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Abstract—XML (eXtensible Markup Language) update is 

problematic for many XML databases. The main issue tackled 

by the existing (and new) XML storages and indexing 

techniques is the cost reduction of updating the XML’s 

hierarchal structure inside these storages. PACD (an acronym 

for Parent-Ancestor/Child-Descendent), as bitmapped XML 

processing technique introduced earlier, is an attempt in this 

direction. The technique brings the cost of updating the XML 

structure to the data representation level by introducing the 

‘next’ and ‘previous’ axes as a mechanism to preserve the 

document order, and then using well-established matrix-based 

operations to manipulate the database transactions. This paper 

mainly provides a complexity analysis of the PACD update 

framework and presents a novel experimental evaluation 

method (in terms of comprehensiveness and completeness) for 

its update primitives. The outcomes of this evaluation have 

shown that the cost of eight update primitives (out of nine 

provided by PACD) locates under an acceptable range of a 

constant ‘c’, where ‘c’ is an extremely small number 

comparing to the number of nodes ‘n’ in the XML tree. Such 

good performance is lacked in the comparable techniques.  

Keywords-XML Databases; XML/RDBMS Mapping; XML 

Update; XML Indexing;  Complexity Analysis; Experimental 

Design. 

I.  INTRODUCTION 

Data stored in the extensible markup language (XML) 
containers (databases) is subject to update when 
circumstances change [1]. Unfortunately, handling XML 
updates is a common problem in the existing XML storages 
and optimization techniques. Relational approaches using 
node labeling techniques [2][3][4][5][6][7][8][9][10][11] 
[12][13] require a large number of renumbering operations in 
order to keep the node labels updated whenever a node is 
inserted, deleted or moved from one location to another in 
the XML tree. For the approaches that use path summaries to 
encode the XML hierarchical structure [14][15][16][17][18], 
an additional cost results from updating these summaries. In 
native XML approaches such as sequence based 
[19][20][21][22][23] and feature based techniques 
[24][25][26], the update problem is even worse. In the first 
case, the consequences of a single update operation (for 
example deleting a node) can affect thousands locations in 
the corresponding sequence depending on the node location 
in the XML tree. A similar problem occurs in the case of 
feature based techniques, which rely on encoding the 
relationship between the nodes and the different ePaths of 

the XML tree inside what is called feature-based matrices 
[24]. 

PACD  is XML processing technique introduced in [28] 
[29] that brings the cost of updating the XML hierarchal 
structure to the data representation level by encoding these 
structures into a set of structure-based matrices each of 
which encodes a specific XPath [27] axis, plus two more 
axes specifically introduced by PACD to preserve the 
document order. Thus, PACD architecture combines some 
matrix-based operations along with the bit-wise operations to 
reduce the cost of querying and updating the structure of 
underlying XML file. This paper extends our previous work 
[1] by providing a detailed complexity analysis of the PACD 
Updates Query Handler (UQH). Unlike many existing 
studies, this paper presents a comprehensive evaluation 
process, which provides 1) a full algorithmic listing of all 
XML update primitives so that they can be re-used, 2) a 
detailed cost-analytical procedure of the XML update 
primitives, and 3) a supportive comprehensive experimental 
procedure that considers several testable aspects of the XML 
databases. Such evaluation method could be adopted by the 
XML research and development community to evaluate 
XML database processing techniques. 

  The paper starts by revisiting the PACD‟s framework in 
Section II. Then it introduces the UQH framework in Section 
III, while Section IV puts forward assumptions to facilitate 
the discussion of complexity analysis in the subsequent 
sections. Sections V to VII provide a detailed discussion of 
three types of update primitives: the insertion, deletion and 
change primitives, respectively. The overall complexity 
analysis and a supportive experimental evaluation are given 
in Sections VIII and IX, respectively. Section X concludes 
the paper. 

 

II. BACKGROUND: PACD‟S XML PROCESSING MODEL 

PACD, introduced in [28][29], is a bitmap XML 
processing technique consisting of three main components: 
the Index Builder (IB; operations I.1-I.4), the Query 
Processor (QP) and the Update Query Handler (UQH). The 
IB (see Figure 1) shreds the XML hierarchal structure 
(derived by the XPath‟s thirteen axes and their extension; the 
Next and Previous axes [28]) into a set of binary relations 
each of which is physically stored as an n×n bitmap matrix. 
An entry in any matrix is „1‟ if there is  a corresponding 
relationship between the coupled nodes or „0‟ otherwise 
[30][25]. The IB operations I.2-I.4 are responsible to reduce 
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the size of storing the XML structure by applying three 
levels of compression: the matrix-transformation level, the 
matrix-coupling level and the sparse-matrix compression 
level. More details about the data compression mechanism in 
particular and the IB in general can be found in [28][29].  

On the other hand, the QP performs all operations related 
to the search-query execution. The full architecture of the QP 
was described in [29] but in brief, the process starts by 
analyzing the search-query statement to identify the affected 
nodes based on the twig structure. The process also identifies 
the query base matrices and draws an execution plan for the 
entire query, which eventually returns the results into a 
tabular-format (i.e., sub-matrices) and then converted to an 
XML data layout.  

The next section describes the PACD‟s third component, 
that is the UQH, the core subject discussed in this paper. 

III. THE UPDATE HANDLER 

The PACD‟s UQH is responsible for all update 
operations, which includes the translation of the update 
query, the identification of update primitive(s), and the 
primitive execution. 

Once the query is translated (e.g., from XQuery syntax to 
an SQL statement), the UQH starts identifying the node(s) 
that are affected by the update command/query. It navigates 
through the finite-state-machine (FSM) version of the update 

query in order to identify the affected node-set. Once the 
target node-set is known, the UQH determines and calls the 
appropriate update primitive (see Table I). PACD supports 
update primitives for single node insertion and deletion, twig 
insertion and deletion, and textual and structural contents 
changes.  

The update primitive acts on all PACD‟s components 
including the NodeSet container and the structure based 
matrices (i.e., childOf, descOf and nextOf). Each update 
primitive executes certain instructions over each component 
such as adding new columns and rows and changing the 
bitmapped entries within the matrices. The cost of the update 
query execution will be the lump sum of the costs of 
executing all derived update primitives over each PACD‟s 
component.  For example, an „insert‟ primitive will involve 
adding one or more rows and columns to the bitmapped 
matrices, as well as adding one or more entries to the 
NodeSet container. Thus, the cost of the „insert‟ operation 
becomes the cost of inserting the node information inside the 
NodeSet container plus the cost of inserting one row and 
column inside the childOf, descOf and nextOf matrices. 
More examples on using update primitives will be given later 
during the discussion of the update primitives. 

The above steps are summarized in the algorithm 
provided in Figure 2, whereas Table I lists out the update 
primitives that are currently supported by PACD‟s UQH. 

