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Abstract—Concept-based video retrieval retrieves shots rel-
evant to a query based on detection results of concepts,
such as Person, Building and Car. However, concept detection
is ‘uncertain’ because even state-of-the-art methods cannot
accurately detect various concepts. Thus, we introduce a video
retrieval method, which models the uncertainty in the detection
of each concept using ‘plausibilities’. A plausibility represents
an upper bound of probability that the concept is present
(or absent) in a shot. Using such plausibilties, false positive
and false negative detections of the concept can be effectively
managed. We derive plausibilities by estimating the density
ratio between shots annotated with the concept’s presence and
absence. However, annotating randomly sampled shots does not
lead appropriate plausibilities due to the ‘imbalanced problem’.
This means that the number of shots where the concept is
present is generally much smaller than the number of shots
where it is absent. To overcome this, a selective sampling
method is developed to preferentially sample unannotated
shots, which are similar to shots already annotated with the
concept’s presence. Experimental results on TRECVID 2009
video data validates the effectiveness of derived plausibilities.

Keywords-Video retrieval; Uncertainty in concept detection;
Dempster-Shafer theory; Imbalanced problem; Density ratio;

I. INTRODUCTION

Concept-based video retrieval is an approach which re-
trieves shots relevant to a query based on detection results of
concepts, such as Person, Car and Building. Fig. 1 illustrates
an overview of concept-based video retrieval. First of all, a
concept detector is built to detect a concept’s presence in
shots. Using such detectors, a shot is represented as a multi-
dimensional vector consisting of concept detection scores,
as shown in Fig. 1 (b). Each detection score represents
the probability of a concept’s presence. Based on this shot
representation, given example shots for a query, a retrieval
model is constructed to discriminate between relevant and
irrelevant shots to the query. In other words, detection scores
for multiple concepts are fused into a single relevance score,
which indicates the relevance of a shot to the query. Since the
detector of a concept is built using a large amount of training
shots, the concept can be robustly detected irrespective
of its size, position and direction on the screen. Using
concept detection scores as ‘intermediate’ features, concept-
based video retrieval can achieve state-of-the-art retrieval

Query: Tall buildings are shown
(Example shots) (Retrieved shots)

Video
archive

a) Retrieval model

{ 0.1,     0.8,     0.6,  .... } 

Person CarBuilding
b) Shot representation

Figure 1. An overview of concept-based video retrieval.

performance [1], [2], [3].
However, even using most effective detectors, it is difficult

to accurately detect any kind of concept. For example,
TRECVID is an annual competition where concept detectors
developed all over the world are benchmarked using large-
scale video data [1]. At TRECVID 2012, the top-ranked
detectors achieved high performances for concepts such as
Male Person and Walking Running (with average precisions
greater than 0.7). On the other hand, the detection of
concepts like Bicycling and Sitting down was difficult (with
average precisions less than 0.1). Thus, relying on such
uncertain concept detection significantly degrades retrieval
performance.

We have been exploring a method which manages un-
certainties in concept detection based on Dempster–Shafer
Theory (DST) [4]. DST is a generalization of Bayesian
theory, where a probability is not assigned to a variable, but
instead to a subset of variables [5]. Specifically, we consider
two singletons {P} and {A}, which represent the presence
and absence of a concept in a shot, respectively. In addition,
{P,A} represents the uncertainty of whether the concept is
present or not. For the above three subsets, a mass function
m defines masses m({P}), m({A}) and m({P,A}). Here,
m({P}) and m({A}) denote the probability that the concept
is certainly present in a shot, and the probability that it is
certainly absent, respectively, while m({P,A}) denotes the
probability that the concept is possibly present in the shot.
Using these masses, DST can represent uncertainties much
more effective than Bayesian theory, where the only way to
represent an uncertainty is to assign the probability 0.5 to
both variables P and A.
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One big difficulty of DST is how to define a mass
function. In our case, deriving the mass m({P,A}) is sub-
stantially infeasible because it is very subjective to annotate
shots with {P,A} (i.e., a concept’s presence is uncertain).
Thus, we avoid the mass function derivation by deforming
the construction of a retrieval model based on the set-
theoretic operation [6]. The retrieval model is constructed
based on a plausibility functions pl, which is defined by
combinations of masses: pl({P}) = m({P}) +m({P,A})
and pl({A}) = m({A}) + m({P,A}). The plausibility of
a concept’s presence pl({P}) and the one of its absence
pl({A}) represent upper bound probabilities that it is present
and absent in a shot, respectively. Thus, pl({P}) is useful
for recovering false negative detection of a concept, while
pl({A}) is useful for alleviating false positive detection.

