
MobiStream: Live Multimedia Streaming in Mobile Devices

Chrysa Papadaki

Department of Informatics

Athens University of Economics and Business

 Athens, Greece

 chrpapa@intracom.gr

Vana Kalogeraki

Department of Informatics

Athens University of Economics and Business

Athens, Greece

vana@aueb.gr

Abstract— In recent years, many techniques have been

proposed so as to enable resource-constrained devices to

consume or deliver live multimedia streams. The majority of

the existing techniques use distributed multimedia services and

powerful servers to handle streams on behalf of clients. This is

due to the fact that, multimedia streaming, when smartphones

act as both clients and servers, can generate many challenges

due to the heterogeneity of the multimedia streaming

protocols, the media formats and codecs supported by today's

smartphones. In addition, multimedia processing is resource

consuming and, in many cases, unsuitable for a plethora of

resource-constrained devices. To overcome these challenges,

we present MobiStream a device-to-device multimedia

streaming system for resource-constrained devices that

achieves efficient handling of live multimedia streams. The

design of MobiStream architecture provides solutions to

several issues including resource constraints, streaming among

heterogeneous operating systems and platforms, generation,

synchronization and presentation of multimedia streams. We

have developed the MobiStream prototype system on Java 2

SE and Android platforms; this paper presents the

implementation details and the experimental evaluation of our

system.

 Keywords-live multimedia streaming; Android platform;

streaming protocol; resource-constrained devices.

Ι. INTRODUCTION

In recent years, the demand for real-time multimedia
services, including voice over IP (Internet Protocol), audio
and video streaming, has been growing rapidly so that
multimedia streaming applications have become dominant in
present communications systems. Furthermore, the explosive
development of mobile networks and the availability of
mobile devices in the hands of the masses, have made real-
time multimedia delivery popular on mobile devices, such as
smartphones and tablets, which have now become a major
part of everyday life. It is an indisputable fact that cellular
traffic is growing tremendously, with a share of video traffic
increasing from 50% now to an expected 66% by 2015 [2].
Consequently, the demand for innovative smartphone
applications that allow users to receive and deliver live or
on-demand rich content has increased dramatically.
 Today’s smartphones are equipped with significant
processing, storage and sensing capabilities, as well as
wireless connectivity through cellular, Wi-Fi and Bluetooth.

They provide ubiquitous Internet access, primarily through
their cellular connection and secondarily through Wi-Fi, and
enable a plethora of distributed multimedia applications.
However, the acquisition and transmission of large amounts
of video data even on modern mobile devices create
important challenges. Issues like resource allocation, energy
consumption, CPU, memory and bandwidth constraints, as
well as the software development platform must all be taken
into consideration. It is, therefore, essential to address these
challenges by efficiently managing the resources and
employing effective streaming techniques.
 Current solutions for mobile multimedia streaming
assume a centralized architecture where a resource-powerful
server can support heterogeneous sets of media encoders,
decoders and streaming protocols and is able to adapt
content on behalf of clients to provide multimedia streams
to resource-constrained mobile devices [6][12]. On the other
hand, solutions for multimedia streaming over ad hoc
networks assume the existence of distributed multimedia
services and require cooperation between mobile devices for
content dissemination; however, these either do not consider
the scenario of content adaptation [7] or are cross-layered
[8]. Din and Bulterman [11] demonstrate the use of
synchronization techniques for distributed multimedia, but
without addressing the issue of energy reduction. Recently,
lightweight middleware targeting mobile multimedia
applications have been proposed to address the issues of
heterogeneity on modern smartphones. One of the latest
efforts is the Ambistream middleware [9], which provides
an additional layer as an intermediate protocol and the
associated container format for multimedia streaming
among heterogeneous nodes. For the generation and
presentation of the multimedia streams, PacketVideo
OpenCore [13] and Stagefright [14] multimedia frameworks
are used, respectively. Moreover, these multimedia
frameworks are based on cross-platform solutions. One of
them is FFmpeg (Fast Forward MPEG) [15], which is an
Open Source lightweight multimedia framework that allows
encoding, multiplexing and streaming of videos in different
formats. However, FFmpeg has several limitations; it does
not support a wide range of audio/video codecs, especially
for Android devices and is better suited for streaming from a
single source.

 Multimedia streaming is a challenging problem when

smartphones act as both clients and servers. This is due to

100Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

the fact that, the framework needs to be integrated into

multiple mobile platforms to provide live streaming among

multiple smartphones because of the variability of the

supported media formats, codecs and streaming protocols.

In addition, multimedia processing, especially in the case of

handling streams of high-quality content, is resource-

consuming and needs to be carefully handled in the case of

mobile devices. To address the above challenges, in this

paper, we present MobiStream, a mobile-to-mobile live

multimedia streaming system that enables mobile devices to

easily handle live multimedia streams leveraging the

available multimedia software stack of the applied platform.

