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Abstract—Video object detection is one of the most important 
research problems for video event detection, indexing, and 
retrieval. For a variety of applications such as video 
surveillance and event annotation, the spatial-temporal 
boundaries between video objects are required for annotating 
visual content with high-level semantics. In this paper, we 
define spatial-temporal sampling as a unified process of 
extracting video objects and computing their spatial-temporal 
boundaries using a learnt video object model. We first provide 
a learning approach to build a class-specific video object model 
from a set of training video clips. Then the learnt model is used 
to locate the video objects with precise spatial-temporal 
boundaries from a test video clip using graph kernels. A frame 
sorting process as a preprocessing is also proposed to 
transform the graph, modeling the shot configuration of a 
video clip, into a string of shots. Thus, the computation of 
graph kernels is simplified to be string kernels. The string 
kernels for support vector machine (SVM) classification are 
finally adopted to train the SVM classifiers from a set of 
training samples and detect the video objects in a test video 
clip by classification. A human action detection and 
recognition system is finally constructed to verify the 
performance of the proposed method. Experimental results 
show that the proposed method gives good performance on 
several publicly available datasets in terms of detection 
accuracy and recognition rate. 

Keywords-video objects; string kernels; dynamic 
programming; video object modeling; SVM classification. 

I.  INTRODUCTION 
Video object detection (VOD) is the primary step to 

semantically annotate a video sequence in semantic video database 
indexing and retrieval, intelligent video surveillance, and advanced 
man-machine interfaces [1,2].  Early works in video object 
detection focused on detecting and recognizing the scene and 
objects shown in a representative key-frame of a video shot, thus 
the temporal information of video objects is lost [3,4]. Recently, 
semantic-based video analysis tended to model a video clip as a 
graph whose nodes are high-level video objects performing a 
specific action individually [5]. Techniques of graph matching are 
then applied to annotate the event type of the input video clip [6]. 
Detection and classification of video objects from video clips help 
bridge the semantic gap between high-level features and low-level 
features and the construction of modern semantic-based video 
analysis. 

Conventional VOD algorithms, which characterize objects as 
spatially cohesive with locally smooth trajectories, use these 
techniques for tracking or body pose estimation to extract spatial-
temporal tubes from the input video clip [7-9]. However, using a 
tracking or body pose estimation in real world videos is generally 

not reliable due to object occlusion, distortion and changes in 
lighting. Instead, we formulate the tracking process for VOD [7, 10] 
as a classification problem because objects are, in general, spatially 
and temporally cohesive. Also, by assuming relatively slow camera 
motions, the shape and location of these objects vary slowly from 
frame to frame. Thus, the size of the search space to track an object 
across many frames is reduced significantly by exploiting this 
coherence. By considering a parameter set in the feasible search 
space as a class, the object tracking for VOD casts into a 
classification framework [11]. 

A primary motivation for the work presented here is to question 
the benefits of tracking object boundaries across frames for video-
based applications such as activity analysis. In practice, the 
accuracy of any boundary estimate is limited by a number of 
systemic factors such as image resolution, noise, motion skew, and 
the accuracy of the model. For example, formulating VOD as 
motion segmentation using optical flow rests on the assumption of 
brightness constancy, which is violated at moving boundaries, 
resulting in poor estimates of object contours [12]. For some 
applications, the object detection at each frame only needs to be 
known up to a limited precision, as long as good shape and 
trajectories are maintained. 

In addition to segmentation, conventional VODs also try to 
detect and segment the observed motions into semantic meaningful 
instances of particular activities from videos [13,14]. To reach this 
goal, recent approaches consider the detection and recognition of 
the video object as an extension of 2D object detection [15,16] 
with higher dimensionality. Some well-known approaches include 
space-time interest-point detectors [17] and bag-of-words models 
[18]. These techniques aim at employing a combination of local 
space-time features and global 3D shape features to estimate the 
space-time boundaries of a given video object. Two issues which 
are therefore of particular importance are dealing with local patch 
sampling and exploring the rich relationships among spatial-
temporal "words" inherited from objects [19]. 

Video object classification is the key step in high-level video-
based applications. Conventional machine learning techniques are 
applied to train the state-of-the-art methods using a large, diverse 
set of manually annotated images. The typical level of annotation 
needed is a bounding-box for each object instance [15]. To ensure 
the performance of a detector, a large amount of annotated 
instances is generally needed [20]. Recently, object classification 
approaches borrowed from unlabeled or weakly annotated data 
have attracted much attention to reduce tedious manual annotation 
to a minimum [21]. However, training a detector without location 
annotation is very difficult and performance is still below fully 
supervised methods [22]. 

