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Abstract – Sensor networks research is still active due to the 

proliferation of devices equipped with sensors and actuators. 

Although simulators (e.g., Cooja) and Web sites (e.g., 

Thingspeak) allow building Internet of Things (IoT) and Web 

of Things (WoT) applications, they are not compatible with 

many testing purposes, especially for the WoT. Younan et al 

recently proposed a testbed architecture for the WoT. It 

augments IoT by Web applications and allows for generating 

datasets and using them offline and online. In this paper, we 

present an evaluation of the WoT testbed by empirically 

measuring the accuracy of the generated dataset and by 

qualitatively comparing the testbed to the state-of-the-art in 

WoT and IoT measurement platforms.  

Keywords – Internet of Things (IoT); Web of Things (WoT); 

Entities of Interest (EoIs); Testbed evaluation. 

I. INTRODUCTION 

Nowadays research in the area of Wireless Sensor 

Networks (WSN) sheds the light on the role of simulators 

and testbeds to enhance the research results [1]. This is 

gaining importance due to the increasing number of devices 

and things connected to the Internet, which is expected to 

reach the order of billions by 2020 [2] [3] as soon as the 

Internet Protocol (IP) becomes the core standard in the 

fields of embedded devices. As a result, the number of 

human Internet users may well be less than the number of 

devices connected to it.  

Research on the Internet of Things (IoT) focuses on the 

infrastructure needed for connecting things and devices to 

the Internet. IoT addresses the connectivity challenge by 

using IP and IPv6 for embedded devices (i.e., 6LoWPAN) 

[4]. IoT devices, sensors and actuators, allow the state of 

things (e.g., places and other devices) to be inferred [3] [5]. 

In a sense, IoT devices convert things to Smart Things 

(SThs) and things‟ environments to smart spaces. Entities of 

Interest (EoIs), things, devices, resources, discovery, and 

addressing are main terms in the IoT [6].  

On the other hand, the Web of Things (WoT) 

“virtualizes‟‟ the IoT infrastructure and focuses on the 

application layer needed for building useful applications 

over the IoT layer.  Services, such as searching for SThs and 

EoIs, in addition to Web-based applications for controlling 

and monitoring services in smart spaces using friendly user 

interfaces, are core power features in the WoT. 

Muhammad et al. [7] summarize the differences 

between emulators, simulators, and physical testbeds. They 

conclude that physical testbeds provide more accurate 

results. For instance, MoteLab [5] is a testbed for WSNs. It 

addresses challenges related to sensors‟ deployment and the 

time consumed for building a WSN. It features a Web 

application to be accessed remotely. The need for WSN 

testbeds is highlighted by challenges and research topics, 

which shed light on a specific set of features to be 

embedded within the testbed and its tools [7] [8].  

However, there has been no general method for testing 

and benchmarking research in the WoT  [1] [7] [8] [9], 

especially for searching in the WoT. The problem of how to 

find SThs and EoIs with their dynamic states that change 

according to environment events [10] [11] has sheer 

importance in drawing conclusions, deductions, and analysis 

in various fields. In the WoT search problem, not only 

datasets about sensor readings are needed, but integrating 

the readings with information and meta-data about the 

underlying infrastructure is needed as well. 

In our previous work [1], a testbed architecture for the 

WoT is proposed, which achieves the integration between 

the sensors‟ readings and the underlying infrastructure. The 

testbed addresses the general needs of WoT testing and 

focuses on the Web search problem and its related issues, 

such as crawling (i.e., preparing WoT pages for crawling). 

The testbed can be used as a WoT application, which 

monitors real devices in real-time and can be used as a WoT 

simulator to do the same process on WoT datasets instead of 

devices. It aims at collecting datasets that contain 

information about things (i.e., properties and readings) 

formatted using multiple markup languages. The collected 

datasets are designed to help in testing in many problem 

domains [10] [12]. 

In this paper, we present a detailed analysis of the 

testbed presented in [1] using a case study on crawling the 

WoT. Empirical evaluation of the WoT testbed is presented 

and its features are discussed in the light of other IoT and 

WoT testbeds in the literature. In particular, the accuracy of 

the dataset is measured and evaluated; this is important in 

order to make accurate decisions about the states of the 
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simulated EoIs specially that most of the EoIs‟ states depend 

on the synchronization of more than one STh reading. For 

completeness, the testbed architecture and its 

implementation are also described in this paper. 

The remainder of the paper is organized as follows. In 

the next section, the related work regarding the creation of 

searchable IoT and WoT domains using IoT and WoT 

simulators and datasets is discussed. Discussion of IoT and 

WoT testbeds is presented in Section III. Section IV 

describes the testbed architecture of [1] and its 

implementation, followed by the evaluation of the dataset‟s 

time-accuracy in Section V. A case study is presented in 

Section VI. Finally, conclusions and important ideas for 

future work are presented in Section VII. 

II. RELATED WORK 

In the light of the WoT challenges and dataset 

requirements discussed in [1], this section discusses the 

usage of sensor datasets in the literature. To summarize our 

observations, if the research is only interested in values 

measured by sensors or in states of EoIs (e.g., being online 

or offline), then the used dataset is based on the WoT level 

(dynamic information), whereas if the research is interested 

in the sensor network infrastructure, then the used dataset is 

based on the IoT level (static information). Because the 

SThs may be movable objects, i.e., their location may be 

changing frequently, and then the research may need an 

additional type of information, which is called quasi-

dynamic information about SThs. In this case, such a 

property about SThs will be considered as a special type of 

their readings (dynamic information). An integrated dataset 

contains information about both sensor readings and 

network infrastructure, that is, it is based on both IoT and 

WoT levels. 

Several studies [7] [8] [9] [13] discuss and compare 

between existing simulators and testbeds using general 

criteria, such as the number of nodes, heterogeneity of 

hardware, and mobility, but none of them discusses WoT 

features, such as STh‟s logical path, supported formats in 

which EoIs‟ states are presented, and accuracy of the 

datasets generated by the testbeds. In the next section, we 

present a comparison of testbeds and measurement 

platforms that combines both IoT and WoT features. 

A. IoT Simulation 

There is no general way for simulating IoT [7] [9] [13]. 

Moreover, there are situations in which simulators and  real 

datasets containing raw information (e.g., sensor readings 

[14]) or information about the IoT layer are not enough for 

modeling  an environment under testing, as the datasets miss 

the sense of one or more of the challenges mentioned earlier 

and thus, miss the main factors for accurate WoT 

evaluation. Also, many datasets are not actually related to 

the problem under investigation, but were generated for 

testing and evaluating different algorithms or methods in 

other researches. For instance, an evaluation of WSNs‟ 

simulators according to a different set of criteria, such as the 

Graphical User Interface (GUI) support, the simulator 

platform, and the available models and protocols, concludes 

that there is no general way for simulating WSNs, and hence 

IoT and WoT [9] [13]. None of these criteria address the 

previous challenges. So, it is desirable to embed the unique 

IoT and WoT challenges within the datasets and to make 

simulators support as much of these challenges. 