We assume the scenario of a mobile device that requests to

deliver a live multimedia stream to one or more peers. In

fact, MobiStream enables mobile devices to act as both

clients and servers and allows clients to process and deliver

live multimedia streams to mobile devices or desktop

servers, while considering resource constraints. An

important feature of MobiStream is that it can also

materialize the scenario of live multimedia streaming over

an ad hoc network. For example, the Android Ice Cream

Sandwich devices provide peer-to-peer (P2P) connectivity

using WiFi Direct [10], so, either a laptop or an Android

device can easily act as a virtual access point (AP). Thus,

the system using nodes that act simultaneously as servers

and clients can support this kind of scenarios. The streaming

client in our approach does not act as a relay client for other

phones. Taking all the above into account, we envision a

system that provides sustainable solutions to a wide range of

applications, such as streaming a live event directly to other

devices reachable on the network, voice and video call

applications, private audio-visual communication between

peers without involving third party servers, sharing live

multimedia content in cases of unavailable infrastructure,

etc. We have implemented our prototype system that is

running on both Android and Java 2 SE platforms to

demonstrate the feasibility of our approach.

 The rest of the paper is structured as follows. In Section

II, we describe the system design in detail and discuss

several design issues concerning the generation,

transmission, synchronization and presentation of the live

multimedia streams and the choices we made to address

them. Section III demonstrates our approach on the

synchronization of the streams. In Section IV, we present

the prototype system we have implemented and discuss

implementation details, including challenges specific to

Android phones. In Section V, we present the system

performance evaluation results of our testbed for a range of

scenarios and conclude the paper in Section VI.

II. SYSTEM DESIGN

A. System Overview

 MobiStream is structured in a client-server model, where

devices are able to act as servers and clients simultaneously.

These can communicate over cellular or WiFi. Each device

can assume both roles, as it can be a

client, when uploads content to a server, or a server, when it

receives one or multiple media streams from the clients.

The Client consists of the Dispatcher component, the

Synchronization Module and the Media Recorders. The

Dispatcher is responsible for communicating with the Server

and packaging and transmitting the generated Media Units

(MUs). The MUs are produced by the Audio and Video

Recorders which are independent sub-applications of the

Client. The Synchronization Module is responsible for

synchronizing the generated media units before the final

stage of transmission. The Server is designed to run on

mobile devices as well as desktop computers. It comprises

the Receiver component, the Sync Manager and the Media

Players. The Receiver component is used to listen for

incoming client requests, using a built-in TCP Server which

is running independently in the background, and depackages

and separates the received MU packets. The Sync Manager

is responsible for the synchronization of the received MUs,

while the Audio and Video Players are in charge of the

presentation of the final synchronized multimedia stream.

Both clients and servers are multithreaded so as to enable

the server to receive multimedia streams from many clients

and the client to transmit to multiple destinations. Fig. 1

illustrates the overall system architecture.

 In the remaining of this section, we give an overview of

the building blocks and the interaction between them.

Figure 1. MobiStream Framework Architecture. Streaming Client (left) –

Server (right)

101Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

B. Streaming Client

 The Streaming Client is in charge of generating

multimedia streams and transmitting them to the Server.

More specifically, it comprises the following main

components:

 Media Recorders: one of the first design challenges we

faced was the design of media components for Android

devices that would enable the generation of live video

streams. Currently, the available APIs (Application

Programming Interface) of the latest Android SDK do not

include specifications to allow developers to capture

fragments of live video streams. To circumvent these

problems, we designed and developed our media

components, which are able to produce and consume media

units of specific formats. Thus, for the audio recording, we

designed the Audio Recorder, a component that records

uncompressed PCM (Pulse-code modulation) frames of

fixed size from the input hardware device and stores them in

a concurrent data structure used in parallel with the

Synchronization module (discussed below). For the video

recording, we designed the Video Recorder, a component

that obtains an instance of the hardware input camera, sets

camera parameters, frame rate and preview resolution, starts

updating the preview surface and simultaneously capture the

preview frames and stores them. The module that captures

preview surface frames actually captures a sampling of the

video, consequently a lower-quality video than the expected

is being produced and second, during the video recording,

the FPS (frames per second) vary, and that would

significantly affect the smoothness of the video play out.

 Synchronization module: we designed the

Synchronization Module in order to eliminate the variability

of video capture rate and synchronize the audio and video

streams. The Synchronization Module is responsible for

monitoring video and audio in order to capture the rate,

based on the formulas we discuss in the next section, and

propagate the frames and the samples to the packaging stage

at the Dispatcher application.