Recent approaches for video object detection follow the 
following steps: a target object is initialized by human annotation 
or with a preexisting detector in one frame, then a classifier is 
trained on-line to redetect the object in each frame [23]. A 
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significant limitation to these approaches is the trained classifier is 
that a video-specific detector but not a generic class detector. In 
contrast, Ali et al. [24] proposed a semi-supervised boosting 
variant that exploits temporal consistency of video frames to learn 
a complex appearance model from a subset of fully annotated 
frames in each training video for video object detection. Testing is 
performed on videos of the same scene, but at different time 
instances.  

An image object often consists of several parts arranged in a 
deformable configuration [15]. The use of visual patterns of local 
patches in shape modeling is related to several ideas including the 
approach of local appearance codebooks [16] and the generalized 
Hough transform (GHT) [25] for object detection. At training time, 
these methods learn a model of the spatial occurrence distributions 
of local patches with respect to object centers. At testing time, 
based on the trained object class classifiers, the appearances of 
interest points in images or video are matched in the visual 
codebooks to detect a specific object using the voting framework 
of GHT. The effectiveness of visual pattern grouping by Hough 
voting is thus well verified.  

In this paper, we formulate a video object as a graph of postures 
(key-objects) to model the temporally relationship between key-
objects. The graph edit distance (GED) can then be used to 
measure the spatial-temporal content difference between two video 
objects. A frame sorting process [26] as a preprocessing is also 
used to transform the graph, modeling the shot configuration of a 
video clip, into a string of shots. Thus, the computation of graph 
kernels is simplified to be string kernels. The string kernels for 
support vector machine (SVM) classification are finally adopted to 
train the SVM classifier from a set of training samples and detect 
the video objects in a test video clip by classification. We also 
create a template video object for each class to achieve the goal of 
speeding up the VOD process. A human action detection and 
recognition system is finally constructed to verify the performance 
of the proposed method. Experimental results show that the 
proposed method gives good performance on several publicly 
available datasets in terms of detection accuracy and recognition 
rate. 

II. PROBLEM DEFINITION 
The proposed video object detection by classification using 

string kernels is inspirited from the work of [4] but of very different 
implementation. Let n

ttFV 1}{ ==  and n
ttOO 1}{ == be a video clip of 

n frames and the corresponding video object consisting of n 2D 
target objects, respectively. Suppose nDn

ttt Rsxx ×
= ∈= 1)}({ be the 

feature vectors for every location st to locate Ot in Ft, we want to 
build a classifier 

RR nD →×:ϕ    (1) 
such that the set of locations n

ttss 1}{ ==
  

   }0))((:{ ≥sxs  ϕ   (2) 
detects a visible target video object from video frames. Given a 
training data set that comprises N input vectors 1x , ..., Nx , with 
corresponding target values y1, ..., yN where

.,...,1},1,1{ Niyi =−∈  The support vector machines (SVMs) 
approach [27] finds the linear decision boundary )(xϕ as: 

bxwx T += )()(  φϕ             (3) 
where φ denotes a fixed feature-space transformation, b is a bias 
parameter, so that, if the training data set is linearly separable, 

0)( >ii xy ϕ for all points. The maximum marginal solution of 
SVMs is found by solving for the optimal weight vector 
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with respect to α
 , that is subject to the constraints: 
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N

i i yα  0≥iα , for i= 1,…, N     (5) 

)(),( ji xx  φφ is the inner product of ix and 
jx  in the feature space. 

The parameters w and b are then derived from the optimal α


. 
The computational cost of the inner product could be much 

reduced by introducing kernel functions to avoid explicitly 
perform the transformation .)(),( ji xx  φφ  If the kernel function k 

satisfies the Merced condition, then there exists a feature space 
and a mapping function φ such that k acts as an inner product in 
the feature space [28]. In this work, we propose to use the string 
kernel, starting from a Gaussian kernel, which has been proved to 
be effective for event recognition [1]. The string kernel is defined 
as 

