
A Comprehensive Evaluation of a Bitmapped XML Update Handler

Mohammed Al-Badawi, Abdallah Al-Hamdani, and Youcef Baghdadi

Department of Computer Science

Sultan Qaboos University

Muscat, Oman

{mbadawi, abd, ybaghdadi}@squ.edu.om

Abstract—XML (eXtensible Markup Language) update is

problematic for many XML databases. The main issue tackled

by the existing (and new) XML storages and indexing

techniques is the cost reduction of updating the XML’s

hierarchal structure inside these storages. PACD (an acronym

for Parent-Ancestor/Child-Descendent), as bitmapped XML

processing technique introduced earlier, is an attempt in this

direction. The technique brings the cost of updating the XML

structure to the data representation level by introducing the

‘next’ and ‘previous’ axes as a mechanism to preserve the

document order, and then using well-established matrix-based

operations to manipulate the database transactions. This paper

mainly provides a complexity analysis of the PACD update

framework and presents a novel experimental evaluation

method (in terms of comprehensiveness and completeness) for

its update primitives. The outcomes of this evaluation have

shown that the cost of eight update primitives (out of nine

provided by PACD) locates under an acceptable range of a

constant ‘c’, where ‘c’ is an extremely small number

comparing to the number of nodes ‘n’ in the XML tree. Such

good performance is lacked in the comparable techniques.

Keywords-XML Databases; XML/RDBMS Mapping; XML

Update; XML Indexing; Complexity Analysis; Experimental

Design.

I. INTRODUCTION

Data stored in the extensible markup language (XML)
containers (databases) is subject to update when
circumstances change [1]. Unfortunately, handling XML
updates is a common problem in the existing XML storages
and optimization techniques. Relational approaches using
node labeling techniques [2][3][4][5][6][7][8][9][10][11]
[12][13] require a large number of renumbering operations in
order to keep the node labels updated whenever a node is
inserted, deleted or moved from one location to another in
the XML tree. For the approaches that use path summaries to
encode the XML hierarchical structure [14][15][16][17][18],
an additional cost results from updating these summaries. In
native XML approaches such as sequence based
[19][20][21][22][23] and feature based techniques
[24][25][26], the update problem is even worse. In the first
case, the consequences of a single update operation (for
example deleting a node) can affect thousands locations in
the corresponding sequence depending on the node location
in the XML tree. A similar problem occurs in the case of
feature based techniques, which rely on encoding the
relationship between the nodes and the different ePaths of

the XML tree inside what is called feature-based matrices
[24].

PACD is XML processing technique introduced in [28]
[29] that brings the cost of updating the XML hierarchal
structure to the data representation level by encoding these
structures into a set of structure-based matrices each of
which encodes a specific XPath [27] axis, plus two more
axes specifically introduced by PACD to preserve the
document order. Thus, PACD architecture combines some
matrix-based operations along with the bit-wise operations to
reduce the cost of querying and updating the structure of
underlying XML file. This paper extends our previous work
[1] by providing a detailed complexity analysis of the PACD
Updates Query Handler (UQH). Unlike many existing
studies, this paper presents a comprehensive evaluation
process, which provides 1) a full algorithmic listing of all
XML update primitives so that they can be re-used, 2) a
detailed cost-analytical procedure of the XML update
primitives, and 3) a supportive comprehensive experimental
procedure that considers several testable aspects of the XML
databases. Such evaluation method could be adopted by the
XML research and development community to evaluate
XML database processing techniques.

 The paper starts by revisiting the PACD‟s framework in
Section II. Then it introduces the UQH framework in Section
III, while Section IV puts forward assumptions to facilitate
the discussion of complexity analysis in the subsequent
sections. Sections V to VII provide a detailed discussion of
three types of update primitives: the insertion, deletion and
change primitives, respectively. The overall complexity
analysis and a supportive experimental evaluation are given
in Sections VIII and IX, respectively. Section X concludes
the paper.

II. BACKGROUND: PACD‟S XML PROCESSING MODEL

PACD, introduced in [28][29], is a bitmap XML
processing technique consisting of three main components:
the Index Builder (IB; operations I.1-I.4), the Query
Processor (QP) and the Update Query Handler (UQH). The
IB (see Figure 1) shreds the XML hierarchal structure
(derived by the XPath‟s thirteen axes and their extension; the
Next and Previous axes [28]) into a set of binary relations
each of which is physically stored as an n×n bitmap matrix.
An entry in any matrix is „1‟ if there is a corresponding
relationship between the coupled nodes or „0‟ otherwise
[30][25]. The IB operations I.2-I.4 are responsible to reduce

1

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the size of storing the XML structure by applying three
levels of compression: the matrix-transformation level, the
matrix-coupling level and the sparse-matrix compression
level. More details about the data compression mechanism in
particular and the IB in general can be found in [28][29].

On the other hand, the QP performs all operations related
to the search-query execution. The full architecture of the QP
was described in [29] but in brief, the process starts by
analyzing the search-query statement to identify the affected
nodes based on the twig structure. The process also identifies
the query base matrices and draws an execution plan for the
entire query, which eventually returns the results into a
tabular-format (i.e., sub-matrices) and then converted to an
XML data layout.

The next section describes the PACD‟s third component,
that is the UQH, the core subject discussed in this paper.

III. THE UPDATE HANDLER

The PACD‟s UQH is responsible for all update
operations, which includes the translation of the update
query, the identification of update primitive(s), and the
primitive execution.

Once the query is translated (e.g., from XQuery syntax to
an SQL statement), the UQH starts identifying the node(s)
that are affected by the update command/query. It navigates
through the finite-state-machine (FSM) version of the update

query in order to identify the affected node-set. Once the
target node-set is known, the UQH determines and calls the
appropriate update primitive (see Table I). PACD supports
update primitives for single node insertion and deletion, twig
insertion and deletion, and textual and structural contents
changes.

The update primitive acts on all PACD‟s components
including the NodeSet container and the structure based
matrices (i.e., childOf, descOf and nextOf). Each update
primitive executes certain instructions over each component
such as adding new columns and rows and changing the
bitmapped entries within the matrices. The cost of the update
query execution will be the lump sum of the costs of
executing all derived update primitives over each PACD‟s
component. For example, an „insert‟ primitive will involve
adding one or more rows and columns to the bitmapped
matrices, as well as adding one or more entries to the
NodeSet container. Thus, the cost of the „insert‟ operation
becomes the cost of inserting the node information inside the
NodeSet container plus the cost of inserting one row and
column inside the childOf, descOf and nextOf matrices.
More examples on using update primitives will be given later
during the discussion of the update primitives.

The above steps are summarized in the algorithm
provided in Figure 2, whereas Table I lists out the update
primitives that are currently supported by PACD‟s UQH.

Figure 1. PACD Framework

2

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1
2

3

4
5

6

7
8

9

10
11

INPUT: update-query
OUTPUT: none

Construct the FSM execution plan of the corresponding twig

node-set = the returned node-set from the FSM execution
Using the update-query syntax, determine the update-primitive(s)

Call the update-primitive(s) with the obtained node-set:

 Alter the NodeSet container;
 Alter the childOf matrix;

 Alter the descOf matrix;

 Alter nextOf matrix;
End;

Figure 2. PACD Update Handler Algorithm

TABLE I: PACD UPDATE HANDLER PRIMITIVES

Insertion

insertLeaf adds a leaf node

insertNonLeaf adds an internal node

insertTwig adds a single-rooted, connected sub-tree

Deletion

deleteLeaf removes a leaf node

deleteTwig
removes a single-rooted, connected sub-

tree

Updating

changeName renames an element or attribute name

changeValue
edits the value (text) of an attribute
(element)

shiftNode moves a node from one place to another

shiftTwig
moves a single-rooted, connect sub-tree

from one place to another

IV. ASSUMPTIONS AND AN ANALYTICAL PROCEDURE

This section lists some assumptions that are considered
during the complexity and experimental results analysis. The
analytical procedure of the experimental results is also
described here.