 Dispatcher: the main responsibility for the Dispatcher

is to establish a connection, setup a multimedia session and

packetize the media units, that polls from the local buffers.

The co-operation of Dispatcher and Synchronization module

results in the transmission of the synchronized multimedia

streams. The overall technique for the synchronization at the

client side is described in details in Section III.

C. Server

 A significant feature of our proposed Server design is that

it is modular and platform-independent. The Server is multi-

threaded in order to be able to present more than one

multimedia streams from different sources. This component

is responsible for handling client requests, configuring the

requested multimedia sessions, receiving and reconstructing

the multimedia streams, and displaying feedback during the

experiments.

Receiver: the Receiver is in charge of handling

incoming connection requests, de-packetizing the incoming

RTP packets using a packet Validator module, and

separating the streams by drawing information from the

header. Then, the receiver provides Sync Manager with the

received MUs in order to proceed to synchronization stage.

 Sync Manager: the Sync Manager is one of the most

significant components of our system as it is used to address

several major problems related to synchronization of the

media units and the presentation of the final stream. It

consists of a multimodal functionality as described below.

In case of an unreliable link for the uploading of the

multimedia streams, the Receiver enables the entire

functionality of the Sync Manager in order to execute the

audio/video synchronization algorithm we discuss in

Section III, so as to prevent the out-of-order presentation of

the MUs and the lack of synchronization between audio and

video. Given the video frame rate, the Sync Manager is able

to compute the video and audio playback time in order to

achieve the same temporal correlation of MUs as at the

transmission point and synchronize them in order to be

played by the Media Players without letting network delays

affect the video presentation. In the case of a reliable

connection, the Sync Manager assumes that the packets

arrive in order, as the underlying protocol is TCP, so, it

decides not to use the synchronization algorithm and only

adopts a buffering technique in order to synchronize the

media streams and provides them to Media Players in a

constant rate which represents the playback rate of the

multimedia stream at the origin. The proposed buffering

technique is presented in the next section in detail.

 Media Players: we designed these components in order

to enable the presentation of multimedia streams of PCM

and JPEG units at the receiver end. For both players we

followed a producer-consumer design, using concurrent data

structures. The Sync Manager is the producer that produces

the MUs in order and the players are the consumers that

consume the available media units. For video presentation,

we created a user interface handler that updates the video

screen when a new video frame is available. For audio play

out, we designed an Audio Player that is able to play audio

samples in a specific frame format and sampling frequency

(discussed in details in the next section).

III. PROPOSED APPROACH

 The system follows a client-server model of two

independent audio and video decoders. Using multi-

102Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

threaded software, we managed to accelerate the process of

video reconstruction by separating the multimedia streams,

synchronizing them whenever required, at negligible CPU

overhead, as we show in our experimental evaluation, and

executing parallel decoding of each stream. This way, an

application based on this system is able to run efficiently on

resource-constrained devices minimizing the processing

overhead and reduce processing delays, which are critical

for real-time multimedia applications. Apart from software

architecture and computer performance, another significant

contributory factor to live multimedia streaming is the

network availability. The Internet, like other packet

networks, occasionally looses and reorders packets and

delays them by variable amounts of time. To overcome

these impairments, we designed a protocol for real-time

communication following the Real-Time Transport Protocol

(RTP) specifications [1] that provides end-to-end delivery

services for data with real-time characteristics, such as

interactive audio and video.

A. Proposed Real Time Protocol

One important feature of our real-time protocol was to
provide a way to reconstruct audio and video streams with a
controlled delay for play out. To achieve this goal, we use
the RTP header to packetize MUs in order to provide the
receiver with payload identification, timing information and
a sequence number, the last two allow receivers to calculate
packet losses and jitter as well. Although the proposed
protocol follows the general design of RTP, it does vary in
several major ways.

 First, RTP does not provide any mechanism to ensure

timely delivery or provide other Quality-of-Service

guarantees i.e. prevention from out-of-order delivery. It

actually uses underlying protocols, usually UDP, for

transport and multiplexing functionality. In an audio/video

session [3] as opposed to [5] where an algorithm is proposed

for synchronizing of streams carried in separated sessions.

This type of streaming is acceptable over low bandwidth

communication channels. Thus, to begin live streaming, the

establishment of one end-to-end connection over either TCP

or UDP is required. In addition, each device is able to start

multiple sessions to transmit video to different destinations.

To achieve multimedia streaming in one session, we had to

keep the payload type constant and allocate different values

to the synchronization source identifier (SSRC) field

regarding the media type of the payload. In comparison to

RTP specifications where if both audio and video media are

used in a conference, they are transmitted as separate RTP

sessions, therefore SSRC identifier is a randomly chosen

value meant to be globally unique within a particular RTP

session. In Table I, we describe the attributes of the header

we use to packetize the media units. Our goal in the

streaming protocol is to support live multimedia services

either over TCP or UDP.