 
Figure 1. PACD Framework 
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INPUT: update-query 
OUTPUT: none 

Construct the FSM execution plan of the corresponding twig  

node-set = the returned node-set from the FSM execution 
Using the update-query syntax, determine the update-primitive(s) 

Call the update-primitive(s) with the obtained node-set: 

 Alter the NodeSet container; 
 Alter the childOf matrix; 

 Alter the descOf matrix; 

 Alter nextOf matrix; 
End; 

Figure 2. PACD Update Handler Algorithm 

TABLE I: PACD UPDATE HANDLER PRIMITIVES 

Insertion 

insertLeaf adds a leaf node 

insertNonLeaf adds an internal node  

insertTwig  adds a single-rooted, connected sub-tree  

Deletion 

deleteLeaf removes a leaf node 

deleteTwig 
removes a single-rooted, connected sub-

tree 

Updating 

changeName renames an element or attribute name 

changeValue 
edits the value (text) of an attribute 
(element) 

shiftNode moves a node from one place to another 

shiftTwig 
moves a single-rooted, connect sub-tree 

from one place to another 

IV. ASSUMPTIONS AND AN ANALYTICAL PROCEDURE 

This section lists some assumptions that are considered 
during the complexity and experimental results analysis. The 
analytical procedure of the experimental results is also 
described here. 

A. Assumptions During the Analysis 

During the analysis of the above XML update primitives, 
the cost of any update primitive counts the number of work-
units done by the underlying system in order to update every 
PACD‟s component. So, each of the following operation is 
counted as a single work-unit: 

 Operations on the NodeSet container: 

 Insert new record/row 

 Delete a record/row 

 Change one (or more) attributes/fields within the 

record/row  

 Operations on a matrix-based component (e.g., 

childOf): 

 Insert a complete row or column  

 Delete an entire row or column  

 Change an entry of a matrix (i.e., change the status 

from „0‟ to „1‟ or vice versa)  
As for illustration, inserting a leaf-node requires the 

insertion of a new record inside the NodeSet container (1 
unit), the addition of one row and column to the childOf, 
descOf and nextOf matrices (6 units), and may change at 
most one entry in the nextOf matrix (1 unit). So the leaf-node 
insertion process costs 8 work-units (or hits).  

In addition, the analyses provided in this paper were done 
based on the following assumptions: 

 When a row or column is inserted into a matrix, its 

entries are set to zero by default with no extra cost. 

 The cost of „search‟ operations (locating the records) 

inside the PACD storage components; for example, 

fetching the node ID among the NodeSet container, is 

set to zero assuming that a very efficient lookup 

algorithm is used. 

 The number of children at any arbitrary node in the 

XML tree is „‟, where  is a small number comparing 

to the number of nodes „n‟ for very large XML 

databases 

 The number of descendants at any arbitrary node in the 

XML tree can be estimated by multiplying the number 

of nodes „n‟ by a fraction „f‟, where 0f1. The value 

of „f‟ decreases exponentially as the context node goes 

from the root (where f=1) towards the leaf nodes 

(where f=0) [31]. 

 The given algorithms and their analyses are based on 

using the uncompressed PACD storage. Updating 

compressed PACD storage (which discussion is outside 

the scope of this paper) may involve additional steps 

and extra cost depending on the compression technique 

used. 
Generally speaking, the above assumptions were made in 

order to simplify the analyses provided in the subsequent 
sections (Section V, VI and VII). The same assumptions also 
applied during the experimental result discussion in Section 
IX.  

B. An Anlytical Procedure 

During the discussion of each update primitive in the 
following sections, the usage of the primitive (including the 
function prototype), its pseudo-code, the complexity 
discussion, and one or two examples will be provided in 
separate subsections. Furthermore, all examples are based on 
the XML tree illustrated in Figure 3. 

 
Figure 3. An XML Tree Example 

V. INSERTION PRIMITIVES 

This section discusses the three insertion primitives 
shown in Table I.  

A. Leaf Node Insertion 

1) Usage: 

Syntax: insertLeaf(node_info, parentID [,precID]) 

Description: Inserts a node at the bottom-most level of the tree under 
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the parentID node and next to precID node. Both the 

parentID and precID are identified by the UQH 

Argument(s):  node_info: all necessary information to fill the 

NodeSet record including the nodeID, tag/attribute 

name, node_type, and the value/textual content 

 parentID: the ID of the parent node where the new 

node to be inserted  

 precID: the ID of the preceding node. Must be 

specified in case of the order-preserving storage 

2) Algorithm: 

1 PROGRAM insertLeaf(node_info: nodeType, parentID: 
nodeIDType, precID: nodeIDType) 

2  Get the next nodeID; 
3  Insert the node information into NodeSet; 
4  *-- update the childOf matrix: 
5  Add a row and column to the ‘childOf’; 
6  Set: 
7   childOf[nodeID,parenID] = ‘1’,  
8   *--update the descOf matrix: 
9  Add a row and column to the ‘descOf’; 
10  Let: anceSet = {node(i), where descOf[parentID,i] 

= ‘1’}  parentID; 

11  For each i  anceSet: 
12   Set: descOf[nodeID,i] = ‘1’; 
13   *--update the nextOf matrix: 
14  Add a row and column to the ‘nextOf’; 
15  If precID  null: 
16   Let: temp = node(i), where nextOf[i,precID] = 

‘1’; 
17   Set: nextOf[nodeID,precID] = ‘1’; 
18   If temp  null: 
19    Set: nextOf[temp,precID] = ‘1’; 
20 PROGRAM_END. 
 

3) Complexity Analysis: 

Based on the assumption given above, inserting the 
node‟s information into the NodeSet container requires one 
hit (line 3), whereas updating the childOf matrix requires 
three hits: two to add a row and column (line 5) and one to 
set the child/parent relationship between the new node and 
the parentID (line 7). Similarly, updating the descOf matrix 
requires 2+h hits: two to add a row and column (line 9) and a 
maximum of „h‟ hits (where ‘h’ is the maximum height of the 
XML tree) to set the descendant/ancestor relationship 
between the new node and its ancestor list, which is 
calculated in Line 10 (see Lines 11-12). In terms of the 
nextOf matrix, besides the two hits that are required to insert 
a row and column to the matrix (line 14), the program makes 
two additional hits to update the previous/next relationship 
(lines 17 and 19). So the total work-units required to insert a 
leaf node in an XML tree of height „h‟ is 10+h. This is a very 
small number „c‟ comparing to the number of nodes „n‟; thus 
the complexity is of order O(c).  

4) Example: Using the database in Figure 3, insert the 

„year‟ information (e.g., 2003) to the book identified by the 

key „book/110‟, where the „year‟ information must precede 

the „author‟ information (result given in Figure 4). 
The cost breakdown is:  
NodeSet childOf descOf nextOf Total 

1 3 4 4 12 hits 

 

 
Figure 4. A Leaf Node Insertion Example 

B. Non-Leaf Node Insertion 

1) Usage: 

Syntax: insertNonLeaf(node_info, parentID [,precID]) 

Description: Inserts a node at any level of the tree except the lowest 
level. The parentID and the precID are identified by the 
UQH prior calling the primitive. At this stage, this 
primitive is only used to add additional level between a 
parent and the complete set of its children. Subdividing 
the parentID‟s children between the existing parent and 
the new node is left to further investigation.  