)),(exp(),( xxdxxk ′−=′ 
  (6) 

where ),( xxd ′ is the distance between x and x′ using the dynamic 
programming process retaining the spatial-temporal consistency of 
the targets. 
     A challenge of the problem is it might require a large training set 
which results in tedious human-labeled effort in training the 
classifier ϕ. In this work, we tackle this problem by using an initial 
hand-labeled training video, and by going back-and-forth between 
the optimization of the labels of non-labeled videos. Many 
approaches train object detectors from images without location 
annotation [8]. Although the outputs of these operators are not 
precise, they can provide the initial training video object for learning 
the classifier ϕ. In this case, the proposed learning algorithm can be 
performed automatically without any human-labeled effort. 
      Another challenge is the performance of the string-kernel 
approach degrades greatly when the input video clip contains 
repetitive behaviors. In this case, we first represent a video clip as a 
set of shots and then lexicographically sort these shots to obtain a 
compact and normalized string of postures. The complexity of 
string-kernel computation is thus reduced by representing a video 
clip as a shot sequence.  

III. THE PROPOSED APPORACH 
    Figure 1 shows the block diagram of the system. A 
preprocessing to lexicographically sort video frames is first applied 
to temporally normalize the video frames. Then, a key-frame 
detection procedure is applied to detect key-frames from a 
normalized video sequence to achieve the goal of eliminating 
redundant frames. The system is divided into the training and 
detection phases, where both of them are based on the proposed 
SVM classification with string kernels. 

A. The Training 
Many various image analysis tasks have verified the effectiveness 
of presenting video frames using bag-of-words (BoW) [1].  A 
common BoW approach to model video class is to extract features

 from all video patches in all training video clips of a video class to 
learn the appearance variability of the class, which is modeled as a 
local appearance codebook consisting of multiple codewords, 
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where each of them is determined by the mean features of a video 
patch cluster. Based on this codebook, we could compute a 
histogram of codeword frequencies to represent a video frame by 
mapping every patch of the frame to a codeword. Thus, each frame 
is represented as a BoW histogram.  

Patch partitioning

Feature Extraction

Video object 
Detection

Object Recogn ition

Training Video V Test sequence T

Training phase Detection phase

Preprocessing

Template 
Video 
Object 
Models

Feature extraction

Key-frames
extraction

Patch partitioning

SVMs Training

Patch clustering

SVM 
Classifiers

Preprocessing
Video 
Frame

Codebook Key-frames
extraction

 
Figure 1. Block diagram of the proposed video object detection by 
classification using the Hough-voting approach. 

In the preprocessing, the first step to temporally normalize the 
video frames in a video clip is to generate a video shot codebook 
through vector quantization of large sets of BoW histograms 
extracted from a collection of training video frames.  The video 
frame codebook is generated by clustering the video frames in the 
feature space using k-means clustering algorithm and Euclidian 
distance as the clustering metric. The center of each resulting 
cluster is defined as a frame codeword. Let the video frame 
codebook FC have m cluster centers. Our approach uses FC to 
temporally normalize a video clip by grouping similar frames in 
which the temporal information is preserved.  Given a video clip V 
of n BoW histograms, niVhi ,...,1, =∈ , there is a collection of 
cluster assignment: },...,,{ 21 ncccA = where ci is the cluster label 
indicating that cluster center i is the nearest neighbor of hi in FC. 
By sorting A in lexicographical  order, we can obtain 

}~,...,~,~{~ )()2(
2

)1(
1

n
ncccA πππ= where )(~ i

ic π  is the cluster label of the i-

th video shot in A~  and )(iπ returns the index of frame i in V. The 
pair ,),~,~( )()( jicc j

j
i

i <ππ  belongs to A~  if and only if either 
)()( ~~ j

j
i

i cc ππ < or ))()(()~~( )()( jicc j
j

i
i ππππ <∧= . We finally permute the 

frames of V using A~ . The preprocessing step brings the system two 
obvious advantages: (1) similar frames are clustered to transform 
the repetitive activities into a single activity implicitly performed 
by the corresponding video object; (2) all video objects in the same 
class are starting from a common posture when we represent an 
activity as a sequence of postures. 

A video shot detection procedure is then followed to separate a 
normalized video clip into multiple video shots, where each of them 
is represented as a key-frame. Finally, a video clip is represented as 
a sequence of key-frames. Let m

iioO 1,11 }{ ==
 denote the initial video 

object of m key-objects detected from corresponding key-frames of 
a training video clip in a class. For each key-object 

1,1 Oo i


∈ , we 

partition it into a set Si of patches ),,( Pj sdfP


= where f is the 
feature vector characterized by a histogram of orientations (HOG) 
[29]; d


 is the displacement vector defined from the patch center to 

key-object center; sP is the size of the patch. As shown in Figure 2, 
the patch set Si forms a GHT model and implicitly describes the 

structure of io ,1  which can be used to detect similar objects from 
another image using the Hough-voting technique [15,16]. 

