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Abstract—In this paper, we present an analytic evaluation of the
Safe Control Systems (SaCS) pattern language for the develop-
ment of conceptual safety designs. By a conceptual safety design
we mean an early stage specification of system requirements,
system design, and safety case for a safety critical system. The
SaCS pattern language may express basic patterns on different
aspects of relevance for conceptual safety designs. SaCS may
also be used to combine basic patterns into composite patterns.
A composite pattern may be instantiated into a conceptual safety
design. A framework for evaluating modelling languages is used
to conduct the evaluation. The quality of a language is within
the framework expressed by six appropriateness factors. A set
of requirements is associated with each appropriateness factor.
The extent to which these requirements are fulfilled are used to
judge the quality. We discuss the fulfilment of the requirements
formulated for the SaCS language on the basis of the theoretical,
technical, and practical considerations that were taken into
account and shaped the SaCS language.

Keywords—pattern language, analytic evaluation, design concep-
tualisation, safety.

I. INTRODUCTION

A pattern describes a particular recurring problem that
arises in a specific context and presents a well-proven generic
scheme for its solution [1]. A pattern language is a language for
specifying patterns making use of patterns from a vocabulary
of existing patterns and defined rules for combining these
[2]. A safety critical system [3] is a system “whose failure
could result in loss of life, significant property damage, or
damage to the environment”. With a conceptual safety design
we mean an early stage specification of system requirements,
system design, and safety case for a safety critical system.
The Safe Control Systems (SaCS) pattern language has been
designed to facilitate the specification of patterns to support the
development of conceptual safety designs. The intended users
of SaCS are system engineers, safety engineers, hardware and
software engineers.

This paper conducts an analytic evaluation of the suit-
ability of the SaCS pattern language for its intended task.
A framework for analysing languages known as the semiotic
quality framework (SEQUAL) [4] is used as a basis for the
evaluation. The appropriateness of a language for its intended
task is in the framework characterised by six appropriateness
factors [4]: domain, modeller, participant, comprehensibility,
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tool, and organisational. A set of requirements is presented
for each appropriateness factor in order to characterise more
precisely what is expected from our language in order to be
appropriate. The requirements represent the criteria for judging
what is appropriate of a language for conceptual safety design,
independent of SaCS being appropriate or not. We motivate
our choices and discuss to what extent the requirements are
fulfilled.

The remainder of this article is structured as follows:
Section II provides a short introduction to the SaCS pattern
language. Section III discusses evaluation approaches and
motivates the selection of SEQUAL. Section IV motivates the
selection of requirements and conducts an evaluation of the
SaCS language with respect to these requirements for each
appropriateness factor. Section V presents related work on
pattern-based development. Section VI draws the conclusions.

II. BACKGROUND ON THE SACS PATTERN LANGUAGE

Fig. 1 defines a composite pattern according to the syntax
of SaCS [5]. The composite described in Fig. 1 is named Safety
Requirements and consists of the basic patterns Hazard Anal-
ysis, Risk Analysis, and Establish System Safety Requirements.
The basic patterns are specified separately in a structured
manner comparable to what can be found in the literature
[11[21[61[71[81[9][10][11] on patterns.

In Fig. 1, the horizontal line separates the declaration part
of the composite pattern from its content. The icon placed
below the identifier Safety Requirements signals that this is
a composite pattern. Every pattern in SaCS is parametrised.
An input parameter represents the information expected to be
provided when applying a pattern in a context. An output
parameter represents the expected outcome of applying a
pattern in a given context. The inputs to Safety Requirements
are listed inside square brackets to the left of the icon, i.e., ToA
and Haz. The arrow pointing towards the brackets symbolises
input. The output of the pattern is also listed inside square
brackets, but on the right-hand side of the icon, i.e., Req. The
arrow pointing away from the brackets symbolises output. An
icon placed adjacent to a parameter identifier denotes its type.
The parameters ToA, Haz, HzLg, and Risks in Fig. 1 are of type
documentation, while Req is of type requirement. The inputs
and outputs of a composite are always publicly accessible.
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Figure 1. A composite pattern named Safety Requirements

A particular instantiation of a parameter is documented
by a relation that connects a parameter with its associated
development artefact. In Fig. 1, a grey icon placed adjacent
to an identifier of a development artefact classifies what kind
of artefact that is referenced. A dotted drawn line connecting a
parameter with an artefact represents an instantiates relation.
Instantiations of parameters expressed in Fig. 1 are:

e the document artefact System and Context Description
instantiates ToA.

e the document artefact System Hazards Description
instantiates Haz.

e the requirement artefact Safety Requirements Specifi-
cation instantiates Req.

e the document artefact Hazard Log instantiates HzLg.

e the document artefact Risk Assessment instantiates
Risks.

