to identify a set
of services that better serves a given query.

We also introduced the techniques of feature
aggregation when similarity is evaluated and the
continuous update of feature classification, i.e.,
primary/secondary, according to the context. More work
should be done on these two items, as semantic-based
aggregation should be considered.

6.7 Feature relaxation-based similarity

Service features are not always perfectly matching (so
goes for query matching, as well). Most of the time, the
exact matching is not mandatory, or, at least, the query
can explicitly mention an acceptable variation. Usually,
this is expressed as a constraint associated with a given
service feature. For example, requiring a book delivery
service, might have as a condition, delivery costs <

threshold. In other cases, if a service feature has a
numeric value a variation of a1i (usually symmetric, but
not necessarily) of +/- α1i is allowed. As a result, the
similarity metrics presented in II.B can be relaxed. The
same relaxation can be applied for similarity on data
type/subtype, for similarity concerning the set of interface
operations, or similarity concerning variations of an
algorithm implementation.

For s1 [a1, a2, a3,….an]
s2 [b1, b2, b3,…bk]

Let us assume that a few service features ai are associated
with constraints. These constraints may be expressed as
follows:

ai > expression/threshold
ai < expression/threshold
ai ϵ &&&x, y] (belongs to, as an interval)
ai ϵ {x, y} (belongs to, as a set)

For a service selection, all expressions must be returned
TRUE.

A query for a service can be represented by:

Q (s, similarity type, context, {(ai, constrainti)})

We express this as

s1 ~constraint s2 <=> bi satisfies ai, and all constrainti are
evaluated TRUE, for ALL i mentioned in the Q

For example, when a query (with explicit relaxation of +/-
2ms) targets a service with a response delay of 10ms, any
service offering a delay within [8ms, 12ms] is a desired
matching. With no explicit relaxation delay, 10ms is
mandatory. In this case,

s1 ~a1i +/- α1i s2 <=> b2i ϵ [a1i - α1i, a1i + α1i] (21)

where a1i and b2i are the corresponding features of s1 and
s2, respectively.

As a note, similarity with constraints increases the
chance to have a matching to a given query, on the
expense of additional computation. A variation of this
kind of similarity is when constraints are:

- Mandatory, for primary features (M)
- Optional (while desired), for secondary features (O)

For expressing these variations, a Q must be explicit on
the categories of features

1 2 3 4 5 6 ..
Number of queries

Precision
1.

0.8

0.6

0.4

0.2

strong similarity

weak similarity

with relaxation

343

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Q (s, similarity type, context, M:{(ai, constrainti)}, O:{(ai,
constrainti)})

A response for the system should also contain the
reference to the kind of feature/similarity, e.g.,

A response can be

{s1/M/nonO, s3/M/O, s8/M/nonO}, or simply

{s1/M/nonO, s3, s8/M/nonO},

where nonO index represents the feedback of not all
optional constraints were evaluated TRUE.

With no surprise, a service satisfying a query with
relaxation riches quicker and with a higher precision the
query expectation.

Two performance improving procedures are possible:
(i) Building a query cluster each query belongs to (as a set
of a priori known services that might satisfy the
mandatory features of a given query, and (ii) Based on the
responses, it is interesting that the same similarity criteria
used to identify similar services can be used to evaluate
the ‘satisfaction’ of the returned services.

The first procedure needs a look up in the previous
query inventory, and group them by context and user.
Then, looking by context and user ID, a subset of services
are derived. A Q is now answered by considering a
particular service cluster, sensitively smaller than the
entire set of services.

By running a few situations, with 1,000 services, 5,000
contexts, 8,000 users, and queries with 4 mandatory
features and 5 optional features, no constraints, the
following results were obtained (Figure 10).

Figure 10. Response time versus number of queries in
clustered and non clustered approaches

In the case where services are clustered (based on
previous answers) the response time is dropping by
almost half. However, a similarity (Q, A) must be also
executed to evaluate hoe the recommended services
satisfy a given query.

In terms of returned services, under the same setting,
the results are presented in Figure 11.

Figure 11. Returned services versus number of queries in
clustered and non clustered approaches

A sensitive drop in returned services is observed in the
clustered mode; however, it seems to be saturation with
the number of queries increasing. This can be caused by
the lack on context differentiation, or by the similarities of
the queries. On the latter part, more experiments are
needed.

The second procedure is used to apply similarity (Q, A)
for each service in the retuned set, and select that service
that has the max similarity. The procedure is simple, but
requires to be applied, in turn, to all returned services. To
simplify, one may select to run the similarity check only
for the primary features. In this case, with the same
settings for the experiment, the computation time is
reduced by two thirds. This is due to the fact that
similarity with constraints requires additional
computation for each feature to validate that the constraint
is TRUE.

To substantially reduce the computation time, and the
cardinality of the returned services, a condition on service
reputation reduced the time and the number of returned
services.