WSN Simulators. Several studies [7] [9] [13] summarize 

the differences between existing simulators according to a 

set of criteria. The Cooja simulator gives users the ability to 

simulate WSNs easily using a supported GUI [9] [13] and 

different types of sensors (motes) for different sensor 

targets. Sensor applications are written in the nesC [15] 

language after being built in the TinyOS [16] (e.g., the 

RESTful client server application [17]). However, there are 

limitations and difficulties for testing the extensible 

discovery service [12] and sensor similarity search [18] in 

Cooja, because there is no information about the network 

infrastructure and entities. In particular, static information 

about sensors is written in different formats, and schematics 

information of the buildings and locations of sensors can be 

presented.  

WSN Physical Testbeds. Physical testbeds produce 

accurate research results [7]. Different testbeds are found in 

this field due to different technologies and network scales. 

MoteLab [5] supports two ways for accessing the WSNs, (1) 

by retrieving stored information from a database server (i.e., 

offline) and (2) by direct access to the physical nodes 

deployed in the environment under test (i.e., online). 

However, the WoT challenges mentioned previously are not 

fully supported in MoteLab. User accessibility in MoteLab 

is similar to what is done in the testbed proposed in [1]. 

SmartCampus [19] tackles gaps of experimentation 

realism, supporting heterogeneity (devices), and user 

involvement [8] in IoT testbeds. CookiLab [20] gives users 

(researchers) the ability to access real sensors deployed in 

Harvard University. However, it does not support logical 

paths as a property for sensor nodes and entities (WoT 

features). 

Nam et al. [21] present an Arduino [22] based smart 

gateway architecture for building IoT, which is similar to 

the architecture of the testbed environment proposed in [1] 

(e.g., periodic sensor reporting). They build an application 

that discovers all connected Arduinos and lists the devices 

connected on each Arduino. However, the framework does 

not cover all scenarios that WoT needs, especially for 

searching. For example, information of logical paths and 

properties of entities and information of the devices that the 

components simulate or measure are missing.  

At Intel Berkeley research lab [14], 54 sensors were 

deployed, and sensor readings were recorded in the form of 

plain text. The dataset includes information about the 

sender, the receiver, probability of successful sending (i.e., 

some sensor readings were missed) and a quasi-dynamic 
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information about sensors (coordinates). However, the time 

accuracy of the dataset was not measured.  

B. WoT Simulation 

Using websites (e.g.,  [23]  [24] [25]), a WoT environment 

can be built online by attaching SThs like Arduinos [22]. 

These websites monitor the states of devices and provide 

RESTful services (GET, PUT, UPDATE, DELETE) [26] 

for uploading and accessing reading feeds. Moreover, the 

values (sensor readings) are visualized for users. The 

services of the aforementioned websites are similar to 

services of the testbed environment in [1]. However, these 

websites are limited by available service usage and formats 

of the responses, which are hardcoded and embedded within 

the website code or at least not exposed to users. The 

testbed architecture in [1], which is built specially for 

testing WoT, provides more general services, such as 

monitoring live information fed from attached SThs, 

visualizing sensor readings and states of EoIs over time, 

controlling actuators, triggering action events, and periodic 

sensor reporting.   

C. Service Architecture for WoT 

Web services are considered as the main method for 

accessing WoT devices [27]. Mayer et al. [28] propose a 

hierarchical infrastructure for building WoT to enhance the 

performance of the searching service. The searching 

scenario starts by getting a list of sensors that can answer a 

query according to their static properties and predicted 

values. Then, the identified sensors are queried to check 

their current values, which are used for ranking the search 

results. The searching scenario is integrated into the 

proposed testbed.  

Mayer and Guinard [12] and Mayer [29] implement an 

algorithm, called extensible discovery service [12], for 

solving the problem of using multiple formats (e.g., 

Microformats and Microdata) in the WoT. They implement 

their algorithms as a Web application that asks the users 

about a sensor page URL and retrieves information about 

devices if and only if the page is written in one of a set of 

pre-defined formats. However, their work does not result in 

a dataset. The proposed testbed in [1] allows such an 

algorithm to be tested to measure its performance. The 

required dataset contains sensor information written in 

different formats so that the algorithm is tested in parsing 

and retrieving information about sensors and entities.  

The present paper substantially extends the work 

presented in [1] by discussing WoT testbed features in the 

light of other IoT and WoT testbeds in the literature, 

considering testbed evaluation by measuring the dataset 

time accuracy, and presenting a case study for crawling the 

WoT.  

To summarize, up to our knowledge, none of the 

previously proposed testbeds fulfills the full requirements 

for testing and evaluating the Web search process in the 

WoT. The proposed testbed environment in [1] aimed at 

filling this gap. It is not the main focus of the testbed to be 

yet another WSN testbed but to integrate WoT and IoT 

features for virtualizing things and entities, retrofitting on 

the benefits of existing physical testbeds [1]. Making 

decisions about EoIs‟ states depends on more than one 

sensor reading, so evaluation of datasets generated by the 

testbed focuses on the time accuracy (synchronization time) 

and dataset integrity, as will be indicated in details in 

Section V.   

III. COMPARISON OF STATE-OF-THE-ART IOT AND WOT 

TESTBEDS 

From WSN to the IoT, and then moving forward to the 

WoT, one purpose is sought for, that is monitoring and 

controlling the surrounding environment. All of these 

platforms have the same network ‎infrastructure, but data 

manipulation (accessing and representing sensory data) 

differs from ‎one platform to another according to the user 

interests. WSN testbeds aim at improving algorithms and 

solutions for resource constrained devices, while IoT 

testbeds aim at integrating these devices (SThs) into 

globally interconnected networks [8]. The main goal of the 

WoT testbeds, including the integrated WoT testbed [1], is 

to improve the usability of the information produced by the 

IoT and to provide more services that raise this usability by 

increasing the primary beneficiaries of the WoT 

technologies. The information generated from the testbeds 

can be widely used in different industries if and only if 

people and machines can understand this information.  

Different criteria have been set for WSN and IoT 

testbed assessment and evaluation [7] [8] [13]. Because WoT 

is the application layer on top of IoT that presents sensory 

data in an abstract form using available web tools and 

services, most of the future requirements described in [8] 

are important to be hosted in WoT testbeds. Federation is 

one of the most important factors that have to be met in 

WoT testbeds, whereby WoT testbeds host more than one 

WoT system for evaluating many services such as a 

searching service. Another requirement is heterogeneity of 

connected devices and formats that are embedded in web 

pages to represent SThs. Heterogeneity of data formats 

means that WoT systems hosted in a single testbed can use 

different pages with different formats. Semantic 

technologies in testbeds enhance the scale and heterogeneity 

requirements.  

Different studies have ‎defined different criteria sets for 

comparing testbeds in WSN and IoT [7] [8] [9]. In the light 

of those studies, the proposed ‎testbed should cover most of 

existing IoT testbeds‟ features in addition to other 

WoT ‎requirements, such as accessing data through RESTful 

services, getting high-level states instead ‎of raw sensory 

data, and searching in real-time for SThs and EoIs.  

The comparison of testbeds in this section is divided 

into two main categories according to the testbed 

architecture: (1) infrastructure layer and (2) software layer, 

where testing and evaluation services are done.  