A one-to-many relationship exists between inputs in the
declaration part of a composite and similarly named inputs
with public accessibility (those pointed at by fat arrows) in
the content part. The relationship is such that when 7oA
of Safety Requirements is instantiated (i.e., given its value
by the defined relation to System and Context Description)
then every correspondingly named input parameter contained
in the composite is also similarly instantiated. A one-to-
one relationship exists between an output parameter in the
declaration part of a composite and a correspondingly named
output parameter with public accessibility (those followed by
a fat arrow) in the content part. The relationship is such that
when Req of Establish System Safety Requirements is produced
then Req of Safety Requirements is similarly produced.

The arrows (thin arrows) connecting basic patterns in the
content part of Safety Requirements represent two instances of
an operator known as the assigns relation. The assigns relations
within Safety Requirements express that:

e The output HzLg of the pattern Hazard Analysis is
assigned to the input Haz of the pattern Risk Analysis.
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e The output Risks of the pattern Risk Analysis is
assigned to the input Risks of the pattern Establish
System Safety Requirements.

That the three basic patterns are process patterns follows
from the icon below their respective identifiers. There are six
different kinds of basic patterns in SaCS, each represented by
a specific icon.

III. EVALUATION FRAMEWORK

Mendling et al. [12] describe two dominant approaches
in the literature for evaluating the quality of modelling ap-
proaches: (1) top-down quality frameworks; (2) bottom-up
metrics that relate to quality aspects. The most prominent
top-down quality framework according to [12] is SEQUAL
[4][13][14]. The framework is based on semiotic theory (the
theory of signs) and is developed for evaluating the quality
of conceptual models and languages of all kinds. Moody et
al. [15] report on an empiric study involving 194 participants
on the use of SEQUAL and concludes that the study provides
strong support for the validity of the framework. Becker et
al. [16] present a guideline-based approach as an alternative
to SEQUAL. It addresses the six factors: correctness, clarity,
relevance, comparability, economic efficiency, and systematic
design. Mendling et al. [12] also discuss a number of bottom-
up metrics approaches. Several of these contributions are
theoretic without empirical validation according to the authors.

We have chosen to apply the SEQUAL framework for our
evaluation as it is a general framework applicable to different
kinds of languages [4] whose usefulness has been confirmed in
experiments [15]. Furthermore, an analytic evaluation is pre-
ferred over a metric-based approach due to project limitations.
An analytic evaluation is also a suitable complement to the
experience-based evaluations of SaCS presented in [17][18].

The appropriateness of a modelling language for a specific
task is in SEQUAL related to the definition of the following
sets: the set of goals G for the modelling task; its domain D in
the form of the set of all statements that can be stated about the
situation at hand; the relevant knowledge of the modeller Km
and other participants Ks involved in the modelling task; what
persons involved interpret the models to say I; the language L
in the form of the set of all statements that can be expressed
in the language; relevant tool interpretation 7 of the models;
and what is expressed in the models M.

Fig. 2 is adopted from [13] and illustrates the relationships
between the different sets in SEQUAL. The quality of a
language L is expressed by six appropriateness factors. The
quality of a model M is expressed by nine quality aspects.

In the following, we will not address the different quality
aspects of a model M but rather address the quality of the
SaCS pattern language.