A. Assumptions During the Analysis

During the analysis of the above XML update primitives,
the cost of any update primitive counts the number of work-
units done by the underlying system in order to update every
PACD‟s component. So, each of the following operation is
counted as a single work-unit:

 Operations on the NodeSet container:

 Insert new record/row

 Delete a record/row

 Change one (or more) attributes/fields within the

record/row

 Operations on a matrix-based component (e.g.,

childOf):

 Insert a complete row or column

 Delete an entire row or column

 Change an entry of a matrix (i.e., change the status

from „0‟ to „1‟ or vice versa)
As for illustration, inserting a leaf-node requires the

insertion of a new record inside the NodeSet container (1
unit), the addition of one row and column to the childOf,
descOf and nextOf matrices (6 units), and may change at
most one entry in the nextOf matrix (1 unit). So the leaf-node
insertion process costs 8 work-units (or hits).

In addition, the analyses provided in this paper were done
based on the following assumptions:

 When a row or column is inserted into a matrix, its

entries are set to zero by default with no extra cost.

 The cost of „search‟ operations (locating the records)

inside the PACD storage components; for example,

fetching the node ID among the NodeSet container, is

set to zero assuming that a very efficient lookup

algorithm is used.

 The number of children at any arbitrary node in the

XML tree is „‟, where  is a small number comparing

to the number of nodes „n‟ for very large XML

databases

 The number of descendants at any arbitrary node in the

XML tree can be estimated by multiplying the number

of nodes „n‟ by a fraction „f‟, where 0f1. The value

of „f‟ decreases exponentially as the context node goes

from the root (where f=1) towards the leaf nodes

(where f=0) [31].

 The given algorithms and their analyses are based on

using the uncompressed PACD storage. Updating

compressed PACD storage (which discussion is outside

the scope of this paper) may involve additional steps

and extra cost depending on the compression technique

used.
Generally speaking, the above assumptions were made in

order to simplify the analyses provided in the subsequent
sections (Section V, VI and VII). The same assumptions also
applied during the experimental result discussion in Section
IX.

B. An Anlytical Procedure

During the discussion of each update primitive in the
following sections, the usage of the primitive (including the
function prototype), its pseudo-code, the complexity
discussion, and one or two examples will be provided in
separate subsections. Furthermore, all examples are based on
the XML tree illustrated in Figure 3.

Figure 3. An XML Tree Example

V. INSERTION PRIMITIVES

This section discusses the three insertion primitives
shown in Table I.

A. Leaf Node Insertion

1) Usage:

Syntax: insertLeaf(node_info, parentID [,precID])

Description: Inserts a node at the bottom-most level of the tree under

3

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the parentID node and next to precID node. Both the

parentID and precID are identified by the UQH

Argument(s):  node_info: all necessary information to fill the

NodeSet record including the nodeID, tag/attribute

name, node_type, and the value/textual content

 parentID: the ID of the parent node where the new

node to be inserted

 precID: the ID of the preceding node. Must be

specified in case of the order-preserving storage

2) Algorithm:

1 PROGRAM insertLeaf(node_info: nodeType, parentID:
nodeIDType, precID: nodeIDType)

2 Get the next nodeID;
3 Insert the node information into NodeSet;
4 *-- update the childOf matrix:
5 Add a row and column to the ‘childOf’;
6 Set:
7 childOf[nodeID,parenID] = ‘1’,
8 *--update the descOf matrix:
9 Add a row and column to the ‘descOf’;
10 Let: anceSet = {node(i), where descOf[parentID,i]

= ‘1’}  parentID;

11 For each i  anceSet:
12 Set: descOf[nodeID,i] = ‘1’;
13 *--update the nextOf matrix:
14 Add a row and column to the ‘nextOf’;
15 If precID  null:
16 Let: temp = node(i), where nextOf[i,precID] =

‘1’;
17 Set: nextOf[nodeID,precID] = ‘1’;
18 If temp  null:
19 Set: nextOf[temp,precID] = ‘1’;
20 PROGRAM_END.

3) Complexity Analysis:

Based on the assumption given above, inserting the
node‟s information into the NodeSet container requires one
hit (line 3), whereas updating the childOf matrix requires
three hits: two to add a row and column (line 5) and one to
set the child/parent relationship between the new node and
the parentID (line 7). Similarly, updating the descOf matrix
requires 2+h hits: two to add a row and column (line 9) and a
maximum of „h‟ hits (where ‘h’ is the maximum height of the
XML tree) to set the descendant/ancestor relationship
between the new node and its ancestor list, which is
calculated in Line 10 (see Lines 11-12). In terms of the
nextOf matrix, besides the two hits that are required to insert
a row and column to the matrix (line 14), the program makes
two additional hits to update the previous/next relationship
(lines 17 and 19). So the total work-units required to insert a
leaf node in an XML tree of height „h‟ is 10+h. This is a very
small number „c‟ comparing to the number of nodes „n‟; thus
the complexity is of order O(c).

4) Example: Using the database in Figure 3, insert the

„year‟ information (e.g., 2003) to the book identified by the

key „book/110‟, where the „year‟ information must precede

the „author‟ information (result given in Figure 4).
The cost breakdown is:
NodeSet childOf descOf nextOf Total

1 3 4 4 12 hits

Figure 4. A Leaf Node Insertion Example

B. Non-Leaf Node Insertion

1) Usage:

Syntax: insertNonLeaf(node_info, parentID [,precID])

Description: Inserts a node at any level of the tree except the lowest
level. The parentID and the precID are identified by the
UQH prior calling the primitive. At this stage, this
primitive is only used to add additional level between a
parent and the complete set of its children. Subdividing
the parentID‟s children between the existing parent and
the new node is left to further investigation.

Argument(s):  node_info: all necessary information to fill the
NodeSet record including the nodeID, tag/attribute

name, node_type, and the value/textual content

 parentID: the ID of the parent node where the new
node to be inserted

 precID: the ID of the preceding node. Must be
specified in case of the order-preserving storage

2) Algorithm:

1 PROGRAM insertNonLeaf(node_info:nodeType,
parentID:nodeIDType,precID: nodeIDType)

2 Get the next nodeID;
3 Insert the node information into NodeSet;
4 *-- update the childOf matrix:
5 Add a row and column to the ‘childOf’;
6 Let: childSet = {node(i), where chilOf[i,parentID]

= ‘1’}
7 For each i  childSet:
8 Set: chilOf[i,nodeID] = ‘1’;
9 Set: childOf[nodeID,parentID] = ‘1’;
10 *--update the descOf matrix:
11 Add a row and column to the ‘descOf’;
12 Let: anceSet = {node(i), where descOf[parentID,i]

= ‘1’}  parentID;
13 Let: descSet = {node(j), where descOf[j,parentID]

= ‘1’};
14 For each i  anceSet:
15 Set: descOf[nodeID,i] = ‘1’;
16 For each j  descSet:
17 Set: descOf[j,nodeID] = ‘1’;
18 *--update the nextOf matrix:
19 Add a row and column to the ‘nextOf’;
20 If precID  null:
21 Let: temp = {node(i), where nextOf[i,precID] =

‘1’};
22 Set: nextOf[nodeID,precID] = ‘1’;
23 If temp  null:
24 Set: nextOf[temp,precID] = ‘1’;
25 PROGRAM_END.

4

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) Complexity Analysis:

This primitive also requires one hit to insert inside the
NodeSet container (line 3). However, more work is required
to update the childOf matrix because the children of the
parental node „parentID‟ have to be assigned to the new
node. So the number of hits required to update the childOf

matrix is „1+‟, where „‟ is the number of children of the
context node at an arbitrary level in the XML tree.

To update the descOf matrix, the primitive has to assign
the ancestors of the „parentID‟ to the new node „nodeID‟
(lines 14-15) and the descendants of the „parentID‟ as
descendant from the new node (lines 16-17). The first
process requires no more than „h‟ hits, while the cost of the
second process may extend to „n‟ hits; but in reality it only
requires a factor of „n‟ hits depending on the insertion level
(see Section IV). Finally, the cost of updating the nextOf
matrix is the same for updating the nextOf matrix in the
previous primitive (lines 22 and 24).

