
467

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Evaluation of an Integrated Testbed Environment for the Web of Things

Mina Younan
Computer Science Department

Faculty of Computers and Information

Minia University
Minia, Egypt

E-mail: mina.younan@mu.edu.eg

Sherif Khattab, Reem Bahgat
Computer Science Department

Faculty of Computers and Information

Cairo University

Giza, Egypt

E-mails: {s.khattab, r.bahgat}@fci-cu.edu.eg

Abstract – Sensor networks research is still active due to the

proliferation of devices equipped with sensors and actuators.

Although simulators (e.g., Cooja) and Web sites (e.g.,

Thingspeak) allow building Internet of Things (IoT) and Web

of Things (WoT) applications, they are not compatible with

many testing purposes, especially for the WoT. Younan et al

recently proposed a testbed architecture for the WoT. It

augments IoT by Web applications and allows for generating

datasets and using them offline and online. In this paper, we

present an evaluation of the WoT testbed by empirically

measuring the accuracy of the generated dataset and by

qualitatively comparing the testbed to the state-of-the-art in

WoT and IoT measurement platforms.

Keywords – Internet of Things (IoT); Web of Things (WoT);

Entities of Interest (EoIs); Testbed evaluation.

I. INTRODUCTION

Nowadays research in the area of Wireless Sensor

Networks (WSN) sheds the light on the role of simulators

and testbeds to enhance the research results [1]. This is

gaining importance due to the increasing number of devices

and things connected to the Internet, which is expected to

reach the order of billions by 2020 [2] [3] as soon as the

Internet Protocol (IP) becomes the core standard in the

fields of embedded devices. As a result, the number of

human Internet users may well be less than the number of

devices connected to it.

Research on the Internet of Things (IoT) focuses on the

infrastructure needed for connecting things and devices to

the Internet. IoT addresses the connectivity challenge by

using IP and IPv6 for embedded devices (i.e., 6LoWPAN)

[4]. IoT devices, sensors and actuators, allow the state of

things (e.g., places and other devices) to be inferred [3] [5].

In a sense, IoT devices convert things to Smart Things

(SThs) and things‟ environments to smart spaces. Entities of

Interest (EoIs), things, devices, resources, discovery, and

addressing are main terms in the IoT [6].

On the other hand, the Web of Things (WoT)

“virtualizes‟‟ the IoT infrastructure and focuses on the

application layer needed for building useful applications

over the IoT layer. Services, such as searching for SThs and

EoIs, in addition to Web-based applications for controlling

and monitoring services in smart spaces using friendly user

interfaces, are core power features in the WoT.

Muhammad et al. [7] summarize the differences

between emulators, simulators, and physical testbeds. They

conclude that physical testbeds provide more accurate

results. For instance, MoteLab [5] is a testbed for WSNs. It

addresses challenges related to sensors‟ deployment and the

time consumed for building a WSN. It features a Web

application to be accessed remotely. The need for WSN

testbeds is highlighted by challenges and research topics,

which shed light on a specific set of features to be

embedded within the testbed and its tools [7] [8].

However, there has been no general method for testing

and benchmarking research in the WoT [1] [7] [8] [9],

especially for searching in the WoT. The problem of how to

find SThs and EoIs with their dynamic states that change

according to environment events [10] [11] has sheer

importance in drawing conclusions, deductions, and analysis

in various fields. In the WoT search problem, not only

datasets about sensor readings are needed, but integrating

the readings with information and meta-data about the

underlying infrastructure is needed as well.

In our previous work [1], a testbed architecture for the

WoT is proposed, which achieves the integration between

the sensors‟ readings and the underlying infrastructure. The

testbed addresses the general needs of WoT testing and

focuses on the Web search problem and its related issues,

such as crawling (i.e., preparing WoT pages for crawling).

The testbed can be used as a WoT application, which

monitors real devices in real-time and can be used as a WoT

simulator to do the same process on WoT datasets instead of

devices. It aims at collecting datasets that contain

information about things (i.e., properties and readings)

formatted using multiple markup languages. The collected

datasets are designed to help in testing in many problem

domains [10] [12].

In this paper, we present a detailed analysis of the

testbed presented in [1] using a case study on crawling the

WoT. Empirical evaluation of the WoT testbed is presented

and its features are discussed in the light of other IoT and

WoT testbeds in the literature. In particular, the accuracy of

the dataset is measured and evaluated; this is important in

order to make accurate decisions about the states of the

468

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

simulated EoIs specially that most of the EoIs‟ states depend

on the synchronization of more than one STh reading. For

completeness, the testbed architecture and its

implementation are also described in this paper.

The remainder of the paper is organized as follows. In

the next section, the related work regarding the creation of

searchable IoT and WoT domains using IoT and WoT

simulators and datasets is discussed. Discussion of IoT and

WoT testbeds is presented in Section III. Section IV

describes the testbed architecture of [1] and its

implementation, followed by the evaluation of the dataset‟s

time-accuracy in Section V. A case study is presented in

Section VI. Finally, conclusions and important ideas for

future work are presented in Section VII.

II. RELATED WORK

In the light of the WoT challenges and dataset

requirements discussed in [1], this section discusses the

usage of sensor datasets in the literature. To summarize our

observations, if the research is only interested in values

measured by sensors or in states of EoIs (e.g., being online

or offline), then the used dataset is based on the WoT level

(dynamic information), whereas if the research is interested

in the sensor network infrastructure, then the used dataset is

based on the IoT level (static information). Because the

SThs may be movable objects, i.e., their location may be

changing frequently, and then the research may need an

additional type of information, which is called quasi-

dynamic information about SThs. In this case, such a

property about SThs will be considered as a special type of

their readings (dynamic information). An integrated dataset

contains information about both sensor readings and

network infrastructure, that is, it is based on both IoT and

WoT levels.

Several studies [7] [8] [9] [13] discuss and compare

between existing simulators and testbeds using general

criteria, such as the number of nodes, heterogeneity of

hardware, and mobility, but none of them discusses WoT

features, such as STh‟s logical path, supported formats in

which EoIs‟ states are presented, and accuracy of the

datasets generated by the testbeds. In the next section, we

present a comparison of testbeds and measurement

platforms that combines both IoT and WoT features.

A. IoT Simulation

There is no general way for simulating IoT [7] [9] [13].

Moreover, there are situations in which simulators and real

datasets containing raw information (e.g., sensor readings

[14]) or information about the IoT layer are not enough for

modeling an environment under testing, as the datasets miss

the sense of one or more of the challenges mentioned earlier

and thus, miss the main factors for accurate WoT

evaluation. Also, many datasets are not actually related to

the problem under investigation, but were generated for

testing and evaluating different algorithms or methods in

other researches. For instance, an evaluation of WSNs‟

simulators according to a different set of criteria, such as the

Graphical User Interface (GUI) support, the simulator

platform, and the available models and protocols, concludes

that there is no general way for simulating WSNs, and hence

IoT and WoT [9] [13]. None of these criteria address the

previous challenges. So, it is desirable to embed the unique

IoT and WoT challenges within the datasets and to make

simulators support as much of these challenges.

WSN Simulators. Several studies [7] [9] [13] summarize

the differences between existing simulators according to a

set of criteria. The Cooja simulator gives users the ability to

simulate WSNs easily using a supported GUI [9] [13] and

different types of sensors (motes) for different sensor

targets. Sensor applications are written in the nesC [15]

language after being built in the TinyOS [16] (e.g., the

RESTful client server application [17]). However, there are

limitations and difficulties for testing the extensible

discovery service [12] and sensor similarity search [18] in

Cooja, because there is no information about the network

infrastructure and entities. In particular, static information

about sensors is written in different formats, and schematics

information of the buildings and locations of sensors can be

presented.

WSN Physical Testbeds. Physical testbeds produce

accurate research results [7]. Different testbeds are found in

this field due to different technologies and network scales.

MoteLab [5] supports two ways for accessing the WSNs, (1)

by retrieving stored information from a database server (i.e.,

offline) and (2) by direct access to the physical nodes

deployed in the environment under test (i.e., online).

However, the WoT challenges mentioned previously are not

fully supported in MoteLab. User accessibility in MoteLab

is similar to what is done in the testbed proposed in [1].