TABLE I. PACKAGING ATTRIBUTES

Name Size Description

payload

type
1 byte

This field identifies the format of the RTP

payload and determines its interpretation by the

application. It holds the same value for all

packets regardless of the media payload type,

because all packets represent one multimedia

stream.

sequence

number
2 bytes

The sequence number increments by one for

each data packet sent, and may be used by the

receiver to detect packet loss and to restore

packet sequence

time

stamp
4 bytes

The timestamp reflects the sampling instant of

the first octet in the RTP data packet. The

sampling instant MUST be derived from a clock

that increments monotonically and linearly in

time to allows synchronization and jitter

calculations

SSRC 4 bytes

The SSRC field identifies the synchronization

source. This identifier should be chosen

randomly, with the intent that no two

synchronization sources within the same RTP

session will have the same SSRC identifier

Payload N bytes Data

 We implement a buffering technique that we discuss in

the next section, consisting of two major parts. The first

part refers to a dispatcher-side buffering in order to

facilitate the synchronization of the generated MUs and the

second part concerns the adoption of a receiver-side buffer

to accommodate initial throughput variability and inter-

packet jitter. The experimental results we conducted shown

that the proposed buffering technique can be integrated

into applications using TCP-Friendly transmission of

multimedia streams, and benefit from TCP mechanisms as

it is reliable and guarantees delivery of packets in order.

However, using TCP as transport layer may induce long

delays because of the TCP retransmission mechanism. This

actually leads to long video pauses at the receiver-end,

which highly degrade the real-time communication. To

cope with this issue, we monitor the transmission delay

between successive incoming packets and drop those that

are late with respect to specific thresholds, we discuss

later, related to the actual time user conceives. As far as the

scenario of using a UDP-based streaming protocol is

concerned, we adopt the proposed streaming protocol over

UDP using the buffering technique, we discuss in the next

session, and the time-oriented audio and video

synchronization algorithm that we present in Section C.

B. Buffering Technique

 One of our major design challenges was how to create a

synchronized multimedia stream with a constant playback

rate produced by two different media sources, as the

capturing and coding rate on each source is different and

induces variable delays. To address this problem, we first

synchronized the camera and microphone capture rates by

setting up our system’s audio recorder appropriately so as to

103Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

capture audio samples depending on the capture frame rate

of smartphone’s camera. Moreover, we provide a client-side

buffering so as to adjust multimedia stream capture rate by

prefetching multimedia data into a buffer in a controlled

rate, which represents the playback rate at the receiver. This

assures the elimination of the variable delays induced by

sources. Thus, media streams have well-defined temporal

relations among themselves and can be sent synchronized to

the server. More precisely, the relation among the audio

samples, video frames and playback time is given by the

following formulas:

VPi = Vi / VR (1)

 where VPi is the video playback time of the i
th

 video

frame in seconds, Vi is the i
th

 video frame number which is

an integer that increases by one representing the i
th

generated video frame and VR represents the video frame

rate (Frames per second) of the source. In practice, applying

the (1), the system is able to accurately calculate the

playback time of a particular video frame in seconds. To

calculate the audio playback time, APj, of an audio frame,

we use (2), where the num_samples represent the number of

the encoded audio samples of 16-bit each of the produced

PCM frame. In our approach, in stereo mode, a PCM audio

frame contains 512 samples and, in mono mode, a frame

contains 1024 mono samples, thus, it follows that each

audio frame consists of 2048 bytes minimum. This size

applies to all fragments of the audio stream. Note that using

Android Media package, data should be read from the audio

hardware in chunks of sizes subject to the total recording

buffer size. In (2), Aj is the j
th

 audio frame number which is

an integer that increases by one representing the j
th

generated audio frame and sampling frequency corresponds

to the produced samples per second (Hz).

 APj = num_samples × (1 / sampling frequency) × Aj (2)

 Taking the above-mentioned into account, we conclude
to (3), which calculates the audio frame that must be
presented in the VPi

th
 second in order to achieve

synchronization.

Aj = VPi × sampling frequency / num_samples (3)

 Using the above formulas, the Synchronization module

of the Client application is able to estimate the correlation

among the produced MUs and provide the Dispatcher with a

synchronized multimedia stream so as to transmit the MUs

in the right order so as to be presented in sync at the

Receiver, in case of transmission under ideal circumstances,

no further processing would be required at the Server in

order to present a synchronized multimedia stream.

