
Towards a Common Pattern Language for Ubicomp Application Design
- A Classification Scheme for Ubiquitous Computing Environments -

René Reiners
Fraunhofer FIT

Schloss Birlinghoven
53754 Sankt Augustin

rene.reiners@fit.fraunhofer.de

Abstract—The idea of Ubiquitous Computing was first for-
malized and described by Mark Weiser in the early 90’s.
Since then, it has been followed by many research groups
and extended in many ways. There are many ideas, concepts,
prototypes and products implementing ubiquitous computing
scenarios. However, the manifold of approaches also brings
along a large variety of denominations for eventually similar
concepts. Our work seeks for the creation of a dynamic pattern
language gathering design knowledge for ubiquitous computing
applications and the underlying concepts. The intention is to
support researchers and application designers in the domain
to avoid the repetition of design errors and provide design
knowledge about successful approaches. In order to get closer
to that aim, our first step is to present a classification scheme
applicable to existing and future approaches that is needed
in order to collect, structure and compare application design
approaches as design patterns.

Keywords- ubiquitous computing; pervasive computing; appli-
cation design; classification; pattern language

I. INTRODUCTION

The research field of ubiquitous computing, also referred
to as ”ubicomp”, was founded by Mark Weiser who pre-
sented the concept’s idea in his work ”The Computer of
the 21st Century” [1]. Smart devices that are equipped with
sensors or that are capable of providing information silently
integrate into the environment. The communication between
different entities should ideally take place in a wireless
manner. This way, a number of smart devices together shape
a ubiquitous computing environment.

The current situation where a personal computer drags
all the attention towards itself should completely be avoided
such that users are able to concentrate on the tasks they wish
to perform instead of caring of the interaction. Computations
can be performed inside the smart devices themselves or
performed on machines inside the room. Connection and
tasks management must not be the user’s concern.

Weiser compares his idea to the ancient art of writing.
Nowadays, we consume and provide information by simply
reading or writing it - we are making use of this technique
although we do not mandatorily need to know how to
produce ink or paper, for example.

The concept of working with technology without having
to know much about the details of the underlying infras-
tructure is the core idea of ubiquitous computing. Working
also means using or even living in ubiquitous computing
environments.

Currently, devices that can be used in a very ”ubiquitous”
way are entering the market; mainly these are netbooks and
smartphones. This class of devices are first candidates to
make ubiquitous computing widely available since there is
a still growing increase in sales numbers as stated by Gartner
[2]. With a high degree of connectivity and new generations
of different kinds of sensors, new applications and ways of
interaction become possible that were still visionary some
years ago.

A. Functionality Everywhere

When talking about different service networks and the
provisioning of services, there is also the need for looking
beyond the personal (and limited) scope of mobile devices.
Following the concepts of Pervasive Computing, the Internet
of Things (IoT) or Cloud Computing, there are far more
possibilities to offer services, since:

• The concept of Pervasive Computing allows the inte-
gration of computing power into real world objects,
devices and environments [3].

• Labeling and therewith the IoT concept gives the pos-
sibility to uniquely identify and address real world
objects [4]. Thus, the possibility of potentially unlim-
ited labeling holds chances and challenges for many
different kinds of applications as outlined by [5].

• In case that resources are too weak or cannot fulfill
the requirements of task, these tasks are outsourced
into the Cloud and thus virtually extend the devices’
resources and transform them into gateways accessing
more powerful functionalities [6].

• The growing network infrastructure allows communica-
tion between devices and thus the exchange of informa-
tion or the consumption of services. An overview of the
mobile phones and network infrastructure generations
can be found online at [7].

28

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

Services that are deployed together with real world objects
and which are accessible via any kind of network are called
smart services for the rest of this document.

B. Realizations

The above concepts and visions are partially already a
reality. Amazon or Google, for example, provide access to
their processing powers by introducing the Amazon Elastic
Compute Cloud [8] or the Google App Engine [9].