We mainly address how to derive a plausibility func-
tion for each concept. Here, plausibilities of the concept’s
presence and absence of a shot are obtained based on the
detection score of this shot. In our previous work [4], a
plausibility function is derived by simple line approximation.
However, plausibilities cannot be accurately characterized by
lines. Thus, we develop a method which derives a plausi-
bility function by estimating the density ratio [7] between
shots annotated with a concept’s presence and absence on
the axis of detection scores. Intuitively, a large plausibility of
the concept’s presence (absence) should be associated with a
detection score, around which the number of shots annotated
with its presence (absence) is much larger than that of shots
annotated with its absence (presence). Also, plausibilities of
the concept’s presence and absence should be similar at a
detection score, around which numbers of shots annotated
with its presence and absence are similar.

However, density estimation involves the imbalanced
problem [8], meaning that the number of shots where a
concept is present is generally much smaller than the number
of shots where it is absent. Thus, when annotating randomly
selected shots, almost all of them are annotated with the
concept’s absence, and their detection scores are nearly
0. As a result, an estimated density ratio is much biased
towards the detection score 0. To balance numbers of shots
annotated with the concept’s presence and absence over
detection scores, a selective sampling method is developed
to preferentially select unannotated shots, which are similar
to shots already annotated with the concept’s presence.

This paper is organized as follows: The next section
compares our method to existing ones, in terms of mass and
plausibility derivaion, and management in data uncertainty.
Section 3 presents our video retrieval method, consisting
of retrieval model construction based on DST, plausibility
function derivation based on density estimation, and selec-
tive sampling. Experimental results in section 4 shows the
effectiveness of plausibility functions derived by our method.
Section 5 conludes this paper.

II. RELATED WORK

Although several methods for deriving mass and plausi-
bility functions have been proposed, most of them assume
special kinds of data like multivariate (transactional) data
[9] and data with nested structures [10], or assume an
underlying data distribution like Gaussian distribution [11].
Compared to this, we target multi-dimensional categorical
data where each dimension represents a concept’s presence
(P ) or absence (A), and does not have any prior knowledge
about the data distribution. Hence, we derive plausibility
functions in a ‘data-driven’ approach, where detection scores
of shots for the concept are used as source data, and a part of
these shots are manually annotated to indicate its presence
or absence. In addition, none of existing methods consider
the imbalanced problem.

Although an uncertainty in data is addressed in fields of
data mining and machine learning, it is defined as a variance
of observed values [12]. Compared to this, we define an
uncertainty as the inaccuracy of determining the class label
of a shot (i.e., a concept’s presence or absence). Thus, most
of data mining and machine learning methods for uncertain
data like [12], cannot be used to deal with uncertainties in
this paper.

In concept-based video retrieval, many researchers have
explored how to use concept detection scores to achieve
accurate retrieval. For example, weighted linear combination
is used in [2], [3], where the relevance score of a shot is com-
puted as the sum of weighted detection scores for multiple
concepts. Popular weighting methods use the lexical similar-
ity between query terms and a concept, their co-occurrence,
and detection scores of the concept in example shots. In
[2], a discriminative classifier (e.g., SVM) is built based
on the shot representation with concept detection scores.
Furthermore, in [13], shots are retrieved based on their
similarity to example shots in terms of concept detection
scores. To the best of our knowledge, except for our previous
work [4], no existing works explicitly address uncertainties
in concept detection.

Some researchers addressed uncertainties in combining
concept detection results on different features (or modalities)
[14], [15]. Such an uncertainty arises when conducting con-
cept detection only using a single feature. In [14], concept
detection results on different features are combined based
on Portfolio theory, so that for each feature, the expected
detection accuracy is maximized and the uncertainty is
minimized. Note that this uncertainty is defined as the
variance of the detection accuracy on the feature. Compared
to this, an uncertainty in this paper means the inaccuracy of
detecting a concept’s presence or absence. Also, although
DST is used in [15], mass function are hand-crafted, so
their appropriateness for representing uncertainties is not
guaranteed. In this paper, a plausibility function is derived by
estimating the density ratio between shots annotated with a
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concept’s presence and absence. This statistically represents
the uncertainty of the concept’s presence or absence.