The appropriateness factors indicated in Fig. 2 are related
to different properties of the language under evaluation. The
appropriateness factors are [4]:

e Domain appropriateness: the language should be able
to represent all concepts in the domain.
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Figure 2. The quality framework (adopted from [19])

e Modeller appropriateness: there should be no state-
ments in the explicit knowledge of the modeller that
cannot be expressed in the language.

e  Participant appropriateness: the conceptual basis
should correspond as much as possible to the way
individuals who partake in modelling perceive reality.

o Comprehensibility appropriateness: participants in the
modelling should be able to understand all the possible
statements of the language.

e Tool appropriateness: the language should have a
syntax and semantics that a computerised tool can
understand.

e  Organisational appropriateness: the language should
be usable within the organisation it targets such that
it fits with the work processes and the modelling
required to be performed.

A set of requirements is associated with each appropriate-
ness factor. The extent to which the requirements are fulfilled
are used to judge the quality of the SaCS pattern language for
its intended task. The requirements are defined on the basis of
requirements found in the literature on SEQUAL [4].

IV. THE EVALUATION

A necessary step in the application of SEQUAL [4][13]
is to adapt the evaluation to account for the modelling needs.
This amounts to expressing what the different appropriateness
factors of the framework represent in the particular context of
the evaluation in question. In particular, the modelling needs
are detailed by the definition of a set of criteria for each of
the appropriateness factors.

Table I introduces the criteria for evaluating the suitability
of the SaCS pattern language for its intended task. In the
first column of Table I, the two letters of each requirement
identifier identify the appropriateness factor addressed by the
requirement, e.g., DA for Domain Appropriateness.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

Modeller appropriateness

TABLE 1. OVERVIEW OF EVALUATION CRITERIA
D Requirement

DA.1 The language must include the concepts representing best practices within
conceptual safety design.

DA.2 The language must support the application of best practices within concep-
tual safety design.

MA.1 The language must facilitate tacit knowledge externalisation within concep-
tual safety design.

MA.2 | The language must support the modelling needs within conceptual safety
design.

PA.1 The terms used for concepts in the language must be the same terms used
within safety engineering.

PA2 The symbols used to illustrate the meaning of concepts in the language
must reflect these meanings.

PA3 The language must be understandable for people familiar with safety
engineering without specific training.

CA.1 The concepts and symbols of the language should differ to the extent they
are different.

CA2 It must be possible to group related statements in the language in a natural
manner.

CA3 It must be possible to reduce model complexity with the language.

CA.4 | The symbols of the language should be as simple as possible with
appropriate use of colour and emphasis.

TA.1 The language must have a precise syntax.

TA.2 The language must have a precise semantics.

OA.1 The language must be able to express the desired conceptual safety design
when applied in a safety context.

OA2 The language must ease the comprehensibility of best practices within
conceptual safety design for relevant target groups like system engineers,
safety engineers, hardware and software engineers.

OA3 The language must be usable without the need of costly tools.

The different appropriateness factors are addressed succes-
sively in Section IV-A to Section IV-F according to the order
in Table I. Each requirement from Table I is discussed. A
requirement identifier is presented in a bold font when first
introduced in the text followed by the associated requirement
and an evaluation of the extent to which the requirement is
fulfilled by SaCS.

A. Domain appropriateness

DA.1 The language must include the concepts representing
best practices within conceptual safety design.

In the SaCS language, there are currently 26 basic patterns
[17][18] on different concepts within conceptual safety design.
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Each pattern may be referenced by its unique name. Three of
the currently available basic patterns are referenced in Fig. 1
and are named Hazard Analysis, Risk Analysis and Establish
System Safety Requirements.

Fig. 3 presents the icons used for basic SaCS patterns and
indicates a categorisation. The three icons to the left are used
for categorising patterns providing development guidance with
a strong processual focus. The three icons to the right are used
for categorising patterns providing development guidance with
a strong product focus. Different kinds of patterns express dif-
ferent concepts and best practices within development of safety
critical systems. The combined use of patterns from different
categories facilitates development of conceptual safety designs.