VIII. CONCLUSION AND FUTURE WORKS

The paper presented a framework and appropriate
mechanisms to evaluate the services/providers in the
light of their respective direct impact on user
perception. Essentially, the proposal considers several
innovative ways of considering user impact on an
accurate evaluation of a service/provider reputation.

Number of queries

Response time
1 – one unit3

2

1

no clustered

clustered

same context
set
no
constraints

1 2 3 .. &&&x100]

1 2 3 .. &&&x100]
Number of queries

Returned services &&&x 100]
3

2

1

no
clusteredclustered

same context
set
no constraints

220
120

90
50

80 90

344

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The proposed schema can capture indirect service
delivery and allow reputation correction based on the
real transactions.

Future investigations should focus on a more formal
definition of service/provider/feature similarity and the
stability of the reputation accuracy over a longer period.
This might lead to the reputation predictions;
specialized metrics for assessing the accuracy of
predictions in the light of indirect delivery are
challenging but seen as very helpful in web-service
driven environment.

On the user side, consistency feedback and reliability
should be correlated with the frequency of users’ report
and transaction peaks, as well as with the user’s report
patterns. This will allow detection of potential ‘off-
market’ agreements between providers and set an
appropriate service level agreement policy.

One aspect that is left out, but worth to be mentioned,
is that the reputation adaption function presented in the
thesis should be refined. We adopted a linear r = r0 (1 +λ)
reputation adaptation function. However, some services
might listen to other forms of reputation adaptation
function, as r = r0 (1 +eλ/r0), or r = r0 (1 +logλ/r0), etc. We
think that this can be approached by defining on the
customer side and on the provider side, a most suitable
function for reputation update, considering the type of
service and the context.

Another aspect that should be validated with more date
sets is related to the duration of the trying period for
endorsing the expected reputation. For example, 1-2 moth
for a book service, 1-2 weeks for a coffee service, or 6
months for a piece of software. In this case, trying various
validation periods might provide a more accurate
reputation update.

Service reputation was calculated ‘per context’. A
global view, form the producer perspective will require
studies on weighted cross-context reputation, in the case
of a free-context query. For example, a formula might be

Scross-context = (Σ wi x rcontexti) / Σwi (22)

In this case, large statistics are needed for an optimal
tuning of wi.

Another aspect that was surprising concerned the fact
that new customers where quiet close to the estimated
reputation; this raise the issue of a finer tuning
considering customer profiles. The heuristics presented
might need updates considering exceptions.

Finally, the fact that some service features shown
strong impact on service reputation were originally
classified as secondary (or, even miscellaneous) requires a

more customer-oriented service design. Actually, the
conclusion is quite the opposite with what is going on
with the service launching, when a myriad of features are
attached to a service, without a clear evaluation of a need.
Even more, new features are added, without accurate
validation of the use and customer evaluation of the
existing ones.

IX. REFERENCES

[1] P. Resnick and H. R. Varian. Recommender systems.
Communications of the ACM, 40(3):56–58, 1997.
[2] Esma Aimeur and Flavien Serge Mani Onana. Better control on
recommender systems. E-Commerce Technology, 2006. The 8th
IEEE International Conference on and Enterprise Computing, E-
Commerce, and E-Services, The 3rd IEEE International Conference
on Volume, Issue , 26-29 June 2006 pp. 38 – 38
[3] T. D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using
collaborative filtering to weave an information tapestry.
Communications of the ACM, 35(12):61–70, 1992.
[4] Dieberger, A., Dourish, P., Hook, K., Resnick, P., and Wexelblat,
A. Social navigation: techniques for building more usable system.
Interactions, 7, 6, 2000, 36-45.
[5] Adomavicius, G. and Tuzhilin, A., Toward the Next Generation
of Recommender Systems: A Survey of the State-of-the-Art and
Possible Extensions. IEEE Transactions on Knowledge and Data
Engineering, Volume 17, No. 6, June 2005. Pp. 734 – 749
[6] Chen, Y. B., and Xie, J. H. Online consumer reviews: a new
element of marketing communications mix. Working paper, Eller
College of Management, University of Arizona, Tucson, AZ, 2004.
[7] Kumar, N., and Benbasat, I. The influence of recommendations
and consumer reviews on evaluations of Web sites. Information
Systems Research, 17, 4, 2006, 425-439.
[8] Dini,O., Moh, M., Clemm, A.: Web Services: Self-adaptable Trust
Mechanisms. AICT/SAPIR/ELETE 2005: 83-89
[9] Massa, P., & Bhattacharjee, B. (2004). Using Trust in
Recommender Systems: An Experimental Analysis. Trust
Management, (Proceedings of the 2nd International Conference,
iTrust 2004).Oxford, UK, LNCS 2995, Springer, pp. 221-235.
[10] M. Pazzani, “A Framework for Collaborative, Content-Based,
and Demographic Filtering, Artificial Intelligence Rev., pp. 393-408,
Dec. 1999.
[11] A.I. Schein, A. Popescu, L.H. Ungar, and D.M. Pennock,
Methods and Metrics for Cold-Start Recommendations,” Proc. 25th
Ann. Int’l ACM SIGIR Conf., 2002.
[12] R. Jurca and B. Faltings. “An Incentive Compatible Reputation
Mechanism”, Proc. IEEE Conf. on E-Commerce, pp. 285-292,
Newport Beach, CA, June 2003.
[13] Pei-Yu Chen, Yen-Chun Chou, Kauffman, R.J. Community-
Based Recommender Systems: Analyzing Business Models from a
Systems Operator's Perspective. Proceedings of the 42nd Hawaii
International Conference on System Sciences (HICSS-42). pp. 1-10,
January 2009.
[14] Kwei-Jay Lin, Haiyin Lu, Tao Yu, and Chia-en Tai. A reputation
and trust management broker framework for Web applications.
Proceedings of The 2005 IEEE International Conference on e-
Technology, e-Commerce and e-Service. April 2005. pp. 262- 269
[15] Dellarocas, C. Strategic manipulation of Internet opinion forums:
implications for consumers and firms. Mgmt. Sci., 52, 10, 2006,
1577-1593.
[16] O. Dini, P. Lorenz, and H. Guyennet; An Enhanced Architecture