Nevertheless, a critical aspect lies in the lack of

synchronization that may exist between audio and video

streams at the receiver-end due to the fact that the

characteristics of IP-based network, delay and jitter, affect

the temporal relations present in multimedia streams. To

circumvent these problems, we use a receiver buffer for the

temporary storage of incoming media units comparing (1) to

(2). In practice, the Sync Manager of the Server checks

whether the playback time of a newer video frame is the

same with the playback time of the corresponding audio

frame. If this is the case, it follows the presentation of MUs

at the proper time. The use of a MU buffer introduces some

delay in the application, which is directly proportional to the

size of this buffer. The objective of the process is to provide

a presentation that resembles as much as possible the

temporal relations that were created during the encoding and

multiplexing process at the Client.

C. Audio/Video Synchronization Algorithm

 In our system, the real-time delivery of the packets can be
accomplished by using either TCP or UDP as the transport
layer. Taking for granted that the media streams are
synchronized at the origin, we need to achieve the same
temporal correlation for playback at the receiver. This can be
a quite difficult issue when the system performs transmission
over UDP, which is unreliable and does not provide Quality-
of-Service mechanisms, such as prevention from out-of-
order delivery of packets. To cope with this challenge, we
propose the following synchronization algorithm which
imposes negligible CPU overhead, as shown in experimental
results below, which is important as we have to deal with
resource-constrained devices and real-time communication.
In order to ensure a better quality of the reconstructed
material, priority is given to audio information. We chose
audio stream to be played regardless of the state of the video
because human perception is more sensitive to degradation
in audio quality than in video [4]. This means that audio
would be played upon arrival as long as it is in order,
regardless of the state of the video stream. In practice, if the
audio stream anticipates the video stream, the receiver
simply discards the video packets.
 In the case of receiving a video packet, first, the

audio/video synchronization algorithm checks the SSRC

field of the packet header in order to determine whether the

payload contains audio or video data. Then, it checks if the

received video frame is newer than the displayed one by

comparing the new timestamp with the old one. If this is the

case, it calculates the video and audio playback times, using

(1) and (2), respectively. If the audio is ahead of the video,

the algorithm calculates the difference between their

playback times, APi – VPi. In the case of APj– VPi >

threshold, where threshold is the maximum level at which

humans detect frames as being in sync, the video is

considered too old to be displayed and it is dropped,

otherwise it is rendered. The threshold is tuned based on the

application characteristics. In [4], a detailed study of the end

user capability to detect harmful impacts of de-

synchronization on QoE (Quality of Experience) is

provided. The author indicates that an absolute skew smaller

than 160 ms is harmless and greater than 320ms is harmful

for QoE. The author identifies a double temporal area [-

160,-80] and [80,160] called transient, in which the impact

104Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

of the skew heavily depends on the experimental conditions.

IV. IMPLEMENTATION

 Our software architecture was motivated by the need to

have a simple and platform-independent implementation.

We chose Java as the development language. The object

oriented features of Java and its simplicity enables our

system to be simple and modular. Thus, MobiStream can

run on any platform that supports Java and requires a real-

time streaming protocol for multimedia services. The

software for the smartphones is an Android application that

enables the device to act simultaneously as client and server

and runs efficiently on Android v2.3 or later versions. For

the laptop server, we used in some experiments, the

software runs on Java 2 SE. We have also developed a

graphical user interface (GUI) and the code for the media

components.

 In this section, we describe the implementation details,

the major challenges we faced specifically on Android

phones, and the design choices we made to address them.

A. The Streaming Process

 The phases required to complete the streaming process

between two devices are media capture, media transmission

and media presentation. In this section, we describe the

implementation details of each phase and the technical

problems we encountered.

1) Media Capture

 Media content originates from hardware input devices,

that is, camera and microphone. In most multimedia

applications, the media capture phase is implemented using

available APIs that provide access to built-in Multimedia

Recorders that supports several media formats, encoders and

streaming protocols in order to provide playable stream

formats to Media Players. Developing on Android platform,

we faced two major issues. First, the lack of hardware

accelerated codec APIs when we implemented the prototype

system and, secondly the fact that the exposed APIs do not

provide the ability to stream live multimedia content from

the built-in Media Recorder in a format playable from the

built-in Media Player. To overcome these issues, we have

implemented two independent Media Recorders. Each one

is able to draw input from a different hardware device and

use media formats and encoders supported by all platforms.

 For the video recording, we used the Camera APIs to

set image capture settings, start/stop preview and retrieve

frames for encoding for video. An instance of the camera is

actually a client for the Camera service, which manages the

actual camera hardware. We install a callback to be invoked

for every preview frame, using pre-allocated buffers, in

addition to displaying them on the screen. The callback will

be repeatedly called for as long as preview is active and

buffers are available. The purpose of this method is to

improve preview efficiency and frame rate by allowing

preview frame memory reuse. The image format for preview

pictures is either NV21 or YV12, since they are supported

by all camera devices. To reduce the size of the video

images, we use a JPEG encoder. The video frame size

depends on the video resolution and the quality of the

compressed data.