470

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
 

A. Elements of the infrastructure layer 

Elements of this layer concerning the IoT environment 

are as follows:  

1) the number of nodes and possibility of discovering new 

nodes (scalability): the number of nodes in WSN testbeds 

should be more than 10, ‎but in IoT it should be more than 

1000. Because WoT is a layer above the IoT, as it was 

mentioned previously, then the SThs number should be 

sufficiently large. WoT testbed could be accessed offline 

and online. So, deploying additional SThs can be done 

manually by registering the STh‟s in online mode using 

simple GUI, or dynamically when the gateways receive 

acknowledgement messages from the SThs. In addition to 

the GUI that testbed supports for giving users the ability to 

add additional devices online like Thingspeak and Xively, 

sharing datasets that simulate physical components 

(accessing WoT testbed in offline mode) gives users the 

ability to virtually increase the deployed number of SThs. 

2) the environment properties: environment properties 

relate to a certain physical phenomenon (e.g., temperature, 

light, ‎and humidity‎). The WoT testbed supports virtual 

environment in offline mode, whereby real-time information 

was generated from real SThs and stored in dataset files.  

3)  availability and portability: this element means the 

ability to deploy and re-deploy the testbed in different 

places. The WoT testbed is a physical testbed as well as a 

simulator, whereby it can be used for monitoring one place 

or environment (online or offline). Monitoring other places 

needs node preparation, using the same software for 

configuring, discovering devices, and collecting data from 

them. 

TABLE I. A COMPARISON BETWEEN WSN/IOT TESTBEDS AND SIMULATORS AND THE WOT TESTBED PROPOSED IN [1] . 

Criteria Current WSN/IoT/WoT Testbeds and Simulators Integrated WoT Testbed [1] 

S
c
a

la
b

il
it

y
 

Number of 
deployed 

nodes 

Simulators Testbeds 

 Prototype is done over 30 sensor nodes.  

 For enhancing scalability, testbed supports: 

o GUI for registering additional SThs 
o Sharing datasets  

A large number of nodes can 

be deployed (e.g., Cooja 
simulator [17]) 

 Senslab [30]  deployed 1000 nodes. 

 Thingspeak [24] and Xively [23]: 

Number of nodes depends on number of 
channels to which resources are 

attached. 

Possibility to 
discover new 

nodes 

Manually. 
Node configuration is done automatically 
or manually (e.g., Thingspeak and 

Xively), according to network topology. 

 Manually 

 Dynamically 

Environment 
Produce randomly-modeled 

information (e.g., Cooja [17]) 

Physical testbeds produce real information 

(e.g., MoteLab [5]). 

 Physical environment in online mode. 

 Virtual environment in offline mode 

Availability/ 
Portability 

By sharing saved simulation 
projects.  

Difficult to move from one place to 
another 

It is a physical testbed and simulator in one 
(online or offline). 

Hardware/Software 
heterogeneity 

E.g., Cooja [17] E.g.,  MoteLab [5]  Different SThs‟ types. 

 Different formats (i.e., different WoT 

environments are deployed in one testbed) 
 Add different types of motes in the same experiment 

 All motes write their information in the same format. 

Repeatability/ 
Reproducibility‎ 

Save projects 

Users have to build new applications to 

work on these datasets generated from 
physical testbeds 

 Run in offline mode on the generated 
datasets.  

 No need to build new applications to work 

on the datasets. 

Real-time 

Information 

Random information Real-time information  Real-time information  

 Datasets (historical data) are written in 
multiple formats.  datasets (historical data) are written in a certain format (e.g., plain text) 

W
o
T

 

Dataset 

sharing  

share saved projects (e.g., 

Cooja [17]) 

share results and evaluation measurements 

through web applications (e.g., MoteLab 
[5]) 

 Output of the testbed is simple to be 
manipulated with other testbeds.  

 It supports RESTful services to publish data 

directly in a simple way. 

User 

involvement 

 Users intervene deeply 
 Environmental conditions 

are absent (Thingspeak [24] 

and Xively [23] achieve this 
target but in limited 

formats). 

 Working interactively through a web 

application or published APIs  

 Scheduling „batch’ tasks to be executed 
on the testbeds (e.g., MoteLab [5]).     

Users can: 

 deploy nodes manually or automatically  

 generate datasets by selecting criteria or 
rules on the DsC application. 

SThs 
attributes 

 Static attributes are like serial and model numbers and brand. 
 Dynamic attributes are like the physical location (longitude and latitude). 

Support logical path as a main SThs attribute.  

SThs 
Formats 

Most of them support a single format. 
Generate different types of SThs formats 
(Microdata, Microformats, and RDF). 
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4) the hardware heterogeneity: the ability to include 

different types of sensors. The WoT testbed supports 

different types of devices in different formats. 

B. Elements of the software layer:  

Elements of this layer concerning the WoT 

environment are as follows:  

1)  software heterogeneity: the ability to run the testbed on 

multiple operating systems and to support multiple 

formats for SThs data and definitions.  

2) re-usability (repeatability and reproducibility): the 

ability to save an experiment to rerun it later.  

3) real-time information: measures if the testbeds produce 

imitative information (as in simulators) or real 

information in the real-time (as in physical testbeds). 

4) WoT features: WoT features include data sharing, user 

involvement, GUI, RESTful APIs, STh‟s attributes and 

formats. These features identify the tasks that the users 

can do on testbeds, the possibility to support data 

visualization (high-level knowledge), and the possibility 

to share datasets. In the WoT testbed, users can deploy 

nodes manually (configuring SThs and EoIs using a 

GUI) or automatically when SThs receive 

acknowledgement messages, they also generate datasets 

by selecting criteria or rules on the DsC application. On 

the other hand, Users intervene deeply in simulators, 

whereby they build networks and create sensor nodes or 

channels, but environment conditions in simulators are 

absent. Xively [23] and Thingspeak [24] achieve this 

target but support less accessibility for resources in 

limited formats. When users work on physical testbeds, 

they have two choices: (1) working interactively on the 

physical testbed, which monitors and controls a certain 

environment, through a web application or published 

APIs or (2) scheduling „batch‟ tasks to be executed on 

the testbeds (e.g., MoteLab [5]).       

From Table I, we argue that WoT research needs a 

special type of testbeds, of which is the integrated WoT 

testbed [1], to support absent WoT features needed to 

leverage existing testbeds to the WoT level.  

IV. THE INTEGRATED WOT TESTBED 

The proposed testbed architecture in [1] transforms the 

physical control of devices in a surrounding physical 

environment to an emulated control for those devices 

keeping the same sense of events and features that existed in 

the physical environment. These events and features are 

embedded in datasets that can be later replayed. The 

proposed architecture has two modes of operation: online 

and offline (Figure 2). In online mode, datasets are 

generated, “real” physical information is recorded, and a 

Web application offers WoT services by accessing the real 

devices for monitoring and controlling them. In offline 

mode, the Web application accesses the datasets to replay 

the events monitoring information.  

A. Testbed Architecture 

The testbed architecture, shown in Figure 1 (b), is 

divided into five parts, as follows.  