4) Example: Using the database in Figure 3, assign the

current author of the book titled „Indexing XML‟ to be the

first author of the book so that other authors can be added

later. This requires adding a parent node called „au_det‟ for

the „first‟ and „last‟ nodes under the original „author‟ node

(result given in Figure 5).
The cost breakdown is:
NodeSet childOf descOf nextOf Total

1 5 6 0 12 hits

Figure 5. An Non-leaf Node Insertion Example

C. Twig Insertion

1) Usage:

Syntax: insertTwig(twig_info, parentID [,precID])

Description: Inserts a sub-tree of „m‟ nodes under the parentID and
after the precID. Both the parentID and the precID are

determined by the UQH, and the twig is only inserted at

bottom-most nodes

Argument(s):  twig_info: all necessary information to fill the

NodeSet record including the nodeID, tag/attribute
names, node types, and the value/textual contents

 parentID: the ID of the parent node where the new

twig to be inserted

 precID: the ID of the preceding node. Must be

specified in case of the order-preserving storage

2) Algorithm:

The twig insertion can be modeled as inserting multiple-
connected nodes. In other words, inserting a twig of „m‟
nodes requires „m‟ times the cost of inserting a single leaf-

node and can be performed by the same algorithm in Section
V(C) starting at the twig root node.

3) Complexity Analysis:

The cost of this primitive is „m‟ times the cost of
inserting a single leaf-node, where „m‟ is the number of
nodes inside the inserted twig.

4) Example: Using the database in Figure 3, add second

author information (i.e., including the „first‟ and „last‟ name)

to the book titled „Indexing XML‟ (result given in Figure 6)
The cost breakdown is:

NodeSet childOf descOf nextOf Total

3 9 14 8 34 hits

Figure 6. A Twig Insertion Example

D. Insertion Primitives Summary

Table II summarizes the number of work-units required
to conduct the insertion primitives.

VI. DELETE PRIMITIVES

PACD currently supports the „deleteLeaf‟ and
„deleteTwig‟ primitives. These are discussed below.

A. Leaf Node Deletion

1) Usage:

Syntax: deleteLeaf(nodeID)

Description: Deletes a node from the lowest level of the tree labeled

with nodeID that is returned by the UQH

Argument(s):  nodeID: the unique node ID of the deleted node

2) Algorithm:

1 PROGRAM deleteLeaf(nodeID: nodeIDType)
2 *-- update the childOf matrix:
3 Locates the corresponding row and column of the

nodeID inside the ‘childOf’;
4 Remove the row and column from the ‘childOf’;
5 *--update the descOf matrix:
6 Locates the corresponding row and column of the

nodeID inside the ‘descOf’;
7 Remove the row and column from the ‘descOf’;
8 *--update the nextOf matrix:
9 Let:
10 next = {node(i), where nextOf[i,nodeID] = ‘1’};
11 prev = {node(j), where nextOf[nodeID,j] = ‘1’};
12 Locates the corresponding row and column of the

nodeID inside the ‘nextOf’;
13 Remove the row and column from the ‘nextOf’;
14 If next  null AND prev  null:

5

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

15 Set: nextOf[next,prev] = ‘1’;
16 *--update the NodeSet container:
17 Locate the corresponding record of the nodeID

inside the ‘NodeSet’;
18 Delete the nodeID;
19 PROGRAM_END.

3) Complexity Analysis:

Deleting a leaf node is simple and straightforward. In the
childOf and descOf matrices, after locating the row and
column IDs of the target node, the update process simply
removes that row and column. Thus, the process involves
two work units for each matrix. Regarding the deletion from
the nextOf matrix, a special consideration is required when
the target node has previous (line 11) and next (line 10)
siblings. In this case, an extra hit is required to assign the
next node of the target node to be the next node of the
previous node of the target node. Finally, to remove the node
from the NodeSet container, the system performs one work
unit after locating the record of the target node (line 15). So
the „deleteLeaf‟ primitive does not do more than eight work
units to remove a node from the PACD‟s storage.

4) Example: Using the database in Figure 3, remove the

author‟s last-name from the book identified by the key

„book/110‟ (result given in Figure 7).
The cost breakdown is: (Note: the node ID &10 will be

recycled)
childOf descOf nextOf NodeSet Total

2 2 2 1 7 hits

Figure 7. A Leaf Node Deletion Example

B. Twig Deletion

1) Usage:

Syntax: deleteTwig(twigRootNodeID)

Description: Deletes a connected sub-tree rooted at

„twigNRootNodeID‟ from the XML tree. The

twigRootNodeID is returned by the UQH process

Argument(s):  twigRootNodeID: the node ID of twig‟s root node

2) Algorithm:

1 PROGRAM deleteTwig(twigRootNodeID: nodeIDType)
2 *-- reconnect the next_of list of the nextOf

matrix:
3 Let:
4 next = {node(i), where nextOf[i,twigRootNodeID]

= ‘1’};
5 prev = {node(j), where nextOf[twigRootNodeID,j]

= ‘1’};
6 If next  null AND prev  null:
7 Set: nextOf[next,prev] = ‘1’;

8 *--identify all the node inside the deleted twig:
9 Let: descSet = {node(i), where descOf[i,

twigRootNodeID] = ‘1’}  twigRootNodeID;
10 *--remove row and columns from all matrices, and

the node_info from the NodeSet :
11 For each i  descSet:
12 Locates the corresponding row and column of the

nodeID inside the ‘childOf’;
13 Remove the row and column from the ‘childOf’;
14 Locates the corresponding row and column of the

nodeID inside the ‘descOf’;
15 Remove the row and column from the ‘descOf’;
16 Locates the corresponding row and column of the

nodeID inside the ‘nextOf’;
17 Remove the row and column from the ‘nextOf’;
18 Locate the corresponding record of the nodeID

inside the ‘NodeSet’;
19 Delete the nodeID;
20 PROGRAM_END.

3) Complexity Analysis:

Deleting a twig of „m‟ nodes is very similar to deleting a
leaf-node except that the cost is multiplied by „m‟.
Furthermore, deleting a twig will involve only one
reconnection process over the previous/next relationship.
This process is performed to rearrange the previous/next
relationship of the previous and the next nodes of the root
node of the target twig (lines 3-7). So the maximum cost of

the „deleteTwig‟ primitive is „1+[m(2+2+2+1)]‟ work units,
where „m‟ is the number of nodes inside the deleted twig.

4) Example: Using the database in Figure 3, remove the

complete author‟s information from the book identified by

the key „book/110‟ (result given in Figure 8). Note: this will

remove the nodes „&8‟ and „&9‟.

The cost breakdown is:
childOf descOf nextOf NodeSet Total

4 4 4 2 14 hits

Figure 8. A Twig Deletion Example

C. Deletion Primitives Summary

Table III summarizes the number of work-units required
to conduct the deletion primitives.

VII. CHANGE PRIMITIVES

Table I introduced four change primitives that can be
used to rename node description (i.e., element and attribute
names), change the value of a node, and move a node or a
twig from one place to another inside the XML tree.