Additionally, a combination of using GPS data together
with permanent network access by mobile providers are used
in projects like Layars [10] or Wikitude [11]. These mobile
approaches make use of the mobile device’s position and
access databases over the mobile network in order to present
additional information about objects next to the current
position. These approaches are based on the Magic Lens
approach first introduced by Bier et al. [12].

Later work incorporates mobile projectors to augment
physical objects like paper maps and project information
directly onto the object [13].

Further ideas than only receiving information are appli-
cable which is for example already realized by the UbiLens
project at Fraunhofer FIT [14]. In this project, smart services
attached to different kinds of real world objects can be
consumed, ranging from information retrieval over triggering
actions up to the combination of different services and de-
vices. An online available example shows how different real
world objects are recognized by a server in the background
receiving the camera image from the mobile phone. After
identification of the object, different services can be selected
on the mobile phone according to the purpose of the real
world object [15].

II. PROBLEM AND APPROACH

A manifold of research approaches explore ways to offe
ubiquitous functionality in public and private environments.
Since each approach concentrates on different scenarios,
uses different hardware and calls its components differently,
it is hard to find similarities within existing implementations.

We see the danger of the repetition of design failures,
unused chances of extending successful designs and missed
chances to learn from realized approaches. These dangers
may result in loss of design time and even money.

We consider a dynamic pattern language extracting and
structuring results from different approaches as a possible
solution to that problem. The pattern language will help new
application designers in the field to more easily find working
design approaches and modify them to their needs. This
will also support the knowledge management within research
communities and enterprises. Domain novices can pick up
expert knowledge gathered from experience and formulated
in the pattern language.

The rest of the paper is structured as follows: Section
III provides an overview of different pattern languages used

in different domains. In the preceding section (cf. section
IV), we discuss features that are, from our point of view,
missing in the current approaches of pattern languages. In
section V, the idea of the common classification scheme is
shaped addressing one of the problems discussed. The last
section gives an overview of the planned next steps towards
the intended pattern language and its intended new features
(cf. section VI).

III. PATTERN LANGUAGES

There is a variety of application domains and the popu-
larity of gathering knowledge in pattern languages that are
more or less technically formulated.

In the domain of HCI design patterns, Borchers,
Schümmer and Stephan Lukosch follow the basic structure
of Alexandrian design patterns (cf. [16]) by making use of
natural language in order to describe solutions to specific
design problems [17], [18]. In their approach, they structure
a pattern into the following parts which are often similarly
adapted in other pattern languages:

A name, sensitizing picture, the intent summarizing the
pattern’s solution in one sentence, the context in which the
problem occurs and the solution is described, a problem
description containing the most important aspects, a scenario
putting the pattern’s problem into an illustrating example
context in order to increase understandability, symptoms
helping the reading to find out about conflicting forces
within the context, a solution to the conflicting forces prob-
lem, dynamics naming actors and components involved in
the pattern, rationale providing explanations for a pattern’s
success and applicability, checks that pose questions that
try to help the reader to figure out whether the pattern
representing a template solution was well adapted to the
current design problem, danger spots showing potential new
problems that may occur when applying the pattern.

So they can be regarded as warning features trying to
avoid the blind application of a pattern. The closing sections
of a pattern are named known uses representing the second
part of a pattern’s ”proof” by presenting approaches in
which the pattern is successfully applied and related patterns
linking to relevant alternatives, patterns that are important
for other stakeholders or patterns that go into more detail of
a possible solution.

Pattern languages are also to be found in different appli-
cation domains reaching from technical software design in
object-oriented programming (cf. [19]) to interface design
up to organizational patterns in business structures.

Rising and Manns, for example, present ways to re-
structure existing organizational structures and to introduce
new ideas into an existing system. Their pattern language
Fearless Change relies on social structures and requires
practices that establish trust in new goals [20].

The Organizational Patterns language concentrates on
team interaction in software projects as described by [21].

29

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

Another example is the TELL project that present patterns
for computer-supported learning [22].

Teachers are supported in questions about group-based
learning with collaboration technology find advice in the
Pedagogical Patterns Project as described by [23] and in
the domain of business process management, the approach
by [24] represents an attempt to describe socio-technical
systems following strict business processes. The pattern
language developed is called Workflow Patterns.