An IoT infrastructure (e.g., modeling a smart home) is 

shown in step 1 Figure 1 (b). To build the IoT [31], the steps 

are briefly as follows.  First, things are converted to SThs by 

attaching smart equipment (e.g., sensors and actuators), as 

shown in Figure 1 (a). Second, the static and dynamic 

information of SThs is described. SThs representation 

Figure 1. Testbed Architecture: (a) Integrating smart things (SThs) in the IoT - (b) Testbed environment architecture for simulating a physical environment . 
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specifies URLs to invoke SThs services and their 

parameters and response format [29]. Third, RESTful APIs 

for accessing the SThs are built. Fourth, communication 

protocols between SThs and gateways are developed. Fifth, 

the SThs are connected to the Internet using physical and 

virtual gateways. SThs integration is done in the form of (1) 

direct integration, for SThs that support IP address for 

connection or (2) indirect integration using gateways, for 

SThs that use low-level protocols [32] [33].  

Network setup application (step 2 in Figure 1 (b)), 

after building IoT, a program is built for configuring the IoT 

network. It assigns locations to SThs in the hierarchical 

structure of the simulated building or environment shown in 

Figure 3. This allows for using the generated logical path as 

attributes for the STh. 

Web services for each device (step 3 in Figure 1 (b)) 

are used for executing WoT services directly and for feeding 

back users with information about SThs, such as indicated 

in Figure 1 (a). The web services are hosted on machines 

that support IP connection, either the STh itself or a physical 

gateway for accessing SThs that use low-level protocols. 

A Web application (step 4 in Figure 1 (b)) offers WoT 

services like monitoring and controlling. The application 

loads information by calling web services, which pull 

information from devices (online mode) or from WoT 

dataset files (offline mode), as shown in Figure 2.  

The dataset collector (DsC), the last component in the 

testbed architecture (step 5 in Figure 1 (b)), works as shown 

in Figure 4 (b), it discovers all available gateways and list of 

devices (SThs) connected on each one, sets rules by which 

data are collected from them, and sets the format by which 

the datasets are generated. As shown in Figure 4 (a), each 

discovered gateway waits for a discovery request from the 

DsC and replies with a message that contains its 

identification information in the form id_name-type (e.g., 

2_Arduino-Mega2560). A gateway also sends an 

acknowledgement message (Ack) to inform the DsC that it 

has set all required rules successfully. Finally, a gateway 

sends a message that contains all required information about 

SThs‟ states as specified in the rules sent by the DsC.  

B. Testbed Implementation  

According to the testbed architecture presented in the 

previous section, the testbed implementation was done 

along four axis [1]; building IoT infrastructure and 

implementing network setup application were done in the 

first axis, building WoT application and related web 

services were done in the second axis, DsC was 

implemented in the third axis, and finally the dataset files 

Figure 4. Time accuracy for a dataset generated by the integrated WoT 

testbed using rule EstimatedTime_All_Network (pull). 

Figure 2. Testbed operation modes: Web services fetch data from real 

devices and gateways (online mode), or from dataset files (offline mode). 

Figure 3. WoT graph for locating devices at specific paths in the 

hierarchical structure of a building. 
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were generated. 

1) Building the IoT infrastructure 

This step will be executed the first time around; but, if a 

dataset that is generated by this testbed exists, then building 

WoT begins from the next step by attaching the dataset with 

the web application to work in offline mode. Building the 

IoT infrastructure was done in a simple way [27] [34] using 

widely-available components. The SECE server [21] gets 

information from the IoT according to events and actions 

that happen in the environment. It offers the collected 

information in a friendly user interface. A testbed 

environment for the WoT is built using these connections. 

Building the IoT infrastructure [31] [35] was done in five 

steps, as mentioned above. Connecting devices and entities 

to the internet is done after converting them to SThs and 

EoIs, the network setup application is used for configuring 

the SThs and EoIs, where each STh and EoI has a unique 

URL following the hierarchical structure shown in Figure 3. 

Whereas it is desirable to build IoT using devices that 

support direct IP connection rather than devices that support 

only low-level protocols, the latter devices needed gateways 

for integrating them into the IoT. The IoT infrastructure was 

built using Arduinos, on which sensors and actuators were 

connected. Arduino has two interfaces: a Serial Peripheral 

Interface (SPI) bus and an Internal Integrated Circuit (I2C), 

which allows modules, like Ethernet and Secure Digital 

(SD) cards, to communicate with the microcontroller [35]. 

The Arduinos connected more than one device using digital 

and analog pins. In a sense, the Arduinos acted as physical 

gateways and IP addresses were set for them. They were 

attached to the network using Ethernet or XBee [34] [36] 

[37] connections. Digi‟s Configuration and Test Utility 

Software (Digi‟s X-CTU) [38] was used to interface with 

radio‟s firmware of connected XBee modules.  

Table II lists the components that were used for building 

a simple instance of the testbed. A large number of 

components, which could be connected on Arduinos are 

available and have different purposes. They could be used 

for building more complex testbed instances with different 

targets.  

Network setup application was written in C# for 

locating, managing and configuring resources for each 

virtual gateway. A virtual gateway represents a location, 

such as floor_100 and floor_200. For example, Figure 5 

shows the process of adding a new device to the testbed 

using the application. Logical paths in the building 

hierarchical structure are very important for accessing 

devices 

TABLE II. SET OF COMPONENTS (SENSORS, ACTUATRS, AND GATEWAYS) 

USED FOR BUILDING AN INSTANCE OF THE PROPOSED WOT TESTBED. 

Component Description 

Arduinos(2) Microcontrollers of type  UNO & Mega-2560 

ENC28J60 (2) 

Arduino Ethernet module for accessing 

Arduinos through the internet (New versions of 
Arduinos support Ethernet connection using an 

Ethernet Shield). 

Zigbee modules (3) 

Type (XBee series 2) – network connections 

(Zigbee protocol is used for wireless network 
connections) 

Zigbee Usb-Shield 
For connecting Zigbee module with computer - 

acts as a base station (Coordinator)  

Zigbee Arduino 
Shield (2) 

Connecting Zigbee modules to Arduinos 

LM35 Temperature Sensor 

DHT11 Temperature and Humidity Sensor 

LEDs (10) Light actuators  (Red, White, Green) 

LDR (2) Photo Cell/Photo Diode for light detection 

IR & TV remote Remote control circuit 

Fan Small Fan  (operates at 3-5 V) 

Switches (10) Tactile push switches 

Resistors For LDR, LED, etc. 150Ω : 10KΩ 

Bread Boards (2) & 

Jumper wire packs  
Connecting  Arduinos and components 

The protocols, written in Arduino Sketches [22],  were 

used to get and set the state of devices that are connected to 

the Arduinos, whereby get and set requests were sent within 

the body of the protocol messages. When the special symbol 

„#‟ is found within the body of the message, as shown in 

Figure 6, the spider gets the current device‟s states. The 

crawling case involved only getting information, not 

controlling or changing device states.  

2) From IoT to WoT 

Building Web pages in the testbed followed standard 

features for dealing with dynamic information. The common 

way for developing dynamic websites depends on AJAX. 

AJAX is used for live update of some parts in the sensor‟s 

pages. The dynamic parts typically include SThs readings or 

entity states, which indirectly depend on sensor readings 

[23] [24].  

However, pages with dynamic content built using AJAX 

cannot be crawled by traditional search engine crawlers. 