 
(a) 

(b) (c)

RX

d


 

Figure 2. Representing a video clip by a sequence of key-frames: (a) 
detecting the key-frames and key-objects from a video clip; (b) piling up 
the normalized key-objects to form a 3D video object; (c) modeling (b) 
using a sequence of  GHT models. 

    To achieve the goal of detecting the target object from an image I 
using the patch set S of key-object o , we look after similar patches 

SP ∈′  for each patch IP ∈  located at (xP, yP) using the following 
distance function: 

 
∑ ′−=′

i
PP ihihPPd )()(1),(

   (7) 

where )(ihP and )(ihP ′ are the factions of the i-th bin of the HOGs 
of P and P’, respectively. The local distance measurement for (P,P’) 
should be added to the entry of the Hough-voting volume

),,( syxH I at the image I: 
 ))',(1(),,(),,( )()( PPdsyxHsyxH old

I
new

I −+=       (8) 
where PP sss ′= /  is the ratio of sizes of P to P’ and

PPP dsyxyx ′×−=


),(),( . Furthermore, a match pair of its similarity 
value less than a pre-defined threshold, i.e, 0.8, is excluded from 
casting a vote on the Hough-voting volume to avoid generating 
spurious peaks. Obviously, the peaks in HI group patches in I into 
meaningful objects. The member patches to constitute a key-object 
can be found through performing the inverse Hough transform on 
the corresponding peak. Also, multiple peaks can be detected from 
HI to locate multiple similar objects for the target object o .  

We also propose a parameter verification process to fine tune 
the location ),( yx=Λ  of the detected object in I. For each object, 
including the target and detected objects, we also construct a global 
HOG to characterize the shape of the objet [15]. The distance 
between the detected and target objects can then be obtained by (7). 
The object *O located at *Λ is thus defined as 

)],(1[maxarg
)(

* ood
N Λ′

Λ∈Λ′
−=Λ   (9) 

where )(ΛN  returns all significant peaks from the neighborhood 
of Λ in HI. Based on *Λ , the system fine tunes the location of the 
detected object

*Λ
o  in I. Moreover, the similarity between the 

detected and target objects is obtained. Although this process 
results in additional time for fine tuning the geometric 
transformation parameters, our experimental results show that it 
significantly improves the accuracy of object locations.  

The core idea of our approach is to automatically compute 
labels for non-labeled samples belonging to the same class by 
minimizing the video object detection errors using dynamic 
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programming. The dynamic programming process (DPP) optimally 
aligns the initial (seed) video object m

iioO 1,11 }{ ==
  with the frames of 

the input video clip n
ttFV 1}{ ==  with the shortest distance. Let A[i,j] 

denote the distance of the optimal alignment of ),...,,( ,12,11,1
)(

1 i
i oooO =



and ),...,,( 21 jj FFFV = . The recurrent equation used to align )(
1

iO
  and Vj 

with the shortest distance in a bottom-up fashion by dynamic 
programming is 

),(]),1[],1,[],1,1[min(],[ ,1 jsi oodjiAjiAjiAjiA +−−−−=   (10) 

where 
jso is the object detected from Fj at location sj with the 

distance measurement ),( ,1 jsi ood using (7). The goal of the 

recurrent equation is to find out the value of A[m][n] which 
denotes the error to detect the video object from the input video 
clip using the seed video object. The initial condition for A[i,j] is 
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   (11) 

Given the set of detected video objects of a class, the SVM 
classifier ϕ with the string kernel defined in (6) is then trained to 
generate a new seed video object for further improving the 
detection and classification accuracy by an optimization loop. Let 

N
iiVC 1}{ == be set of training video clips and K be the maximal 

number of iterative loop. Given that initial video object m
iioO 1,11 }{ ==

 , 

we define the proposed class-specific training (CST) algorithm as 
follows. 
 CST(C,

 1O
 ,K){ 

1OOt ←  
for k = 1 to K do{ 
   for i = 1 to |C| do ),(~

isi VODPPO ← ; 

   )}~({_ ||
1

C
iiOTrainingSVM =←ϕ ; 

   )]~([maxarg
||,..,1,~ iCiOt OO

i

ϕ
=

← ; 

 } 
return ( ϕ,tO ); 

} 
Finally, each class is represented as a template video object Ot and 
a SVM classifier ϕ . The former is used to detect a candidate 
video object from an input video clip using the proposed dynamic 
programming process. The classifier is then used to verify the 
correctness of the detected object.  