6

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Node Description Change

1) Usage:

Syntax: changeName(nodeID|oldName,newName)

Description: Renames a node (identified by the nodeID) or a set of
nodes (that have the same name identified by oldName)

to the new name newName

Argument(s):  nodeID: the node ID of a particular node

 oldName: the element or attribute name of a set of

nodes

 newName: the new name to be assigned to the

changed nodes

2) Algorithm:

1 *-----Case1: changing particular node’s name:
2 PROGRAM changeName(nodeID: nodeIDType, newName:

string)
3 *-- update the NodeSet container:
4 Locates the corresponding record of the nodeID in

the ‘NodeSet’;
5 Replace the ‘name’ attribute by the ‘newName’;
6 PROGRAM_END;
7
8 *-----Case2: changing a set of nodes’ name:
9 PROGRAM changeName(oldName: string, newName: string)
10 *-- update the NodeSet container:
11 Let: updateSet = {node(i), where NodeSet.Name =

oldName};
12 For each node  updateSet:
13 Replace the ‘name’ attribute by the ‘newName’;
14 PROGRAM_END;

3) Complexity Analysis:

PACD separates the XML textual content representation
from the structural content representation and manage them
in a different storage component. The former (which
includes the node ID, tag/attribute name, type and value) are
arranged in the NodeSet container that stores the node
information in a separate record. This arrangement makes it
easier for the textual-based change operations such as the
„changeName‟ to alter node‟s record regardless the
complexity of the XML‟s hierarchal structure. So, to change
the name of a particular node, it will be sufficient to allocate
that node in the NodeSet container and change the „Name‟
attribute (lines 4-5). In the case of changing multiple node
names such as changing an attribute or element name, the
whole nodes labelled with that name class have to be
changed. So, the „changeName‟ primitive initially identifies
all the nodes that share the same name (line 11) and then
alters the „Name‟ attribute of all identified nodes (lines 12-
13). The complexity of this process depends on the
distribution of the tag/attribute name in the XML tree, which
might be estimated or obtained from the XML schema.

4) Example1: Using the database in Figure 3, change the

name of the node „thesis‟ to be „phdthesis‟.
This query changes the tag name of the node &11 from

„thesis‟ to „phdthesis‟ with the cost of one work-unit.

B. Node Value Change

1) Usage:

Syntax: changeValue(nodeID|oldName,newValue)

Description: change the textual contents of a node (identified by the
nodeID) or a set of nodes (that have the same name

identified by oldName) to the new value newValue

Argument(s):  nodeID: the node ID of a particular node

 oldName: the element or attribute name of a set of

nodes

 newValue: the new textual content to be assigned to

the nodes

2) Algorithm:

The algorithm of this primitive is identical to the one in
Section VII-A(2).

3) Complexity Analysis:

The cost of this primitive is similar to the „changeName‟
primitive, see Section VII-A(3).

4) Example: Using the database shown in Figure 3,

change the publication year for the book labelled with

„Book/101‟ to be „2000‟ instead of „2001‟.

This query changes the value of the node &2 from „2001‟
to „2000‟ with the cost of one work-unit.

5) Example: Using the database in Figure 3, change the

„title‟ of all publications to the uppercase.

In this query, the „oldName‟ parameter is „title‟ and the
„newValue‟ parameter is a function that converts its
argument to the uppercase. The query will perform three
work units in total.

C. Single Node Shifting

In the context of XML tree, single node shifting is only
meaningful when the node is a leaf node. This can be used to
transfer information from one block to another, for example
to swap the first and second books‟ ID as in Figure 3. The
NodeSet information is not affected by this primitive.

1) Usage:

Syntax: shiftNode(nodeID,newParentID[,leftID])

Description: Moves the node labeled with nodeID to under the node
newParentID. If the exact location is required, the

preceding node at the new location (i.e., ‘leftID’) must

be specified

Argument(s):  nodeID: the node to be moved

 newParentID: the parent node at the new location

 leftID: the preceding node at the new location

2) Algorithm:

1 PROGRAM shiftNode(nodeID: nodeIDType, newParentID:
nodeIDType, leftID: nodeIDType)

2 *-- update the childOf matrix:
3 Let: oldParentID = {node(i), where

childOf[nodeID,i] = ‘1’};
4 Set:
5 childOf[nodeID,newParentID] = ‘1’;
6 childOf[nodeID,oldParentID] = ‘0’;
7 *--update the descOf matrix:
8 Let:
9 oldAnceSet = {node(i), where descOf[nodeID,i]

= ‘1’};
10 newAnceSet = {node(j), where

descOf[newParentID,j] = ‘1’}  newParentID;
11 For each node i  newAnceSet:
12 Set: descOf[nodeID,i] = ‘1’;
13 For each node i  oldAnceSet:
14 Set: descOf[nodeID,i] = ‘0’;
15 *--update the nextOf matrix:
16 Let:
17 next_of_nodeID = {node(i), where

7

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

nextOf[i,nodeID] = ‘1’};
18 prev_of_nodeID = {node(j), where

nextOf[nodeID,j] = ‘1’};
19 next_of_leftID = {node(i), where

nextOf[i,leftID] = ‘1’};
20 prev_of_leftID = {node(j), where

nextOf[leftID,j] = ‘1’};
21 Set (if any combination is not null):
22 nextOf[next_of_nodeID,prev_of_nodeID] = ‘1’;
23 nextOf[nodeID,prev_of_nodeID] = ‘0’;
24 nextOf[nodeID,leftID] = ‘1’;
25 nextOf[next_of_leftID,nodeID] = ‘1’;
26 nextOf[leftID,prev_of_leftID] = ‘0’;
27 nextOf[next_of_leftID,leftID] = ‘0’;
28 PROGRAM_END.

3) Complexity Analysis:

Moving a leaf node from one place to another releases
the child/parent relationship between the node and its
original parent and creates a new child/parent relationship
between the node and the new parent. This requires two hits
(lines 5 and 6). Similarly, in the descOf matrix, the shifting
process releases the descendant/ancestor relationship
between the node and its original ancestor list, and creates a
new set of descendant/ancestor relationships between the
node and the ancestors of the new parent. This requires no

more than „2h‟ hits, where „h‟ is the maximum height of the
XML tree (lines 11-14).

Updating the previous/next relationship for the
„shiftNode‟ is a bit complicated but it requires no more than
six hits to release the old previous/next relationships and to
set up the new ones (lines 22-27).

4) Example: Using the database in Figure 3, move the

publication year of book „book/101‟ to be the publication

year for the book „Book/110‟ (see Figure 9).

The cost breakdown is:
childOf descOf nextOf Total

2 4 4 10 hits

Figure 9. A Leaf Node Shifting Example

D. Twig Shifting

Twig shifting operations are useful when a sub-tree is
moved from one parent to another without deleting the sub-
tree and creating it again under the new parent.

1) Usage:

Syntax: shiftTwig(twigRootID,newParentID[,leftID])

Description: Moves a sub-tree (twig) rooted at the twigRootID to be

a sub-tree under the node newParentID. If the exact
location is required, the preceding node at the new

location (i.e., leftID’) must be specified

Argument(s):  twigRootID: the root of the twig to be moved

 newParentID: the parent node at the new location

 leftID: the preceding node of twig‟s root node at the
new location

2) Algorithm:

1 PROGRAM shiftTwig(twigRootID: nodeIDType,
newParentID: nodeIDType, leftID: nodeIDType)

2 *-- update the childOf matrix:
3 Let: oldParentID = {node(i), where

childOf[twigRootID,i] = ‘1’};
4 Set:
5 childOf[twigRootID,newParentID] = ‘1’;
6 childOf[twigRootID,oldParentID] = ‘0’;
7 *--update the descOf matrix:
8 Let:
9 twigNodeSet = {node(1..m), where node(i) 

twig};
10 oldAnceSet = {node(i), where

descOf[twigRootID,i] = ‘1’};
11 newAnceSet = {node(j), where

descOf[newParentID,j] = ‘1’}  newParentID;

12 For each node i  newAnceSet:

13 For each node j  twigNodeSet:
14 Set: descOf[j,i] = ‘1’;
15 For each node i  oldAnceSet:

16 For each node j  twigNodeSet:
17 Set: descOf[j,i] = ‘0’;
18 *--update the nextOf matrix:
19 Let:
20 next_of_ twigRootID = {node(i), where

nextOf[i, twigRootID] = ‘1’};
21 prev_of_ twigRootID = {node(j), where

nextOf[twigRootID,j] = ‘1’};
22 next_of_leftID = {node(i), where

nextOf[i,leftID] = ‘1’};
23 prev_of_leftID = {node(j), where

nextOf[leftID,j] = ‘1’};
24 Set (if any combination is not null):
25 nextOf[next_of_twigRootID,prev_of_twigRootID]

= ‘1’;
26 nextOf[twigRootID,prev_of_twigRootID] = ‘0’;
27 nextOf[twigRootID,leftID] = ‘1’;
28 nextOf[next_of_leftID, twigRootID] = ‘1’;
29 nextOf[leftID,prev_of_leftID] = ‘0’;
30 nextOf[next_of_leftID,leftID] = ‘0’;
31 PROGRAM_END.