Argument(s):  node_info: all necessary information to fill the 
NodeSet record including the nodeID, tag/attribute 

name, node_type, and the value/textual content 

 parentID: the ID of the parent node where the new 
node to be inserted  

 precID: the ID of the preceding node. Must be 
specified in case of the order-preserving storage  

2) Algorithm: 

1 PROGRAM insertNonLeaf(node_info:nodeType, 
parentID:nodeIDType,precID: nodeIDType) 

2  Get the next nodeID; 
3  Insert the node information into NodeSet; 
4  *-- update the childOf matrix: 
5  Add a row and column to the ‘childOf’; 
6  Let: childSet = {node(i), where chilOf[i,parentID] 

= ‘1’}  
7  For each i  childSet: 
8   Set: chilOf[i,nodeID] = ‘1’; 
9  Set: childOf[nodeID,parentID] = ‘1’; 
10  *--update the descOf matrix: 
11  Add a row and column to the ‘descOf’; 
12  Let: anceSet = {node(i), where descOf[parentID,i] 

= ‘1’}  parentID; 
13  Let: descSet = {node(j), where descOf[j,parentID] 

= ‘1’}; 
14  For each i  anceSet: 
15   Set: descOf[nodeID,i] = ‘1’; 
16  For each j  descSet: 
17   Set: descOf[j,nodeID] = ‘1’; 
18  *--update the nextOf matrix: 
19  Add a row and column to the ‘nextOf’; 
20  If precID  null: 
21   Let: temp = {node(i), where nextOf[i,precID] = 

‘1’}; 
22   Set: nextOf[nodeID,precID] = ‘1’; 
23   If temp  null: 
24    Set: nextOf[temp,precID] = ‘1’; 
25 PROGRAM_END. 
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3) Complexity Analysis: 

This primitive also requires one hit to insert inside the 
NodeSet container (line 3). However, more work is required 
to update the childOf matrix because the children of the 
parental node „parentID‟ have to be assigned to the new 
node. So the number of hits required to update the childOf 

matrix is „1+‟, where „‟ is the number of children of the 
context node at an arbitrary level in the XML tree. 

To update the descOf matrix, the primitive has to assign 
the ancestors of the „parentID‟ to the new node „nodeID‟ 
(lines 14-15) and the descendants of the „parentID‟ as 
descendant from the new node (lines 16-17). The first 
process requires no more than „h‟ hits, while the cost of the 
second process may extend to „n‟ hits; but in reality it only 
requires a factor of „n‟ hits depending on the insertion level 
(see Section IV). Finally, the cost of updating the nextOf 
matrix is the same for updating the nextOf matrix in the 
previous primitive (lines 22 and 24). 

4) Example: Using the database in Figure 3, assign the 

current author of the book titled „Indexing XML‟ to be the 

first author of the book so that other authors can be added 

later. This requires adding a parent node called „au_det‟ for 

the „first‟ and „last‟ nodes under the original „author‟ node 

(result given in Figure 5). 
The cost breakdown is:  
NodeSet childOf descOf nextOf Total 

1 5 6 0 12 hits 

 

 
Figure 5. An Non-leaf Node Insertion Example 

C. Twig Insertion 

1) Usage: 

Syntax: insertTwig(twig_info, parentID [,precID]) 

Description: Inserts a sub-tree of „m‟ nodes under the parentID and 
after the precID. Both the parentID and the precID are 

determined by the UQH, and the twig is only inserted at 

bottom-most nodes  

Argument(s):  twig_info: all necessary information to fill the 

NodeSet record including the nodeID, tag/attribute 
names, node types, and the value/textual contents 

 parentID: the ID of the parent node where the new 

twig to be inserted  

 precID: the ID of the preceding node. Must be 

specified in case of the order-preserving storage  

2) Algorithm: 

The twig insertion can be modeled as inserting multiple-
connected nodes. In other words, inserting a twig of „m‟ 
nodes requires „m‟ times the cost of inserting a single leaf-

node and can be performed by the same algorithm in Section 
V(C) starting at the twig root node. 

3) Complexity Analysis: 

The cost of this primitive is „m‟ times the cost of 
inserting a single leaf-node, where „m‟ is the number of 
nodes inside the inserted twig. 

4) Example: Using the database in Figure 3, add second 

author information (i.e., including the „first‟ and „last‟ name) 

to the book titled „Indexing XML‟ (result given in Figure 6) 
The cost breakdown is:  

NodeSet childOf descOf nextOf Total 

3 9 14 8 34 hits 

 

 
Figure 6. A Twig Insertion Example 

D. Insertion Primitives Summary 

Table II summarizes the number of work-units required 
to conduct the insertion primitives.  

VI. DELETE PRIMITIVES 

PACD currently supports the „deleteLeaf‟ and 
„deleteTwig‟ primitives. These are discussed below.  

A. Leaf Node Deletion 

1) Usage: 

Syntax: deleteLeaf(nodeID) 

Description: Deletes a node from the lowest level of the tree labeled 

with nodeID that is returned by the UQH  

Argument(s):  nodeID: the unique node ID of the deleted node 

2) Algorithm: 

1 PROGRAM deleteLeaf(nodeID: nodeIDType) 
2  *-- update the childOf matrix: 
3  Locates the corresponding row and column of the 

nodeID inside the ‘childOf’; 
4  Remove the row and column from the ‘childOf’;  
5   *--update the descOf matrix: 
6  Locates the corresponding row and column of the 

nodeID inside the ‘descOf’; 
7  Remove the row and column from the ‘descOf’;  
8   *--update the nextOf matrix: 
9  Let:  
10   next = {node(i), where nextOf[i,nodeID] = ‘1’}; 
11   prev = {node(j), where nextOf[nodeID,j] = ‘1’}; 
12  Locates the corresponding row and column of the 

nodeID inside the ‘nextOf’; 
13  Remove the row and column from the ‘nextOf’;  
14  If next  null AND prev  null: 
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15   Set: nextOf[next,prev] = ‘1’; 
16  *--update the NodeSet container: 
17  Locate the corresponding record of the nodeID 

inside the ‘NodeSet’; 
18  Delete the nodeID; 
19 PROGRAM_END. 
 

3) Complexity Analysis: 

Deleting a leaf node is simple and straightforward. In the 
childOf and descOf matrices, after locating the row and 
column IDs of the target node, the update process simply 
removes that row and column. Thus, the process involves 
two work units for each matrix. Regarding the deletion from 
the nextOf matrix, a special consideration is required when 
the target node has previous (line 11) and next (line 10) 
siblings. In this case, an extra hit is required to assign the 
next node of the target node to be the next node of the 
previous node of the target node. Finally, to remove the node 
from the NodeSet container, the system performs one work 
unit after locating the record of the target node (line 15). So 
the „deleteLeaf‟ primitive does not do more than eight work 
units to remove a node from the PACD‟s storage. 