SmartCampus [19] tackles gaps of experimentation

realism, supporting heterogeneity (devices), and user

involvement [8] in IoT testbeds. CookiLab [20] gives users

(researchers) the ability to access real sensors deployed in

Harvard University. However, it does not support logical

paths as a property for sensor nodes and entities (WoT

features).

Nam et al. [21] present an Arduino [22] based smart

gateway architecture for building IoT, which is similar to

the architecture of the testbed environment proposed in [1]

(e.g., periodic sensor reporting). They build an application

that discovers all connected Arduinos and lists the devices

connected on each Arduino. However, the framework does

not cover all scenarios that WoT needs, especially for

searching. For example, information of logical paths and

properties of entities and information of the devices that the

components simulate or measure are missing.

At Intel Berkeley research lab [14], 54 sensors were

deployed, and sensor readings were recorded in the form of

plain text. The dataset includes information about the

sender, the receiver, probability of successful sending (i.e.,

some sensor readings were missed) and a quasi-dynamic

469

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

information about sensors (coordinates). However, the time

accuracy of the dataset was not measured.

B. WoT Simulation

Using websites (e.g., [23] [24] [25]), a WoT environment

can be built online by attaching SThs like Arduinos [22].

These websites monitor the states of devices and provide

RESTful services (GET, PUT, UPDATE, DELETE) [26]

for uploading and accessing reading feeds. Moreover, the

values (sensor readings) are visualized for users. The

services of the aforementioned websites are similar to

services of the testbed environment in [1]. However, these

websites are limited by available service usage and formats

of the responses, which are hardcoded and embedded within

the website code or at least not exposed to users. The

testbed architecture in [1], which is built specially for

testing WoT, provides more general services, such as

monitoring live information fed from attached SThs,

visualizing sensor readings and states of EoIs over time,

controlling actuators, triggering action events, and periodic

sensor reporting.

C. Service Architecture for WoT

Web services are considered as the main method for

accessing WoT devices [27]. Mayer et al. [28] propose a

hierarchical infrastructure for building WoT to enhance the

performance of the searching service. The searching

scenario starts by getting a list of sensors that can answer a

query according to their static properties and predicted

values. Then, the identified sensors are queried to check

their current values, which are used for ranking the search

results. The searching scenario is integrated into the

proposed testbed.

Mayer and Guinard [12] and Mayer [29] implement an

algorithm, called extensible discovery service [12], for

solving the problem of using multiple formats (e.g.,

Microformats and Microdata) in the WoT. They implement

their algorithms as a Web application that asks the users

about a sensor page URL and retrieves information about

devices if and only if the page is written in one of a set of

pre-defined formats. However, their work does not result in

a dataset. The proposed testbed in [1] allows such an

algorithm to be tested to measure its performance. The

required dataset contains sensor information written in

different formats so that the algorithm is tested in parsing

and retrieving information about sensors and entities.

The present paper substantially extends the work

presented in [1] by discussing WoT testbed features in the

light of other IoT and WoT testbeds in the literature,

considering testbed evaluation by measuring the dataset

time accuracy, and presenting a case study for crawling the

WoT.

To summarize, up to our knowledge, none of the

previously proposed testbeds fulfills the full requirements

for testing and evaluating the Web search process in the

WoT. The proposed testbed environment in [1] aimed at

filling this gap. It is not the main focus of the testbed to be

yet another WSN testbed but to integrate WoT and IoT

features for virtualizing things and entities, retrofitting on

the benefits of existing physical testbeds [1]. Making

decisions about EoIs‟ states depends on more than one

sensor reading, so evaluation of datasets generated by the

testbed focuses on the time accuracy (synchronization time)

and dataset integrity, as will be indicated in details in

Section V.

III. COMPARISON OF STATE-OF-THE-ART IOT AND WOT

TESTBEDS

From WSN to the IoT, and then moving forward to the

WoT, one purpose is sought for, that is monitoring and

controlling the surrounding environment. All of these

platforms have the same network ‎infrastructure, but data

manipulation (accessing and representing sensory data)

differs from ‎one platform to another according to the user

interests. WSN testbeds aim at improving algorithms and

solutions for resource constrained devices, while IoT

testbeds aim at integrating these devices (SThs) into

globally interconnected networks [8]. The main goal of the

WoT testbeds, including the integrated WoT testbed [1], is

to improve the usability of the information produced by the

IoT and to provide more services that raise this usability by

increasing the primary beneficiaries of the WoT

technologies. The information generated from the testbeds

can be widely used in different industries if and only if

people and machines can understand this information.

Different criteria have been set for WSN and IoT

testbed assessment and evaluation [7] [8] [13]. Because WoT

is the application layer on top of IoT that presents sensory

data in an abstract form using available web tools and

services, most of the future requirements described in [8]

are important to be hosted in WoT testbeds. Federation is

one of the most important factors that have to be met in

WoT testbeds, whereby WoT testbeds host more than one

WoT system for evaluating many services such as a

searching service. Another requirement is heterogeneity of

connected devices and formats that are embedded in web

pages to represent SThs. Heterogeneity of data formats

means that WoT systems hosted in a single testbed can use

different pages with different formats. Semantic

technologies in testbeds enhance the scale and heterogeneity

requirements.

Different studies have ‎defined different criteria sets for

comparing testbeds in WSN and IoT [7] [8] [9]. In the light

of those studies, the proposed ‎testbed should cover most of

existing IoT testbeds‟ features in addition to other

WoT ‎requirements, such as accessing data through RESTful

services, getting high-level states instead ‎of raw sensory

data, and searching in real-time for SThs and EoIs.

The comparison of testbeds in this section is divided

into two main categories according to the testbed

architecture: (1) infrastructure layer and (2) software layer,

where testing and evaluation services are done.

470

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Elements of the infrastructure layer

Elements of this layer concerning the IoT environment

are as follows:

1) the number of nodes and possibility of discovering new

nodes (scalability): the number of nodes in WSN testbeds

should be more than 10, ‎but in IoT it should be more than

1000. Because WoT is a layer above the IoT, as it was

mentioned previously, then the SThs number should be

sufficiently large. WoT testbed could be accessed offline

and online. So, deploying additional SThs can be done

manually by registering the STh‟s in online mode using

simple GUI, or dynamically when the gateways receive

acknowledgement messages from the SThs. In addition to

the GUI that testbed supports for giving users the ability to

add additional devices online like Thingspeak and Xively,

sharing datasets that simulate physical components

(accessing WoT testbed in offline mode) gives users the

ability to virtually increase the deployed number of SThs.

2) the environment properties: environment properties

relate to a certain physical phenomenon (e.g., temperature,

light, ‎and humidity‎). The WoT testbed supports virtual

environment in offline mode, whereby real-time information

was generated from real SThs and stored in dataset files.

3) availability and portability: this element means the

ability to deploy and re-deploy the testbed in different

places. The WoT testbed is a physical testbed as well as a

simulator, whereby it can be used for monitoring one place

or environment (online or offline). Monitoring other places

needs node preparation, using the same software for

configuring, discovering devices, and collecting data from

them.

TABLE I. A COMPARISON BETWEEN WSN/IOT TESTBEDS AND SIMULATORS AND THE WOT TESTBED PROPOSED IN [1] .

Criteria Current WSN/IoT/WoT Testbeds and Simulators Integrated WoT Testbed [1]

S
c
a

la
b

il
it

y

Number of
deployed

nodes

Simulators Testbeds

 Prototype is done over 30 sensor nodes.

 For enhancing scalability, testbed supports:

o GUI for registering additional SThs
o Sharing datasets

A large number of nodes can

be deployed (e.g., Cooja
simulator [17])

 Senslab [30] deployed 1000 nodes.

 Thingspeak [24] and Xively [23]:

Number of nodes depends on number of
channels to which resources are

attached.

Possibility to
discover new

nodes

Manually.
Node configuration is done automatically
or manually (e.g., Thingspeak and

Xively), according to network topology.

 Manually

 Dynamically

Environment
Produce randomly-modeled

information (e.g., Cooja [17])

Physical testbeds produce real information

(e.g., MoteLab [5]).

