
A Flow Aggregation Scheme for Seamless QoS Mobility Support in
Wireless Mesh Networks

Dario Gallucci, Steven Mudda, Salvatore Vanini
Information Systems and Networking Institute

SUPSI
Manno, Switzerland

Email: [dario.gallucci,steven.mudda,salvatore.vanini]@supsi.ch

Radoslaw Szalski
Institute of Control and Information Engineering

Poznan University of Technology
Poznan, Poland

Email: radoslaw.szalski@put.poznan.pl

Abstract—Current solutions for network mobility support in
wireless mesh networks lack Quality of Service (QoS) capabilities.
Thus, they are not well suited for supporting services with
QoS requirements (e.g., Voice over IP or Video on Demand).
WiOptiMo is a solution, originally designed for seamless handoff
management in the Internet, that was adapted for seamless inter-
networking in wireless mesh networks. In this paper, we show how
its basic infrastructure was modified in order to meet the QoS ex-
pectations of mobile users running heterogeneous applications on
a wireless mesh network. Specifically, QoS support is provided by
aggregating application traffic flows with the same characteristics
to limit overhead and by relaying compressed aggregated flows
to the appropriate mobility provider. We experimentally evaluate
the performance of our aggregation scheme and demonstrate that
link utilization is optimized and QoS is improved.

Keywords-Wireless Mesh Networks; Seamless Handover; QoS
Mobility Support; Flow Aggregation; Flow Classification.

I. INTRODUCTION

Recent years have witnessed a significant reduction in
the costs of mobile computing platforms (e.g., laptops and
smartphones), especially the hardware used in WiFi devices
and has led to a widespread use of Wireless Mesh Networks
(WMNs). WMNs provide multiple services to people using
their mobile devices via a combination of fixed and mobile
nodes, interconnected via wireless links to form a multi-hop
ad-hoc network. WMNs are a cost-effective solution to extend
the range of wired infrastructure networks with the help of
easy to deploy wireless nodes. For example, the backbone of
a telecom service provider can be easily expanded utilizing
mechanisms to manage resources of wireless nodes [1] [2].
Existing mechanisms work only in scenarios where wireless
connection stability can be ensured. For example, CARM-
NET [3] [4] utilizes the WMN paradigm to enable nearby
wireless devices communicate with each other and proposes
a distributed resource management method that can be easily
integrated with a telecom IMS software infrastructure. This
method (implicitly) assumes that the underlying network con-
nectivity is not affected by topological changes (e.g., gateway
changes) caused by the mobility of network’s nodes. During
those changes, packets for a given application flow might be
rejected because of the change of the IP address, or they might
be lost due to out-dated routing information. As a consequence,
the quality and performance of correspondent applications

can significantly decrease. Traditional mobility management
schemes designed for IP-based networks are not suitable for
WMN architectures. For example, Mobile IP [5] focuses on
keeping the IP identity of a mobile node only. However, it
introduces network overhead due to the protocol signaling and,
consequently, causes a degradation of TCP throughput. On the
other hand, since mobility support in pure ad-hoc networks
focuses on rerouting (i.e., finding an alternative path in a timely
manner, so that a flow can be handed off to the new path
upon link disruption), these schemes perform poorly in WMNs.
To overcome these limitations, several works have proposed
different approaches to provide QoS and seamless mobility
support in WMNs. However, many of them are not designed
to manage multimedia services with QoS requirements—e.g.,
Voice over IP (VoIP) or Video on Demand (VoD). In this paper,
we present an extension of our WiOptiMo [6] framework
(described in section III) to provide generalized QoS mobility
support in WMNs. In sections IV and V, we describe our
enhanced framework and flow aggregation scheme to provide
the required QoS to different types of applications in a WMN
scenario. Finally, in section VI, we evaluate the performance
improvement with respect to its standard configuration for
WMNs.