The domain of user interface design is also served by
the pattern languages Web Usability Features ([25]), Web
Patterns [26] and for example the Amsterdam Pattern Col-
lection [27]. Tidwell presents a very comprehensive pattern
language for computer-mediated interaction in the context
of non-web-based applications [28].

In many different fields where knowledge and experience
can be captured interlinked, pattern languages have proven
to be a useful approach.

IV. MISSING FEATURES

Current pattern language approaches provide a good struc-
tural basis for capturing design knowledge for specific appli-
cation domains mostly explored by a small group. However,
concerning the idea of covering design guidelines from many
different projects and groups, we consider more features for
a pattern language extending the current concepts as needed.
These features are described in the following.

A. Lacking Application Domain Independence

Current pattern language approaches are mostly bound to
one specific application domain and a small set of involved
group. From the given circumstances and denominations,
patterns are created and arranged in a pattern language.

The intended pattern language is intended to cover many
different research groups and commercial projects, where
different ideas and approaches are implemented and evalu-
ated.

Many approaches are situated in the field of ubiquitous
computing but the naming of components, techniques and
concepts differs widely. A comparable classification and
naming scheme is needed in order to be able to generalize
concepts and interconnect common knowledge as well as to
search within existing work results.

This is, in our opinion, a needed requirement to be able
to integrate different approaches in different application
domains.

B. Lacking Extensibility and Openness of Knowledge

Even after extracting knowledge about a certain aspect
of ubiquitous computing interaction design, it is hard to
discuss results from existing and new approaches. Once
published, they remain within the documents and need to be
refined or discussed besides the actual publication in follow-
up research, forums or conferences.

That makes the reuse and refinement of results a very
hard task. At the moment, there are only limited ways to
extend and discuss research results. Openness is only given
in a passive way; the results can be read but not actively be
extended or discussed.

C. Lacking of Recommendation

Considering patterns about applied concepts and tech-
niques within the domain, there is no direct connection
between them. The exchange of knowledge about combi-
nations that were implemented and worked out well and
those which did not is not given. Recommendations for
proven combinations of concepts are missing and therefore
hindering the reuse and extension of concepts.

Again, time-to-market and time-to-research-results can be
shortened by providing suggestions for good combinations
of smaller units of solutions from different approaches.

D. Lacking of Knowledge about ”Bad Practices”

In publications, often results reveal information about
working concepts that were successfully implemented. Only
initial studies about a certain problem domain concretely
outline deficits in order to justify and motivate intended
research.

However, in a domain that is actively being explored,
failures or methods that were not accepted are not always
clearly described or even mentioned. In our opinion, this is
often the case in research about interaction techniques and
metaphors. Here, authors mainly describe working solutions
and drawbacks are omitted.

We consider the inclusion of bad practices that are not
trivial and were revealed unexpectedly in experiments and
implementation a very important feature to be integrated into
the pattern structure.

V. A CLASSIFICATION SCHEME FOR UBIQUITOUS
COMPUTING ENVIRONMENTS

As a first step towards a pattern language of application
designs, a common denomination for similar approaches is
needed. Once different approaches can be described by a
common vocabulary, the inherent design knowledge can be
compared more easily, discussed and transferred to different
application scenarios.

In ubiquitous computing environments, there are different
objects providing functionality and interoperating among
each other, the environmental infrastructure and the user.
Different kinds of functionality is identified and abstracted
to a semantic level therefore called smart service (cf. Section
V-B). Real world objects that are augmented with smart
services are referred to as smart objects (cf. Section V-A).
Smart objects augmented with an arbitrary number of smart
services together build a smart environment within an appli-
cation domain (cf. Section V-D) .

The definitions given in this work will constitute the
foundation of the intended pattern language approach and

30

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

cover already existing applications that are found within
current research and projects but will also be use to describe
future ideas and approaches.