 For the audio recording, we used the AudioRecord class

of the Android SDK which manages the audio resources for

Java applications to record audio from the audio input

hardware of the platform. This is achieved by reading the

data from the AudioRecord object. Upon creation, an

AudioRecord object initializes its associated audio buffer

that it will fill with the new audio data. The size of this

buffer, specified during the construction, determines how

long an AudioRecord can record before "over-running" data

that has not been read yet. Data should be read from the

audio hardware in chunks of sizes inferior to the total

recording buffer size. Thus, the Audio Recorder captures

uncompressed PCM samples of a specific sampling rate and

size. In our prototype system, we set the sampling rate and

the size of the recorded samples accordingly to the video

frame rate in order to facilitate the synchronization process,

as described previously. The captured MUs are stored in

concurrent data structures so as to enable the co-operation of

the modules involved in capture and transmission phases.

2) Media Transmission

 At the end of the capture phase, since the MUs cannot be

directly transmitted over IP-based networks, they are

wrapped within media containers that provide the necessary

meta-information to facilitate the decoding and correct

presentation at the receiver end. This task is assigned to the

module that packages the media units following the

specifications of the real-time streaming protocol we

discussed previously. At the server side, the receiver

performs the de-multiplexing and de-packaging process and

provides the separated media streams to the Sync Manager

in order to synchronize them before the presentation phase.

A contributory factor to the efficiency of the collaboration

among the modules of the different phases is the use of

Android Services, which are independent application

components that host the main processes of our system and

execute long-running operations while not interacting with

the user.

3) Media Presentation

 Using the above-mentioned Media Recorders, the

proposed real-time streaming protocol and the

synchronization algorithms we discussed previously, the

system is able to reproduce the initial media streams and

proceed to the presentation phase. In order to present the

MUs, we developed two independent Media Players. For the

video playback, first the decoding of the compressed data

from the playback buffer takes place and then the User

Interface Handler which extends the Handler class of

Android SDK updates the video view. This process is

executed as soon as there is a new video frame in the

playback buffer. For the audio playback, we developed an

Audio Player, using the AudioTrack class of the Android

SDK which manages and plays a single audio resource for

105Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

Java applications. It actually allows streaming PCM audio

buffers to the audio hardware for playback.

B. Streaming Protocol

 We used the java.net library to implement a library that

provides a streaming protocol for real-time applications,

based on Real-time Transport Protocol, for multimedia

services and can be ported to any platform supports Java

and its network libraries. Using this library, the system is

able to set up, start and handle multiple unicast sessions

using UDP or TCP as the transport layer, and transmit

multimedia data supporting a wide range of media formats

for the packaging and de-packaging stages, even though in

the prototype system we used specific formats in order to

facilitate the porting of the live multimedia streaming

process to different platforms.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We have conducted a set of experiments in order to

evaluate the efficiency and performance of MobiStream.

The testbed of the experiments is presented in Table II.

Additionally, we provide screenshots of the android

application in Fig. 2. This setup can be used in various

scenarios, for example, in streaming video, in mobile video,

e-health, assistive technologies. First, we assume a

Streaming Client running on an Android-powered device

that uploads live multimedia streams to a Server. We

conducted a series of experiments using different levels of

signal strength - weak, medium and strong using TCP,

monitoring the five bar scale of the smartphones which

basically measures radio signal levels maintained by the

wireless network adapter, in decibels (dB) on a more linear

scale. For each experiment, we report the averaged results

of five runs. We also repeated the process using UDP and

compared the results. To run this test we used the Xperia

Neo V Android smartphone as Streaming Client and the

Samsung Windows 7 laptop as Server. The second scenario

concerns a Streaming Client delivering a live multimedia

stream to multiple receivers of the network. The network

comprises a wireless access point (i.e., router), a streaming

client (Xperia Neo V) and 5 to 20 receivers. We executed

the experiment using a different number of receivers so as to

record the end-to-end delay and the jitter, in order to

investigate how these measurements affect the quality of the

video at the receiver. In all cases, no external peers injected

traffic in the network the server allows a few seconds (3s to

5s regarding the signal strength) startup delay, which is a

common practice in commercial streaming products. All

packets arriving earlier than their playback times are stored

in the server’s local buffer. In comparison to Ambistream in

which a 30s start-up delay is introduced by the middleware

layer to allow protocol translation. This aspect restricts the

TABLE II. TEST DEVICES

Test Sony Ericsson HTC Samsung
Devices Xperia Neo V Explorer NP300V5A-S05

Role Client/Server Client/Server Server
Platform Android 4.0.4 Android 2.3.5 Windows 7

CPU 1 GHz 600MHz I5-2450M 2.5GHz
Memory 420MB 256MB 4GB

use of the middleware for real-time applications. The

multimedia stream has a QCIF (176 by 144) frame size in

200kbs and 400kbs video bitrates, whereas in 600kbps,

800kbps and 1000kbps we apply a CIF (352 by 288). The

stream duration is 180 seconds and the video capture rate

varies accordingly to the video bitrate presented in the

experimental results; in total, more than 12 hours of

streaming required among the testing devices.