 Physical environment in online mode.

 Virtual environment in offline mode

Availability/
Portability

By sharing saved simulation
projects.

Difficult to move from one place to
another

It is a physical testbed and simulator in one
(online or offline).

Hardware/Software
heterogeneity

E.g., Cooja [17] E.g., MoteLab [5]  Different SThs‟ types.

 Different formats (i.e., different WoT

environments are deployed in one testbed)
 Add different types of motes in the same experiment

 All motes write their information in the same format.

Repeatability/
Reproducibility‎

Save projects

Users have to build new applications to

work on these datasets generated from
physical testbeds

 Run in offline mode on the generated
datasets.

 No need to build new applications to work

on the datasets.

Real-time

Information

Random information Real-time information  Real-time information

 Datasets (historical data) are written in
multiple formats. datasets (historical data) are written in a certain format (e.g., plain text)

W
o
T

Dataset

sharing

share saved projects (e.g.,

Cooja [17])

share results and evaluation measurements

through web applications (e.g., MoteLab
[5])

 Output of the testbed is simple to be
manipulated with other testbeds.

 It supports RESTful services to publish data

directly in a simple way.

User

involvement

 Users intervene deeply
 Environmental conditions

are absent (Thingspeak [24]

and Xively [23] achieve this
target but in limited

formats).

 Working interactively through a web

application or published APIs

 Scheduling „batch’ tasks to be executed
on the testbeds (e.g., MoteLab [5]).

Users can:

 deploy nodes manually or automatically

 generate datasets by selecting criteria or
rules on the DsC application.

SThs
attributes

 Static attributes are like serial and model numbers and brand.
 Dynamic attributes are like the physical location (longitude and latitude).

Support logical path as a main SThs attribute.

SThs
Formats

Most of them support a single format.
Generate different types of SThs formats
(Microdata, Microformats, and RDF).

471

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) the hardware heterogeneity: the ability to include

different types of sensors. The WoT testbed supports

different types of devices in different formats.

B. Elements of the software layer:

Elements of this layer concerning the WoT

environment are as follows:

1) software heterogeneity: the ability to run the testbed on

multiple operating systems and to support multiple

formats for SThs data and definitions.

2) re-usability (repeatability and reproducibility): the

ability to save an experiment to rerun it later.

3) real-time information: measures if the testbeds produce

imitative information (as in simulators) or real

information in the real-time (as in physical testbeds).

4) WoT features: WoT features include data sharing, user

involvement, GUI, RESTful APIs, STh‟s attributes and

formats. These features identify the tasks that the users

can do on testbeds, the possibility to support data

visualization (high-level knowledge), and the possibility

to share datasets. In the WoT testbed, users can deploy

nodes manually (configuring SThs and EoIs using a

GUI) or automatically when SThs receive

acknowledgement messages, they also generate datasets

by selecting criteria or rules on the DsC application. On

the other hand, Users intervene deeply in simulators,

whereby they build networks and create sensor nodes or

channels, but environment conditions in simulators are

absent. Xively [23] and Thingspeak [24] achieve this

target but support less accessibility for resources in

limited formats. When users work on physical testbeds,

they have two choices: (1) working interactively on the

physical testbed, which monitors and controls a certain

environment, through a web application or published

APIs or (2) scheduling „batch‟ tasks to be executed on

the testbeds (e.g., MoteLab [5]).

From Table I, we argue that WoT research needs a

special type of testbeds, of which is the integrated WoT

testbed [1], to support absent WoT features needed to

leverage existing testbeds to the WoT level.

IV. THE INTEGRATED WOT TESTBED

The proposed testbed architecture in [1] transforms the

physical control of devices in a surrounding physical

environment to an emulated control for those devices

keeping the same sense of events and features that existed in

the physical environment. These events and features are

embedded in datasets that can be later replayed. The

proposed architecture has two modes of operation: online

and offline (Figure 2). In online mode, datasets are

generated, “real” physical information is recorded, and a

Web application offers WoT services by accessing the real

devices for monitoring and controlling them. In offline

mode, the Web application accesses the datasets to replay

the events monitoring information.

A. Testbed Architecture

The testbed architecture, shown in Figure 1 (b), is

divided into five parts, as follows.

An IoT infrastructure (e.g., modeling a smart home) is

shown in step 1 Figure 1 (b). To build the IoT [31], the steps

are briefly as follows. First, things are converted to SThs by

attaching smart equipment (e.g., sensors and actuators), as

shown in Figure 1 (a). Second, the static and dynamic

information of SThs is described. SThs representation

Figure 1. Testbed Architecture: (a) Integrating smart things (SThs) in the IoT - (b) Testbed environment architecture for simulating a physical environment .

472

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specifies URLs to invoke SThs services and their

parameters and response format [29]. Third, RESTful APIs

for accessing the SThs are built. Fourth, communication

protocols between SThs and gateways are developed. Fifth,

the SThs are connected to the Internet using physical and

virtual gateways. SThs integration is done in the form of (1)

direct integration, for SThs that support IP address for

connection or (2) indirect integration using gateways, for

SThs that use low-level protocols [32] [33].

Network setup application (step 2 in Figure 1 (b)),

after building IoT, a program is built for configuring the IoT

network. It assigns locations to SThs in the hierarchical

structure of the simulated building or environment shown in

Figure 3. This allows for using the generated logical path as

attributes for the STh.

Web services for each device (step 3 in Figure 1 (b))

are used for executing WoT services directly and for feeding

back users with information about SThs, such as indicated

in Figure 1 (a). The web services are hosted on machines

that support IP connection, either the STh itself or a physical

gateway for accessing SThs that use low-level protocols.

A Web application (step 4 in Figure 1 (b)) offers WoT

services like monitoring and controlling. The application

loads information by calling web services, which pull

information from devices (online mode) or from WoT

dataset files (offline mode), as shown in Figure 2.

The dataset collector (DsC), the last component in the

testbed architecture (step 5 in Figure 1 (b)), works as shown

in Figure 4 (b), it discovers all available gateways and list of

devices (SThs) connected on each one, sets rules by which

data are collected from them, and sets the format by which

the datasets are generated. As shown in Figure 4 (a), each

discovered gateway waits for a discovery request from the

DsC and replies with a message that contains its

identification information in the form id_name-type (e.g.,

2_Arduino-Mega2560). A gateway also sends an

acknowledgement message (Ack) to inform the DsC that it

has set all required rules successfully. Finally, a gateway

sends a message that contains all required information about

SThs‟ states as specified in the rules sent by the DsC.

B. Testbed Implementation

According to the testbed architecture presented in the

previous section, the testbed implementation was done

along four axis [1]; building IoT infrastructure and

implementing network setup application were done in the

first axis, building WoT application and related web

services were done in the second axis, DsC was

implemented in the third axis, and finally the dataset files

Figure 4. Time accuracy for a dataset generated by the integrated WoT

testbed using rule EstimatedTime_All_Network (pull).

Figure 2. Testbed operation modes: Web services fetch data from real

devices and gateways (online mode), or from dataset files (offline mode).

Figure 3. WoT graph for locating devices at specific paths in the

hierarchical structure of a building.

473

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

were generated.

1) Building the IoT infrastructure

This step will be executed the first time around; but, if a

dataset that is generated by this testbed exists, then building

WoT begins from the next step by attaching the dataset with

the web application to work in offline mode. Building the

IoT infrastructure was done in a simple way [27] [34] using

widely-available components. The SECE server [21] gets

information from the IoT according to events and actions

that happen in the environment. It offers the collected

information in a friendly user interface. A testbed

environment for the WoT is built using these connections.

Building the IoT infrastructure [31] [35] was done in five

steps, as mentioned above. Connecting devices and entities

to the internet is done after converting them to SThs and

EoIs, the network setup application is used for configuring

the SThs and EoIs, where each STh and EoI has a unique

URL following the hierarchical structure shown in Figure 3.

Whereas it is desirable to build IoT using devices that

support direct IP connection rather than devices that support

only low-level protocols, the latter devices needed gateways

for integrating them into the IoT. The IoT infrastructure was

built using Arduinos, on which sensors and actuators were

connected. Arduino has two interfaces: a Serial Peripheral

Interface (SPI) bus and an Internal Integrated Circuit (I2C),

which allows modules, like Ethernet and Secure Digital

(SD) cards, to communicate with the microcontroller [35].