II. RELATED WORK

The existing work on mobility management in WMNs
focuses on providing network-layer mobility support. RFC
4886 [7] specifically addresses the issue of network mobility.
The different solutions presented in literature focus on manag-
ing the address of a mobile node due to the handoff process.
In general, we can distinguish between intra-domain and inter-
domain mobility. The first refers to handoffs inside the same
network domain, the second to handoffs between different
network domains. MobileNAT [8] addresses both intra- and
inter-domain mobility. MobileNAT requires a modification at
the network layer stack of a mobile node and changes to the
standard DHCP protocol, which introduces network latency.
SyncScan [9] is a Layer-2 procedure for intra-domain handoff
in 802.11 infrastructure mode networks. It achieves good per-
formance at the expense of a required global synchronization
of beacon timings between clients and access points (AP).
iMesh [10] provides low handoff latency for Layer-3 intra-
domain handoffs between APs of a WMN. However, the hand-

32Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

Client

Application

CNAPT

Loopback:PortX

Loopback:PortY

IPMD

IPMD:PortX1

Mobile device

SNAPT

IPSNAPT

Server

Application

Correspondent Node

IPSNAPT:PortY1

IPCN:PortY

IPCN:PortY2

IPCN

Internet

Figure 1: WiOptiMo’s CNAPT and SNAPT IP decoupling.

off latency depends on the number of nodes between the new
and old AP. BASH [11] focuses on the design of a intra-domain
Layer-2 seamless handoff scheme for 802.11 WMNs, but the
handoff protocol requires modifications at every mobile client.
Authors of [12] use tunneling, as well as the standard Mobile
IPv6 solution [13] and most of the existing network-layer
mobility management schemes based on Mobile IP, such as
Mobile Party [14] and AODV-PRD [15]. Tunneling introduces
extra delay for the encapsulation/decapsulation of packets and
has intrinsically low flexibility. Finally, SMesh [16] provides
a 802.11 mesh network architecture for both intra-domain
and inter-domain handoffs. For intra-domain handoffs, SMesh
generates high network overhead, which grows linearly with
the number of mobile clients. In case of inter-domain handoffs,
network overhead generated by SMesh is proportional to the
number of connections of a mobile client. The WiOptiMo
framework provides mobility support by separately managing
each application’s flow, to meet the QoS expectations of all
applications. In [6], we describe the architecture of WiOptiMo
and present how it is adapted to handle a WMN context in [17].
In the next sections, we show how its architecture has been
modified to handle efficiently multiple application’s flow with
different QoS requirements.

III. THE WIOPTIMO FRAMEWORK

WiOptiMo enables handoffs initiated by a mobile device.
It manages the mobility of every device with the help of two
software modules: Client Network Address & Port Translator
(CNAPT) and Server Network Address & Port Translator
(SNAPT). Together, these two components provide decoupling
between the IP address assigned to a mobile device and the
IP address used to access a service on the Internet. CNAPT
and SNAPT hide any change of the IP address when a mobile
host moves between different access networks, inside the same
domain or between different domains. In Figure 1, we present
a scenario where a mobile device with IP address IPMD
has an active TCP session to a corresponding node with IP
address IPCN. The TCP data packets are first relayed to the
local CNAPT, which in turn relays them to the SNAPT. Upon
receiving packets, the SNAPT (processes and) forwards them
to the IPCN address. When the mobile device moves to a new
network and gets a new IP address, the change in IP does not
affect the application layer because the application packets are
sent to the the local CNAPT, which relays them to the SNAPT
with fixed IP address (IPSNAPT). This mechanism also allows
a mobile node of a WMN to change gateway transparently

SNAPT

SNAPT

CNAPT

CNAPT

CNAPT CNAPT

CNAPT

Figure 2: WiOptiMo configuration for a WMN.

(e.g., when node moves out of the reach of the initial gateway
due to the mobility of the associated user), without suffering
service disruption. To correctly manage the handoff process,
CNAPT and SNAPT exchange handshaking packets with each
other using a control socket.
In a generalized setting, mobile devices have CNAPT installed
on them, while an Internet server or any node in a network (as
in the scenario previously described) have SNAPT installed on
them.