III. VIDEO RETRIEVAL BY MODELING UNCERTAINTIES
IN CONCEPT DETECTION

This section describes our video retrieval method based on
DST. First of all, detectors of various concepts are assumed
to be already built using a large amount of shots annotated
with various concepts’ presence and absence. Under this
condition, in order to derive a plausibility function for each
concept, an additional set of annotated shots are created. In
particular, considering the imbalanced problem, our selective
sampling method is used to preferentially sample unanno-
tated shots, which are similar to shots already annotated
with the concept’s presence. Then, a plausibility function is
derived by estimating the density ratio between shots anno-
tated with the concept’s presence and absence. Finally, given
example shots for a query, a retrieval model is constructed
by incorporating plausibility functions of different concepts
into maximum likelihood estimation.

Below, we first present our video retrieval model where
a mass function is transformed into a plausibility function
based on DST’s set-theoretic operation. Then, our plausibil-
ity function derivation and selective sampling methods are
described sequentially.

A. Video Retrieval Model based on DST

Our video retrieval model is constructed in the framework
of Expectation-Maximization (EM) algorithm [6]. Let xi =
(x1

i , · · · , xM
i ) be the ‘complete’ vector representation of the

i-th example shot (1 ≤ i ≤ N ). Here, the j-th dimension xj
i

(1 ≤ j ≤ M ) represents the presence or absence of the j-th
concept with no uncertainty (i.e., xj

i ∈ {P,A}). Assume that
xj
i follows a probability distribution with the parameter θj ,

that is, p(xj
i = P ; θj) and p(xj

i = A; θj). However, since
the detection of the j-th concept is uncertain, p(xj

i = P ; θj)
and p(xj

i = A; θj) incur uncertainties, which are modeled
by a mass function mj . To implement this, based on [6],
the following likelihood function L(θ;m) is used where
each example shot and each dimension are assumed to be
independent:

L(θ;m) =

N∏
i=1

M∏
j=1

 ∑
S⊆{P,A}

mj(S)
∑
xj
i∈S

p(xj
i ; θ

j)

 (1)

where θ = {θ1, · · · , θM} is a set of parameters for
probability distributions for M dimensions (concepts), and
m = {m1, · · · ,mM} is a set of mass functions for M
concepts. In addition, S is any subset of {P,A}, that is, {P},
{A} or {P,A}. Equation (1) means that p(xj

i = P ; θj) for
the complete j-th concept’s presence is weighted by masses,
which are associated with subsets including P . Similarly,
p(xj

i = A; θj) is weighted by masses, associated with
subsets including A. Based on this inclusive relation, the

term surrounded by big parenthesis in equation (1) can be
expanded and deformed as follows:

mj({P})p(xj
i = P ; θj) +m({A})p(xj

i = A; θj)

+m({P,A})
(
p(xj

i = P ; θj) + p(xj
i = A; θj)

)
= p(xj

i = P ; θj)
(
mj({P}) +m({P,A})

)
+p(xj

i = A; θj)
(
mj({A}) +m({P,A})

)
= p(xj

i = P ; θj)plj({P}) + p(xj
i = A; θj)plj({A})

=
∑

x
j
i∈{P,A}

p(xj
i ; θ

j)plj(xj
i ) (2)

Therefore, the estimation of θj does not require the mass
function mj , but requires the plausibility function plj . We
rewrite L(θ;m) as L(θ; pl) where pl = {pl1, · · · , plM} is
a set of plausibility functions for M concepts. Estimating
θ, which maximizes L(θ; pl) is equivalent to maximizing
the agreement between the probabilistic model p(xj

i ; θ
j) and

uncertain concept detection plj(xj
i ).

In our implementation, p(xj
i ; θ

j) is modeled as a simple
discrete probability distribution with two parameters, each
of which represents the probability that the j-th concept is
present or absent. That is, θj = {αjP , αjA}. Considering
equation (1) and (2), L(θ; pl) is written as follows:

L(θ; pl) =
N∏
i=1

M∏
j=1

(αjP plj(xj
i=P )+αjAplj(xj

i=A)) (3)

Please refer to [4], [6] for the detailed computation process
of the estimation of θ. Finally, after θ is obtained using
example shots for a query, the relevance score of a test shot
x′ is computed as follows:

rel(x′) =
M∏
j=1

(
αjP plj(x′j = P ) + αjAplj(x′j = A)

)
, (4)

where rel(x′) represents the agreement between plausi-
bilities of each concept’s presence and absence in x′

and the probabilistic distribution parameterized by θj =
{αjP , αjA}. The set of 1, 000 test shots with the largest
rel(x′) is returned as a retrieval result.