The Arduinos connected more than one device using digital

and analog pins. In a sense, the Arduinos acted as physical

gateways and IP addresses were set for them. They were

attached to the network using Ethernet or XBee [34] [36]

[37] connections. Digi‟s Configuration and Test Utility

Software (Digi‟s X-CTU) [38] was used to interface with

radio‟s firmware of connected XBee modules.

Table II lists the components that were used for building

a simple instance of the testbed. A large number of

components, which could be connected on Arduinos are

available and have different purposes. They could be used

for building more complex testbed instances with different

targets.

Network setup application was written in C# for

locating, managing and configuring resources for each

virtual gateway. A virtual gateway represents a location,

such as floor_100 and floor_200. For example, Figure 5

shows the process of adding a new device to the testbed

using the application. Logical paths in the building

hierarchical structure are very important for accessing

devices

TABLE II. SET OF COMPONENTS (SENSORS, ACTUATRS, AND GATEWAYS)

USED FOR BUILDING AN INSTANCE OF THE PROPOSED WOT TESTBED.

Component Description

Arduinos(2) Microcontrollers of type UNO & Mega-2560

ENC28J60 (2)

Arduino Ethernet module for accessing

Arduinos through the internet (New versions of
Arduinos support Ethernet connection using an

Ethernet Shield).

Zigbee modules (3)

Type (XBee series 2) – network connections

(Zigbee protocol is used for wireless network
connections)

Zigbee Usb-Shield
For connecting Zigbee module with computer -

acts as a base station (Coordinator)

Zigbee Arduino
Shield (2)

Connecting Zigbee modules to Arduinos

LM35 Temperature Sensor

DHT11 Temperature and Humidity Sensor

LEDs (10) Light actuators (Red, White, Green)

LDR (2) Photo Cell/Photo Diode for light detection

IR & TV remote Remote control circuit

Fan Small Fan (operates at 3-5 V)

Switches (10) Tactile push switches

Resistors For LDR, LED, etc. 150Ω : 10KΩ

Bread Boards (2) &

Jumper wire packs
Connecting Arduinos and components

The protocols, written in Arduino Sketches [22], were

used to get and set the state of devices that are connected to

the Arduinos, whereby get and set requests were sent within

the body of the protocol messages. When the special symbol

„#‟ is found within the body of the message, as shown in

Figure 6, the spider gets the current device‟s states. The

crawling case involved only getting information, not

controlling or changing device states.

2) From IoT to WoT

Building Web pages in the testbed followed standard

features for dealing with dynamic information. The common

way for developing dynamic websites depends on AJAX.

AJAX is used for live update of some parts in the sensor‟s

pages. The dynamic parts typically include SThs readings or

entity states, which indirectly depend on sensor readings

[23] [24].

However, pages with dynamic content built using AJAX

cannot be crawled by traditional search engine crawlers.

Figure 5. Locating and configuring a fan device at logical path
‘floor_100\room_102.’

474

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Some search engines, such as Google, suggest practical

solutions for optimizing the crawling process [39] of

dynamic content. Alternative URLs that lead to pages with

static information are indexed by default or instead of pages

that contain dynamic information. According to Google

optimization rules, Web sites in our testbed use AJAX in

some parts in device‟s web page but for crawling,

corresponding Web services are accessed instead to get

current STh value or EoI state, in addition to all possible

states with corresponding occurrence probabilities. Another

technique not implemented in our testbed is to render pages

on the fly (i.e., crawlers have browsing processes embedded

in their code [40]). Still, it is difficult to crawl pages that

need to send some data first before loading their content.

Moreover, the time consumed by the crawling process itself

becomes high and the crawling process needs to be done

frequently; information in WoT may be updated in less than

a minute.

Using Ethernet, RESTful APIs can access Arduino

components. Devices are programmed as clients to push

sensor data to services and as services to enable remote

control of devices over the Web. Because it is desirable to

have a Web page for each device and because Arduino acts

as a gateway for managing at least one component, a

website is built and can be hosted on an SD card connected

to the Arduino. The website is accessed using an IP address,

assigned to the Arduino. Another alternative is to host the

website on a different server for adding more capabilities

like storage capacity. In the latter case, Arduinos are

accessed using RESTful APIs. The selection of either

alternative is determined by the amount of information that

needs to be stored and accessed over time.

Two steps were done to add WoT layer to the testbed.

First, a Web application was written in Asp.Net (Figure 7).

The main services of the Web application are monitoring

sensors, controlling actuators, triggering action events, and

periodic sensor reporting [21] [31] [33]. The WoT

application was built according to the building hierarchical

structure configured by the Network setup application. The

homepage shows general information and allows users to

perform general tasks, such as monitoring room status. The

user selects a logical path to browse, then, for each room, a

list of devices and their states appear. The user selects a

device to access. The device page loads the RESTful

services dynamically using Web Services Description

Language (WSDL) [41] according to the Arduino IP and

selected device ID. Second, a set of Web services were

written in C#. The Web application loads the available

RESTful services dynamically for each device. A special tag

‘GET#’ is added as an additional service that is executed by

default for the device webpage. The crawling process

returns the current sensor value or the state of the device and

all possible states with their probabilities.

3) Dataset Collector

In Figure 8, using Zigbee connection, the WoT

coordinator (gateway that acts as a base station) discovers

all available gateways, getting a list of connected devices on

void loop()

{ ...
else if(strcmp(buffer,"GET# ") == 0)

 send_sr_get(client);

else if(strcmp(buffer,"POST# ") == 0)
 send_sr_post(client);

...

}
void send_sr_get (EthernetClient client)

 {

 // send a standard http response header
 client.println("HTTP/1.1 200 OK");

 client.println("Content-Type: text/html");

 client.print("Value of ");
 client.print(default_Dpin);

 client.print(" is ");

 client.print(digitalRead(default_Dpin));
 ...

}

Figure 6. Device network protocol for handling incoming requests of

monitoring, controlling, and crawling services (RESTful service).

Figure 8. DsC discovers gateways in the WoT and loads their static

information (e.g., number of digital and analogue pins).

Figure 7. Web pages of virtual gateways get their information from a

database server. Sensor Web pages get their information either from direct
access to devices or from the offline dataset.

475

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

each gateway (Figure 9 (a)). The DsC application generates

files written in different formats for the static information of

the IoT testbed including the building hierarchy and the

devices located in the hierarchy (Figure 9 (b)). The dynamic

information is collected using a set of rules, such as shown

in Figure 9 (c). The rules instruct the gateways to send back

specific information about a specific list of devices

according to a specific action or event done by other

devices. The gateways feed the DsC with device readings

according to these rules. If the rule ChangesOnly is selected,

the DsC stores only changes on device state. If the rule

TimeSlot was selected, the DsC stores periodical feeds of

device state. One of the most important rules is that if a

certain device type is selected for analysis of device

readings and making decisions according to the analysis

results, rules can be set to collect data from all devices of

that type across all the gateways in WoT.

4) Generated Dataset Files

A simple dataset was generated by the testbed according

to the rules: (1) every_2500 ms for updating dataset every

2500 millisecond (i.e., DsC pulls information from the

network), it could be replaced by rule ChangesOnly for

storing changes on devices‟ states only (i.e., devices push

information to DsC), (2) All_Network for pulling

information from all discovered gateways in the network,

(3) All_types means all devices on selected gateways, (4)

2014-12-1-h0_to_2015-1-1-h0 for storing dataset from

1/12/2014 to 1/1/2015, and (5) TD for triggering all

dependences related to selected devices. The dataset

generated according to limited time slot (date and time) by

DsC, as shown in Figure 9 (b), contains static information

about IoT infrastructure and dynamic information about

sensing and actuating activities.

The static information of each device, such as logical

path and device type, is stored in a file named using the

device ID, the EoI ID, and device name (e.g., 22_9_Fan).

Static information about a fan written in Microformats is

shown in Figure 10.