3) Complexity Analysis:

Similar to the „nodeShift‟ primitive, the „twigShift‟
primitive makes two amendments to the structure of the
childOf matrix: one to release the child/parent relationship
between the twig‟s old parent and its root, and another to set
up the child/parent relationship between the twig‟s new
parent and its root (lines 5-6). When updating the descOf
matrix, the cost is multiplied by „m‟ during the „twigShift‟
operation because the primitive has to deal with „m‟ nodes
rather than a single node as in „nodeShift‟ primitive (lines
12-17). The cost of updating the nextOf matrix is same for
both the „nodeShift‟ and „twigShift‟ primitives (lines 24-30).

8

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) Example: Using the database in Figure 3, move the

author information of book „book/110‟ to be the author for

the book „Book/101‟ (see Figure 10).

The cost breakdown is:
childOf descOf nextOf Total

2 12 2 16 hits

Figure 10. A Twig Shift Example

E. Change Primitives Summary

Table IV summarizes the number of work-units required
to conduct each change primitives.

VIII. OVERALL COMPLEXITY DISCUSSION

The analysis provided in Sections V, VI and VII shows
that the cost of all update-primitives over the PACD‟s
uncompressed data representation locates in acceptable limits
in general. Of the update primitives discussed, the highest
update complexity is only a fraction of the number of nodes
(i.e., „n‟) and this only happens during the rarely-used
operation „insertNonLeaf‟. The cost of other update
operations ranges between a very small constant „c‟ and

„mc‟ in the case of manipulating a twig of size „m‟ nodes.
 From the technical point of view, the bitmapped XML

structure (see Section II) and the introduction of the
previous/next axes has played a major role in such cost
reduction. Unlike node-labeling based techniques
[32][33][34][8][12][13], the use of the nextOf matrix (to
encode the document order) has narrowed the spread of label

TABLE II: COST SUMMARY OF THE INSERTION PRIMITIVES

Operation
Growth in # of Work-Units (Hits)

NodeSet Matrix NodeSet childOf descOf nextOf
Max.

Complexity

insertLeaf 1 rec. more
1 row more

1 col more
1 2+1 2+h 2+2 O(c)

insertNonLeaf 1 rec. more
1 row more

1 col more
1 2+ 2+fn 2+2 O(fn)

insertTwig

(m nodes)
m rec. more

m row more

m col more
m m.(2+1) m.(2+h) m.(2+2) O(m.c)

n= total number of nodes in the XML tree

h= the maximum height of the XML tree (# of levels)

= the maximum breadth-degree (i.e., number of children) of any XML node

f= a number between 0 and 1, where „fn‟ is the number of descendants at an arbitrary node

c= is very small number comparing to „n‟ such that, for large XML databases,

TABLE III: COST SUMMARY OF THE DELETION PRIMITIVES

Operation
Growth in # of Work-Units (Hits)

NodeSet Matrix NodeSet childOf descOf nextOf
Max.

Complexity

deleteLeaf 1 rec. less
1 row less

1 col less
1 2 2 2+1 O(c)

deleteTwig

(m nodes)
m rec. less

m rows less

m cols less
m m2 m2 m(2+1) O(m.c)

n= total number of nodes in the XML tree

c= is very small number comparing to „n‟ such that , for large XML databases,

TABLE IV: COST SUMMERY OF THE CHANGE PRIMITIVES

Operation
Growth in # of Work-Units (Hits)

NodeSet Matrix NodeSet childOf descOf nextOf Max. Complexity

chnageName none none 1 or k 0 0 0 O(k)

changeValue none none 1 or k 0 0 0 O(k)

nodeShift none none 0 2 2h 6 O(c+2.h)

twigShift

(m nodes)
none none 0 m2 m2h 6 O(c+m2[h+1])

n= total number of nodes in the XML tree

k= the number of nodes per tag/attribute name (usually much smaller than „n‟)

h= the height of the XML tree (# of levels)

c= is very small number comparing to „n‟ such that , for large XML databases,

9

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

changes to consider only the adjacent nodes of the targeted
node. Also encoding the basic XML structures (i.e., the
child/parent and descendant/ancestor relationships) using the
bitmapped node-pairs (i.e., the childOf and descOf matrices)
has reduced the high cost and complexity that result from
using: (1) path-summaries [35][36][37][16][17][18], and (2)
sequences [20][19][22] to encode such structures. The
analysis has shown that the number of changes in the childOf
structure is bounded by a small constant „c‟ (where „c‟ is a
very small number comparing to „n‟, the total number of
nodes in the XML tree) in most cases except the

„insertNonLeaf‟ primitive, which requires „‟ number of hits
depending on the node‟s breadth degree. On the other hand,
the same primitive may perform up to „n‟ hits over the
descOf matrix, however in real situations that number is
fractioned by small number „f‟, which ranges between „0‟

and „1‟ (usually 0  f  ½ for real, well designed XML
databases).

Another source of cost reduction in the PACD‟s update
transactions is the separation between the textual content
representation and the XML hierarchal structure
representation. The content-based primitives only affect the
NodeSet container while the structure-based update
primitives affect the bitmapped matrices. This is not valid in
the case of path-summary and sequence-based techniques,
where the underlying path-summary or sequence has to be
changed. In general, the number of hits over the NodeSet
container is limited by the number of targeted nodes except
when amending a tag/attribute name or a node value for a set
of nodes that share the same tag/attribute name. In this case,
the cost is limited by the number of nodes that share the
same tag/attribute name, which is also considered small
comparing to the entire XML tree.

IX. A COMPARATIVE STUDY

To evaluate and support the analysis provided above, this
section presents an experimental study conducted to compare
the PACD‟s performance (in terms of the update handling)
against two representative mapping techniques. The section
initially provides the experiment setup, including the list of
the used update queries, the structure of the compared
techniques, and the underlying test databases. Then it
presents the experimental results and their discussion for
each query in a separate section counting the number of
work-units done by the query over the test databases. Finally,
the section lists out the main finding from the experiment.

A. The Experiment Setup

A comparative experiment between the performance
PACD technique and two representative XML techniques
from the literature is conducted to support the above
complexity analyses. The experiment executes 6 update
queries –as a representation of the above update primitives-
translated over 3 XML databases for the 3 selected XML
techniques. The 6 update queries are listed in Table V while
the characteristics of the 3 XML databases are given in Table
VI. Table VII shows the XML/RDBMS mapping schema of
the three compared techniques, PACD, XParent [36] and

Edge [38], while other specifications of these techniques can
be found in [29], [36] and [38], respectively.

The experiment (see the result summary in Table VIII)
counts the number of changes (hits) done over the technique
data storage (2

nd
 column of Table VIII), and lists them per

query ID in separate columns over each XML database. The
number of hits, over all components, is summed up in the
last 3 rows of Table VIII.

Finally, the experiment was conducted using a stand-
alone Intel Pentium-IV machine with 3.6GHz dual processor
and 1GB of RAM. The machine was operated by MS
Windows XP SP3, and the translation of all XML queries to
the corresponding RDBMS queries was executed using MS
FoxPro database engine. Furthermore, data indices were
used whenever applicable over the three techniques to
leverage their performance with the power of RDBMS. Such
HW/SW setup was counted to have no influence on the
generated results.