B. Plausibility Function Derivation by Density Estimation

For a shot xi, we compute plausibilities of the j-th con-
cept’s presence and absence, plj(xj

i = P ) and plj(xj
i = A),

based on the detection score of xi, s
j
i . These plausibilities

are defined by the density ratio between two probability
distributions, ppr(s

j
i ) and pab(s

j
i ). The former represents the

probability of the j-th concept’s presence at the detection
score sji , while the latter represents the probability of its
absence at sji .

To compute sji , a concept detector is built as follows:
First, each shot is represented using the 1, 000-dimensional
Bag-of-Visual-Words representation, where each dimension
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Figure 2. Plausibility computation using density ratio functions

represents the frequency of a characteristic local shape in
the keyframe of the shot. Using training shots annotated
with the j-th concept’s presence and absence, a Support
Vector Machine (SVM) is built as a concept detector. The
detection score sj is computed as the SVM’s probabilistic
output, which approximates the distance between xi and the
detection boundary using a sigmoid function [16].

Fig. 2 illustrates how to compute plj(xj
i = P ) and

plj(xj
i = A) based on sji . The horizontal axis represents

detection scores where ×s represent detection scores of shots
annotated with the j-th concept’s presence, and +s represent
detection scores of shots annotated with its absence. The ver-
tical axis represents plausibilities defined by the following
density ratio functions:

plj(xj
i = P ) = wj

pr(s
j
i ) = ppr(s

j
i )/pab(s

j
i ) (5)

plj(xj
i = A) = wj

ab(s
j
i ) = pab(s

j
i )/ppr(s

j
i ) (6)

As shown in Fig. 2, plj(xj
i = P ) becomes large as a

detection score where the number of ×s is larger than the
number of +s. On the other hand, plj(xj

i = A) becomes
large as a detection score where the number of +s is larger
than the number of ×s.

To estimate the density ratio functions wj
pr(s

j
i ) and

wj
ab(s

j
i ), we use the method called unconstrained Least-

Squares Importance Fitting (uLSIF) [7]. Using uLSIF,
wj

pr(s
j
i ) is estimated without estimating ppr(s

j
i ) or pab(s

j
i ).

Instead, it is modeled as the following linear combination
of basis functions:

wj
pr(s

j
i ) =

b∑
l=1

αj
lϕl(s

j
i ), (7)

where a weight αj
l for the l-th basis function ϕl(s

j
i ) is

estimated using shots annotated with the j-th concept’s
presence and absence. We define ϕl as a gaussian function.
Please refer to [7] for the estimation of αj

l . Finally, wj
ab(s

j
i )

can be obtained in the same way to wj
pr(s

j
i ).

C. Sampling from imbalanced data

For appropriate density ratio estimation, we need to solve
the imbalanced problem between shots where a concept is
present and shots where it is absent. To this end, we present

Figure 3. k-NN based Selective sampling method for Imbalanced Data

k-NN based Selective sampling method for Imbalanced Data
(kNNSID). Shots selected by kNNSID are annotated by a
user, and used in the density estimation.

Fig. 3 shows a pseudo code of kNNSID, consisting of the
following three steps: The first step at line 2 in Algorithm
1 creates a set of unannotated shots, where only one shot is
retained for a unique detection score. In the second step at
line 7, for each shot, the priority score which represents the
priority of sampling is calculated. The third step at line 10
samples the shot with the highest priority score. As shown in
lines from 4 to 11, the second and third steps are repeated
by re-calculating the priority score of each shot until the
number of sampled shots reaches the specified number.

The second step calculates the priority score of an anno-
tated shot x, p(x), using the following equation:

p(x) =
1

k1

k1∑
i=1

d(x,Xi)−
1

k2

k2∑
j=1

d(x, Yj), (8)

where X = {X1, X2, . . . , Xk1} is a set of already sampled
shots that are similar to x. On the other hand, Y =
{Y1, Y2, . . . , Yk2} is a set of shots that are similar to x
and already annotated with the concept’s presence. The
function d represents the Euclidean distance between two
shots in terms of their detection scores. The first term in
equation (8) computes the average distance between x and
X . This is useful for collecting shots with a diversity of
detection scores. The second term computes the average
distance between x and Y . This gives high priorities to
shots, which are similar to shots already annotated with
the concept’s presence. Hence, by annotating sampled shots,
we can examine inaccuracies of different detection scores,
which are similar to those of shots already annotated with the
concept’s presence. As a result, we can accurately estimate
the density ratio function by alleviating the influence of too
many shots where the concept is absent.
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IV. EXPERIMENTAL RESULTS

This section evaluates our video retrieval method. First
of all, we use 346 concepts defined in Large-Scale Concept
Ontology for Multimedia (LSCOM) [17]. These concepts
are defined based on their ‘utility’ for classifying content
in videos, their ‘coverage’ for responding to a variety
of queries, their ‘feasibility’ for automatic detection, and
the ‘availability’ (or ‘observability’) for a large mount of
training shots. We collect training shots via our online video
annotation game [18], which is being developed in parallel
with this paper. The game aims to efficiently annotate a
large amount of shots with various concepts’ presences and
absences, with the help of numerous online game users.
Specifically, 292, 911 shots in TRECVID 2011 development
videos are targeted by the game, and annotated shots are
used as training shots to build concept detectors.