The dynamic information, such as sensor readings, is

stored in a file named using the collection-rule title and the

date and time of collection (e.g., Network_Time_All_2014-

12-1-h0). This file contains readings collected from all

devices in the WoT testbed. A subset of data stored in that

file would look like Table III, where monitoring is set to

rule time only.

TABLE III. SAMPLE READINGS GENERATED FROM ALL SENSORS OF TYPE

'LAMP' IN THE ENTIRE NETWORK AS A TIME SERIES. CONSUMED VOLTAGES

ARE MAPPED FROM (0:5) TO (0:255).

Time XLamp2

(2/5:9/1)
XLamp3

(3/6:10/1)
XLamp4

(4/7:11/1)
XLamp5

(8/8:12/1)
03:01 PM 66 77 83 71

03:02 PM 66 80 83 68

03:04 PM 66 68 65 69

03:06 PM 67 71 69 67

03:08 PM 68 80 85 70

… … … … …

10:12 PM 65 80 85 70

Figure 9. Dataset collector: (a) DsC loads list of devices connected on discovered gateways in the WoT . (b) Static information about the IoT testbed are

generated in different formats. (c) Rules are defined to control the way gateways send dynamic information (readings).

<div class ="hproduct ">

 22_Fan

 ,
 Fan Sfan123

 0

 Fan

 Brand Name

 characterized by …

 Fan

 <a href =http://www.XXX.com/?s=wsn

 class =" URL">
 More information about this device.

</div>

Figure 10. Static information about a fan written in Microformats.

476

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As being mentioned earlier, sensor definition contains

information about the sensor in order to be accessed easily

through the WoT application. In sensor definition:

„Xlamp2(2/5:9/1)‟, X is sensor‟s brand name, lamp2 is

sensor title, (2/5) is the virual location sensor id and hosting

room id, and (9/1) is the physical location where 9 is pin

number and 1 is gateway id. Column „Time‟ is the response

time. Arduinos support 5 Voltages as maximum; they

convert voltage range (0:5V) to be (0:255) using built in

analog to digital converter. Values recored for each sensor

definition, are current voltages consumed by that sensor

(0 : 255).

V. WOT TESTBED EVALUATION

In this section, the proposed WoT testbed in [1] is

evaluated in terms of the dataset accuracy. We start by

presenting the used metrics and the experiment setup. Then,

we describe experiment results and summarize our

observations.

A. Dataset accuracy

Running the testbed in online mode produces dynamic

information in real time about SThs and EoIs located in the

surrounding environment. On the contrary, when running

the testbed in offline mode, it produces simulated dynamic

information; information about SThs and EoIs retrieved

from the attached dataset is real but not in the real time. In

other words, the dataset was generated previously by the

testbed and saved, then attached to the testbed to simulate

the environment.

Two factors affect dataset accuracy: (1) the number of

messages that are lost between the gateway and the DsC and

(2) the time accuracy of the SThs‟ values that are recorded

in the dataset. In general, time accuracy is defined as the

difference of time between the actual time at which a STh

has the value X or an EoI is in state X and the time at which

this information is recorded in the dataset. As such, the time

accuracy is important to be measured for making accurate

decisions, especially when decisions depend on

synchronizing multiple SThs‟ readings or EoIs‟ states.

The time accuracy is affected by message latency, which

is defined as the time consumed to send a data message

between a gateway and the DsC. The latency is directly

influenced by the message size, the distance between sender

and receiver, and the baud rate (link bandwidth). Other

indirect factors should also be considered: network topology

and covered area (out-of-range nodes can send still their

information if all or some nodes are configured with mesh

capabilities), protocols and modules (e.g., XBee and Wifi),

and capabilities of DsC for handling and processing all

incoming messages from all connected devices.

Thereby, the time latency of a STh‟s message

 is defined as:

 (1)

where is the time for communication between the DsC

and the gateway and is the time for handling and

processing the incoming message by the DsC (i.e., parsing

and analyzing an incoming message then recording SThs‟

values in the dataset). Boonsawat‎ et al. [37] calculate the

pulling time delay using the function millis() of the Arduino

library, which returns the number of milliseconds since the

Arduino board began running the current program (last

reset) [22], it is used for realizing the distance between the

coordinator and the end-devices [37].

Practically, estimating the actual reading time of a STh

can be done in two ways: (1) SThs send actual time (sensing

time) included in their messages after clock synchronization

between discovered gateways and the DsC (clock

synchronization can be done using the DateTime library

[42]) and (2) calculating the time that the message consumes

starting from its initialization to its recording. In the case of

periodical requests, DsC firstly sends rules to selected

gateways so that they adjust their configurations. After that,

gateways send SThs‟ readings periodically according to the

time defined in the DsC rules. The DsC sends requests

every X seconds to all discovered gateways and waits for

them to send their messages back. In that case, message

latency is equal to the difference in time between message

receiving time at the DsC and request sending time at the

DsC as well. For example, if request sending time is

14:22:20 and message receiving time is 14:22:25, then the

latency is 5 seconds.

Gateway latency, , is computed as the average of all

latencies that have occurred in all messages of all SThs

connected to the gateway. We are using the average as an

example statistic for simplicity; for more accurate results,

the 50
th

 percentile or the interquartile mean can be used

instead, using straightforward modification in the equations.

 ∑ (

 ∑

)

 (2)

where k is the number of SThs connected to the gateway and

nj is the number of recorded values for STh j. the formula

(

 ∑

) represents the average latencies for

STh j. In the case of datasets generated by pulling (the rule

EstimatedTime_All_Network), the value of nj should be

identical for all SThs on each gateway. Then, Equation (2)

becomes:

 ∑ ∑

 (3)

Message Integrity Error (MsgIE) is the ratio between

the number of received messages by the DsC and the

number of sent messages by the gateways.

477

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 (
∑

 (

)
) (4)

where l is number of discovered gateways in the testbed,

 is the number of messages sent by gateway GWi (in the

pulling case, all gateways ideally send an equal number of

messages), is the start recording time, is the finish

recording time (and are in milliseconds), and p is the

interval for sending and receiving messages periodically.

The formula (

) represents the number of messages

that should be received and handled by the DsC when there

is no error.

Synchronizing DsC‟s clock with all discovered

gateways produces no clock synchronization errors. In that

case, the actual reading time of each STh reading can be

written inside the message and recorded into the dataset.

But, when messages do not contain the reading time due to

difficulties in clock synchronization, then the receiving time

is used to estimate the STh reading time. So, the

Synchronization Time Error (SynTE) is computed as

follows:

 (

 ∑

) (5)

where
 is the latency of gateway i, l the number of

discovered gateways in the WoT testbed, and p the interval

between two consecutive messages that come from the same

gateway (i.e., gateway waits the time interval p to send one

message containing all SThs‟ readings).

Because dataset Accuracy () depends on two

factors as mentioned above (time accuracy in which STh

reading is written and integrity of dataset contents), then

 is computed by the following equation:

 () (6)

B. Experiment setup

A large number of SThs in the WoT testbed produces

less dataset accuracy due to network communication

overhead and overwhelming the capabilities of the DsC to

handle and process all incoming messages. Receiving a

single message from each gateway (responsible for a group

of SThs) is more desirable and is adopted in our testbed.

Evaluation of the WoT testbed was done by running the

DsC application on a machine (base-station) with 8 GB

RAM and core-i5 CPU running at 2.3 GHz. The DsC and

gateways send and receive at a baud rate of 9600 bps. The

first gateway (of type Arduino-Uno) is at a distance of 10m

from the DsC, the second gateway (of type Arduino-

Mega256) is at a distance of 15m, and the third one (of type

Netduino2) is connected directly to the DsC through the SPI

bus. All nodes in the testbed instance were configured in a

star topology, so the maximum number of nodes in each

path is 2 and the number of edges is one (i.e., a direct link

between the DsC and each gateway in the network). The

gateway of type Arduino-Uno had message size ≈ 6 bytes

and Arduino-Mega ≈ 10 bytes.

Two fundamental approaches were used for getting

sensor data in the testbed, pull and push [10], represented as

the rules EstimatedTime_All_Network and ChangesOnly,

respectively. In this paper, we focus more on the pull

approach and measure the time accuracy as the time interval

between reading and recording SThs‟ values. We note that

the rule EstimatedTime_All_Network (pull) generates more

data and is expected to affect the time accuracy more than

the ChangesOnly rule; the dataset from pull contains the

information generated by the rule ChangesOnly (push) in

addition to repetitions of steady readings over the time.