A. WiOptiMo Architecture for a WMN

In [18], we present a general configuration of our WiOp-
tiMo for a WMN. We exploit the flexibility of location where
a SNAPT can be installed to address scalability issues that
might arise in a WMN. In this scenario, multiple SNAPTs can
be deployed on mesh routers or on Internet nodes to avoid
network congestion in a single spot. Every mobile wireless
device has CNAPT installed on it to provide independent
mobility support. We use a combination of network status mon-
itoring and user configurable policy to enable every CNAPT
to choose a suitable SNAPT that will relay its application
flows. At start-up, each CNAPT connects to a fixed SNAPT
specified in a configuration file. Then, it receives a list of
other available SNAPTs from the currently connected SNAPT,
and measures the delay towards them by means of passive
and active monitoring of the control connection towards the
SNAPTs, used for handshaking. CNAPTs also take into ac-
count the bandwidth used by applications in order to make
a more wise SNAPT choice. The CNAPTs select a SNAPT
to relay their data depending on the measured delay and
estimated remaining throughput (based on the application’s
bandwidth requirements). This selection policy also helps in
reducing the overload on any single SNAPT. Figure 2 shows
WiOptiMo’s architecture for a WMN. The SNAPTs can be
managed by private administrators (otherwise called mobility
service providers), who may require a fee for the use of
their mobility service. This circumstance might foster the
competition between mobility service providers, forcing them
to increase the quality of provided service and benefit the entire
WMN.

B. Implementation changes

We adapted WiOptiMo’s implementation (both CNAPT
and SNAPT) for low profile devices and to provide a fast
handoff procedure. Figure 3 shows the changes to the basic

33Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

CNAPT

TCP control socket

. . .
UDP application flows

MN MN
moves

CN

UDP association

SA = x

SA = y

DA = d

DA = d

IP = x IP = y IP = d

HMAC

validation

SNAPT

Figure 3: WiOptiMo adaptation for a WMN.

implementation of WiOptiMo. A TCP control socket still
manages the communication between a CNAPT and a SNAPT.
It provides network configuration parameters (e.g., the MTU
of the underlying network) and also transmits data packets
in a fall-back mode when middle-boxes, such as firewalls
and/or NATs, block UDP packets. Further, the control socket
is used to authenticate the CNAPT and to exchange a session
key for providing data authenticity and integrity during a
handoff. The CNAPT relays data packets to SNAPTs (and vice
versa) using UDP sockets—this solution increases performance
during handoffs, because UDP does not need to retransmit
lost packets nor does it perform any connection setup. When
a SNAPT receives a UDP data packet, it validates it using
HMAC [19] and tests it against replay attacks using a sequence
number. During handoffs (i.e., when the source IP address
of data packets changes), the SNAPT updates the return IP
address for the flow and transmits a keep-alive request to the
CNAPT, which will reset the control connection or hasten the
detection of a timeout. This event will then trigger the re-
establishment of the control socket connection to the SNAPT.

IV. QOS SUPPORT IN WIOPTIMO

We need an efficient delivery of heterogeneous traffic to
meet the QoS requirements of applications. Since WiOptiMo
relays each outgoing data flow from a client to a server
application (through the link between CNAPT and SNAPT),
every flow from a mobile device to its intended destination
can be managed separately, according to its characteristics. In
this section, we present the improvements to the WiOptiMo
framework that enable it to efficiently deal with QoS, while
still providing mobility support.

A. Flow classification

To meet the QoS requirements of applications, data flows
are relayed to different SNAPTs based on their delay and
throughput needs. In this regard, we identified four different
flow classes according to the minimum throughput and max-
imum delay requirements of applications: High Throughput
and High Delay (HT & HD), High Throughput and Low Delay
(HT & LD), Low Throughput and High Delay (LT & HD), Low
Throughput and Low Delay (LT & LD). In terms of throughput,
the minimum threshold for classifying HT flow classes is
64kbit/s. We set the maximum delay for LD classes to 1s.

CNAPT

Traffic flow

classification

Class 1

Class 2

Class 3

Class 4

Scheduler

Aggregated flows

SNAPT

SNAPT

SNAPT

SNAPT

Compressed content

Figure 4: Software architecture of the aggregation scheme.

As previously stated, during the normal workflow, a CNAPT
periodically measures delay (one-trip time) and throughput
(amount of received data over a time period) towards the
different SNAPTs. Then, for each application flow, it detects
the class type on the basis of process name, protocol and port
number. Every class has an assigned delay and throughput
requirements and data flows get relayed to a SNAPT that meets
their delay and throughput requirements.