for Web Recommenders, SERVICE COMPUTATION 2009, IEEE
Press, pp.

[17] Mean opinion score and metrics,
http://technet.microsoft.com/en-us/library/bb894481.aspx [accessed:
Jan 10, 2010]

345

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] Adomavicius, G. Tuzhilin, A. Toward the Next Generation of
Recommender Systems: A Survey of the State-of-the-Art and
Possible Extensions. IEEE Transactions on Knowledge and Data
Engineering, Volume 17, No. 6, June 2005. Pp. 734 – 749

[19] PESQ, PESQ Algorithm firmeware,
http://www.qoesystems.com/products/pesq_basic.htm &&acessed:
January 13, 2010]

[20] Bruckner, R. M., List, B. and Schiefer, J., Striving Towards Near
Real-Time Data Integration for Data Warehouses, In Proc. of the 4th
Intl. Conf. on Data Warehousing and Knowledge Discovery (DaWaK
2002), Springer LNCS 2454, pp. 317–326, Aix-en-Provence, France,
Sept. 2002.

[21] Schiefer, J., Seufert, A. 2005. Management and Controlling of
Time-Sensitive Business Processes with Sense & Respond. In
Proceedings of International Conference on Computational
Intelligence for Modelling Control and Automation. Vienna, Austria.

[22] O. Dini, P. Lorenz, and H. Guyennet; An Enhanced Architecture for
Web Recommenders, SERVICE COMPUTATION 2009, IEEE Press,
pp. 372 – 378, ISBN: 978-1-4244-5166-1, Athens, Greece
[23] O. Dini, P. Lorenz, A. Abouaissa, and H. Guyennet, Dynamic
Feedback for Service Reputation Updates, ICAS 2010, pp. 168-175
ISBN: 978-1-4244-5915-5, Cancun, Mexico
[24] C. Wu and E. Chang, Searching Services ‘in the web’: A Public
Web Services Discovery Approach, SITIS 2007, The Third IEEE
Conference on SignalImage Technologies and Internet-based Systems,
pp. 321-328.
[25] M. Paolucci, B. Shishedjiev, Xh. Zenuni, and B. Raufi, GHSOM-
based Web Service Discovery, 2010 European Computing Conference,
ISSN: 1790-5117, 2010
[26] M. Szomszor, C. Cattuto, H. Alani, K. O'Hara, A. Baldassarri, V.
Loreto, and V. D. Servedio, “Folksonomies, the semantic web, and
movie recommendation,” In 4th European Semantic Web Conference,
Bridging the Gap between Semantic Web and Web 2.0, 2007.
[27] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang,
Similarity Search for Web Services, The 30th VLDB Conference,
Toronto, 2004
[28] S. Cost and S. Salzberg, A Weighted Nearest Neighbor Algorithm
for Learning Symbolic Features. Machine Learning, No. 10, 1993, pp.
57-78
[29] L.S. Larkey and W. Croft, Combining Classifiers in text
Classifications Techniques, ACM SIGIR 1998.
[30] H.-H. Do and E. Rahm, COMA – A System for flexible
Combination of Schema Matching Approaches, VLDB 2002
[31] A.M. Zaremski and J.M. Wing, Specification matching of software
components. TOSEM, No. 6, pp. 333-369, 1997
[32] C. Bouras and V. Tsogkas, Improving text summarization using
noun retrieval techniques, LNCS, Knowledge-based Intelligent
Information and Engineering Systems, vol. 5178/2008, pp. 593-600

346

International Journal on Advances in Intelligent Systems, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/intelligent_systems/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