@ Process Assurance Product Assurance

&/ Requirement Pattern Reference Requirement Pattern Reference
Process Assurance @ Product Assurance
Solution Pattern Reference Solution Pattern Reference

@ Process Assurance @ Product Assurance

Safety Case Pattern Reference Safety Case Pattern Reference

Figure 3. Icons for the different kinds of basic pattern references

Habli and Kelly [20] describe the two dominant approaches
in safety standards for providing assurance of safety objectives
being met. These are: (1) the process-based approach; (2) the
product-based approach. Within the process-based approach,
safety assurance is achieved on the basis of evidence from
the application of recommended or mandatory development
practices in the development life cycle. Within the product-
based approach, safety assurance is achieved on the basis
of product specific evidences that meet safety requirements
derived from hazard analysis. The practice within safety stan-
dards as described above motivate our categorisation into the
process assurance and the product assurance pattern groups.

The safety property of a system is addressed on the basis
of a demonstration of the fulfilment of safety objectives. Seven
nuclear regulators [21] define a safety demonstration as “a set
of arguments and evidence elements that support a selected
set of dependability claims - in particular the safety - of the
operation of a system important to safety used in a given plant
environment”. Although it is the end system that is put into
operation, evidences supporting safety claims are produced
throughout the system life cycle and need to be systematically
gathered from the very beginning of a development project
[21]. The safety case approach represents a means for explicitly
presenting the structure of claims, arguments, and evidences
in a manner that facilitates evaluation of the rationale and
basis for claiming that safety objectives are met. The safety
case approach is supported by several authors [10][20][21][22].
What is described above motivates the need for patterns
supporting safety case specification in addition to patterns on
requirements elicitation and system design specification.

As indicated above, in the design of the SaCS pattern
language we have as much as possible selected keywords and
icons in the spirit of leading literature within the area. This
indicates that we at least are able to represent a significant
part of the concepts of relevance for conceptual safety design.

DA.2 The language must support the application of best
practices within conceptual safety design.
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Safety standards [23] may demand a number of activities
to be performed in which certain activities must be applied in a
specific sequence. Safety standards [23] may also describe the
expected inputs and outputs of different activities and in this
sense state what is the expected content of deliverables that
allows a transition from one activity to the next. According
to Krogstie [4], the main phenomena in languages that ac-
commodate a behavioural modelling perspective are states and
transitions between states. In this sense, the language should
support the modelling of the application of best practices
according to a behavioural modelling perspective.

Fig. 4 presents the icons for the different kinds of pa-
rameters and artefact references in SaCS. The documentation
parameter and the documentation artefact reference types
(represented visually by the icons presented in Fig. 4) are
defined in order to allow a generic classification of parameters
and artefacts that may not be classified as requirement, design,
or safety case. An example may be the result of risk analysis
that is an intermediate result in conceptual safety design and an
input to an activity on the specification of safety requirements
[23][24]. The process of deriving safety requirements on the
basis of an assessment of hazards is expressed by a chain of
patterns as presented in Fig. 1. The outcome of applying the
last pattern in the chain is a requirements specification. The
last pattern cannot be applied before the required inputs are
produced.

© Requirement Parameter Requirement Artefact Reference

© Design Parameter Design Artefact Reference

® Safety Case Parameter Safety Case Artefact Reference

O Documentation Parameter Documentation Artefact Reference

Figure 4. Icons for the different kinds of parameters and artefact references

Fig. 5 presents the symbolic representation of the different
relations in SaCS. Relations define transitions between patterns
or dependencies between elements within a composite pattern
definition. The reports [17][18] define the concepts behind the
different relations and exemplify the practical use of all the
concepts in different scenarios. Fig. 1 is explained in Section
II and exemplify a composite pattern containing five instances
of the instantiates relation and two instances of the assigns
relation.

7777777 instantiates W—y details

—FFF > assigns .—V satisfies

—{D)—— combines B demonstrates
Figure 5. Symbols for the different kinds of relations