While our solution for flow classification is conceptually
similar to DiffServ [20], it doesn’t have its drawbacks. First,
flow classification is performed dynamically per SNAPT, so
that new flows are allocated depending on the current network
performance statistics (e.g., the increase of the delay with the
increase of the load). Second, our framework might refuse to
serve a flow if its QoS requirements cannot be met, hence
avoiding to disrupt the traffic already allocated. Moreover,
the routing layer, as explained in [18], knows which traffic
is managed by WiOptiMo. In this way, a QoS-aware routing
mechanism can be executed whenever needed. In particular,
network statistics about each single flow are reported to the
routing layer so that there is no loss of granularity in the traffic
management.

V. FLOW AGGREGATION MECHANISM

WiOptiMo allocates a UDP socket for each application
flow (i.e., TCP connection). This behaviour does not favor
the efficient handling of application flows with short frequent
sessions (e.g., DNS requests), because useless computational
overhead can be generated. It is also inefficient in terms of
performance because the wireless link can be under-utilized.
Furthermore, major unfairness may occur between competing
flows—a major drawback when wireless links have high la-
tency [21]. A naive solution would be to aggregate all data
into a single flow, however applications with high bandwidth
requirements would delay low latency applications. To over-
come these issues, we designed a class based aggregation
technique. Classified flows that belong to the same class are
treated as a single aggregate and transmitted to a SNAPT
using the same UDP socket. Our objective is to maximize the
utilization of the available link bandwidth and reduce network
overhead, thereby increasing the achieved throughput without
significantly impacting the latency requirements.

Figure 4 presents the details of our aggregation mechanism.

34Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

TABLE I: Different Parameters of the Experiment.

Application Class Packet Size Range of bit-rate Range
(Bytes) (bit/s) of Flows

HT & HD 1360 1M - 20M 1 - 5
HT & LD 576 128k - 2M 1 - 5
LT & HD 1360 15k - 1M 1 - 5
LT & LD 100 15k - 128k 1 - 5

HT - High Throughput LT - Low Throughput
HD - High Delay LD - Low Delay

We implemented four connection queues, one for each of the
application classes defined in Section IV-A. The queues feed
into a scheduler, which uses a connection strategy based on
flows’ priority: the scheduler sends classes with more stringent
requirements in terms first of delay and then of bandwidth.
To reduce the amount of exchanged data, we enabled com-
pression of the aggregated flows—packets are appended to
the aggregated compound until their cumulative compressed
size does not exceed the 70% of the underlying network’s
MTU. We chose this threshold to maximize the effectiveness
of aggregation without having to resort to a slower algorithm.

VI. EXPERIMENTAL RESULTS

In this section, we present the experiments conducted to
assess the performance and QoS support of WiOptiMo with
flow aggregation.

A. Performance of WiOptiMo with flow aggregation

We conducted experiments in three different scenarios:

1) Baseline: without WiOptiMo.
2) WiOptiMo basic.
3) WiOptiMo with flow aggregation mechanism.

Measurements showed that the performance of the base-
line and WiOptiMo basic configurations are comparable (the
degradation on throughput and the additional end-to-end de-
lay introduced by the WiOptiMo solution are negligible, as
presented also in [6]). For this reason, we report only the
results for the baseline and WiOptiMo with flow aggregation
scenarios.
In the next paragraphs, we show that our flow aggregation
scheme achieves a better link utilization and reduces the
amount of bytes exchanged in the network.

Experiment setup: We installed the WiOptiMo SNAPT on
a Dell Optiplex 760 (server) and WiOptiMo CNAPT on a Dell
Precision M4300 (client) with LinkSys Dual-Band Wireless
A+G PCI Card. To avoid interference with nearby 802.11
access points operating on the 2.4 GHz band, we connected
the client and server through a Netgear WNDR3800 wireless
router (with OpenWRT 12.09 and only 802.11a networking en-
abled). Both client and server operated on a Linux distribution
(Ubuntu 12.04 with Linux kernel 3.11).

We used the Iperf [22] network testing tool to send a stream
of UDP packets (at a specific bit-rate) to server and measured
the number of bytes sent between client and server using
the dumpcap utility [23]. Instead of using the default UDP
packets generated by Iperf—all packets contain same data—we
configured the Iperf utility to generate UDP packets containing

random text stored in a file. We performed experiments under
the four different classes described in Section IV-A. For each
flow class, we fixed the size of data in every UDP packet trans-
mitted by the Iperf utility. We repeated experiments 10 times,
to get more reliable results. Table I shows the characteristics
of every flow generated by Iperf to measure the performance
of WiOptiMo (for each application class).