TABLE V. THE EXPERIMENT‟S UPDATE QUERIES

Query ID Query Description

U1 Insert an Atomic Value, i.e., leave node

U2 Insert a Non-atomic Value, i.e., non-leave or internal
node

U3 Delete an Atomic Value , i.e., leave node

U4 Delete a Non-atomic Value , i.e., non-leave or internal
node

U5 Change an Atomic Value, i.e., the textual content of a
node

U6 Change a Non-atomic Value, i.e., tag-name

TABLE VI. FEATURES OF THE USED XML DATABASES

 DBLP [39] XMark [40] Treebank [41]

Size (#of nodes) 2,439,294 2,437,669 2,437,667

Depth(#of levels) 6 10 36

Min Breadth† 2 2 2

Max Breadth 222,381 34,041 56,385

Avg Breadth† 11 6 3

#of Elements 2,176,587 1,927,185 2,437,666

#of Attributes 262,707 510,484 1

TABLE VII. THE EXPERIMENTAL COMPARABLE XML TECHNIQUES

Technique Components (XML/RDBMS Mapping Schema)

PACD

XMLNodes(nodeID, type, tagID)

XMLSym(tagID, desc)

XMLValues(nodeID, value)
nextOf(nextID, prevID)

childOf(childID, parented)

descOf(descID, anceID)
* childOF+descOf= OIMatrix(Source, Target, relType)

Edge Edge(source, target, ordinal, label, flag, value)

XParent

labelPath(pathID, length ,PathDesc)

element(pathID, ordinal, nodeID)

data(pathID, ordinal, nodeID, value)

dataPath(nodeID, parented)

ancestors(nodeID, anceID, level)

10

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Result Discussion

This section discusses the experimental results. Each
subsection discusses the results of a particular XML update
query including the syntax of the executed query, a graphical
representation of the results, and a brief analysis of each
technique performance. The final remarks about these
analyses are given in Section IX.C.

1) Inserting an Atomic Value
The three queries in Figure 11 insert a new leaf-node at

levels 3, 5 and 10 of the DBLP, XMark and TreeBank
databases, respectively. The queries were designed to act at a
distance of 30% from the root-node.

The graph shows that PACD required six, seven and
thirteen amendments to the underlying relational schema in

order to execute this query. The number of amendments is
mainly controlled by the level number where the insertion
was applied. For example, the 6 operations required by
PACD over DBLP are distributed as follows: 1 insertion to
the „XMLNodes‟ table and another insertion to the
„XMLValues‟ table because the node contains a textual
value. Three operations were also required to update the
„OIMatrix‟ table while the last operation was required to link
the new node to its next node at the „nextOf‟ table. As
discussed earlier, PACD requires at most two operations to
update the „nextOf‟ table for any leaf-node insertion, and at
most „h‟ to update the „OIMatrix‟ table for the same process,
where „h‟ is the maximum number of levels in the XML tree.

Query: U1_DBLP

Insert a new author called “New Author” of the inproceedings publication identified by the key

“conf/ecai/BeeringerAHMW94”. The new author must be the first in the author list of that publication.

Query: U1_XMark

Insert a new location called “New Location” for the item identified by “item38683” from South America.

Query: U1_TreeBank

Insert a new „CC‟ element (textual-value is “New CC”) under the „NP‟ element which has a child called „CC‟ that stores

“IQXQwyLNRrdOEoHUpfWNbB==” and the existing „CC‟ element can be reached by the path

„/FILE/EMPTY/S/S/VP/NP/VP/PP/NP/CC‟. The new „CC‟ element must precede the existing „CC‟ element.

Figure 11. Performance of the "Insert an Atomic Value" Query

Query: U2_DBLP

Insert a new root element called “nRoot” to the DBLP100 database.

Query: U2_XMark

Insert a new root element called “nRoot” to the XMark100 database.

Query: U2_TreeBank

Insert a new root element called “nRoot” to the TREE100 database.

Figure 12. Performance of "Insert a Non-Atomic Value" Query

11

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Compared to other techniques, PACD is always better
than XParent because the later required one more insertion to
the „data‟ table and more change operations to keep the
document order updated at the „ordinal‟ attributes of the
„elem‟ and „data‟ tables. On the other hand, Edge
performance is either same as PACD or better. This
superiority is determined by the fact that Edge encodes are
far less of XML structure, which in turn affects its query
performance. In summary, when linked with the queries-
range coverage, PACD appears to have the best update
performance for this type of query among the three
techniques.

2) Inserting Non-Atomic Value
These queries (Figure 12) insert virtual root-nodes to the

three XML databases, respectively. The virtual new root

insertion is used here for three reasons. Firstly, the operation
was chosen to represent the process of inserting non-leaf
nodes, which may occur at any level in the XML tree.
Secondly, inserting at the top most level can give a logical
comparison between the number of operations required by
the operation rather than inserting at lower locations in
different XML databases. Finally, it will be easier to observe
the XML updater behavior and judge its performance with
relation to the database size and other XML features.

 For this particular query, PACD required „2+n‟
amendments to the underlying relational schema, where „n‟
is the number of nodes in the XML tree. The „n‟ operations
were required to insert the parent/child and
descendant/ancestor relationships of the new node, whereas
the other two operations were used to insert the

Query: U3_DBLP

Delete the author named “Antje Beeringer” from the inproceedings record that is identified by the key “conf/ecai/BeeringerAHMW94”.

Query: U3_XMark

Delete the location for the item identified by “item38683” from South America. The deleted element is storing the content “United

States”.

Query: U3_TreeBank

Delete the „CC‟ element (textual-value is “IQXQwyLNRrdOEoHUpfWNbB==”) which can be reached by the path

„/FILE/EMPTY/S/S/VP/NP/VP/PP/NP/CC‟.

Figure 13. Performance of "Delete an Atomic Value” Query

Query: U4_DBLP

Delete the entire record of an article labeled with the KEY “tr/gte/TM-0332-11-90-165”.

Query: U4_XMark

Delete the entire record of an item labelled with the ID “item7” from Africa.

Query: U4_TreeBank

Delete the entire record of the element „PP‟ that is reachable by the path „/FILE/EMPTY/S/VP/S/VP/NP/VP/NP/PP‟ and its child
element „TO‟ has the value “6fc25UxSwWg9Pz+yyR6wi8==”.

Figure 14. Performance of “Delete a Non-Atomic Value" Query

12

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

corresponding record in the „XMLNodes‟ and „XMLSym‟
tables because the new node was assumed to have distinct
tag name from the existing tag/attribute list.

Due to its restricted XML mapping algorithm, Edge had
only one amendment to execute this update operation. This
amendment was required to insert the new node‟s record into
the underlying mapping schema without affecting the
„ordinal‟ attribute because the root node logically has no
siblings. XParent workload on the other hand was slightly
higher than PACD. XParent required extra “s” operations to
update the „labelPath‟ table where “s” is the number of
records in that table, which stores the corresponding XML
schema summary. In general, XParent‟s number of
operations exceeds PACD ones by the number of the records

affected inside the underlying XPath summary, and also the
relative position of the inserted node amongst its siblings.

3) Delete an Atomic Value
These queries (Figure 13) delete a single leaf node from

each XML database. The deleted nodes were located at
levels 3, 5 and 10 of the DBLP, XMark and TreeBank
databases, respectively; and they were 30% away from the
root node each database. In addition, the deleted nodes were
chosen to have at least one sibling node of the same tag-
name so that the impact of the deletion process on the
document order can be calculated.

PACD performed „2+p+2‟ amendments to the underlying
mapping schema of all XML database types where „p‟ is the
level number of the node deleted. The first 2 operations were
required to remove the corresponding records from the

Query: U5_DBLP

Change the book title identified by the key “phd/Mumick91” from “Query Optimization in Deductive and Relational Databases” to be
“Query Optimization in Deductive and Relational Databases: Modified”.

Query: U5_XMark

Change the street name of a person‟s address by the key “person0” from “85 Geniet St” to be “85 Geniet St: Modified”.

Query: U5_TreeBank

Change the value stored in „IN‟ element which is reachable by the path

“/FILE/S/VP/SBAR/S/NP/SBAR/S/VP/S/VP/VP/NP/PP/NP/PP/NP/VP/PP/IN” from “CrtsNRQX7cNqOsWbpvPMgO==” to
“CrtsNRQX7cNqOsWbpvPMgO==:Modified”.

Figure 15. Performance of "Edit an Atomic Value" Query

Query: U6_DBLP

Change the description of the element/attribute name „key‟ records to „ID_NUM‟.

Query: U6_XMark

Change the description of the element/attribute name „id‟ records to „ID_NUM‟.