4) Example: Using the database in Figure 3, remove the 

author‟s last-name from the book identified by the key 

„book/110‟ (result given in Figure 7). 
The cost breakdown is: (Note: the node ID &10 will be 

recycled) 
childOf descOf nextOf NodeSet Total 

2 2 2 1 7 hits 

 

 
Figure 7. A Leaf Node Deletion Example 

B. Twig Deletion 

1) Usage: 

Syntax: deleteTwig(twigRootNodeID) 

Description: Deletes a connected sub-tree rooted at 

„twigNRootNodeID‟ from the XML tree. The 

twigRootNodeID is returned by the UQH process 

Argument(s):  twigRootNodeID: the node ID of twig‟s root node  

2) Algorithm: 

 
1 PROGRAM deleteTwig(twigRootNodeID: nodeIDType) 
2   *-- reconnect the next_of list of the nextOf 

matrix: 
3  Let:  
4   next = {node(i), where nextOf[i,twigRootNodeID] 

= ‘1’}; 
5   prev = {node(j), where nextOf[twigRootNodeID,j] 

= ‘1’}; 
6  If next  null AND prev  null: 
7   Set: nextOf[next,prev] = ‘1’; 

8  *--identify all the node inside the deleted twig: 
9  Let: descSet = {node(i), where descOf[i, 

twigRootNodeID] = ‘1’}  twigRootNodeID; 
10  *--remove row and columns from all matrices, and 

the node_info from the NodeSet : 
11  For each i  descSet: 
12   Locates the corresponding row and column of the 

nodeID inside the ‘childOf’; 
13   Remove the row and column from the ‘childOf’;  
14   Locates the corresponding row and column of the 

nodeID inside the ‘descOf’; 
15   Remove the row and column from the ‘descOf’;  
16   Locates the corresponding row and column of the 

nodeID inside the ‘nextOf’; 
17   Remove the row and column from the ‘nextOf’;  
18   Locate the corresponding record of the nodeID 

inside the ‘NodeSet’; 
19   Delete the nodeID; 
20 PROGRAM_END. 

3) Complexity Analysis: 

Deleting a twig of „m‟ nodes is very similar to deleting a 
leaf-node except that the cost is multiplied by „m‟. 
Furthermore, deleting a twig will involve only one 
reconnection process over the previous/next relationship. 
This process is performed to rearrange the previous/next 
relationship of the previous and the next nodes of the root 
node of the target twig (lines 3-7). So the maximum cost of 

the „deleteTwig‟ primitive is „1+[m(2+2+2+1)]‟ work units, 
where „m‟ is the number of nodes inside the deleted twig. 

4) Example: Using the database in Figure 3, remove the 

complete author‟s information from the book identified by 

the key „book/110‟ (result given in Figure 8). Note: this will 

remove the nodes „&8‟ and „&9‟. 

The cost breakdown is:  
childOf descOf nextOf NodeSet Total 

4 4 4 2 14 hits 

 

 
Figure 8. A Twig Deletion Example 

C. Deletion Primitives Summary 

Table III summarizes the number of work-units required 
to conduct the deletion primitives.  

VII. CHANGE PRIMITIVES 

Table I introduced four change primitives that can be 
used to rename node description (i.e., element and attribute 
names), change the value of a node, and move a node or a 
twig from one place to another inside the XML tree.  
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A. Node Description Change 

1) Usage: 

Syntax: changeName(nodeID|oldName,newName) 

Description: Renames a node (identified by the nodeID) or a set of 
nodes (that have the same name identified by oldName) 

to the new name newName 

Argument(s):  nodeID: the node ID of a particular node 

 oldName: the element or attribute name of a set of 

nodes 

 newName: the new name to be assigned to the 

changed nodes 

2) Algorithm: 

1 *-----Case1: changing particular node’s name: 
2 PROGRAM changeName(nodeID: nodeIDType, newName: 

string) 
3  *-- update the NodeSet container: 
4  Locates the corresponding record of the nodeID in 

the ‘NodeSet’; 
5  Replace the ‘name’ attribute by the ‘newName’;  
6 PROGRAM_END; 
7 
8 *-----Case2: changing a set of  nodes’ name: 
9 PROGRAM changeName(oldName: string, newName: string) 
10  *-- update the NodeSet container: 
11  Let: updateSet = {node(i), where NodeSet.Name = 

oldName}; 
12  For each node  updateSet: 
13   Replace the ‘name’ attribute by the ‘newName’;  
14 PROGRAM_END; 

3) Complexity Analysis: 

PACD separates the XML textual content representation 
from the structural content representation and manage them 
in a different storage component. The former (which 
includes the node ID, tag/attribute name, type and value) are 
arranged in the NodeSet container that stores the node 
information in a separate record. This arrangement makes it 
easier for the textual-based change operations such as the 
„changeName‟ to alter node‟s record regardless the 
complexity of the XML‟s hierarchal structure. So, to change 
the name of a particular node, it will be sufficient to allocate 
that node in the NodeSet container and change the „Name‟ 
attribute (lines 4-5). In the case of changing multiple node 
names such as changing an attribute or element name, the 
whole nodes labelled with that name class have to be 
changed. So, the „changeName‟ primitive initially identifies 
all the nodes that share the same name (line 11) and then 
alters the „Name‟ attribute of all identified nodes (lines 12-
13). The complexity of this process depends on the 
distribution of the tag/attribute name in the XML tree, which 
might be estimated or obtained from the XML schema. 

4) Example1: Using the database in Figure 3, change the 

name of the node „thesis‟ to be „phdthesis‟. 
This query changes the tag name of the node &11 from 

„thesis‟ to „phdthesis‟ with the cost of one work-unit. 

B. Node Value Change 

1) Usage: 

Syntax: changeValue(nodeID|oldName,newValue) 

Description: change the textual contents of a node (identified by the 
nodeID) or a set of nodes (that have the same name 

identified by oldName) to the new value newValue 

Argument(s):  nodeID: the node ID of a particular node 

 oldName: the element or attribute name of a set of 

nodes 

 newValue: the new textual content to be assigned to 

the nodes 

2) Algorithm: 

The algorithm of this primitive is identical to the one in 
Section VII-A(2). 

3) Complexity Analysis: 

The cost of this primitive is similar to the „changeName‟ 
primitive, see Section VII-A(3). 

4) Example: Using the database shown in Figure 3, 

change the publication year for the book labelled with 

„Book/101‟ to be „2000‟ instead of „2001‟. 

This query changes the value of the node &2 from „2001‟ 
to „2000‟ with the cost of one work-unit. 

5) Example: Using the database in Figure 3, change the 

„title‟ of all publications to the uppercase. 

In this query, the „oldName‟ parameter is „title‟ and the 
„newValue‟ parameter is a function that converts its 
argument to the uppercase. The query will perform three 
work units in total. 

C. Single Node Shifting 

In the context of XML tree, single node shifting is only 
meaningful when the node is a leaf node. This can be used to 
transfer information from one block to another, for example 
to swap the first and second books‟ ID as in Figure 3. The 
NodeSet information is not affected by this primitive. 