A. Smart Objects

In the scope of this work, a smart object can be any kind
of device of object that provides functionalities augmenting
its original purpose. This could be the provision of infor-
mation related to the object or something more abstract it
stands for. For example, a standard paper timetable in train
stations could provide the same information that is printed
on it in a virtual way. Furthermore, it could also stand for
advanced routing in such a way that travelers use it to decide
for a route from the current station to their destination.
This routing could also be offered as a computer-supported
services like it can be found on current websites driven by
public transportation companies.

The idea is now to be able to attach any kind of service to
a standard object or device which ideally are related to the
object’s original purpose or more abstract concepts it stands
for.

Thus, in the scope of this work, any kind of object
potentially provides an arbitrary number of smart services
that provide information or extended functionalities. Conse-
quently, every object that is augmented this way is referred
to as a smart object.

Fig. 1 illustrates this concept showing arbitrary function-
ality, i.e., smart services, being connected to a real world
object.

B. Smart Services

Smart services are virtually attached to physical objects
or devices and therefore augmenting them with virtual
functionalities. The functionality they provide could be
informative or offer more sophisticated applications. Ideally,
the services are related to the object’s original purpose but
theoretically, they could offer anything developers have in
mind.

However, the applicability and user’s understanding would
definitely suffer from such implementations since they would
not really convey a coherent meaning like in the timetable
example given in Section V-A.

Currently, the derived classification scheme covers three
different kind of smart services. They can

• provide information (provider)
• provide ways of interaction (connector)
• process input (consumer)
Each kind of smart service optionally possesses a special

attribute which is called the takeaway - attribute. This
optional specialization of a service enables the user to take
the offered functionality with her so that it still available later
and when she is not necessarily close to the smart object.
A service which does not posses the takeaway-attribute can
only be used within direct contact with the smart object.

Figure 1. A standard real world object can be augmented by an arbitrary
number of different kinds of smart services. The functionality can be freely
defined.

In order to illustrate the classification scheme, one small
example per kind of service is given in the following.
Additionally, a possible implementation and usage of the
takeaway-attribute is explained.

(i) Providers are implemented as services that offer certain
information about a special location like point of interest
(POIs). The Wikitude project is one example of an appli-
cation that provides information bound to certain buildings
or locations. Google Goggles (cf. [29]) also applies this
approach by connecting information to buildings.

(ii) Connectors enable the user to control an offered
service. One example is a public display, that offers a smart
service allowing users to remotely control the display. That
way, the user’s input is processed and directly fed into an
application lying behind the service. Also, the timetable
scenario mentioned in Section V-A can be implemented in
an interactive way such that the user influences parameters
like price, travel duration or comfort class when planning
his connection.

(iii) Consumer services do not necessarily provide sophis-
ticated feedback to the user or provide a direct result. They
are moreover be regarded as triggers for certain processes
or applications. Examples for this are push-services that for
examples upload just-taken pictures to an online community
account like Facebook.

Another example is represented by macros like those used
in the home automation sector. A service called ”turn on the
lights” is then used as a trigger. This way, the user’s input is
consumed and a whole system, the home automation system
in this case, takes over.

C. The Optional Takeaway-Attribute

As an optional add-on, the takeaway attribute comes into
play. In the context of the timetable example providing
information about connections, this means that the train

31

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

arrival and departure times can be taken away by the user
and therefore are also be available when she is not standing
next to the timetable. That way, information can be collected
and consumed later and repeatedly.

For connectors, it makes sense to use an application
connected to an interactive service also at a later time. The
can make a train booking at home but have the virtual service
still available for tracking the booking process or eventual
changes. So users are able to connect a real world object to a
virtual pendant offering similar or extended functionalities.

Consuming services can also offer the takeaway-attribute.
In the example of home automation, the user is then able to
turn on the lights while she is still outside and does not first
have to search for the service in the dark.

Fig. 2 shows some examples of service-augmented real
world objects, optionally with the take-away attribute. In
the example, an ordinary timetable at a train station is
augmented with service finding the train connection from
the current location to the desired destination. This service
posses the takeaway-attribute since it could also be used
again at a different location even if the user is not near the
real world object.