We measured the performance of WiOptiMo by varying the
number of flows and bit-rate of each flow, and observing their
impact on the percentage of bytes saved on the link, due to flow
aggregation and compression. It is calculated by subtracting
pre-aggregation (and compression) bytes and post-aggregation
(and compression) bytes, and dividing this difference by the
pre-aggregation (and compression) bytes. This metric measures
the bytes saved in the packet transfer between the client and
server with the flow aggregation configuration, compared to the
baseline configuration. It captures the energy spent to transfer
data to the server. Since WiOptiMo performs flow aggregation
and compression, this metric will enable us to measure the
amount of energy that could be saved without impacting the
QoS of applications.

Results: Figure 5 shows the percentage of bytes saved for
applications with high throughput and high delay network re-
quirements. We observe that for bit rates lower than 10Mbit/s,
the percentage of bytes saved increases as the number of
flows increases. Even for a single application flow, WiOptiMo
with flow classification and aggregation helps in reducing, on
average, the 60% of data sent between client and server. For
bit-rates higher than 10Mbit/s, the percentage of bytes saved
is still high but its relationship with the number of flows is
no longer linear. This behaviour is due to the saturation of
the system’s modules capacity (wireless card, aggregation and
compression mechanisms).

In Figure 6, we observe that when applications have high
throughput and low delay requirements, savings by WiOptiMo
increase from 38% for single flow to a maximum of 82.5%
for applications with 5 flows. For all flows, the percentage of
bytes saved increases until the bit-rate reaches about 400kbit/s.
For much higher rates we observe that the percentage of bytes
saved remains constant.

0 2 4 6 8 10 12 14 16 18 20
30

40

50

60

70

80

90

Bit−rate (Mbit/s)

P
e

rc
e

n
ta

g
e

 o
f

B
yt

e
s

S
a

ve
d

1 Flow

2 Flows

3 Flows

4 Flows

5 Flows

Figure 5: Percentage of bytes saved due to flow aggregation
in HT & HD applications.

35Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

0 250 500 750 1000 1250 1500 1750 2000
35

40

45

50

55

60

65

70

75

80

85

Bit−rate (kbit/s)

P
e

rc
e

n
ta

g
e
 o

f
B

yt
e

s
S

a
ve

d

1 Flow

2 Flows

3 Flows

4 Flows

5 Flows

Figure 6: Percentage of bytes saved due to flow aggregation
in HT & LD applications.

For low throughput and high delay tolerant applications
(see Figure 7), we observe that for low bit-rates (∼125kbit/s),
the percentage of bytes saved is not significant because no
additional savings could be achieved by compressing and
aggregating data packets arriving at long intervals of time.
For higher bit rates (that is after the size of the aggregated
packets allows better compression), savings increase and then
stay constants (we can achieve a maximum savings of around
90%). In Figure 7, we also observe that savings achieved
by WiOptiMo increase as the number of application flows
increases.

Finally, for applications with low throughput and low delay
requirements, we could achieve a maximum saving of 70%
(see Figure8). Even at very low bit-rate (∼20kbit/s), WiOptiMo
is able to save 10% of the data transferred between client and
server.

B. QoS support by WiOptiMo

In the second set of experiments, we tested the capability
of the WiOptiMo with an aggregation schema to provide QoS

0 100 200 300 400 500 600 700 800 900 1000 1100
30

40

50

60

70

80

90

Bit−rate (kbit/s)

P
e

rc
e

n
ta

g
e

 o
f

B
yt

e
s

S
a

ve
d

1 Flow

2 Flows

3 Flows

4 Flows

5 Flows

Figure 7: Percentage of bytes saved due to flow aggregation
in LT & HD applications.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

10

20

30

40

50

60

70

80

Bit−rate (kbit/s)

P
e

rc
e

n
ta

g
e
 o

f
B

yt
e

s
S

a
ve

d

1 Flow

2 Flows

3 Flows

4 Flows

5 Flows

Figure 8: Percentage of bytes saved due to flow aggregation
in LT & LD applications.

support. We used Iperf and measured the throughput between
client and server using two different flow classes (HT & LD
and HT & HD), in two distinct configurations: with a single
SNAPT and with two SNAPTs. We show that a software
configuration with multiple SNAPTs increases the network
throughput and then helps preserving the QoS of applications.