1) Usage: 

Syntax: shiftNode(nodeID,newParentID[,leftID]) 

Description: Moves the node labeled with nodeID to under the node 
newParentID. If the exact location is required, the 

preceding node at the new location (i.e., ‘leftID’) must 

be specified  

Argument(s):  nodeID: the node to be moved 

 newParentID: the parent node at the new location 

 leftID: the preceding node at the new location 

2) Algorithm: 

1 PROGRAM shiftNode(nodeID: nodeIDType, newParentID: 
nodeIDType, leftID: nodeIDType) 

2  *-- update the childOf matrix: 
3  Let: oldParentID = {node(i), where 

childOf[nodeID,i] = ‘1’}; 
4  Set: 
5   childOf[nodeID,newParentID] = ‘1’; 
6   childOf[nodeID,oldParentID] = ‘0’; 
7  *--update the descOf matrix: 
8  Let:  
9   oldAnceSet = {node(i), where descOf[nodeID,i] 

= ‘1’}; 
10   newAnceSet = {node(j), where 

descOf[newParentID,j] = ‘1’}  newParentID; 
11  For each node i  newAnceSet: 
12   Set: descOf[nodeID,i] = ‘1’; 
13  For each node i  oldAnceSet: 
14   Set: descOf[nodeID,i] = ‘0’; 
15  *--update the nextOf matrix: 
16  Let:  
17   next_of_nodeID = {node(i), where 
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nextOf[i,nodeID] = ‘1’}; 
18   prev_of_nodeID = {node(j), where 

nextOf[nodeID,j] = ‘1’}; 
19   next_of_leftID = {node(i), where 

nextOf[i,leftID] = ‘1’}; 
20   prev_of_leftID = {node(j), where 

nextOf[leftID,j] = ‘1’}; 
21  Set (if any combination is not null):  
22   nextOf[next_of_nodeID,prev_of_nodeID] = ‘1’; 
23   nextOf[nodeID,prev_of_nodeID] = ‘0’; 
24   nextOf[nodeID,leftID] = ‘1’; 
25   nextOf[next_of_leftID,nodeID] = ‘1’; 
26   nextOf[leftID,prev_of_leftID] = ‘0’; 
27   nextOf[next_of_leftID,leftID] = ‘0’; 
28 PROGRAM_END. 

3) Complexity Analysis: 

Moving a leaf node from one place to another releases 
the child/parent relationship between the node and its 
original parent and creates a new child/parent relationship 
between the node and the new parent. This requires two hits 
(lines 5 and 6). Similarly, in the descOf matrix, the shifting 
process releases the descendant/ancestor relationship 
between the node and its original ancestor list, and creates a 
new set of descendant/ancestor relationships between the 
node and the ancestors of the new parent. This requires no 

more than „2h‟ hits, where „h‟ is the maximum height of the 
XML tree (lines 11-14).  

Updating the previous/next relationship for the 
„shiftNode‟ is a bit complicated but it requires no more than 
six hits to release the old previous/next relationships and to 
set up the new ones (lines 22-27). 

4) Example: Using the database in Figure 3, move the 

publication year of book „book/101‟ to be the publication 

year for the book „Book/110‟ (see Figure 9). 

The cost breakdown is:  
childOf descOf nextOf Total 

2 4 4 10 hits 

 

 
Figure 9. A Leaf Node Shifting Example 

D. Twig Shifting 

Twig shifting operations are useful when a sub-tree is 
moved from one parent to another without deleting the sub-
tree and creating it again under the new parent.   

1) Usage: 

Syntax: shiftTwig(twigRootID,newParentID[,leftID]) 

Description: Moves a sub-tree (twig) rooted at the twigRootID to be 

a sub-tree under the node newParentID. If the exact 
location is required, the preceding node at the new 

location (i.e., leftID’) must be specified  

Argument(s):  twigRootID: the root of the twig to be moved 

 newParentID: the parent node at the new location 

 leftID: the preceding node of twig‟s root node at the 
new location 

2) Algorithm: 

1 PROGRAM shiftTwig(twigRootID: nodeIDType, 
newParentID: nodeIDType, leftID: nodeIDType) 

2  *-- update the childOf matrix: 
3  Let: oldParentID = {node(i), where 

childOf[twigRootID,i] = ‘1’}; 
4  Set: 
5   childOf[twigRootID,newParentID] = ‘1’; 
6   childOf[twigRootID,oldParentID] = ‘0’; 
7  *--update the descOf matrix: 
8  Let:  
9   twigNodeSet = {node(1..m), where node(i)  

twig}; 
10   oldAnceSet = {node(i), where 

descOf[twigRootID,i] = ‘1’}; 
11   newAnceSet = {node(j), where 

descOf[newParentID,j] = ‘1’}  newParentID; 

12  For each node i  newAnceSet: 

13   For each node j  twigNodeSet: 
14    Set: descOf[j,i] = ‘1’; 
15  For each node i  oldAnceSet: 

16   For each node j  twigNodeSet: 
17    Set: descOf[j,i] = ‘0’; 
18  *--update the nextOf matrix: 
19  Let:  
20   next_of_ twigRootID = {node(i), where 

nextOf[i, twigRootID] = ‘1’}; 
21   prev_of_ twigRootID = {node(j), where 

nextOf[twigRootID,j] = ‘1’}; 
22   next_of_leftID = {node(i), where 

nextOf[i,leftID] = ‘1’}; 
23   prev_of_leftID = {node(j), where 

nextOf[leftID,j] = ‘1’}; 
24  Set (if any combination is not null):  
25   nextOf[next_of_twigRootID,prev_of_twigRootID] 

= ‘1’; 
26   nextOf[twigRootID,prev_of_twigRootID] = ‘0’; 
27   nextOf[twigRootID,leftID] = ‘1’; 
28   nextOf[next_of_leftID, twigRootID] = ‘1’; 
29   nextOf[leftID,prev_of_leftID] = ‘0’; 
30   nextOf[next_of_leftID,leftID] = ‘0’; 
31 PROGRAM_END. 

3) Complexity Analysis: 

Similar to the „nodeShift‟ primitive, the „twigShift‟ 
primitive makes two amendments to the structure of the 
childOf matrix: one to release the child/parent relationship 
between the twig‟s old parent and its root, and another to set 
up the child/parent relationship between the twig‟s new 
parent and its root (lines 5-6). When updating the descOf 
matrix, the cost is multiplied by „m‟ during the „twigShift‟ 
operation because the primitive has to deal with „m‟ nodes 
rather than a single node as in „nodeShift‟ primitive (lines 
12-17). The cost of updating the nextOf matrix is same for 
both the „nodeShift‟ and „twigShift‟ primitives (lines 24-30).   
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4) Example: Using the database in Figure 3, move the 

author information of book „book/110‟ to be the author for 

the book „Book/101‟ (see Figure 10). 

The cost breakdown is:  
childOf descOf nextOf Total 

2 12 2 16 hits 

 

 
Figure 10. A Twig Shift Example 

 

E. Change Primitives Summary 

Table IV summarizes the number of work-units required 
to conduct each change primitives.  

VIII. OVERALL COMPLEXITY DISCUSSION 

The analysis provided in Sections V, VI and VII shows 
that the cost of all update-primitives over the PACD‟s 
uncompressed data representation locates in acceptable limits 
in general. Of the update primitives discussed, the highest 
update complexity is only a fraction of the number of nodes 
(i.e., „n‟) and this only happens during the rarely-used 
operation „insertNonLeaf‟. The cost of other update 
operations ranges between a very small constant „c‟ and 

„mc‟ in the case of manipulating a twig of size „m‟ nodes.  
 From the technical point of view, the bitmapped XML 

structure (see Section II) and the introduction of the 
previous/next axes has played a major role in such cost 
reduction. Unlike node-labeling based techniques 
[32][33][34][8][12][13], the use of the nextOf matrix (to 
encode the document order) has narrowed the spread of label 

TABLE II: COST SUMMARY OF THE INSERTION PRIMITIVES  

Operation 
Growth in  # of Work-Units (Hits) 

NodeSet Matrix NodeSet childOf descOf nextOf 
Max.  