The TV screen as an ambient display offers the service
to provide video content that can be played on the screen
but also played back on te the user’s mobile device. Another
service combined with ambient speakers offered is the play-
back of user-provided content that is only available when
she is present at the screen. Remote control is not allowed
here.

In the case of the coffee-machine, the takeaway attribute
is not given since this services of filling a cup or retrieving
information about the coffee status is only available when a
user is directly interacting with it due to security reasons.

These examples show that the takeaway-attribute needs to
be used carefully in order to provide meaningful services.
Services that provide physical feedback like printouts (e.g.,
tickets) or products (e.g., coffee from an augmented coffee
machine) need to ensure that the user is directly available.

D. Smart Environments

A setup with arbitrary kinds of services attached to an
arbitrary number of real world objects, is referred to as
smart environment. Different classes of smart environments
are possible. Based on the purpose of the services (enter-
tainment, technical support, maintenance) or the location
of the environment and the level of publicity or privacy,
respectively. Examples for these kinds of environments are
public spaces like train stations, official buildings, airports
or sights in a city. More private or security related situation
can be found at home or in office spaces.

Applications like Wikitude (cf. [11]) or Layars (cf. [10])
already turn public spaces into a kind of ”informational
smart environment” by displaying additional information
about a location the user is close to.

Figure 2. In this example, services with the takeaway-attribute are
connected to a metro plan and a TV screens. The coffee-machine and
speakers providing playback services but only allow direct interaction.

VI. FUTURE WORK

The long-term intention of our work is to develop a pattern
language for application design in ubiquitous computing
environments. As a first requirement for the creation and
extension of such a structure we consider a common vo-
cabulary as a necessary requirement for comparing differ-
ent approaches and to extract knowledge from them. The
extraction will be presented in form of design patterns,
similar to approaches presented by Schümmer and Lukosch,
Borchers and Gamma et al. (cf. [18][17][19]). The latter
work addresses the technical part of application design in
terms of how a technical problem can be solved by applying
software patterns. The former patterns are formulated against
specific application domains, i.e., CSCW and HCI, that
primarily describe design knowledge of applications on a
conceptual level. Technical suggestions play a minor role.
Like Borchers, Schümmer and Lukosch, the patterns for
ubicomp application design are intended to be arranged in a
pattern language and therefore interconnecting patterns. The
deeper readers follow the structure, the more details of the
application design are described.

New features like decision nodes separate different kinds
of interactions depending on the usage scenario. Recommen-
dation mechanisms will help to find successful combinations
of patterns. Finally, the pattern language is intended to be
open to new patterns that can be integrated.

The design patterns will range from the discovery of
smart services, over the interaction until user preferences
and privacy and security patterns.

VII. CONCLUSION

This work presents first conceptual steps in the progress
of finding a classification scheme that is able to map

32

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

denominations from existing and future approaches to a
generally applicable vocabulary needed for the formulation
of design patterns in the domain of ubicomp application
design. Next, existing approaches in the domain of mobile
applications in ubicomp environments will be analyzed and
the presented scheme will be mapped to these approaches.
After translating the approaches to the abstract vocabulary,
patterns of successfully implemented concepts supported by
published evaluations will be derived and discussed within
the community. From the initial set of patterns, the other
requirements described in section (II) will be addressed.

In a later step, new domains and ideally a large set of
domains are to be analyzed. The results will either support
the generality of the developed pattern language and its
new features or confute the approach. From our point of
view, the assembly of patterns in a pattern language will
support the gathering, structuring and extraction of design
knowledge from current and future approaches and make
them comparable and thus facilitate discussion, reuse and
modification throughout application scenarios.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific
American, vol. 265, no. 3, pp. 94–104, 1991.

[2] “Gartner newsroom - press release, may 19th, 2010,” 2010,
http://www.gartner.com/it/page.jsp?id=1372013.

[3] U. Hansmann, L. Merk, and M. S. Nicklous, Pervasive
Computing - The Mobile World. Berlin: Springer-Verlag
Berlin and Heidelberg GmbH & Co. K, 2001.