Figure 5. Locating and configuring a fan device at logical path 
‘floor_100\room_102.’ 
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Some search engines, such as Google, suggest practical 

solutions for optimizing the crawling process [39] of 

dynamic content. Alternative URLs that lead to pages with 

static information are indexed by default or instead of pages 

that contain dynamic information. According to Google 

optimization rules, Web sites in our testbed use AJAX in 

some parts in device‟s web page but for crawling, 

corresponding Web services are accessed instead to get 

current STh value or EoI state, in addition to all possible 

states with corresponding occurrence probabilities. Another 

technique not implemented in our testbed is to render pages 

on the fly (i.e., crawlers have browsing processes embedded 

in their code [40]). Still, it is difficult to crawl pages that 

need to send some data first before loading their content. 

Moreover, the time consumed by the crawling process itself 

becomes high and the crawling process needs to be done 

frequently; information in WoT may be updated in less than 

a minute.  

Using Ethernet, RESTful APIs can access Arduino 

components. Devices are programmed as clients to push 

sensor data to services and as services to enable remote 

control of devices over the Web. Because it is desirable to 

have a Web page for each device and because Arduino acts 

as a gateway for managing at least one component, a 

website is built and can be hosted on an SD card connected 

to the Arduino. The website is accessed using an IP address, 

assigned to the Arduino. Another alternative is to host the 

website on a different server for adding more capabilities 

like storage capacity. In the latter case, Arduinos are 

accessed using RESTful APIs. The selection of either 

alternative is determined by the amount of information that 

needs to be stored and accessed over time.  

Two steps were done to add WoT layer to the testbed. 

First, a Web application was written in Asp.Net (Figure 7).  

The main services of the Web application are monitoring 

sensors, controlling actuators, triggering action events, and 

periodic sensor reporting [21] [31] [33]. The WoT 

application was built according to the building hierarchical 

structure configured by the Network setup application. The 

homepage shows general information and allows users to 

perform general tasks, such as monitoring room status. The 

user selects a logical path to browse, then, for each room, a 

list of devices and their states appear. The user selects a 

device to access. The device page loads the RESTful 

services dynamically using Web Services Description 

Language (WSDL) [41] according to the Arduino IP and 

selected device ID. Second, a set of Web services were 

written in C#. The Web application loads the available 

RESTful services dynamically for each device. A special tag 

‘GET#’ is added as an additional service that is executed by 

default for the device webpage. The crawling process 

returns the current sensor value or the state of the device and 

all possible states with their probabilities.  

3) Dataset Collector  

In Figure 8, using Zigbee connection, the WoT 

coordinator (gateway that acts as a base station) discovers 

all available gateways, getting a list of connected devices on 

void loop() 

{  ... 
else if(strcmp(buffer,"GET# ") == 0) 

      send_sr_get(client);   

else if(strcmp(buffer,"POST# ") == 0) 
      send_sr_post(client);   

...    

}   
void send_sr_get (EthernetClient client)  

 {     

                 // send a standard http response header 
   client.println("HTTP/1.1 200 OK"); 

   client.println("Content-Type: text/html");         

   client.print("Value of "); 
   client.print(default_Dpin);    

   client.print(" is "); 

   client.print(digitalRead(default_Dpin)); 
  ...      

} 

Figure 6. Device network protocol for handling incoming requests of 

monitoring, controlling, and crawling services (RESTful service). 

Figure 8. DsC discovers gateways in the WoT and loads their static 

information (e.g., number of digital and analogue pins). 

Figure 7. Web pages of virtual gateways get their information from a 

database server. Sensor Web pages get their information either from direct 
access to devices or from the offline dataset.   
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each gateway (Figure 9 (a)). The DsC application generates 

files written in different formats for the static information of 

the IoT testbed including the building hierarchy and the 

devices located in the hierarchy (Figure 9 (b)). The dynamic 

information is collected using a set of rules, such as shown 

in Figure 9 (c). The rules instruct the gateways to send back 

specific information about a specific list of devices 

according to  a specific action or event done by other 

devices. The gateways feed the DsC with device readings 

according to these rules. If the rule ChangesOnly is selected, 

the DsC stores only changes on device state. If the rule 

TimeSlot was selected, the DsC stores periodical feeds of 

device state. One of the most important rules is that if a 

certain device type is selected for analysis of device 

readings and making decisions according to the analysis 

results, rules can be set to collect data from all devices of 

that type across all the gateways in WoT.  

4) Generated Dataset Files  

A simple dataset was generated by the testbed according 

to the rules: (1) every_2500 ms for updating dataset every 

2500 millisecond (i.e., DsC pulls information from the 

network), it could be replaced by rule ChangesOnly for 

storing changes on devices‟ states only (i.e., devices push 

information to DsC), (2) All_Network for pulling 

information from all discovered gateways in the network, 

(3) All_types means all devices on selected gateways, (4) 

2014-12-1-h0_to_2015-1-1-h0 for storing dataset from 

1/12/2014 to 1/1/2015, and (5) TD for triggering all 

dependences related to selected devices. The dataset 

generated according to limited time slot (date and time) by 

DsC, as shown in Figure 9 (b), contains static information 

about IoT infrastructure and dynamic information about 

sensing and actuating activities.  

The static information of each device, such as logical 

path and device type, is stored in a file named using the 

device ID, the EoI ID, and device name (e.g., 22_9_Fan). 

Static information about a fan written in Microformats is 

shown in Figure 10.  

The dynamic information, such as sensor readings, is 

stored in a file named using the collection-rule title and the 

date and time of collection (e.g., Network_Time_All_2014-

12-1-h0). This file contains readings collected from all 

devices in the WoT testbed. A subset of data stored in that 

file would look like Table III, where monitoring is set to 

rule time only.  

TABLE III. SAMPLE READINGS GENERATED FROM ALL SENSORS OF TYPE 

'LAMP' IN THE ENTIRE NETWORK AS A TIME SERIES. CONSUMED VOLTAGES 

ARE MAPPED FROM (0:5) TO (0:255). 

Time XLamp2 

(2/5:9/1) 
XLamp3 

(3/6:10/1) 
XLamp4 

(4/7:11/1) 
XLamp5 

(8/8:12/1) 
03:01 PM 66 77 83 71 

03:02 PM 66 80 83 68 

03:04 PM 66 68 65 69 

03:06 PM 67 71 69 67 

03:08 PM 68 80 85 70 

… … … … … 

10:12 PM 65 80 85 70 

Figure 9. Dataset collector: (a) DsC loads list of devices connected on discovered gateways in the WoT . (b) Static information about the IoT testbed are 

generated in different formats. (c) Rules are defined to control the way gateways send dynamic information (readings). 

<div class ="hproduct "> 

   <span class =" fn">22_Fan</span> 

   <span class =" identifier">, 
        <span class =" type ">Fan</span> Sfan123 

        <span class =" value ">0</span> 

   </span> 
   <span class =" category "> 

        <a href =http://www.XXX.com   rel =" tag"> Fan </a> 

   </span> 
   <span class =" brand ">Brand Name</span> 

   <span class =" description "> characterized by … 

    </span> 
   <span class =" Photo ">Fan</span> 

      <a href =http://www.XXX.com/?s=wsn     

                         class =" URL">  
                                    More information about this device.    