B. The Detection 
Given a test video clip, we first perform the same 

preprocessing procedure to temporally normalize the input video. 
The normalized video is also represented as a set of key-frames 
using the same key-frames detection in the training phase to reduce 
the time complexity of the successive video object detection using 
the Hough voting and dynamic programming. The detected video 
objects are then verified by the classifier ϕ. 

The video object detection actually consists of two major steps: 
(1) detect the target video object OV from the input video clip V 
based on the template video object of a class obtained in the 
training phase using the Hough voting and dynamic programming; 
(2)  the class label of OV is then defined to be 

)(maxarg)( VcCcV OOc ϕ
∈

=    (12) 

where c(OV) is the class label of the video object OV ; C is the set 
of classes;  ϕc is the SVM classifier of the class c.  
    Let },...,1{ T=Τ be the set of time steps, and 

},...,1{},...,1{ HW ×=Ω the set of locations, where W and H are the 
width and heights of the video frames. Given a classifier, the 
complexity of the video object detection by classification would 
be )( TT HWO  if we check all candidate video objects in a brute-
force fashion. The time complexity of the proposed video object 
detection by dynamic programming is O(T2W2H2) which is much 
faster than the brute-forth approach. 

IV. EXPERIMENTAL RESULTS 
A series of experiments was conducted on an Intel PENTIUM 

Dual Processor 3.0GHz PC and three video datasets, the KTH 
dataset [30], the Weizmann dataset [31], and the UCF sports [32] 
are constructed to evaluate the performance of the human action 
detection and recognition system. The KTH video sequences have 
been used in many human action recognition studies. It contains 
six types of human actions: walking, jogging, running, boxing, 
hand waving and hand clapping. Each action is performed several 
times by 25 actors in four different scenarios: outdoor, outdoor 
with camera zooming, outdoor wearing different clothes, indoor. In 
total, there are 599 videos. The Weizmann dataset provides 90 
video sequences of 9 actors performing 10 different actions. The 
UCF sports dataset is a collection of 150 broadcast sports 
sequences from network news videos and features ten different 
events: diving, golfing, kicking, weight-lifting, horseback-riding, 
running, skateboarding, swinging 1 (gymnastics, on the pommel 
horse and floor), swinging 2 (gymnastics, on the high and uneven 
bars), and walking. It is a very challenging dataset due to the 
camera motion and background clutter. These datasets have been 
used in many human action recognition studies. 

The class labels, as the ground truth, for video sequences in the 
test datasets are used to determine the relevant matches in the test 
dataset to the query templates. Evaluations were done with a leave-
one-out cross-validation. Classification results are shown in Table 
I and compared with state-of-the-art recognition systems [13, 18, 
26, 43, 48-52]. The classification results provided in [13] include 
three variations of training and testing data: (A) training and 
testing on tracks generated from ground-truth annotations; (B) 
training on tracks from ground truth and testing on automatically 
extracted tracks; and (C) training and testing on automatically 
extracted tracks. The data variation C is used to construct the 
system. Table I shows that the classification accuracy of the 
method has better performance using the detected video objects as 
the input to class-specific SVM classifiers. 

We follow the same localization evaluation rules in [13]: a 
detection is considered correct if, (1) the action object was 
correctly classified, and (2) the intersection-union ratio of the 
detection and ground truth bounding box is greater than 0.5. For 
the KTH and UCF datasets, selected frames were hand-annotated 
with bounding boxes, and the bounding boxes for the frames in 
between were generated by linear interpolation. For the UCF 
dataset, bounding boxes were provided as part of the ground truth 
annotation released with the data. Tables II and III show the 
performance comparison in localization accuracy using datasets 
KTH and UCF, respectively. All the compared methods perform 
well in action object detection and the proposed approach has the 
best performance in average detection accuracy. This illustrates the 
effectiveness of the GHT-based method in video action object 
detection.  
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TABLE I.  CLASSIFICATION COMPARISON OF KTH, WEIZMANN, AND 
UCF WITH OTHER METHODS. ‘-‘ MEANS THE DATA IS NOT PROVIDED IN THE 

ORIGINAL PAPERS. 

TABLE II.  KTH LOCALIZATION RESULTS. 