Complexity 

insertLeaf 1 rec. more 
1 row more 

1 col more 
1 2+1 2+h 2+2 O(c) 

insertNonLeaf 1 rec. more 
1 row more 

1 col more 
1 2+ 2+fn 2+2 O(fn) 

insertTwig  

(m nodes) 
m rec. more 

m row more 

m col more 
m m.(2+1) m.(2+h) m.(2+2) O(m.c) 

n= total number of nodes in the XML tree 

h= the maximum height of the XML tree (# of levels) 

= the maximum breadth-degree (i.e., number of children) of any XML node 

f= a number between 0 and 1, where „fn‟ is the number of descendants at an arbitrary node   

c= is very small number comparing to „n‟ such that, for large XML databases,       
 

 
   

TABLE III: COST SUMMARY OF THE DELETION PRIMITIVES  

Operation 
Growth in  # of Work-Units (Hits) 

NodeSet Matrix NodeSet childOf descOf nextOf 
Max.  

Complexity 

deleteLeaf 1 rec. less 
1 row less 

1 col less 
1 2 2 2+1 O(c) 

deleteTwig  

(m nodes) 
m rec. less 

m rows less 

m cols less 
m m2 m2 m(2+1) O(m.c) 

n= total number of nodes in the XML tree 

c= is very small number comparing to „n‟ such that , for large XML databases,       
 

 
   

TABLE IV: COST SUMMERY OF THE CHANGE PRIMITIVES 

Operation 
Growth in  # of Work-Units (Hits) 

NodeSet Matrix NodeSet childOf descOf nextOf Max. Complexity 

chnageName none none 1 or k 0 0 0 O(k) 

changeValue none none 1 or k 0 0 0 O(k) 

nodeShift none none 0 2 2h 6 O(c+2.h) 

twigShift 

(m nodes) 
none none 0 m2 m2h 6 O(c+m2[h+1]) 

n= total number of nodes in the XML tree 

k= the number of nodes per tag/attribute name (usually much smaller than „n‟) 

h= the height of the XML tree (# of levels) 

c= is very small number comparing to „n‟ such that , for large XML databases,       
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changes to consider only the adjacent nodes of the targeted 
node. Also encoding the basic XML structures (i.e., the 
child/parent and descendant/ancestor relationships) using the 
bitmapped node-pairs (i.e., the childOf and descOf matrices) 
has reduced the high cost and complexity that result from 
using: (1) path-summaries [35][36][37][16][17][18], and (2) 
sequences [20][19][22] to encode such structures. The 
analysis has shown that the number of changes in the childOf 
structure is bounded by a small constant „c‟ (where „c‟ is a 
very small number comparing to „n‟, the total number of 
nodes in the XML tree) in most cases except the 

„insertNonLeaf‟ primitive, which requires „‟ number of hits 
depending on the node‟s breadth degree. On the other hand, 
the same primitive may perform up to „n‟ hits over the 
descOf matrix, however in real situations that number is 
fractioned by small number „f‟, which ranges between „0‟ 

and „1‟ (usually 0  f  ½ for real, well designed XML 
databases). 

Another source of cost reduction in the PACD‟s update 
transactions is the separation between the textual content 
representation and the XML hierarchal structure 
representation. The content-based primitives only affect the 
NodeSet container while the structure-based update 
primitives affect the bitmapped matrices. This is not valid in 
the case of path-summary and sequence-based techniques, 
where the underlying path-summary or sequence has to be 
changed. In general, the number of hits over the NodeSet 
container is limited by the number of targeted nodes except 
when amending a tag/attribute name or a node value for a set 
of nodes that share the same tag/attribute name. In this case, 
the cost is limited by the number of nodes that share the 
same tag/attribute name, which is also considered small 
comparing to the entire XML tree. 

IX. A COMPARATIVE STUDY 

To evaluate and support the analysis provided above, this 
section presents an experimental study conducted to compare 
the PACD‟s performance (in terms of the update handling) 
against two representative mapping techniques. The section 
initially provides the experiment setup, including the list of 
the used update queries, the structure of the compared 
techniques, and the underlying test databases. Then it 
presents the experimental results and their discussion for 
each query in a separate section counting the number of 
work-units done by the query over the test databases. Finally, 
the section lists out the main finding from the experiment.  

A. The Experiment Setup 

A comparative experiment between the performance 
PACD technique and two representative XML techniques 
from the literature is conducted to support the above 
complexity analyses. The experiment executes 6 update 
queries –as a representation of the above update primitives- 
translated over 3 XML databases for the 3 selected XML 
techniques. The 6 update queries are listed in Table V while 
the characteristics of the 3 XML databases are given in Table 
VI. Table VII shows the XML/RDBMS mapping schema of 
the three compared techniques, PACD, XParent [36] and 

Edge [38], while other specifications of these techniques can 
be found in [29], [36] and [38], respectively. 

The experiment (see the result summary in Table VIII) 
counts the number of changes (hits) done over the technique 
data storage (2

nd
 column of Table VIII), and lists them per 

query ID in separate columns over each XML database. The 
number of hits, over all components, is summed up in the 
last 3 rows of Table VIII. 

Finally, the experiment was conducted using a stand-
alone Intel Pentium-IV machine with 3.6GHz dual processor 
and 1GB of RAM. The machine was operated by MS 
Windows XP SP3, and the translation of all XML queries to 
the corresponding RDBMS queries was executed using MS 
FoxPro database engine. Furthermore, data indices were  
used whenever applicable over the three techniques to 
leverage their performance with the power of RDBMS. Such 
HW/SW setup was counted to have no influence on the 
generated results.    

TABLE V. THE EXPERIMENT‟S UPDATE QUERIES 

Query ID Query Description 

U1 Insert an Atomic Value, i.e., leave node 

U2 Insert a Non-atomic Value, i.e., non-leave or internal 
node 

U3 Delete an Atomic Value , i.e., leave node 

U4 Delete a Non-atomic Value , i.e., non-leave or internal 
node 

U5 Change an Atomic Value, i.e., the textual content of a 
node 

U6 Change a Non-atomic Value, i.e., tag-name 

TABLE VI. FEATURES OF THE USED XML DATABASES 

 DBLP [39] XMark [40] Treebank [41] 

Size (#of nodes)  2,439,294 2,437,669 2,437,667 

Depth(#of levels) 6 10 36 

Min Breadth† 2 2 2 

Max Breadth 222,381 34,041 56,385 

Avg Breadth† 11 6 3 

#of Elements 2,176,587 1,927,185 2,437,666 

#of Attributes 262,707 510,484 1 

TABLE VII. THE EXPERIMENTAL COMPARABLE XML TECHNIQUES 

Technique Components (XML/RDBMS Mapping Schema) 

PACD 

XMLNodes(nodeID, type, tagID) 

XMLSym(tagID, desc) 

XMLValues(nodeID, value) 
nextOf(nextID, prevID) 

childOf(childID, parented) 

descOf(descID, anceID) 
* childOF+descOf= OIMatrix(Source, Target, relType) 

Edge Edge(source, target, ordinal, label, flag, value) 

XParent 

labelPath(pathID, length ,PathDesc) 

element(pathID, ordinal, nodeID) 

data(pathID, ordinal, nodeID, value) 

dataPath(nodeID, parented) 

ancestors(nodeID, anceID, level) 
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B. Result Discussion 

This section discusses the experimental results. Each 
subsection discusses the results of a particular XML update 
query including the syntax of the executed query, a graphical 
representation of the results, and a brief analysis of each 
technique performance. The final remarks about these 
analyses are given in Section IX.C.  