[4] H. Chaouchi, The Internet of Things: Connecting Objects.
ohn Wiley & Sons, 2010.

[5] C. Floerkemeier, M. Langheinrich, E. Fleisch, and F. Mattern,
The Internet of Things: First International Conference, IOT
2008, Zurich, Switzerland, March 26-28, 2008, Proceedings,
1st ed. Springer-Verlag Gmbh, 2008.

[6] J. Rhoton, Cloud Computing Explained: Implementation
Handbook for Enterprises, 2nd ed. Recursive Press, 2010.

[7] C. M. S. Ltd., “Telecoms market research,” website, 2008,
http://www.telecomsmarketresearch.com/resources/Mobile
Phone Market.shtml.

[8] “Amazon elastic compute cloud,” 2010, http://aws.amazon.
com/ec2.

[9] “Google app engine,” 2010, http://code.google.com/intl/
appengine/appengine.

[10] “The layars project,” 2010, http://layars.com.

[11] “The wikitude project,” 2010, http://wikitude.org.

[12] E. A. Bier, K. Fishkin, K. Pier, and M. C. Stone, “Toolglass
and magic lenses: the seethrough interface,” Proceedings of
SIGGRAPH, vol. 93pp, pp. 73–80, 1993.

[13] J. Schöning, M. Rohs, and S. Kratz, “Map Torchlight: A Mo-
bile Augmented Reality Camera Projector Unit,” Information
Systems, 2009.

[14] V. N. Wibowo, “The UbiLens Approach - Visualisation of
and Interaction with Real World Objects through a Moble
Phone’s Camera ,” master thesis, Fraunhofer FIT, 2010.

[15] “Gartner newsroom - press release may 19th, 2010,” 2010,
http://www.youtube.com/watch?v=IY1FmKhfAao.

[16] C. Alexander, A Pattern Language: Towns, Buildings, Con-
struction. New York, New York, USA: Oxford University
Press, 1977.

[17] J. Borchers, A Pattern Approach to Interaction Design, 1st ed.
John Wiley & Sons, 2001.

[18] T. Schümmer and S. Lukosch, Patterns for Computer-
Mediated Interaction. Chistester, West Sussex, England:
John Wiley & Sons, 2007.

[19] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design
Patterns. Elements of Reusable Object-Oriented Software,
1st ed. Amsterdam: Addison-Wesley Longman, 1995.

[20] L. Rising and M. L. Manns, Fearless Change: Patterns for
Introducing New Ideas: Introducing Patterns into Organiza-
tions, 2005th ed. Amsterdam: Addison-Wesley Longman,
2005.

[21] J. O. Coplien and N. B. Harrison, Organizational Patterns of
Agile Software Development, illustrated ed. Prentice Hall
International, 2004.

[22] F. L. National Centre and Literacy, “The Tell Project.”
[Online]. Available: http://www.tell.praesa.org/

[23] J. Eckstein and J. Bergin, “The Pedagogical Patterns Project,”
1999. [Online]. Available: http://www.pedagogicalpatterns.
org/

[24] C. Hentrich, “Six patterns for process-driven architectures,”
in Proceedings of the 9th Conference on Pattern Languages
of Programs (EuroPLoP 2004), 2004.

[25] I. Graham, A Pattern Language for Web Usability. Amster-
dam: Addison-Wesley Longman, 2003.

[26] D. Schwabe and G. Rossi, “The object-oriented hypermedia
design model,” Communications of the ACM, vol. 38,
no. 8, pp. 45–46, August 1995. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=208344.208354

[27] M. van Welie, “The Amsterdam Pattern
Collection,” 2010. [Online]. Available: http:
//visiblearea.com/cgi-bin/twiki/view/Patterns/Amsterdam\
Collection\ of\ Interaction\ Design\ Patterns

[28] J. Tidwell, Designing Interfaces, 1st ed. O’Reilly Media,
2005.

[29] “Google goggles,” 2010, http://googlegoggles.com.

33

PATTERNS 2010 : The Second International Conferences on Pervasive Patterns and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-111-3