The need for the different relations presented in Fig. 5
is motivated by the practices described in different standards
and guidelines, e.g., IEC 61508 [23], where activities like
hazard identification and hazard analysis are required to be
performed sequentially and where the output of one activity
is assigned as input to another activity. Thus, we need a
concept of assignment. In SaCS, this is defined by an assigns
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relation between patterns. When performing an activity like
hazard analysis, the results from the application of a number
of methods may be combined and used as input. Two widely
known methods captured in two different basic SaCS patterns
are Failure Modes and Effects Analysis (FMEA) and Fault
Tree Analysis (FTA). A concept for combining results is
needed in order to model that the results from applying
several patterns as FMEA and FTA are combined into a union
consisting of every individual result. In SaCS, this is defined
by a combines relation between patterns. A details relation
is used to express that the result of applying one pattern
is further detailed by the application of a second pattern.
Functional safety is an important concept in IEC 61508 [23].
Functional safety is a part of the overall safety that depends
on a system or equipment operating correctly in response to
its inputs. Furthermore, functional safety is achieved when
every specified safety function is carried out and the level
of performance required of each safety function is met. A
satisfies relation between a pattern for requirements elicitation
and a pattern for system design expresses that the derived
system satisfies the derived requirements. Safety case patterns
supports documenting the safety argument. A demonstrates
relation between a safety case pattern and a design pattern
expresses that the derived safety argument represents a safety
demonstration for the derived system.

Fig. 6 and Fig. 7 illustrate how the intended instantiation
order of patterns may be visualised. The direction of the arrow
indicates the pattern instantiation order; patterns (or more
precisely the patterns referred to graphically) placed closer to
the starting point of the arrow are instantiated prior to patterns
placed close to the tip of the arrow. Patterns may be instantiated
in parallel and thus have no specific order; this is visualised
by placing pattern references on separate arrows.

Figure 6. Serial instantiation
)
®
Figure 7. Parallel instantiation

As argued above, the SaCS language facilitates the ap-
plication of best practices within safety design and mirrors
leading international standards within the area; in particular
IEC 61508. We therefore think it is fair to say that the language
to a large extent fulfils DA.2.

B. Modeller appropriateness

MA.1 The language must facilitate tacit knowledge exter-
nalisation within conceptual safety design.

As already mentioned, the current version of the language
contains 26 basic patterns. The basic patterns are documented
in [17] and [18]. The patterns are defined on the basis of
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safety engineering best practices as defined in international
standards and guidelines [21][23][24][25][26][27] and other
sources on safety engineering. The limited number of basic
patterns currently available delimit what can be modelled in a
composite pattern. Defining more basic patterns will provide a
better coverage of the tacit knowledge that can be externalised.
A user may easily extend the language. A basic pattern, e.g.,
the pattern Hazard Analysis [17] referenced in Fig. 1, is defined
in a simple structure of named sections containing text and
illustrations according to a common format. The format is
thoroughly detailed in [5].

Table II compares the overall format of basic SaCS patterns
to pattern formats in the literature. We have chosen a format
that resembles that of Alexander et al. [2] with the addition
of the sections “Pattern signature”, “Intent”, “Applicability”,
and “Instantiation rule”. The signature, intent, and applicability
sections of basic patterns are documented in such a manner
that the context section provided in [2] is not needed. The
format in [2] is a suitable basis as it is simple, well-known, and
generally applicable for specifying patterns of different kinds.
The format provided by Gamma et al. [8] is also simple and
well-known, but tailored specifically for capturing patterns for
software design.

All in all, we admit that there may be relevant tacit
knowledge that is not easily externalised as the SaCS language
is today. However, the opportunity of increasing the number
of basic patterns makes it possible to at least reduce the gap.

MA.2 The language must support the modelling needs
within conceptual safety design.

IEC 61508 [23] is defined to be applicable across all in-
dustrial domains developing safety-related systems. As already
mentioned, a key concept within IEC 61508 is functional
safety. Functional safety is achieved according to [23] by
adopting a broad range of principles, techniques and measures.

A key concept within SaCS is that principles, techniques,
methods, activities, and technical solutions of different kinds
are defined within the format of basic patterns. A limited
number of concerns are addressed by each basic pattern. A

TABLE II. PATTERN FORMATS IN THE LITERATURE
COMPARED TO BASIC SACS PATTERNS [5]

(6] [2] [8] [9] [10] [28] [29] [30]|[5
Name v v /7 7 v v/
Also known as
Pattern signature
Intent
Motivation
Applicability
Purpose v
Context
Problem
Forces
Solution
Structure
Participants
Collaborations
Consequences
Implementation
Sample code
Example
Compare v
Instantiation rule
Related patterns v v/
Known uses v 7/ v v