1) Inserting an Atomic Value 
The three queries in Figure 11 insert a new leaf-node at 

levels 3, 5 and 10 of the DBLP, XMark and TreeBank 
databases, respectively. The queries were designed to act at a 
distance of 30% from the root-node. 

The graph shows that PACD required six, seven and 
thirteen amendments to the underlying relational schema in 

order to execute this query. The number of amendments is 
mainly controlled by the level number where the insertion 
was applied. For example, the 6 operations required by 
PACD over DBLP are distributed as follows: 1 insertion to 
the „XMLNodes‟ table and another insertion to the 
„XMLValues‟ table because the node contains a textual 
value. Three operations were also required to update the 
„OIMatrix‟ table while the last operation was required to link 
the new node to its next node at the „nextOf‟ table. As 
discussed earlier, PACD requires at most two operations to 
update the „nextOf‟ table for any leaf-node insertion, and at 
most „h‟ to update the „OIMatrix‟ table for the same process, 
where „h‟ is the maximum number of levels in the XML tree. 

Query: U1_DBLP 

Insert a new author called “New Author” of the inproceedings publication identified by the key 

“conf/ecai/BeeringerAHMW94”. The new author must be the first in the author list of that publication. 

Query: U1_XMark 

Insert a new location called “New Location” for the item identified by “item38683” from South America. 

Query: U1_TreeBank 

Insert a new „CC‟ element (textual-value is “New CC”) under the „NP‟ element which has a child called „CC‟ that stores 

“IQXQwyLNRrdOEoHUpfWNbB==” and the existing „CC‟ element can be reached by the path 

„/FILE/EMPTY/S/S/VP/NP/VP/PP/NP/CC‟. The new „CC‟ element must precede the existing „CC‟ element. 

 
 

Figure 11. Performance of the "Insert an Atomic Value" Query 

 

Query: U2_DBLP 

Insert a new root element called “nRoot” to the DBLP100 database. 

Query: U2_XMark 

Insert a new root element called “nRoot” to the XMark100 database. 

Query: U2_TreeBank 

Insert a new root element called “nRoot” to the TREE100 database. 

 
 

Figure 12. Performance of "Insert a Non-Atomic Value" Query 
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Compared to other techniques, PACD is always better 
than XParent because the later required one more insertion to 
the „data‟ table and more change operations to keep the 
document order updated at the „ordinal‟ attributes of the 
„elem‟ and „data‟ tables. On the other hand, Edge 
performance is either same as PACD or better. This 
superiority is determined by the fact that Edge encodes are 
far less of XML structure, which in turn affects its query 
performance. In summary, when linked with the queries-
range coverage, PACD appears to have the best update 
performance for this type of query among the three 
techniques. 

2) Inserting Non-Atomic Value 
These queries (Figure 12) insert virtual root-nodes to the 

three XML databases, respectively. The virtual new root 

insertion is used here for three reasons. Firstly, the operation 
was chosen to represent the process of inserting non-leaf 
nodes, which may occur at any level in the XML tree. 
Secondly, inserting at the top most level can give a logical 
comparison between the number of operations required by 
the operation rather than inserting at lower locations in 
different XML databases. Finally, it will be easier to observe 
the XML updater behavior and judge its performance with 
relation to the database size and other XML features. 

 For this particular query, PACD required „2+n‟ 
amendments to the underlying relational schema, where „n‟ 
is the number of nodes in the XML tree. The „n‟ operations 
were required to insert the parent/child and 
descendant/ancestor relationships of the new node, whereas 
the other two operations were used to insert the 

Query: U3_DBLP 

Delete the author named “Antje Beeringer” from the inproceedings record that is identified by the key “conf/ecai/BeeringerAHMW94”. 

Query: U3_XMark 

Delete the location for the item identified by “item38683” from South America. The deleted element is storing the content “United 

States”. 

Query: U3_TreeBank 

Delete the „CC‟ element (textual-value is “IQXQwyLNRrdOEoHUpfWNbB==”) which can be reached by the path 

„/FILE/EMPTY/S/S/VP/NP/VP/PP/NP/CC‟. 

 
 

Figure 13. Performance of "Delete an Atomic Value” Query 

 

Query: U4_DBLP 

Delete the entire record of an article labeled with the KEY “tr/gte/TM-0332-11-90-165”. 

Query: U4_XMark 

Delete the entire record of an item labelled with the ID “item7” from Africa. 

Query: U4_TreeBank 

Delete the entire record of the element „PP‟ that is reachable by the path „/FILE/EMPTY/S/VP/S/VP/NP/VP/NP/PP‟ and its child 
element „TO‟ has the value “6fc25UxSwWg9Pz+yyR6wi8==”. 

 
 

Figure 14. Performance of “Delete a Non-Atomic Value" Query 
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corresponding record in the „XMLNodes‟ and „XMLSym‟ 
tables because the new node was assumed to have distinct 
tag name from the existing tag/attribute list. 

Due to its restricted XML mapping algorithm, Edge had 
only one amendment to execute this update operation. This 
amendment was required to insert the new node‟s record into 
the underlying mapping schema without affecting the 
„ordinal‟ attribute because the root node logically has no 
siblings. XParent workload on the other hand was slightly 
higher than PACD. XParent required extra “s” operations to 
update the „labelPath‟ table where “s” is the number of 
records in that table, which stores the corresponding XML 
schema summary. In general, XParent‟s number of 
operations exceeds PACD ones by the number of the records 

affected inside the underlying XPath summary, and also the 
relative position of the inserted node amongst its siblings.  

3) Delete an Atomic Value 
These queries (Figure 13) delete a single leaf node from 

each XML database. The deleted nodes were located at 
levels 3, 5 and 10 of the DBLP, XMark and TreeBank 
databases, respectively; and they were 30% away from the 
root node each database. In addition, the deleted nodes were 
chosen to have at least one sibling node of the same tag-
name so that the impact of the deletion process on the 
document order can be calculated. 

PACD performed „2+p+2‟ amendments to the underlying 
mapping schema of all XML database types where „p‟ is the 
level number of the node deleted. The first 2 operations were 
required to remove the corresponding records from the 

Query: U5_DBLP 

Change the book title identified by the key “phd/Mumick91” from “Query Optimization in Deductive and Relational Databases” to be 
“Query Optimization in Deductive and Relational Databases: Modified”. 

Query: U5_XMark 

Change the street name of a person‟s address by the key “person0” from “85 Geniet St” to be “85 Geniet St: Modified”. 

Query: U5_TreeBank 

Change the value stored in „IN‟ element which is reachable by the path 

“/FILE/S/VP/SBAR/S/NP/SBAR/S/VP/S/VP/VP/NP/PP/NP/PP/NP/VP/PP/IN” from “CrtsNRQX7cNqOsWbpvPMgO==” to 
“CrtsNRQX7cNqOsWbpvPMgO==:Modified”. 