                   </a> 

</div> 

Figure 10. Static information about a fan written in Microformats. 
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As being mentioned earlier, sensor definition contains 

information about the sensor in order to be accessed easily 

through the WoT application. In sensor definition: 

„Xlamp2(2/5:9/1)‟, X is sensor‟s brand name, lamp2 is 

sensor title, (2/5) is the virual location sensor id and hosting 

room id, and (9/1) is the physical location where 9 is pin 

number and 1 is gateway id. Column „Time‟ is the response 

time. Arduinos support 5 Voltages as maximum; they 

convert voltage range (0:5V) to be (0:255) using built in 

analog to digital converter. Values recored for each sensor 

definition, are current voltages consumed by that sensor  

(0 : 255). 

V. WOT TESTBED EVALUATION 

In this section, the proposed WoT testbed in [1] is 

evaluated in terms of the dataset accuracy. We start by 

presenting the used metrics and the experiment setup. Then, 

we describe experiment results and summarize our 

observations. 

A. Dataset accuracy 

Running the testbed in online mode produces dynamic 

information in real time about SThs and EoIs located in the 

surrounding environment. On the contrary, when running 

the testbed in offline mode, it produces simulated dynamic 

information; information about SThs and EoIs retrieved 

from the attached dataset is real but not in the real time. In 

other words, the dataset was generated previously by the 

testbed and saved, then attached to the testbed to simulate 

the environment.  

Two factors affect dataset accuracy: (1) the number of 

messages that are lost between the gateway and the DsC and 

(2) the time accuracy of the SThs‟ values that are recorded 

in the dataset. In general, time accuracy is defined as the 

difference of time between the actual time at which a STh 

has the value X or an EoI is in state X and the time at which 

this information is recorded in the dataset. As such, the time 

accuracy is important to be measured for making accurate 

decisions, especially when decisions depend on 

synchronizing multiple SThs‟ readings or EoIs‟ states.  

The time accuracy is affected by message latency, which 

is defined as the time consumed to send a data message 

between a gateway and the DsC. The latency is directly 

influenced by the message size, the distance between sender 

and receiver, and the baud rate (link bandwidth). Other 

indirect factors should also be considered: network topology 

and covered area (out-of-range nodes can send still their 

information if all or some nodes are configured with mesh 

capabilities), protocols and modules (e.g., XBee and Wifi), 

and capabilities of DsC for handling and processing all 

incoming messages from all connected devices.  

Thereby, the time latency of a STh‟s message 

          is defined as: 

                                               (1) 

where    is the time for communication between the DsC 

and the gateway and    is the time for handling and 

processing the incoming message by the DsC (i.e., parsing 

and analyzing an incoming message then recording SThs‟ 

values in the dataset). Boonsawat‎ et al. [37] calculate the 

pulling time delay using the function millis() of the Arduino 

library, which returns the number of milliseconds since the 

Arduino board began running the current program (last 

reset) [22], it is used for realizing the distance between the 

coordinator and the end-devices [37].  

Practically, estimating the actual reading time of a STh 

can be done in two ways: (1) SThs send actual time (sensing 

time) included in their messages after clock synchronization 

between discovered gateways and the DsC (clock 

synchronization can be done using the DateTime library 

[42]) and (2) calculating the time that the message consumes 

starting from its initialization to its recording. In the case of 

periodical requests, DsC firstly sends rules to selected 

gateways so that they adjust their configurations. After that, 

gateways send SThs‟ readings periodically according to the 

time defined in the DsC rules. The DsC sends requests 

every X seconds to all discovered gateways and waits for 

them to send their messages back. In that case, message 

latency is equal to the difference in time between message 

receiving time at the DsC and request sending time at the 

DsC as well. For example, if request sending time is 

14:22:20 and message receiving time is 14:22:25, then the 

latency is 5 seconds.  

Gateway latency,    , is computed as the average of all 

latencies that have occurred in all messages of all SThs 

connected to the gateway. We are using the average as an 

example statistic for simplicity; for more accurate results, 

the 50
th

 percentile or the interquartile mean can be used 

instead, using straightforward modification in the equations. 

    
  

 
 ∑ (

 

  
 ∑      

      
 
   ) 

                 (2) 

where k is the number of SThs connected to the gateway and 

nj is the number of recorded values for STh j. the formula 

(
 

  
 ∑      

      
 
   ) represents the average latencies for 

STh j. In the case of datasets generated by pulling (the rule 

EstimatedTime_All_Network), the value of nj should be 

identical for all SThs on each gateway. Then, Equation (2) 

becomes:  

    
 

   
 ∑ ∑      

      
 
   

 
                   (3) 

Message Integrity Error (MsgIE) is the ratio between 

the number of received messages by the DsC and the 

number of sent messages by the gateways.  
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where l is number of discovered gateways in the testbed, 

     
 is the number of messages sent by gateway GWi (in the 

pulling case, all gateways ideally send an equal number of 

messages),    is the start recording time,    is the finish 

recording time (   and     are in milliseconds), and p is the 

interval for sending and receiving messages periodically. 

The formula (    
     

 
) represents the number of messages 

that should be received and handled by the DsC when there 

is no error. 

Synchronizing DsC‟s clock with all discovered 

gateways produces no clock synchronization errors. In that 

case, the actual reading time of each STh reading can be 

written inside the message and recorded into the dataset. 

But, when messages do not contain the reading time due to 

difficulties in clock synchronization, then the receiving time 

is used to estimate the STh reading time. So, the 

Synchronization Time Error (SynTE) is computed as 

follows:  

        (
 

   
 ∑     

 
   )                      (5) 

 

where     
 is the latency of gateway i, l the number of 

discovered gateways in the WoT testbed, and p the interval 

between two consecutive messages that come from the same 

gateway (i.e., gateway waits the time interval p to send one 

message containing all SThs‟ readings).  

Because dataset Accuracy (    ) depends on two 

factors as mentioned above (time accuracy in which STh 

reading is written and integrity of dataset contents), then 

     is computed by the following equation: 

     (               )                 (6) 

B. Experiment setup 

A large number of SThs in the WoT testbed produces 

less dataset accuracy due to network communication 

overhead and overwhelming the capabilities of the DsC to 

handle and process all incoming messages. Receiving a 

single message from each gateway (responsible for a group 

of SThs) is more desirable and is adopted in our testbed. 

Evaluation of the WoT testbed was done by running the 

DsC application on a machine (base-station) with 8 GB 

RAM and core-i5 CPU running at 2.3 GHz. The DsC and 

gateways send and receive at a baud rate of 9600 bps. The 

first gateway (of type Arduino-Uno) is at a distance of 10m 

from the DsC, the second gateway (of type Arduino-

Mega256) is at a distance of 15m, and the third one (of type 

Netduino2) is connected directly to the DsC through the SPI 

bus. All nodes in the testbed instance were configured in a 

star topology, so the maximum number of nodes in each 

path is 2 and the number of edges is one (i.e., a direct link 

between the DsC and each gateway in the network).  The 

gateway of type Arduino-Uno had message size ≈ 6 bytes 

and Arduino-Mega ≈ 10 bytes. 

Two fundamental approaches were used for getting 

sensor data in the testbed, pull and push [10], represented as 

the rules EstimatedTime_All_Network and ChangesOnly, 

respectively. In this paper, we focus more on the pull 

approach and measure the time accuracy as the time interval 

between reading and recording SThs‟ values. We note that 

the rule EstimatedTime_All_Network (pull) generates more 

data and is expected to affect the time accuracy more than 

the ChangesOnly rule; the dataset from pull contains the 

information generated by the rule ChangesOnly (push) in 

addition to repetitions of steady readings over the time.  