Experiment setup: We setup a wireless mesh network
testbed to measure the QoS offered by WiOptiMo. The testbed
consists of three static Internet-sharing nodes and two wireless
mobile nodes. Each static node consists of an ALIX.2D2
system board, which supports two mini-PCI radios. We used
one Wistron DNMA92 miniPCI card for each board, which is
in turn connected to two 802.11n antennas. Each board mounts
a 500 MHz AMD Geode LX800 processor and 256 MB DDR
DRAM, runs Debian Wheezy 7.0 with Linux Kernel 3.12.6,
and uses an ath9k driver for WiFi.
We used two ASUS EeePC 900 (with a Atheros 5008 Wireless
Card, a 900MHz Celeron Processor and 1GB DDR RAM) as
mobile nodes in our experiments. They operated on Debian
Wheezy 7.0 with an ath5k WiFi driver.

To complete the hardware set-up, we installed WiOptiMo
SNAPT on two Dell Optiplex 760 (servers) and a Lenovo
ThinkPad T410a had WiOptiMo CNAPT installed on it. Both
the machines operated on a Linux distribution (Ubuntu 12.04
with Linux kernel 3.11). Two static nodes (gateways) and

Server
B

A

SNAPT

C

Internet

CNAPT

Server

SNAPT

Figure 9: Testbed mesh network architecture.

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

HT & LD HT & HD Total

Th
ro

ug
hp

ut
 (k

bi
t/s

)

Single SNAPT
Two SNAPTs

Figure 10: Throughput with multiple SNAPTs.

two servers were connected to the Internet with an Ethernet
connection, while the rest of the nodes participate in the mesh
network. We set the bandwidth of Ethernet connection to
10Mbit/s. The gateways performed NAT between the mesh
network and the Internet. We ran the Optimised Link State
Routing Protocol daemon (OLSRd, version 0.6.2) [24] on each
node for network path resolution and configured the network
to ensure that the two SNAPTs could be reached by separate
gateways. The final testbed architecture is shown in Figure 9.

Results: Figure 10 shows the throughput comparison for
two scenarios: with single SNAPT and with two SNAPTs (with
different network delays) that could be reached from separate
gateways. The results clearly show that in the first scenario
the available bandwidth gets divided equally between the two
application classes. In the second scenario, the HT & HD class
achieves on average higher throughput compared to HT & LD
class because the data of HT & LD class always gets routed to
the SNAPT with lowest delay. Specifically, in the two SNAPT
scenario, we observe a higher throughput compared to the
bandwidth available towards each single gateway. Finally, we
did not observe any significant additional delay in the network
due to the introduction of WiOptiMo.

VII. CONCLUSION

In this paper, we have proposed a flow classification and
aggregation scheme for enabling the WiOptiMo framework to
manage multiple applications with different QoS requirements
in a wireless mesh networking environment. We evaluated the
proposed scheme on a Linux-based wireless mesh network
testbed. Experimental results show that the aggregation mech-
anism we designed improves network performance in terms
of link utilization and QoS, while still providing mobility
support, without requiring any changes to be made to the
network protocol stacks of either the mobile or fixed end
systems. In the future, we would like to define and integrate
into WiOptiMo, a requirements based policy that optimizes the
use of mobility services and rewards users who do not waste
network resources.

ACKNOWLEDGMENT

This work is supported by a grant from Switzerland through
the Swiss Contribution to the enlarged European Union (PSPB-
146/2010, CARMNET).

REFERENCES

[1] S. Jakubczak, D. Andersen, M. Kaminsky, K. Papagiannaki, and
S. Seshan, “Link-alike: using wireless to share network resources in
a neighborhood,” pp. 1–14, October 2008.

[2] C. Middleton and A. Potter, “Is it good to share? a case study of
fon and meraki approaches to broadband provision,” in Proceedings
of International Telecommunications Society 17th Biennial Conference,
2008.

[3] M. Glabowski and A. Szwabe, “Carrier-grade internet access shar-
ing in wireless mesh networks: the vision of the carmnet project,”
in Proceedings of The Ninth Advanced International Conference on
Telecommunications, June 2013, (in press).