C. Results using EstimatedTime_All_Network rule

DsC pulls SThs‟ information by implementing the rule

EstimatedTime_All_Network to generate a dataset for all

connected devices on all the discovered gateways. Each

discovered gateway in the WoT periodically sends one

message every 1000 ms containing all SThs‟ values (i.e., the

expected number of messages that all selected gateways can

send is not known at the beginning).

Figure 11 shows the number of received messages, the

number of recorded messages, the time consumed in the last

recording process, the latency (in milliseconds) of the last

message, the sum of latencies (in milliseconds) of all

messages from all gateways, and the current

synchronization accuracy of all SThs‟ readings. The list of

devices connected to each gateway is shown in Figure 3,

where 1_Arduino-Uno represents Floor_100 and

2_Arduino-Mega2560 represents Floor_200. The two

gateways send a sequence of SThs‟ readings. The message

fields from 1_Arduino-Uno are switches, fans, last IR

signal, LEDs, LDR, and temperature (LM35) and for

2_Arduino-Mega2560 switches, fans, LEDs, LDR,

humidity/temperature (DHT11). Message fields are

separated by the special character @. Empty message fields

indicate that no value was available. For switches, fans, and

LEDs, a value of 1 corresponds to the ON state and a value

of 0 to OFF.

Figure 11. Time accuracy for a dataset generated by the integrated WoT

testbed using rule EstimatedTime_All_Network (pull).

478

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As shown in Figure 11, the DsC received two messages

back-to-back from the gateway 1_Arduino-Uno. This was

due to gateway 1_Arduino-Uno being closer to the DsC

than the other gateway as indicated by a stronger Received

Signal Strength Indicator (RSSI). RSSI was measured in

decibels using Digi‟s X-CTU software to determine signal

noise, and its value ranges from 0 to 120; the closer it is to

zero, the stronger is the signal.

Figure 11 shows an example of applying Equation (6)

to calculate the . In this experiment, p=1000 ms,

 =05:01:10 and =05:10:22. The total number of received

messages from all gateways was 1103 messages, and the

total latency time was approximately 12297 ms, yielding

about 11.14 ms of latency per message. The latency

included the processing time at the DsC for each received

message and the network delay. The testbed produced the

dataset with ≈ 98.98%, where SynTE =0.999% and

MsgIE = 0.011%. We note that when reading time is sent

with SThs‟ values, then SynTE=0%, but the message size

will increase, which in turn may increase message loss rate

and MsgIE. Results of [43] confirm our measurements.

D. Results using ChangesOnly rule

When the ChangesOnly rule is used, message size has a

direct relation to the number of SThs that detect change at

the same time or within the same check period. This is

because SThs push their information only when certain

changes happen in their states and gateways check

periodically for changes in SThs‟ values. The maximum

message size is reached when all SThs of a certain gateway

detect change at the same time, which is equivalent to the

message size in the pull approach.

We ran an experiment in which gateways check SThs‟

values for change every 1000 ms. we found that most of the

time message size was small, so we decided to send the

reading time within the message. Implementing the system

this way produced SynTE = 0% with a small MsgIE and

with small message parsing and processing overhead at the

DsC. Because the expected number of messages is not

known at the beginning, MsgIE can be measured using

Equation 4 provided that all gateways send their total

number of sent messages periodically in SYNC messages.

E. Results Discussion

As can be concluded from the previous results, dataset

accuracy depends on the network overhead, which in turn

depends on the pull period, p, and on the number of

gateways and SThs in the testbed. The DsC application

allows for setting the pull period, as shown in Figure 9 (c).

If the number of SThs is too large and state changes occur

only sporadically affecting a limited number of SThs then it

is desirable to use the ChangesOnly rule to produce more

accurate and smaller dataset.

As mentioned previously, there are two methods to

estimate actual STh reading time. The first method requires

clock synchronization between the DsC and all testbed

gateways. SThs‟ readings are recorded in the dataset with

the time written within the message. But recording the

reading time within the message increases message size and

time required for parsing and analyzing the message body,

which then causes increased network overload, especially

when the number of gateways and SThs connected to them

is large. The messages thus come from gateways with low

RSSI and can be lost easily. The first method is desirable if

accuracy of data synchronization is critical, especially when

the ChangesOnly rule is used for dataset generation.

The second method consumes less time for parsing and

analyzing message body and reduces message size. It can be

used with the EstimatedTime_All_Network rule. If dataset

accuracy is not critical or time scale of reading accuracy is

larger than that of which latency occurs (e.g., if device

synchronization is sensitive on the days‟ time scale and the

delay in recording messages is in seconds or minutes), then

the second method can be used. The second method can be

augmented by a mechanism to estimate message latency

using echo request and reply.

Table IV summarizes the differences between the two

methods.

TABLE IV. COMPARISON OF ACTUAL STH READING-TIME ESTIMATION

METHODS.

Criteria in-message calculated

Main idea
Synchronizing DsC‟s clock
with all selected gateways

Computing time

difference between
reading time and

recording time

Reading and

receiving
time delay

 Reading time is sent
within the message body.

 Recording time= reading

time

 Recording time =

actual reading time
+ latency

Dataset

accuracy

depends only on MsgIE,
which depends mainly on

weak RSSI

depends on SynTE and

MsgIE

Dataset error

in the pull

case

Dataset accuracy is estimated using Equation (6)

SynTE = 0%
SynTE is estimated

using Equation (5)

Dataset error
in the push

case

 All gateways send their total number of sent

messages to measure MsgIE using Equation (4).

SynTE = 0%
SynTE is estimated

using Equation (5)

Pros More accurate

 Smaller messages

 faster message

parsing and analysis

Cons

 Larger messages (by
about 2 bytes)

 slower message parsing
and analysis

SynTE > 0%

VI. CASE STUDY

In this section, a case study of the proposed WoT

testbed is described.

A. Using WoT Dataset for information analysis

Using the generated dataset, researchers can analyze

sensor data collected using multiple controlled scenarios. A

479

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

lot of experiment scenarios can be achieved on the testbed,

such as comparing the state of devices on certain gateways

(e.g., gateways of a room), comparing state of devices on all

gateways (e.g., all gateways of a building), getting live time

of each device and high level power consumption in daily

live to provide suggestions related to energy efficiency

achievement (i.e., Energy awareness through interactive

user feedback). Figure 12 shows a comparison between

devices of type „Lamp‟ for analysis of power consumption.

Y-axis represents consumed voltages percent and X-axis

represents time.

Estimation on timing accuracy of the data hasn‟t been

measured yet, but after enlarging WoT scale, DsC can

estimate timing accuracy by calculating request and receive

time for each device. In general, such a dataset, especially

composed of dynamic information, will be helpful for

computing Fuzzy-based sensor similarity [18], and for

running prediction algorithms on real information that are

used in searching about SThs and EoIs in the WoT.

Providing information about SThs and EoIs in multiple

formats with additional attributes like logical paths expands

experimental work in this area.

B. Browsing WoT

Building simple and physical WoT (offline or online)

will be helpful and more accurate than using simulators.

Figure 2 shows a scenario of calling RESTful web services

for pulling information about buildings and their devices

from the generated dataset (offline). Sensor pages call Web

services that fetch information from a dataset file

‘Network_Time_All_2014-12-14-h17.xlsx’ using command

of type OleDbCommand. Web services called in the testbed

(Figure 2) execute the command string shown in

Figure 13. ‘Device_Header’ and ‘Sheet_Title’ were sent by

calling pages to the Web service monitoring. The special

character @ before variables ‘Date_1’ and ‘Date_2’ means

that they are initiated within the Web service.

C. Crawling and indexing WoT

Preparing WoT pages for crawling and indexing

improves searching results. To this end, the crawling

process should be tested at first, after that comes

determining which information should be indexed and how

to index such large and dynamic information to satisfy

different kinds of queries where initiators of those queries

could be human users or machines. For testing WoT

crawling, the web spider starts with crawling EoI‟s page

then recursively follows all links of devices (get list of

devices‟ URLs) and so on to stop with links of device‟s

services (get list of device‟s services by parsing its Web

Services Description Language (WSDL)). Most of device‟s

links are links to RESTful services that return results

directly.