C. Results using EstimatedTime_All_Network rule 

DsC pulls SThs‟ information by implementing the rule 

EstimatedTime_All_Network to generate a dataset for all 

connected devices on all the discovered gateways. Each 

discovered gateway in the WoT periodically sends one 

message every 1000 ms containing all SThs‟ values (i.e., the 

expected number of messages that all selected gateways can 

send is not known at the beginning).  

Figure 11 shows the number of received messages, the 

number of recorded messages, the time consumed in the last 

recording process, the latency (in milliseconds) of the last 

message, the sum of latencies (in milliseconds) of all 

messages from all gateways, and the current 

synchronization accuracy of all SThs‟ readings. The list of 

devices connected to each gateway is shown in Figure 3, 

where 1_Arduino-Uno represents Floor_100 and 

2_Arduino-Mega2560 represents Floor_200. The two 

gateways send a sequence of SThs‟ readings. The message 

fields from 1_Arduino-Uno are switches, fans, last IR 

signal, LEDs, LDR, and temperature (LM35) and for 

2_Arduino-Mega2560 switches, fans, LEDs, LDR, 

humidity/temperature (DHT11). Message fields are 

separated by the special character @. Empty message fields 

indicate that no value was available. For switches, fans, and 

LEDs, a value of 1 corresponds to the ON state and a value 

of 0 to OFF. 

Figure 11. Time accuracy for a dataset generated by the integrated WoT 

testbed using rule EstimatedTime_All_Network (pull). 
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As shown in Figure 11, the DsC received two messages 

back-to-back from the gateway 1_Arduino-Uno. This was 

due to gateway 1_Arduino-Uno being closer to the DsC 

than the other gateway as indicated by a stronger Received 

Signal Strength Indicator (RSSI). RSSI was measured in 

decibels using Digi‟s X-CTU software to determine signal 

noise, and its value ranges from 0 to 120; the closer it is to 

zero, the stronger is the signal.  

Figure 11 shows an example of applying Equation (6) 

to calculate the     . In this experiment, p=1000 ms, 

  =05:01:10 and   =05:10:22. The total number of received 

messages from all gateways was 1103 messages, and the 

total latency time was approximately 12297 ms, yielding 

about 11.14 ms of latency per message. The latency 

included the processing time at the DsC for each received 

message and the network delay. The testbed produced the 

dataset with      ≈ 98.98%, where SynTE =0.999% and 

MsgIE = 0.011%. We note that when reading time is sent 

with SThs‟ values, then SynTE=0%, but the message size 

will increase, which in turn may increase message loss rate 

and MsgIE.  Results of [43] confirm our measurements.  

D. Results using ChangesOnly rule 

When the ChangesOnly rule is used, message size has a 

direct relation to the number of SThs that detect change at 

the same time or within the same check period. This is 

because SThs push their information only when certain 

changes happen in their states and gateways check 

periodically for changes in SThs‟ values. The maximum 

message size is reached when all SThs of a certain gateway 

detect change at the same time, which is equivalent to the 

message size in the pull approach. 

We ran an experiment in which gateways check SThs‟ 

values for change every 1000 ms. we found that most of the 

time message size was small, so we decided to send the 

reading time within the message. Implementing the system 

this way produced SynTE = 0% with a small MsgIE and 

with small message parsing and processing overhead at the 

DsC. Because the expected number of messages is not 

known at the beginning, MsgIE can be measured using 

Equation 4 provided that all gateways send their total 

number of sent messages periodically in SYNC messages.  

E. Results Discussion 

As can be concluded from the previous results, dataset 

accuracy depends on the network overhead, which in turn 

depends on the pull period, p, and on the number of 

gateways and SThs in the testbed.  The DsC application 

allows for setting the pull period, as shown in Figure 9 (c). 

If the number of SThs is too large and state changes occur 

only sporadically affecting a limited number of SThs then it 

is desirable to use the ChangesOnly rule to produce more 

accurate and smaller dataset. 

As mentioned previously, there are two methods to 

estimate actual STh reading time. The first method requires 

clock synchronization between the DsC and all testbed 

gateways. SThs‟ readings are recorded in the dataset with 

the time written within the message. But recording the 

reading time within the message increases message size and 

time required for parsing and analyzing the message body, 

which then causes increased network overload, especially 

when the number of gateways and SThs connected to them 

is large.  The messages thus come from gateways with low 

RSSI and   can be lost easily. The first method is desirable if 

accuracy of data synchronization is critical, especially when 

the ChangesOnly rule is used for dataset generation. 

The second method consumes less time for parsing and 

analyzing message body and reduces message size. It can be 

used with the EstimatedTime_All_Network rule. If dataset 

accuracy is not critical or time scale of reading accuracy is 

larger than that of which latency occurs (e.g., if device 

synchronization is sensitive on the days‟ time scale and the 

delay in recording messages is in seconds or minutes), then 

the second method can be used. The second method can be 

augmented by a mechanism to estimate message latency 

using echo request and reply.  

Table IV summarizes the differences between the two 

methods.  

TABLE IV. COMPARISON OF ACTUAL STH READING-TIME ESTIMATION 

METHODS.  

Criteria in-message calculated  

Main idea 
Synchronizing DsC‟s clock 
with all selected gateways  

Computing time 

difference between 
reading time and 

recording time  

Reading and 

receiving 
time delay 

 Reading time is sent 
within the message body. 

 Recording time= reading 

time 

 Recording time = 

actual reading time 
+ latency 

Dataset 

accuracy 

depends only on MsgIE, 
which depends mainly on 

weak RSSI  

depends on  SynTE and 

MsgIE 

Dataset error 

in the pull 

case 

Dataset accuracy is estimated using Equation (6) 

SynTE = 0% 
SynTE is estimated 

using Equation (5) 

Dataset error 
in the push 

case 

 All gateways send their total number of sent 

messages to measure MsgIE using Equation (4). 

SynTE = 0% 
SynTE is estimated 

using Equation (5) 

Pros More accurate 

 Smaller messages  

 faster message 

parsing and analysis  

Cons 

 Larger messages (by 
about 2 bytes)  

 slower message parsing 
and analysis 

SynTE > 0% 

VI. CASE STUDY 

In this section, a case study of the proposed WoT 

testbed is described. 

A. Using WoT Dataset for information analysis  

Using the generated dataset, researchers can analyze 

sensor data collected using multiple controlled scenarios. A 
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lot of experiment scenarios can be achieved on the testbed, 

such as comparing the state of devices on certain gateways 

(e.g., gateways of a room), comparing state of devices on all 

gateways (e.g., all gateways of a building), getting live time 

of each device and high level power consumption in daily 

live to provide suggestions related to energy efficiency 

achievement (i.e., Energy awareness through interactive 

user feedback). Figure 12 shows a comparison between 

devices of type „Lamp‟ for analysis of power consumption. 

Y-axis represents consumed voltages percent and X-axis 

represents time.  

Estimation on timing accuracy of the data hasn‟t been 

measured yet, but after enlarging WoT scale, DsC can 

estimate timing accuracy by calculating request and receive 

time for each device. In general, such a dataset, especially 

composed of dynamic information, will be helpful for 

computing Fuzzy-based sensor similarity [18], and for 

running prediction algorithms on real information that are 

used in searching about SThs and EoIs in the WoT. 