<

4
v
4
4

ANANEN
AR RN

ANRN

v |V

AN NN
AN NA NN

AR RN

AN NN B

AN
AN
AR
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specific combination of patterns is defined within a compos-
ite pattern. A composite pattern is intended to address the
overall challenges that appear in a given development context.
Individual patterns within a composite only address a subset
of the challenges that need to be solved in the context. A
composite may be defined prior to work initiation in order to
define a plan for the application of patterns. Another use may
be to refine a composite throughout the work process. This is
exemplified in [17] and [18]. A composite may also be defined
once patterns have been applied in order to document the
work process. A composite representing a plan may be easily
reused for documentation purposes by adding information on
the instantiation of parameters.

C. Participants appropriateness

PA.1 The terms used for concepts in the language must be
the same terms used within safety engineering.

Activities such as hazard identification and hazard analysis
[26], methods such as fault tree analysis [31] and failure
mode effects analysis [32], system design solutions including
redundant modules and voting mechanisms [33], and prac-
tices like arguing safety on the basis of arguing that safety
requirements are satisfied [21], are all well known safety
engineering practices that may be found in different standards
and guidelines [23][24][27]. The different concepts mentioned
above are all reflected in basic SaCS patterns. Moreover,
as already pointed out, keywords such as process assurance,
product assurance, requirement, solution, safety case, etc. have
all been selected based on leading terminology within safety
engineering.

PA.2 The symbols used to illustrate the meaning of con-
cepts in the language must reflect these meanings.

One commonly cited and influential article within psychol-
ogy is that of Miller [34], on the limit of human capacity to
process information. The limit, according to Miller, is seven
plus or minus two elements. When the number of elements
increases past seven, the mind may be confused in correctly
interpreting the information. Thus, the number of symbols
should be kept low in order to facilitate effective human
information processing.

Lidwell et al. [35] describe iconic representation as “the
use of pictorial images to make actions, objects, and concepts
in a display easier to find, recognize, learn, and remember”.
The authors describe four forms for representation of informa-
tion with icons: similar, example, symbolic, and arbitrary. We
have primarily applied the symbolic form to identify a concept
at a higher level of abstraction than what may be achieved
with the similar and example forms. We have also tried to
avoid the arbitrary form where there is little or no relationship
between a concept and its associated icon. Fig. 3, Fig. 4, Fig.
5, and Fig. 6 present the main icons in SaCS. In order to
allow a flexible use of icons and keep the number of icons
low, we have chosen to not define a dedicated icon for each
concept but rather define icons that categorises several related
concepts. A relatively small number of icons was designed in a
uniform manner in order to capture intuitive representations of
related concepts. As an example, the referenced basic patterns
in Fig. 1 have the same icons linking them by category, but
unique identifiers separating them by name.
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PA.3 The language must be understandable for people
familiar with safety engineering without specific training.

The SaCS language is simple in the sense that a small set
of icons and symbols are used for modelling the application of
patterns, basically: pattern references as in Fig. 3, parameters
and artefact references as in Fig. 4, relations as in Fig. 5, and
instantiation order as in Fig. 6. Guidance to the understanding
of the language is provided in [5], where the syntax and the
semantics of SaCS patterns are described in detail. The SaCS
language comes with a structured semantics [5] that offers
a schematic mapping from syntactical elements into text in
English. Guidance to the application of SaCS is provided by
the examples detailed in [17][18]. Although we have not tested
SaCS on people unfamiliar with the language, we expect that
users familiar with safety engineering may comprehend the
concepts and the modelling on the basis of [5][17][18] within
2-3 working days.

D. Comprehensibility appropriateness

CA.1 The concepts and symbols of the language should
differ to the extent they are different.

The purpose of the graphical notation is to represent a
structure of patterns in a manner that is intuitive, compre-
hensible, and that allows efficient visual perception. The key
activities performed by a reader in order to draw conclusion
from a diagram are according to Larkin and Simon [36]:
searching and recognising relevant information.