The following experiment is conducted by applying the
above concept detectors to TRECVID 2009 video data,
consisting of 36, 106 shots in 219 development videos, and
97, 150 shots in 619 test videos. For each concept, a plau-
sibility function is derived by the density ratio estimation
on 1, 000 shots, annotated with the concept’s presence or
absence. These shots are collected from development videos
using our selective sampling method. Our video retrieval
method are tested on the following three queries: (1) “A
view of one or more tall buildings and the top story visible”,
(2) “One or more people, each at a table or desk with a
computer visible”, and (3) “An airplane or helicopter on
the ground, seen from outside”. For each query, a retrieval
model is constructed using 10 example shots selected from
development videos, and used to retrieve relevant shots
in test videos. Here, concepts unrelated to the query are
ignored to improve the retrieval performance. In other words,
concepts related to the query are selected as the ones, for
which average detection scores in example shots are larger
than the threshold. The retrieval is conducted using detection
scores and plausibility functions for selected concepts.

In order to examine the effectiveness of plausibility func-
tions, the above retrieval method denoted by PL is compared
to a method, which is denoted by Direct and constructs a
retrieval model directly from concept detection scores. In
other words, the model in Direct is constructed by replacing
plj(xj

i = P ) in equation (3) with the detection score sji
(plj(xj

i = A) is replaced with 1−sji ). Fig. 4 shows a perfor-
mance comparison between PL and Direct in terms of their
precisions. A precision represents the probability of relevant
shots in 1, 000 retrieved shots. In each bar graph in Fig.
4, white-colored and black-colored bars represent precisions
obtained by PL and Direct, respectively. In addition, the
white-colored and black-colored bars at the top respectively
present precisions obtained by plausibility functions (PL)
and detection scores (Direct) for ‘ALL’ concepts. Each of the
other bars presents the precision obtained by the plausibility

Figure 4. Performance comparison between PL and Direct

function (or detection scores) for a single concept. Its name
is shown in the left side of the bar graph.

As can be seen from Fig. 4, for query (1) and (2), PL is
superior to Direct in the case of using all concepts. Regard-
ing cases of using single concepts, for almost all concepts
where precisions of Direct are very low, PL achieves much
higher precisions. It can be said that detecting such concepts
involves much uncertainties, which are effectively modeled
by plausibility functions.

However, for query (3), PL is outperformed by Direct in
the case of using all concepts, although precisions of the
former are much higher than those of the latter in cases
of using single concepts. This means that PL’s advantage
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over Direct in cases of using single concepts is weaken
in the case of using combinations of these concepts. One
main reason is the simplicity of our video retrieval model,
where relevant shots to a query are characterized only by
a single combination of concepts’ presences and absences
(see equation (3)). But, actually, relevant shots show dif-
ferent combinations of concepts’ presences and absences
depending on varied camera techniques. Thus, we plan to
incorporate a mixture model into our video retrieval model,
or adopt another method, which can extract a non-linear
classification boundary between relevant and irrelevant shots
based on plausibility functions [19].

V. CONCLUSION AND FUTURE WORKS

In this paper, we introduced a concept-based video re-
trieval method where uncertainties in concept detection are
modeled using plausibility functions. Each of them is derived
by estimating the density ratio between shots annotated with
a concept’s presence and absence. In particular, to solve the
imbalanced problem between the number of shots where the
concept is present and that of shots where it is absent, the
selective sampling method kNNSID is developed to preferen-
tially sample unannotated shots, which are similar to shots
already annotated as the concept’s presence. Experimental
results on TRECVID 2009 video data show that derived
plausibility functions effectively manage uncertainties in
concept detection. In the future, we plan to improve the
retrieval performance in the case of combining plausibility
functions for multiple concepts. To this end, our video
retrieval method will be extended by incorporating a mixture
model, or adopting a method which extracts a non-linear
classification boundary between relevant and irrelevant shots
to a query using plausibility functions [19].
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