 
 

Figure 15. Performance of "Edit an Atomic Value" Query 
 

Query: U6_DBLP 

Change the description of the element/attribute name „key‟ records to „ID_NUM‟. 

Query: U6_XMark 

Change the description of the element/attribute name „id‟ records to „ID_NUM‟. 

Query: U6_TreeBank 

Change the description of the element/attribute name „PP‟ records to „PPPP‟. 

 
 

Figure 16. Performance of "Edit a Non-Atomic Value" Query 
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„XMLNodes‟ and „XMLValues‟, respectively, and last 2 
operations were required to update the „nextOf‟ table while 
the „p‟ operations were conducted on the „OIMatrix‟ table to 
remove the node‟s corresponding records. In general, the 
number of operations for this type of update is determined by 
the level number of the target node in the XML tree with a 
maximum cost of „2+h+2‟ where „h‟ is the maximum 
number of levels in the XML tree. 

The performance of Edge and XParent in update was 
close to PACD‟s. In XParent, the update handler requires 

„2rs‟ more operations (where „rs‟ is the number of the right-
hand side siblings of the node) to update the document-order 
inside the „elem‟ and „data‟ tables, while Edge‟s processor 

required „1+2rs‟ operations to remove the node from the list 
and amend the siblings‟ ordinal attribute.  

In summary, PACD appears more efficient for this type 
of queries due the document order preserving mechanism. 

4) Delete a Non-Atomic Value 
The action of these queries (Figure 14) was conducted at 

levels two, five and ten of the DBLP, XMark and TreeBank 
databases, respectively. These queries were included to test 
the performance of deleting a sub-tree from the master XML 
tree. The number of nodes in the target sub-trees was 
selected to be very small compared to the master XML tree 
so that identifying the number of records affected became 
easy. The DBLP‟s sub-tree consisted of 13 nodes distributed 
over 2 levels, and the XMark‟s sub-tree had 48 nodes 
distributed over 7 levels while the number of nodes and 
levels in the TreeBank‟s sub-tree were 8 and 4, respectively. 
All sub-tree nodes were combinations of atomic and non-
atomic nodes. 

PACD required 13 and 12 operations to remove the 
DBLP‟s sub-tree from the nodes and values lists, 
respectively, 26 operations to update the parent/child and 
descendant/ancestor relationships, and 11 operations to 
update the „nextOf‟ container. These figures were 
determined by three factors. Firstly, the sub-tree size 

determined the number of „delete‟ operations from both the 
„XMLNodes‟ and „XMLValues‟ tables. Secondly, the 
breadth and the depth as well as the level of the sub-tree‟s 
root node all controlled the number of update operations of 
the „OIMatrix‟ table. Finally, the number of update 
operations at the „nextOf‟ table was mainly controlled by the 
breadth of the sub-tree including, at most, 2 operations to re-
link the left and right hand side nodes for the previous/next 
relationship. In general, PACD generates a manageable 
number of changes for this type of queries especially when 
the update happens at the low levels of the XML tree. 

On the other hand, Edge and XParent performed 1270 
times more operations compared to PACD for the DBLP‟s 
query, and the three techniques were close to each other for 
the XMark‟s query while PACD and XParent were 22 times 
higher than Edge for the TreeBank‟s query. These figures 
support the above conclusion that the number of operations 
is determined by the size of the deleted sub-tree and its 
location in the master XML tree. In general, PACD‟s 
document-order encoding mechanism had a clear impact in 
reducing the number of changes that are required to conduct 
sub-tree deletion operations.  

5) Edit an Atomic Value 
This is the cheapest update query (Figure 15) that can be 

ever conducted by any technique tested. All techniques over 
all database types have made exactly one amendment to their 
relational schema storage. In this case, PACD needs to 
update the „XMLValues‟ table, Edge also updates the 
corresponding record in its orphan table while XParent needs 
to change the record inside the „data‟ table. 

6) Edit a Non-Atomic Value 
These queries (Figure 16) can be used to alter the tags 

and attributes names without affecting the document‟s 
hierarchal structure. The experiment has chosen to alter the 
name of some elements/attributes, which were widely 
repeated in each XML database to show the importance of 
minimizing the cost of such update queries. The DBLP‟s 

TABLE VIII. THE EXPERIMENTAL RESULTS 
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query was designed to change all „KEY‟ attributes, and the 
XMark‟s query was designed to change all „ID‟ attributes, 
while the TreeBank‟s query was deigned to change the name 
of the recursive element „PP‟. The „KEY‟, „ID‟ and „PP‟ 
tokens were repeated 213¸634, 80¸316 and 136¸545 times, 
respectively inside the corresponding XML databases. 

In general, the statistics show that the number of 
amendments conducted by PACD was always 1 because 
PACD stores all database tokens only once. On the other 
hand, the number of amendments in Edge‟s table was 
determined by the number of elements/attributes that hold 
the same name, while the number of amendments in XParent 
environment was determined by the number of XPath 
expressions that contain the element/attribute name. So, for 
Edge, the number of changes was 213¸634, 80¸316 and 
136¸545 over the DBLP, XMark and TreeBank databases 
respectively, while XParent performed 8, 9 and 248¸480 
changes over the same set of XML databases. The high 
number of changes produced by XParent over the TreeBank 
database was due the recursive properties of the element „PP‟ 
inside the XML schema. 

C. Main Findings 

The experiment discussed here has evaluated the 
PACD‟s update primitives by executing six XML update 
queries over three different XML databases. The evaluation 
process examined the performance of PACD over each XML 
database and compared it with Edge‟s and XParent‟s 
performance over the same database set. 

Comparing to other techniques, and taking into account 
the queries-range coverage, PACD appeared having the best 
performance for most of the queries in all situations. The 
experiment has also shown that the performance of XParent 
and Edge was delayed by the cost of the document order 
persevering mechanism. PACD eliminates this cost by 
encoding the previous/next relationship that requires at most 
2 changes for any type of query/operation that concerns 
about document-order. 

X. CONCLUSION 

This paper has discussed the PACD‟s updating 
framework, which is managed by a set of low cost update 
primitives. Once an update query is issued, the Update Query 
Handler (UQH) process identifies the target node-set and the 
necessary update primitive(s). The translation of an update 
query may generate one or more update primitives each of 
which may alter one or more XML nodes. The UQH 
currently can generate nine update primitives divided into 
three categories; the insert, delete, and change primitives. 

This paper has provided a comprehensive complexity 
analysis of the PACD‟s update primitives supported by 
illustrative examples for each update primitive. The paper 
also presented an experimental evaluation process to support 
the analysis and generalize conclusions based on the 
generated results.  

Both analysis and experimental results provided in this 
paper have shown that the computation cost of the XML 
updates can be improved using the PACD‟s update 
primitives, which specifically act on its data-storage. The 

summary of the complexity discussion is given in Tables II, 
III and IV, while the full experimental result summary is 
depicted in Table VIII. 

Besides, the paper has supplied a full algorithmic listing 
of the XML update primitives under the PACD environment, 
along with a comprehensive evaluation method (and the 
results), which can be recycled by the XML research 
community to test and evaluate the XML database 
developments. Such level of details is rarely found in the 
existing  literature. 
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