As mentioned before, AJAX needs special type of web

crawlers that either emulates Web browsers by loading

pages then executing the AJAX parts on the fly or forwards

requests to default pages (pages with static information). To

demonstrate benefits of the proposed testbed in testing the

WoT, the .Net Crawler [44] was directed to the Web page,

shown in Figure 7, to test the ability of crawling the WoT.

Result of crawling process, as shown in Figure 14 (a), is a

list of rooms‟ URLs [45]. For each room‟s URL, the crawler

recursively crawled list of devices‟ URLs [46]. All rooms‟

pages, list of devices for each room, and device‟s details

(properties and RESTful services) were reached recursively

from home page URL [47]. Crawling RESTful services like

POST and GET requests were developed and a sample of its

execution is shown in Figure 14 (b). Getting service URL

now is available using WSDL, like what is Google did [39],

services are overridden to get dynamic information (state)

about the static information (default pins), so the

optimization here is not to forward request for static page to

get static information but to forward request for static list of

devices to get their dynamic information.

Ostermaier et al. [10] construct a real-time search

engine for the WoT called Dyser, preparing sensor pages

that should be indexed with static information about sensors

(e.g., type) and dynamic information (in the form of

possible states and its prediction model). Like Dyser, the

proposed testbed prepares sensor pages and entity pages to

provide static information about themselves and dynamic

information in the form of possible states with dynamic

probabilities calculated by prediction model (e.g., Markov).

Figure 12. A graph generated out of a dynamic data file collected from

devices of the same type (lamp in this graph). Voltages consumed by

devices are represented in percentage at Y axis.

Select [Device_Header]

From [Sheet_Title]
Where [RecDateTime] = (Select min ([RecDateTime])

 From [Sheet_Title]

 Where [RecDateTime]

 Between @Date_1 and @Date_2)

Figure 13. Accessing dataset files using web services (offline mode):
Selecting column ‘Device_Header’ from sheet ‘Sheet Title’ where its time

= current system time (hours and minutes) using OleDbCommand.

480

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Dyser prototype supports only probabilities of the possible

states not the prediction model itself as indicated in its

architecture.

According to the methodology used for searching for

SThs and EoIs, information should be prepared. For

instance, in the case of integrating the WoT with traditional

search engines, semi-static information about the WoT

should be written in rich format. Microformats and

Microdata are embedded in HTML pages (WoT pages). But,

in the case of special search engines that support queries

written in SPARQL query language, information should be

stored as RDF triples.

D. Reusing Testbed for Different IoT

The proposed testbed architecture allows the

implementation of different purposes in the WoT. If

someone has to operate the testbed for a certain environment

(for example, energy saving of smart home, detect

something unacceptable happening at a shopping mall, etc.),

and because the proposed testbed operates in two modes

(online and offline), then reusing this testbed depends on the

operation mode.

For online mode, new IoT infrastructure, which is built

by attaching resources support information about measuring

physical phenomena and actuating EoIs, is replaced by the

IoT part shown in Figure 1 (b) and registered by Network

setup application. New IoT should speak the same language

as the DsC (gateways make it easy for supporting

heterogeneity in devices).

For offline mode, such as shown in Figure 15, because

the dataset represents the IoT itself where it hosts

information about SThs, EoIs, and sensing and actuating

processes, then IoT part will be replaced by that dataset to

be accessed by web services as indicated in Figure 2. So,

offline mode could be used for retesting previously built

IoT. Moreover, it could be used like Docklight [48] for

discovering nodes in the network and testing packet transfer

delay between the coordinator and endpoint nodes in a star

topology.

VII. CONCLUSION AND FUTURE WORK

WoT has become one of the most trendy research

directions due to facilities and services provided in many

domains. Sensors can provide great benefits if their readings

are presented in a meaningful and friendly way to users and

machines. Searching for SThs and EoIs is one of the most

important services in the WoT. In this work, we presented

an evaluation of our integrated WoT testbed architecture by

empirically measuring the dataset accuracy of the generated

dataset and by qualitatively comparing our testbed to the

state-of-the-art in WoT and IoT measurement platforms.

The dataset generated from the testbed is expected to help

research on the crawling, indexing, and searching processes

in WoT. From the evaluation results, we argue that dataset

quality depends on time accuracy of SThs‟ readings.

An interesting problem for direct future work is how to

enable the DsC to help testbed users to calculate an optimal

time interval for receiving and processing messages,

according to message size, the number of discovered

gateways in the testbed, and the number of SThs connected

to them, with the goal of increasing accuracy of the dataset.

The problem of searching for SThs and EoIs depends on

the standardization of formats used for representing SThs

properties and services they offer. So, providing semantic

discovery services based on the application of multiple

discovery strategies [12] and enriching SThs meta-data may

enhance the performance of searching services in the WoT.

Creating standardized RESTful service description

embedded in HTML using microdata is feasible and

desirable [29]. Still, a few important issues remain here:

security in the WoT, the methodologies by which WoT

builders select an appropriate topology to cover an

environment with certain conditions, achieving high

performance and high accuracy, whereby the key service in

the WoT is to give users the ability to get interesting

knowledge in quickly, accurately and in an abstract form,

and how to index WoT data streams.

Figure 14. A Web spider case study for the WoT testbed. (a) Crawling
pages of virtual gateways. (b) Crawling RESTful services that are

loaded dynamically using WSDL.

Figure 15. Testbed is running in offline mode (attaching IoT dataset).

481

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] M. Younan, S. Khattab, and R. Bahgat, "An Integrated

Testbed Environment for the Web of Things," in ICNS 2015 :

The Eleventh International Conference on Networking and

Services, ISBN: 978-1-61208-404-6, Rome, Italy, May,

2015, pp. 69-78.

[2] M. Blockstrand, T. Holm, L.-Ö. Kling, R. Skog, and B.

Wallin. (2011, Feb.) Operator opportunities in the internet of

things – getting closer to the vision of more than 50 billion

connected devices. [Online].

http://www.ericsson.com/news/110211_edcp_244188811_c

[3] L. Coetzee and J. Eksteen, "The Internet of Things – Promise

for the Future ? An Introduction," in IST-Africa Conference,

Gaborone, May 2011, pp. 1-9.

[4] WS4D Initiative. (2010, Aug.) WS4D-uDPWS - The Devices

Profile for Web Services (DPWS) for highly resource-

constrained devices. [Online].

http://code.google.com/p/udpws/wiki/IntroductionGeneral

[5] G. Werner-Allen, P. Swieskowski, and M. Welsh, "MoteLab:

A Wireless Sensor Network Testbed," in Information

Processing in Sensor Networks, 2005. IPSN 2005. Fourth

International Symposium on, Boise, ID, USA, 2005, pp. 483-

488.

[6] S. Haller, "The Things in the Internet of Things," Poster at

the (IoT 2010). Tokyo, Japan, vol. 5, no. 26, p. 4, Nov. 2010.

[7] I. Muhammad, A. Md Said, and H. Hasbulla, "A Survey of

Simulators, Emulators and Testbeds for Wireless Sensor

Networks," in nformation Technology (ITSim), 2010

International Symposium in, vol. 2, Kuala Lumpur, June

2010, pp. 897-902.

[8] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T.

Razafindralambo, "A Survey on Facilities for Experimental

Internet of Things Research.," IEEE Communications

Magazine, Institute of Electrical and Electronics Engineers

(IEEE), no. <10.1109/MCOM.2011.6069710>. <inria-

00630092>, pp. 58-67, 2011, 49 (11).

[9] J. Miloš , N. Zogović, and G. Dimić, "Evaluation of Wireless

Sensor Network Simulators," in the 17th

Telecommunications Forum (TELFOR 2009), Belgrade,

Serbia, 2009, pp. 1303-1306.

[10] B. Ostermaier, B. M. Elahi, K. Römer, M. Fahrmair, and W.