[4] P. Walkowiak, R. Szalski, S. Vanini, and A. Walt, “Integrating carmnet
system with public wireless networks,” ICN 2014, The Thirteenth
International Conference on Networks, feb 2014, pp. 172–177.

[5] D. Johnson, C. Perkins, and J. Arkko, “Mobility support in ipv6,” RFC
3775, June 2004.

[6] G. A. D. C. et al., “Wioptimo: A cross-layering and autonomic approach
to optimized internetwork roaming,” in AHSWN Journal, May 2007, pp.
104–113.

[7] T. Ernst and L. H., “Network mobility support goals and requirements,”
in RFC 4886, July 2007.

[8] M. Buddhikot, A. Hari, K. Singh, and S. Miller, “Mobilenat: A new
technique for mobility across heterogeneous address spaces,” in ACM
Mobile Networks Apps, vol. 10, no. 3, June 2005, pp. 289–302.

[9] I. Ramani and S. Savage, “Syncscan: Practical fast handoff 802.11
infrastructure networks,” in 24th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2005), vol. 1,
2005, pp. 675–684.

[10] V. Navda, A. Kashyap, and S. R. Das, “Design and evaluation of imesh:
an infrastructure-mode wireless mesh network,” in IEEE International
Symposium on a World of Wireless Mobile and Multimedia Networks
(WOWMOM), Italy, June 2005, pp. 164–170.

[11] Y. He and D. Perkins, “Bash: A backhaul-aided seamless handoff
scheme forwireless mesh networks,” in International Symposium on
a World of Wireless, Mobile and Multimedia Networks (WoWMoM
2008). IEEE, June 2008, pp. 1–8.

[12] R. Huang, C. Zhang, and Y. Fang, “A mobility management scheme
for wireless mesh networks,” in IEEE GLOBECOM 2007, Washington
DC, USA, November 2007, pp. 5092–5096.

[13] D. Johnson, C. Perkins, and J. Arkko, “Mobility support in ipv6,” in
RFC 3775, June 2004.

[14] M. Sabeur, G. A. Sukhar, B. Jouaber, D. Zeghlache, and H. Afifi, “Mo-
bile party: A mobility management solution for wireless mesh network,”
in 3rd IEEE Int. Conf. Wireless and Mobile Comp., Networking, and
Commun. (WiMob), October 2007.

[15] S. Speicher and C. H. Cap, “Fast layer 3 handoffs in aodv-based ieee
802.11 wireless mesh networks,” in 3rd Int. Symp. Wireless Commun.
Syst. (ISWCS), 2006, pp. 233–237.

[16] Y. Amir, C. Danilov, R. Musaloiu-Elefteri, and N. Rivera, “The smesh
wireless mesh network,” ACM Transactions on Computer Systems,
vol. 28, no. 3, September 2010, pp. 6:1–6:49.

[17] D. Gallucci, S. Giordano, D. Puccinelli, N. Tejawsi, and S. Vanini,
“Fixed mobile convergence: The quest for seamless mobility,” in
Fixed/Mobile Convergence Handbook. CRC Press, 2010, pp. 185–
196.

[18] S. Vanini, D. Gallucci, S. Giordano, and A. Szwabe, “A delay-aware
num-driven framework with terminal-based mobility support for hetero-
geneous wireless multi-hop networks,” in ICTF 2013 Information and
Communication Technology Forum, 2013, (in press).

[19] H. Krawczyk, M. Bellare, and R. Canetti, “Hmac: Keyed-hashing for
message authentication,” RFC 2014, February 1997.

[20] “Ietf diffserv working group page,”
http://datatracker.ietf.org/wg/diffserv/charter, 2014.

[21] R. Chakravorty, S. Katti, J. Crowcroft, and I. Pratt, “Flow aggregation
for enhanced tcp over wide-area wireless,” in IEEE Conference on
Computers and Communications, 2003, pp. 1754–1764.

[22] [Online]. Available: https://github.com/esnet/iperf (2014)
[23] [Online]. Available: http://www.wireshark.org/docs/man-

pages/dumpcap.html [retrieved: May, 2014]
[24] “An ad-hoc wireless mesh routing daemon,” http://www.olsr.org, 2014.

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