D. Experimental Results

1) System Evaluation

 We first present the experimental results of the mobile-

to-server scenario. We focus on the following Quality of

service metrics: end-to-end delay (i.e., the time taken for a

packet to be transmitted from the client to the server), the

jitter (i.e., packet delay variation measured at the server) and

the download rate (i.e., the transmission bitrate measured at

the server). In Fig. 3 and Fig. 4, we present the download

rate of the desktop server using TCP and UDP respectively.

We chose a high video bitrate of approximately 1100kbps,

in order to evaluate network throughput. In case of using

TCP, Fig. 3 clearly depicts the behavior of the transport

protocol in the weak signal strength case, as it shows intense

variability of the download rate induced by the

retransmission mechanism of TCP. In the medium and weak

signal strength cases, the download rates recorded were

4,96% and 17,97% lower than the rates observed in strong

signal strength case. In case of using UDP, we observe from

Fig. 4 that the download rates in medium and weak signal

Figure 2. (a) The mobile screen while recording a live event and the video

window of the server running on a desktop, (b) Server Configuration
screen, (c) Session Configuration screen, (d) Statistics screen.

106Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

download rate is higher regardless of the signal state due to

the client-side buffering employed in the framework. Fig.

5illustrates the jitter for different packets using TCP. In

weak signal strength we recorded high values of jitter, e.g.,

786ms, at 387
th

 packet. This fact entails long pauses at the

video presentation. Nevertheless, our proposed approach

discussed in Section III accomplishes a good quality of the

video stream without degrading the real-time

communication. In medium signal strength, the highest

absolute values of jitter are smaller than the values recorded

in weak signal state. In strong signal strength, the highest

positive value of jitter recorded was 40ms. Regarding the

second scenario of the use of multiple server applications

running on the network, we measured the end-to-end delay

in case of 5, 10, 15, 20 receivers using TCP. Fig. 6 presents

the mean end-to-end delay for different numbers of servers

running in the network. The end to end delay remains within

acceptable bounds in terms of video quality and Quality-of-

Experience and increases proportionally to the number of

receivers, approximately 28% from 5 to 10 receivers, 30%

from 10 to 15 receivers and 48% from 15 to 20 receivers.

2) Evaluation of Memory and CPU usage

 We also measured the resource usage of our approach.
We run the experiments using the HTC Explorer
smartphone described in Table II. Fig. 8 illustrates that the
memory usage at the Server side remains constant. For
higher data-rates, the memory usage may increase slightly
because of the higher buffer sizes required. In the case of
the Client application, the memory usage increases
proportionally to video capture rate (including only JPEG
data). In both applications, the framework re-uses the pre-
allocated space in RAM in order for the multimedia
application to be able to run under memory constraints, as in
this scenario we run the experiments using a smartphone
with 256MB RAM. Fig. 9 depicts the CPU overhead on
both client and server mobile applications versus the video
bitrate. In all experiments we observed slightly higher
percentage of CPU overhead in Client application, this is
due to the use of the hardware input camera and the YUV
compression module. Nevertheless, in both applications

when the video bitrate is greater than 700kbps the CPU
overhead tends to be the same. In order to accurately
estimate the CPU usage of the framework during the live

streaming process, we divided the CPU monitoring into

three phases; (I) initialization of media components, (II)
streaming process, (III) media components finalization. In
both client and server applications the CPU usage during the

first phase were 67% and 55%, respectively. The second
phase is illustrated by Fig. 9 and includes, from the client
point of view, the recording, storing, packaging and

transmission of the media units. Regarding the server
application, the second phase includes the de-packaging, the
synchronization, the storing and the presentation of the
received media units. For the third phase, the server and

client required approximately 55% and 68% CPU usage,
respectively.

Figure 3. Download rate (kbps) - Signal Strength, using TCP.

Figure 4. Download rate (kbps) - Signal Strength, using UDP.

Figure 5. Jitter(ms) - Signal Strength, using TCP.

Figure 6. End to end delay (ms) – Number of Receivers, using UDP.

3) Evaluation of Energy Consumption

 In the last set of experiments, we measured the energy

consumption of our approach. We executed the scenario of

mobile-to-mobile server running on smartphones and before

the experiment both smartphones were fully charged.