Kellerer, "A Real-Time Search Engine for the Web of

Things," in The 2nd IEEE International Conference on the

Internet of Things (IoT), Tokyo,Japan, Nov. 2010, pp. 1-8.

[11] shodan search engine. [Online]. www.shodanhq.com,

(Accessed: 10 April 2015).

[12] S. Mayer and D. Guinard, "An Extensible Discovery Service

for Smart Things," in Proceedings of the 2nd International

Workshop on the Web of Things (WoT 2011), ACM, San

Francisco, CA, USA, June 2011, pp. 7-12.

[13] H. Sundani, H. Li, V. K. Devabhaktuni, M. Alam, and P.

Bhattacharya, "Wireless Sensor Network Simulators - A

Survey and Comparisons," International Journal Of Computer

Networks (IJCN), vol. 2, no. 6, pp. 249-265, Feb. 2011.

[14] P. Bodik, C. Guestrin, W. Hong, S. Madden, M. Paskin, and

R. Thibaux. (2004, Apr.) Intel Lab Data. [Online].

http://www.select.cs.cmu.edu/data/labapp3/index.html,

(Accessed: 10 April 2015).

[15] D. Gay, P. Levis, D. Culler, E. Brewer, M. Welsh, and R. von

Behren, "The nesC language: A holistic approach to

networked embedded systems," in PLDI '03 Proceedings of

the ACM SIGPLAN 2003 conference on Programming

language design and implementation, New York, NY, USA,

May 2003, pp. 1-11.

[16] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K.

Whitehouse, and A. Woo, "TinyOS: An Operating System for

Sensor Networks," in Ambient Intelligence, W. Weber, J. M.

Rabaey, and E. Aarts, Eds. Springer Berlin Heidelberg, 2005,

ch. 2, pp. 115-148.

[17] h. b. T. AS IS. Contiki: The Open Source OS for the Internet

of Things. [Online]. http://www.contiki-os.org/

[18] C. Truong, K. Romer, and K. Chen, "Sensor Similarity

Search in the Web of Things," in In World of Wireless,

Mobile and Multimedia Networks (WoWMoM), 2012 IEEE

International Symposium, San Francisco, CA, June 2012, pp.

1-6.

[19] M. Nati, A. Gluhak, H. Abangar, and W. Headley,

"SmartCampus: A user-centric testbed for Internet of Things

experimentation," in Wireless Personal Multimedia

Communications (WPMC), 2013 16th International

Symposium on, Atlantic City, NJ, June 2013, pp. 1-6.

[20] G. Mujica, V. Rosello, J. Portilla, and T. Riesgo, "Hardware-

Software Integration Platform for a WSN Testbed Based on

Cookies Nodes," in IECON 2012 - 38th Annual Conference

on IEEE Industrial Electronics Society , Montreal, QC,

October. 2012, pp. 6013-6018.

[21] H. Nam, J. Janak, and H. Schulzrinne, "Connecting the

Physical World with Arduino in SECE," Computer Science

Technical Reports, Department of Computer Science,

Columbia University, New York, Technical Reporting

CUCS-013-13, 2013.

[22] Arduino. [Online]. http://www.arduino.cc/, (Accessed: 10

April 2014).

[23] I. LogMeIn. Xively. [Online]. http://www.Xively.com ,

(Accessed: 10 April 2014).

[24] Powered by ioBridge. ThingSpeak- The open data platform

for the Internet of Things.. [Online].

http://www.thingspeak.com, (Accessed: 10 April 2015).

[25] X. Inc. (2012, Jan.) XMPro Internet of Things. [Online].

482

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

http://xmpro.com/xmpro-iot/, (Accessed: 10 April 2015).

[26] Dr. M. Elkstein. (2014, Nov.) Learn REST: A Tutorial.

[Online]. http://rest.elkstein.org/2008/02/what-is-rest.html ,

(Accessed: 10 April 2015).

[27] C. Pfister, "The Internet of Things," in Getting Started with

the Internet of Things: Connecting Sensors and

Microcontrollers to the Cloud, B. Jepson, Ed. United States

of America.: O‟Reilly Media, Inc., 2011, ch. 4, pp. 29-41.

[28] S. Mayer, D. Guinard, and V. Trifa, "Searching in a Web-

based Infrastructure for Smart Things," in Proceedings of the

3rd International Conference on .,the Internet of Things (IoT

2012),IEEE, Wuxi, China, October 2012, pp. 119-126.

[29] S. Mayer, "Service Integration - A Web of Things

Perspective," in W3C Workshop on Data and Services

Integration, Citeseer, Bedford, MA, USA, October 2011, pp.

1-5.

[30] SensLab. [Online]. http://www.senslab.info.

[31] D. Guinard, "A Web of Things Application Architecture -

Integrating the Real-World into the Web," PhD Thesis,

Computer Science, Eidgenössische Technische Hochschule

ETH Zürich, Zürich, 2011.

[32] D. Guinard, V. Trifa, S. Karnouskos, and D. Savio,

"Interacting with the SOA-Based Internet of Things:

Discovery, Query, Selection, and On-Demand Provisioning

of Web Services," Services Computing, IEEE Transactions

on, vol. 3, no. 3, pp. 223-235, Sep. 2010.

[33] D. Guinard and V. Trifa, "Towards the Web of Things: Web

mashups for embedded devices," in in Workshop on

Mashups, Enterprise Mashups and Lightweight Composition

on the Web (MEM 2009), in proceedings of WWW

(International World Wide Web Conferences), Madrid,

Spain, 2009, p. 15.

[34] R. Faludi, Building Wireless Sensor Networks, 1st ed., B.

Jepson, Ed. Tokyo, United States of America: O‟Reilly

Media, Inc., 1005 Gravenstein Highway North, Sebastopol,

CA 95472., 2011.

[35] A. McEwen and H. Cassimally, Designing the Internet of

Things, 1st ed., C. Hutchinson, Ed. John Wiley & Sons,

November 2013,

https://books.google.com.eg/books?id=oflQAQAAQBAJ.

[36] Digi International Inc. Official XBee website- Connect

Devices to the Cloud. [Online]. http://www.digi.com/xbee,

(Accessed: April 2015).

[37] V. Boonsawat, J. Ekchamanonta, K. Bumrungkhet, and S.

Kittipiyakul, "XBee wireless sensor networks for temperature

monitoring.," in the second conference on application

research and development (ECTI-CARD 2010), Chon Buri,

Thailand, May, 2010, pp. 221-226.

[38] Digi International Inc. Digi. [Online].

http://www.digi.com/products/xbee-rf-solutions/xctu-

software/xctu, (Accessed: November 2015).

[39] Google. (2010, Jan.) Search Engine Optimization (SEO) -

Starter Guide

[40] P. Suganthan G C, "AJAX Crawler," in Data Science &

Engineering (ICDSE), 2012 International Conference on.

IEEE, Cochin, Kerala, July 2012, pp. 27-30.

[41] wikipedia, Web Services Description Language. [Online].

http://en.wikipedia.org/wiki/Web_Services_Description_Lan

guage, (Accessed: November 2014).

[42] M. Margolis. Electronic Projects Components Available

WorldWide (PJRC)-DateTime Library. [Online].

https://www.pjrc.com/teensy/td_libs_DateTime.html,

(Accessed: April 2015).

[43] G. Randolph and N. Hirsch. (2010, Mar.) PIC32MX: XBee

Wireless Round-trip Latency. [Online].

http://hades.mech.northwestern.edu/index.php/PIC32MX:_X

Bee_Wireless_Round-trip_Latency

[44] H. Mostafa. (2006, Mar.) Code Project. [Online].

http://www.codeproject.com/Articles/13486/A-Simple-

Crawler-Using-C-Sockets, (Accessed: 10 April 2015).

[45] http://localhost:62912/R_Devices.aspx?Id=4‎, (Accessed: 10

November 2015)

[46] http://localhost:62912/D_Details.aspx?Id=1‎, (Accessed: 10

November 2015)

[47] http://localhost:62912/Default.aspx, (Accessed: 10 November

2015)

[48] Flachmann und Heggelbacher GbR. (2015, Aug.) docklight.

[Online]. http://docklight.de/, (Accessed: 10 November 2015)