Providing information about SThs and EoIs in multiple 

formats with additional attributes like logical paths expands 

experimental work in this area.  

B. Browsing WoT  

Building simple and physical WoT (offline or online) 

will be helpful and more accurate than using simulators. 

Figure 2 shows a scenario of calling RESTful web services 

for pulling information about buildings and their devices 

from the generated dataset (offline). Sensor pages call Web 

services that fetch information from a dataset file 

‘Network_Time_All_2014-12-14-h17.xlsx’ using command 

of type OleDbCommand. Web services called in the testbed 

(Figure 2) execute the command string shown in  

Figure 13. ‘Device_Header’ and ‘Sheet_Title’ were sent by 

calling pages to the Web service monitoring. The special 

character @ before variables ‘Date_1’ and ‘Date_2’ means 

that they are initiated within the Web service.   

C. Crawling and indexing WoT 

Preparing WoT pages for crawling and indexing 

improves searching results. To this end, the crawling 

process should be tested at first, after that comes 

determining which information should be indexed and how 

to index such large and dynamic information to satisfy 

different kinds of queries where initiators of those queries 

could be human users or machines. For testing WoT 

crawling, the web spider starts with crawling EoI‟s page 

then recursively follows all links of devices (get list of 

devices‟ URLs) and so on to stop with links of device‟s 

services (get list of device‟s services by parsing its Web 

Services Description Language (WSDL)). Most of device‟s 

links are links to RESTful services that return results 

directly.  

As mentioned before, AJAX needs special type of web 

crawlers that either emulates Web browsers by loading 

pages then executing the AJAX parts on the fly or forwards 

requests to default pages (pages with static information). To 

demonstrate benefits of the proposed testbed in testing the 

WoT, the .Net Crawler [44] was directed to the Web page, 

shown in Figure 7, to test the ability of crawling the WoT. 

Result of crawling process, as shown in Figure 14 (a), is a 

list of rooms‟ URLs [45]. For each room‟s URL, the crawler 

recursively crawled list of devices‟ URLs [46]. All rooms‟ 

pages, list of devices for each room, and device‟s details 

(properties and RESTful services) were reached recursively 

from home page URL [47].  Crawling RESTful services like 

POST and GET requests were developed and a sample of its 

execution is shown in Figure 14 (b). Getting service URL 

now is available using WSDL, like what is Google did [39], 

services are overridden to get dynamic information (state) 

about the static information (default pins), so the 

optimization here is not to forward request for static page to 

get static information but to forward request for static list of 

devices to get their dynamic information.  

Ostermaier et al. [10] construct a real-time search 

engine for the WoT called Dyser, preparing sensor pages 

that should be indexed with static information about sensors 

(e.g., type) and dynamic information (in the form of 

possible states and its prediction model). Like Dyser, the 

proposed testbed prepares sensor pages and entity pages to 

provide static information about themselves and dynamic 

information in the form of possible states with dynamic 

probabilities calculated by prediction model (e.g., Markov). 

Figure 12. A graph generated out of a dynamic data file collected from 

devices of the same type (lamp in this graph). Voltages consumed by 

devices are represented in percentage at Y axis. 

Select   [Device_Header]  

From    [Sheet_Title]  
Where  [RecDateTime] = (Select         min ([RecDateTime])  

                         From          [Sheet_Title]  

                         Where        [RecDateTime]  

                         Between     @Date_1 and @Date_2) 

Figure 13. Accessing dataset files using web services (offline mode): 
Selecting column ‘Device_Header’ from sheet ‘Sheet Title’ where its time 

= current system time (hours and minutes) using OleDbCommand. 
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Dyser prototype supports only probabilities of the possible 

states not the prediction model itself as indicated in its 

architecture.  

According to the methodology used for searching for 

SThs and EoIs, information should be prepared. For 

instance, in the case of integrating the WoT with traditional 

search engines, semi-static information about the WoT 

should be written in rich format. Microformats and 

Microdata are embedded in HTML pages (WoT pages). But, 

in the case of special search engines that support queries 

written in SPARQL query language, information should be 

stored as RDF triples. 

D. Reusing Testbed for Different IoT 

The proposed testbed architecture allows the 

implementation of different purposes in the WoT. If 

someone has to operate the testbed for a certain environment 

(for example, energy saving of smart home, detect 

something unacceptable happening at a shopping mall, etc.), 

and because the proposed testbed operates in two modes 

(online and offline), then reusing this testbed depends on the 

operation mode.  

For online mode, new IoT infrastructure, which is built 

by attaching resources support information about measuring 

physical phenomena and actuating EoIs, is replaced by the 

IoT part shown in Figure 1 (b) and registered by Network 

setup application. New IoT should speak the same language 

as the DsC (gateways make it easy for supporting 

heterogeneity in devices).  

For offline mode, such as shown in Figure 15, because 

the dataset represents the IoT itself where it hosts 

information about SThs, EoIs, and sensing and actuating 

processes, then IoT part will be replaced by that dataset to 

be accessed by web services as indicated in Figure 2. So, 

offline mode could be used for retesting previously built 

IoT. Moreover, it could be used like Docklight [48] for 

discovering nodes in the network and testing packet transfer 

delay between the coordinator and endpoint nodes in a star 

topology. 

VII. CONCLUSION AND FUTURE WORK 

WoT has become one of the most trendy research 

directions due to facilities and services provided in many 

domains. Sensors can provide great benefits if their readings 

are presented in a meaningful and friendly way to users and 

machines. Searching for SThs and EoIs is one of the most 

important services in the WoT. In this work, we presented 

an evaluation of our integrated WoT testbed architecture by 

empirically measuring the dataset accuracy of the generated 

dataset and by qualitatively comparing our testbed to the 

state-of-the-art in WoT and IoT measurement platforms. 

The dataset generated from the testbed is expected to help 

research on the crawling, indexing, and searching processes 

in WoT. From the evaluation results, we argue that dataset 

quality depends on time accuracy of SThs‟ readings.  

An interesting problem for direct future work is how to 

enable the DsC to help testbed users to calculate an optimal 

time interval for receiving and processing messages,  

according to message size, the number of discovered 

gateways in the testbed, and the number of SThs connected 

to them, with the goal of increasing accuracy of the dataset. 

The problem of searching for SThs and EoIs depends on 

the standardization of formats used for representing SThs 

properties and services they offer. So, providing semantic 

discovery services based on the application of multiple 

discovery strategies [12] and enriching SThs meta-data may 

enhance the performance of searching services in the WoT. 

Creating standardized RESTful service description 

embedded in HTML using microdata is feasible and 

desirable [29]. Still, a few important issues remain here: 

security in the WoT, the methodologies by which WoT 

builders select an appropriate topology to cover an 

environment with certain conditions, achieving high 

performance and high accuracy, whereby the key service in 

the WoT is to give users the ability to get interesting 

knowledge in quickly, accurately and in an abstract form, 

and how to index WoT data streams. 

Figure 14. A Web spider case study for the WoT testbed. (a) Crawling 
pages of virtual gateways. (b) Crawling RESTful services that are 

loaded dynamically using WSDL. 

Figure 15. Testbed is running in offline mode (attaching IoT dataset). 
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