TABLE III.  UCF LOCALIZATION RESULTS. 
Classes Precision 

Proposed Hough Forest [13] 
Diving 0.62 0.52 
Weight Lifting 1 1 
Walking 0.70 0.67 
Golfing 0.79 0.77 
Skateboarding 0.41 0.39 
Kicking 0.41 0.28 
Running 0.43 0.37 
Horseback Riding 0.78 0.66 
Swing 1 0.46 0.44 
Swing 2 0.32 0.26 
Average 0.59 0.48 

Figure 3 shows a result of human action detection and 
recognition using the proposed method. The system correctly 
detects and classifies the video object in a test video clip belonging 
to the class “Hand Waving” using the template video object and 
classifier of “Hand Waving”. On the contrary, the voting results of 
matching the sampled patches of the test video clips to other 
template video objects on the Hough voting volume H will generate 
low responses. The peaks of H are obvious and easy to detect using 
a simple thresholding technique. As compared with conventional 
VOD methods, the system detects video objects belonging to a 
specific class. Non-meaningful video objects are discarded by the 
system. 

V. CONCLUSION 
In this paper we have presented a method for video object 

detection and recognition based on the fusion of template video 
object modeling and dynamic programming. The proposed 
template video object modeling encodes each class-specific 
template video object as a Hough model sequence. The dynamic 
programming framework is then used to optimally align the frames 
of an input test video sequence with the model sequences. The 
alignment results determine the positions of the corresponding 
video object in the test video sequence. The trained SVM 
classifiers are then used to annotate the type of the detected video 
object. An application to human action detection and recognition is 

also constructed to verify the performance of the system. As 
compared with related GHT-based human action detection and 
recognition methods, the proposed method has the following 
contributions. First of all, this paper models the process of video 
object detection by the fusion of Hough voting and dynamic 
programming which is optimally retain the spatial-temporal 
information of a video object. Secondly, taking the detected video 
objects as the input, a training procedure with effort of human-
made labeling to learn SVM classifiers with string kernels is 
discussed. The SVM classifiers estimate the possibility of a 
specific video object which performs a certain activity. In the test 
phase, the system detects and recognizes video objects from the 

   

   

 
(a) 

(b)

(c)

(d)

(e)  

 
(f) 

Figure 3. An example of human action detection and recognition using the 
proposed method on the dataset “Weizmann”: (a) partial frames of a test 
video sequence belonging to the class “hand waving”; (b) detection results 
of (a) using the template video object of “hand waving”; (c) Hough voting 
results on the each frame of the test video sequence in (b); (d) detection 
results of (a) using the template video object of the class “walking”; (e) 
Hough voting results on the each frame of the test video sequence in (d); (f) 
Hough voting results of (a) for classification.    
input video clip automatically.  Finally, the key-object 
representation is robust to temporal scaling in video object 
detection and recognition. Experimental results show that the 
proposed method gives good performance on several publicly 

Method Weizmann KTH UCF 
Proposed  100 % 95.2 % 83.4 % 
Hough forest (A) [13] 
Hough forest (B) [13] 
Hough forest (C) [13] 
Rodriguez et al. [32] 
Wang et al. [33] 
Yeffet & Wolf [34] 
Niebles et al. [18] 
Schindler et al. [35] 
Laptev et al. [36] 
Ommer et al. [21]  

97.8 % 
95.6 % 
92.2 % 
- 
- 
100% 
90 % 
90 % 
100% 
97.2 % 

93.5 % 
92.0 % 
93.0 % 
85.66% 
90.1% 
90.1% 
83.3 % 
92.7 % 
91.8 % 
87.9 %  

86.6 % 
81.6 % 
79.0 % 
69.2% 
81.6% 
79.2% 
- 
- 
- 
- 

Method Propsoed Hough Forest [13] voc. Forest [37] 
Precision Boxing 0.97 0.88 0.98 

Hand Clapping 0.98 0.96 0.97 
Jogging 0.90 0.84 0.79 
Running 0.80 0.72 0.78 
Walking 0.95 0.95 0.86 

Hand Waving 0.98 0.98 0.96 
Average 0.93 0.89 0.89 
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available datasets in terms of detection accuracy and recognition 
rate. 

The proposed method suffers from the following limitations. 
The computational complexity of the approach using class-specific 
model matching by dynamic programming and GHT is essentially 
high. To implement the system on a parallel architecture, e.g., a 
GPU machine can solve the problem. Basically, GHT-based 
approaches can detect multiple objects from images or videos. 
However, the system based on its current implementation does not 
deal with the problem. Future work will deal with adding the 
detection of multiple video objects in a scene to the system, and 
increasing the database size. 
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