Query: U6_TreeBank

Change the description of the element/attribute name „PP‟ records to „PPPP‟.

Figure 16. Performance of "Edit a Non-Atomic Value" Query

13

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

„XMLNodes‟ and „XMLValues‟, respectively, and last 2
operations were required to update the „nextOf‟ table while
the „p‟ operations were conducted on the „OIMatrix‟ table to
remove the node‟s corresponding records. In general, the
number of operations for this type of update is determined by
the level number of the target node in the XML tree with a
maximum cost of „2+h+2‟ where „h‟ is the maximum
number of levels in the XML tree.

The performance of Edge and XParent in update was
close to PACD‟s. In XParent, the update handler requires

„2rs‟ more operations (where „rs‟ is the number of the right-
hand side siblings of the node) to update the document-order
inside the „elem‟ and „data‟ tables, while Edge‟s processor

required „1+2rs‟ operations to remove the node from the list
and amend the siblings‟ ordinal attribute.

In summary, PACD appears more efficient for this type
of queries due the document order preserving mechanism.

4) Delete a Non-Atomic Value
The action of these queries (Figure 14) was conducted at

levels two, five and ten of the DBLP, XMark and TreeBank
databases, respectively. These queries were included to test
the performance of deleting a sub-tree from the master XML
tree. The number of nodes in the target sub-trees was
selected to be very small compared to the master XML tree
so that identifying the number of records affected became
easy. The DBLP‟s sub-tree consisted of 13 nodes distributed
over 2 levels, and the XMark‟s sub-tree had 48 nodes
distributed over 7 levels while the number of nodes and
levels in the TreeBank‟s sub-tree were 8 and 4, respectively.
All sub-tree nodes were combinations of atomic and non-
atomic nodes.

PACD required 13 and 12 operations to remove the
DBLP‟s sub-tree from the nodes and values lists,
respectively, 26 operations to update the parent/child and
descendant/ancestor relationships, and 11 operations to
update the „nextOf‟ container. These figures were
determined by three factors. Firstly, the sub-tree size

determined the number of „delete‟ operations from both the
„XMLNodes‟ and „XMLValues‟ tables. Secondly, the
breadth and the depth as well as the level of the sub-tree‟s
root node all controlled the number of update operations of
the „OIMatrix‟ table. Finally, the number of update
operations at the „nextOf‟ table was mainly controlled by the
breadth of the sub-tree including, at most, 2 operations to re-
link the left and right hand side nodes for the previous/next
relationship. In general, PACD generates a manageable
number of changes for this type of queries especially when
the update happens at the low levels of the XML tree.

On the other hand, Edge and XParent performed 1270
times more operations compared to PACD for the DBLP‟s
query, and the three techniques were close to each other for
the XMark‟s query while PACD and XParent were 22 times
higher than Edge for the TreeBank‟s query. These figures
support the above conclusion that the number of operations
is determined by the size of the deleted sub-tree and its
location in the master XML tree. In general, PACD‟s
document-order encoding mechanism had a clear impact in
reducing the number of changes that are required to conduct
sub-tree deletion operations.

5) Edit an Atomic Value
This is the cheapest update query (Figure 15) that can be

ever conducted by any technique tested. All techniques over
all database types have made exactly one amendment to their
relational schema storage. In this case, PACD needs to
update the „XMLValues‟ table, Edge also updates the
corresponding record in its orphan table while XParent needs
to change the record inside the „data‟ table.

6) Edit a Non-Atomic Value
These queries (Figure 16) can be used to alter the tags

and attributes names without affecting the document‟s
hierarchal structure. The experiment has chosen to alter the
name of some elements/attributes, which were widely
repeated in each XML database to show the importance of
minimizing the cost of such update queries. The DBLP‟s

TABLE VIII. THE EXPERIMENTAL RESULTS

14

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

query was designed to change all „KEY‟ attributes, and the
XMark‟s query was designed to change all „ID‟ attributes,
while the TreeBank‟s query was deigned to change the name
of the recursive element „PP‟. The „KEY‟, „ID‟ and „PP‟
tokens were repeated 213¸634, 80¸316 and 136¸545 times,
respectively inside the corresponding XML databases.

In general, the statistics show that the number of
amendments conducted by PACD was always 1 because
PACD stores all database tokens only once. On the other
hand, the number of amendments in Edge‟s table was
determined by the number of elements/attributes that hold
the same name, while the number of amendments in XParent
environment was determined by the number of XPath
expressions that contain the element/attribute name. So, for
Edge, the number of changes was 213¸634, 80¸316 and
136¸545 over the DBLP, XMark and TreeBank databases
respectively, while XParent performed 8, 9 and 248¸480
changes over the same set of XML databases. The high
number of changes produced by XParent over the TreeBank
database was due the recursive properties of the element „PP‟
inside the XML schema.

C. Main Findings

The experiment discussed here has evaluated the
PACD‟s update primitives by executing six XML update
queries over three different XML databases. The evaluation
process examined the performance of PACD over each XML
database and compared it with Edge‟s and XParent‟s
performance over the same database set.

Comparing to other techniques, and taking into account
the queries-range coverage, PACD appeared having the best
performance for most of the queries in all situations. The
experiment has also shown that the performance of XParent
and Edge was delayed by the cost of the document order
persevering mechanism. PACD eliminates this cost by
encoding the previous/next relationship that requires at most
2 changes for any type of query/operation that concerns
about document-order.

X. CONCLUSION

This paper has discussed the PACD‟s updating
framework, which is managed by a set of low cost update
primitives. Once an update query is issued, the Update Query
Handler (UQH) process identifies the target node-set and the
necessary update primitive(s). The translation of an update
query may generate one or more update primitives each of
which may alter one or more XML nodes. The UQH
currently can generate nine update primitives divided into
three categories; the insert, delete, and change primitives.

This paper has provided a comprehensive complexity
analysis of the PACD‟s update primitives supported by
illustrative examples for each update primitive. The paper
also presented an experimental evaluation process to support
the analysis and generalize conclusions based on the
generated results.

Both analysis and experimental results provided in this
paper have shown that the computation cost of the XML
updates can be improved using the PACD‟s update
primitives, which specifically act on its data-storage. The

summary of the complexity discussion is given in Tables II,
III and IV, while the full experimental result summary is
depicted in Table VIII.

Besides, the paper has supplied a full algorithmic listing
of the XML update primitives under the PACD environment,
along with a comprehensive evaluation method (and the
results), which can be recycled by the XML research
community to test and evaluate the XML database
developments. Such level of details is rarely found in the
existing literature.

REFERENCES

[1] M. Al-Badawi and A. Al-Hamadani, “A Complexity analysis

of an XML update framework,” in Proceedings of ICIW

2013, Rome, Italy, 2013, pp. 106-113, ISSN: 2308-3972,

ISBN: 978-1-61208-280-6.

[2] T. Härder, M. Haustein, C. Mathis, and M. Wagner, “Node

labelling schemes for dynamic XML documents

reconsidered,” International Journal of Data Knowledge

Engineering, vol. 60, issue 1, 2007, pp. 126-149.

[3] P. O‟Neil, E. O‟Neil, S. Pal, I. Cseri, G. Schaller, and N.

Westbury, “ORD-PATHs: insert-friendly XML node labels,”

In proceeding of ACM/SIGMOD international conference on

Management of Data, 2004, pp. 903-908.

[4] W. Shui, F. Lam, D. Fisher, and R. Wong, “Querying and

marinating ordered XML data using relational databases,” in

Proceedings of the 16th Australasian database conference -

vol. 39, Newcastle, Australia, 2005, pp. 85-94.

[5] I. Tatarrinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E.

Shekita, and C. Zhang, “Storing and querying ordered XML

using a relational database system,” ACM/SIGMOD Record,

Madison, Wisconsin, 2002, pp. 204-215.

[6] H. Wang, H. He, J. Yang, P. Yu, and J. Yu, “Dual labeling:

Answering graph reachability queries in constant time,” in

Proceedings of the International conference of Data

Engineering, 2006, pp. 75-86.