During the experiment, the battery states are recorded every

10 seconds. Fig. 7 presents the battery state as a function of

time. The 100% percent corresponds to the fully charged

battery. We chose a high video bitrate of 1100kbps and run

107Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

Figure 7. Battery Level (%) – Video bitrate (kbps)

Figure 8. Memory (MB) – Video bitrate (kbps)

Figure 9. CPU Usage (total ratio) – Video bitrate (kbps)

each experiment for 16.6 minutes. Fig. 7 depicts that the
Server hardware input Camera and framework’s Audio

Recorder compared to the Server application in which the

main energy consuming component is the Audio Player.

ΙΙ. CONCLUSION AND FUTURE WORK

 In this paper, we designed, implemented, and evaluated

a mobile multimedia system, MobiStream that enables

resource-constrained devices to handle real-time multimedia

streams. We designed a platform-independent framework so

that we can support live multimedia streaming among

heterogeneous mobile devices. We present our approach on

the synchronization of the media streams and the streaming

process we employed. Our experimental results demonstrate

significant performance benefits in terms of the usage of the

mobile devices’ resources and video quality. For our future

work, we plan to evaluate the working of our approach

using a larger number of heterogeneous mobile devices.

ACKNOWLEDGMENT

 This research has been co-financed by the European

Union (European Social Fund ESF) and Greek national

funds through the Operational Program "Education and

Lifelong Learning" of the National Strategic Reference

Framework (NSRF) – Research Funding Program: Thalis-

DISFER, Investing in knowledge society through the

European Social Fund.

REFERENCES

[1] H. Schulzrinne, S.L. Casner, R. Frederick, and V. Jacobson. “/RTP: A
Transport Protocol for Real-Time Applications", IETF Request for
Comments: RFC 3550, Jul. 2003.

[2] Cisco Systems, “Cisco visual networking index: Global mobile data
traffic forecast update”, 2011-2016. http://www.cisco.com.

[3] M. Westerlund and C. Perkins “Multiple RTP Sessions over a single
Transport flow”, Ericsson, University of Glasgow, Nov. 2011.

[4] R. Steinmetz, “Human perception of jitter and media
Synchronization”, IEEE Journal on Selected Areas in
Communications, vol. 14, no. 1, 1996, pp. 61–72.

[5] R. Bertoglio, R. Leonardi, and P. Migliorati, “Intermedia
Synchronization for videoconference over IP”, Signal Processing:
Image Communication, Sept. 1999, pp. 149-164.

[6] K. Curran and G. Parr, “A Middleware Architecture for Streaming
Media over IP Networks to Mobile Devices”, IEEE Int. Conf.
Wireless Communications and Networking, Mar. 2003.

[7] N.M. Do, C.H. Hsu, J.P. Singh, and N. Venkatasubramanian,
“Massive live video distribution using hybrid cellular and ad hoc
networks”, IEEE International Symposium on World of Wireless,
Mobile and Multimedia Networks, Jun. 2011.

[8] J. Domingo-Pascual, P. Manzoni, S. Palazzo, A. Pont, and C. Scoglio
“On the Forwarding Capability of Mobile Handhelds for Video
Streaming over MANETs”, 10th International IFIP TC 6 Networking
Conference, May 2011.

[9] E. Andriescu, R. Cardoso, and V. Issarny, “Ambistream: A
Middleware for Multimedia Streaming on Heterogeneous Mobile
Devices”, Middleware, volume 7049 of Lecture Notes in Computer
Science, pp. 249-268, 2011.

[10] C. Fragouli and E. Soljanin. “Network Coding Fundamentals.” Now
Publishers Inc, Delft, The Netherlands, Jun. 2007.

[11] S.U. Din and D. Bulterman, “Synchronization Techniques in
Distributed Multimedia Presentation”, IARIA MMEDIA 2012, Apr.
2012, pp. 1-9.

[12] T.E. Truman, T. Pering, R. Doering and R.W. Brodersen. “The
InfoPad multimedia terminal: a portable device for wireless
information access”, IEEE transactions on computers, Oct. 1998, pp.
1073-1087.

[13] PacketVideo Coorporation, “PacketVideo OpenCORE Multimedia
Framework”, http://www.opencore.net/.

[14] D. Hobson-Garcia, K. Matsubara, T. Hayama and H. Munakata.
“Integrating a Hardware Video Codec into Android Stagefright using
OpenMAX IL”, http://elinux.org/images/5/52/Elc2011_garcia.pdf.

[15] FFMPEG, “Developer Documentation”, http://www.ffmpeg.org.

108Copyright (c) IARIA, 2013. ISBN: 978-1-61208-265-3

MMEDIA 2013 : The Fifth International Conferences on Advances in Multimedia