[7] C. Zhang, J. Nsughton, D. DeWitt, Q. Luo, and G. Lohman,

“On supporting contaiment queries in relational database

management systems,” in Proceedings of the 2001 ACM

SIGMOD international conference on Management of Data,

California, USA, 2001, pp. 425-436.

[8] J. K. Min, J. Lee, and C. W. Chung, “An efficient XML

encoding and labeling method for query processing and

updating on dynamic XML data,” Advance in Databases:

Concepts, Systems and Applications, LNCS, vol. 4443,

2009, pp. 715-726.

[9] S. Sakr, “A prime number labeling scheme for dynamic

ordered XML trees,” in Proceedings of the Intelligent Data

Engineering nd Automated Learning, LNCS, vol. 5326,

2008, pp. 378-386.

[10] J. Lu, X. Meng, and T. W. Ling, “Indexing and querying

XML using extended Dewey labeling scheme,” Journal of

Data & Knowledge Engineering, vol. 70, issue 1, 2011, pp.

35-59.

[11] L. Xu, T. Wang Ling, and H. Wu, “Labeling dynamic XML

documents: an order-centric approach,” IEEE Transactions

on Knowledge and Data Engineering, vol. 24, issue 1, 2012,

pp. 100-113.

[12] J. Liu, Z. M. Ma, and L. Yan, “Efficient labeling scheme for

dynamic XM trees,” Information Sciences, vol. 221, 2013,

pp. 338-354.

15

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[13] R. Lin, Y. Chang, and K. Chao, “A compact and efficient

labeling scheme for XML documents,” Database Systems for

Advanced Applications, LNCS, vol. 7825, 2013, pp. 269-

283.

[14] Q. Chen, A. Lim, and K. Ong, “D(K)-Index: An adaptive

structural summary for graph-structured data,” in

Proceedings of the 2003 ACM SIGMOD international

conference on Management of data, CA, USA, 2003, pp.

134-144.

[15] C. Chung, J. Min, and K. Shim, “APEX: An adaptive path

index for XML data,” in Proceedings of the 2002 ACM

SIGMOD international conference on Management of data,

Madison, Wisconsin, 2002, pp. 121-132.

[16] S. Haw and C. Lee, “Extending path summary and region

encoding for efficient structural query processing in native

XML databases,” Journal of Systems and Software, vol. 82,

issue 6, 2009, pp. 1025-1035.

[17] A. Arion, A. Bonifati, I. Manolescu, and A. Pugliese, “Path

summaries and path partioning in modern XML databases,”

World Wide Web, vol. 11, issue 1, 2008, pp. 117-151.

[18] M. Sadoghi, I. Burcea, and H. A. Jacobsen “A gneric

boolean predicated XPath expression matcher,” in

Proceedings of the 14th Int. Conf. on Extending Database

Technology, 2011, pp. 45-56.

[19] J. Kwon, P. Rao, B. Moon, and S. Lee, “Fast XML document

filtering by sequencing twig patterns,” ACM Transactions on

Internet Technology (TOIT), vol. 9, issue 4, Article 13, 2009,

pp. 13.1-13.51.

[20] H. Wang and X. Meng, “On sequencing of tree structures for

XML indexing,” in Proceedings of the 21st international

conference on Data Engineering, 2005, pp. 372-383.

[21] H. Wang, X. Wang, and W. Zeng, “A research on

automaticity optimization of KeyX index in native XML

database,” in Proceedings of the 2008 international

conference on Computer Science and Software Engineering,

2008, pp. 700-703.

[22] W. Li, J. Jang, G. Sun, and S. Yue “A new Sequence-Based

approach for XML data query,” in Proceedings of the 2013

Chinese Intelligent Automation Conf., LNEE, vol. 256,

2013, pp. 661-670.

[23] H. Al-Jmimi,A. Barradah, and S. Mohammed “Sibiling

labeling scheme for updating XML dynamically,” in

Proceedings of the 4th Int. Conf. on Computer Engineering

and Technology, vol. 40, 2012, pp. 21-25.

[24] J. Yoon, S. Kim, G. Kim, and V. Chakilam, “Bitmap-based

indexing for multi-dimensional multimedia XML

document,” in Proceedings of the 5th International

Conference on Asian Digital Libraries-ICADL2002,

Singapore, 2002, pp. 165-176.

[25] N. Zhang, M. Özsu, I. Ilyas, and A. Aboulnaga, “FIX:

feature-based indexing technique for XML documents,” in

Proceedings of the 22nd international conference on VLDB,

vol. 32, Seoul, Korea, 2006, pp. 259-270.

[26] R. Senthilkumar and A. Kannan, “Query and update support

for indexing and compressed XML (QUICX),” Recent

Trends in wireless and Mobile Networks Communication in

computer and Information Science, vol. 162, 2011, pp. 414-

428.

[27] J. Clark and S. DeRose, XML Path Language (XPath)-

Version 1.0, [Online] Available online:

http://www.w3.org/TR/xpath/, [Accessed on: 25/05/2014].

[28] M. Al-Badawi, H. Ramadhan, S. North, and B. Eaglestone,

“A performance evaluation of a new bitmap-based XML

processing approach over RDBMS,” Int. J. of Web

Engineering and Technology, vol. 7, no. 2 , 2012, pp. 143 –

172.

[29] M. Al-Badawi, B. Eaglestone, and S. North, "PACD: A

bitmap-based approach for processing XML data,"

WebIST‟09, Lisbon, Portugal, 2009, pp. 66-71.

[30] H. He, H. Wang, J. Yang, and P. Yu, “Compact reachability

labeling for graph-structured data,” in Proceedings of the

14th ACM international conference on Information and

knowledge management, Bremen, Germany, 2005, pp. 594-

601.

[31] T. Bray, J. Paoli, C. Sperbeg-McQueen, E. Maler, and F.

Yergeau, Extensible Markup Language (XML) 1.0 (Fourth

Edition), [Online] Available online:

http://www.w3.org/TR/REC-xml/, [Last accessed on:

25/05/2014].

[32] J. Yun and C. Chung, “Dynamic interval-based labelling

scheme for efficient XML query and update processing,”

Journal of Systems and Software, vol. 81, issue 1, 2008, pp.

56-70.

[33] J. Lu, T. Ling, C. Chan, and T. Chen, “From region encoding

to extended dewey: on efficient processing of XML twig

pattern matching,” in Proceedings of the 31st International

Conference on VLDB, Trondheim, Norway, 2005, pp. 193-

204.

[34] X. Wu, M. Lee, and W. Hsu, “A prime number labeling

scheme for dynamic ordered XML trees,” in Proceedings of

the 20th international conference on Data Engineering, 2004,

pp. 66-78.

[35] R. Goldman and J. Widom, “DataGuides: enabling query

formulation and optimaization in semistructured database,”

in Proceedings of the 23rd international conference on

VLDB, 1997, pp. 436-445.

[36] H. Jiang, H. Lu, W. Wang, and J. Yu, “XParent: an efficient

RDBMS-based XML database system,” International

conference on Data Engineering, CA, USA, 2002, p. 2.

[37] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura,

“XRel: a path-based approach to storage and retrieval of

XML documents using relational databases,” ACM/IT., vol.

1, issue 1, NY, USA, 2001, pp. 110-141.

[38] D. Florescu and D. Kossmann “A Performance Evaluation of

alternative Mapping Schemas for Storing XML Data in a

Relational Database,” TR:3680, May 1999, INRIA,

Rocquencourt, France, pp. 1-24.

[39] DBLP, The DBLP Computer Science Biblography, [Online]

Available at http://dblp.uni-trier.de/, [Last accessed on

24/05/2014].

[40] A. Schmidt, F. Waas, M. Kersten, D. Carey, I. Manolescu,

and R. Busse. “XMark: a benchmark for XML data

management,” International conference on Very Large Data

Bases, Hong Kong, China, 2002, pp. 974-985.

[41] PennProj, The Penn Treebank Project, [Online] Available

online at http://www.cis.upenn.edu/~treebank/, [Last

accessed on: 25/05/2014].

16

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