Lidwell et al. [35] present 125 patterns of good design
based on theory and empirical research on visualisation. The
patterns describe principles of designing visual information for
effective human perception. The patterns are defined on the ba-
sis of extensive research on human cognitive processes. Some
of the patterns are commonly known as Gestalt principles of
perception. Ellis [37] provides an extensive overview of the
Gestalt principles of perception building upon classic work
from Wertheimer [38] and others. Gestalt principles capture
the tendency of the human mind to naturally perceive whole
objects on the basis of object groups and parts.

One of several Gestalt principles applied in the SaCS
language is the principle of similarity. According to Lidwell
et al. [35], the principle of similarity is such that similar
elements are perceived to be more related than elements that
are dissimilar.

The use of the similarity principle is illustrated by the
composite pattern in Fig. 1. Although each referenced pattern
has a unique name, their identical icons indicate relatedness.
Different kinds of patterns are symbolised by the icons in
Fig. 3. The icons are of the same size with some aspects of
similarity and some aspects of dissimilarity such that a degree
of relatedness may be perceived. An icon for pattern reference
is different in shape and shading compared to an icon used for
artefact reference (see Fig. 3 and Fig. 4). Thus, an artefact and
a pattern should be perceived as representing quite different
concepts.

CA.2 Tt must be possible to group related statements in the
language in a natural manner.

There are five ways to organise information according to
Lidwell et al. [35]: category, time, location, alphabet, and
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continuum. The category refers to the organisation of elements
by similarity and relatedness. An example of the application
of the principle of categorisation [35] in SaCS is seen in the
possibility to reduce the number of relations drawn between
patterns when these are similar. Patterns in SaCS may have
multiple inputs and multiple outputs as indicated in Fig. 1.
Relations between patterns operate on the parameters. The
brackets | ] placed adjacent to a pattern reference denotes an
ordered list of parameters. In order to avoid drawing multiple
relations between two patterns, relations operate on the ordered
parameter lists of the patterns by list-matching of parameters.

Fig. 8 exemplifies two different ways for expressing vi-
sually the same relationships between the composite patterns
named A and B. The list-matching mechanism is used to reduce
the number of relation symbols drawn between patterns to
one, even though the phenomena modelled represents multiple
similar relations. This reduces the visual complexity and
preserves the semantics of the relationships modelled.

B
[In1, In2,In3]

A B
[Outl] [In1]
[Out2] [InZ].

[Out3] [In3]

Figure 8. Alternative ways for visualising multiple similar relations

A
[ Outl, Out2, Out3]

CA.3 It must be possible to reduce model complexity with
the language.

Hierarchical organisation is the simplest structure for visu-
alising and understanding complexity according to Lidwell et
al. [35]. The SaCS language allows concepts to be organised
hierarchically by specifying that one pattern is detailed by
another or by defining composite patterns that reference other
composite patterns in the content part.

Fig. 9 presents a composite pattern named Requirements
that reference other composites as part of its definition. The
contained pattern Safety Requirements is defined in Fig. 1.
The contained pattern Functional Requirements is not defined
and is referenced within Fig. 9 for illustration purposes.
Requirements may be easily extended by defining composites
supporting the elicitation of, e.g., performance requirements
and security requirements, and later model the use of such
patterns in Fig. 9. In Fig. 9, the output of applying the
Requirements pattern is represented by the parameter RegSpec.
The ReqSpec parameter represents the result of applying the
combines relation on the output Reqg of the composite Safety
Requirements and the output Req of the composite Functional
Requirements.

CA.4 The symbols of the language should be as simple as
possible with appropriate use of colour and emphasis.

A general principle within visualisation according to Lid-
well et al. [35] is to use colour with care as it may lead
to misconceptions if used inappropriately. The authors points
out that there is no universal symbolism for different colours.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

Requirements
==p [TOA, Haz] [ ReqSpec |mp

Safety
Requirements

=p[TOA, Haz][Req]

Functional
Requirements

=p[TOA] [Req]

Figure 9. Composition of composites

[ReqSpec]=—>

As colour blindness is common the SaCS language applies
different shades of grey in visualisations.

Fig. 10 illustrates how the SaCS language makes use of
the three Gestalt principles of perception [35][39][38] known
as: Figure-Ground; Proximity; and Uniform Connectedness.
The Gestalt principles express mechanisms for efficient human
perception from groups of visual objects.

Figure-Ground: Figures are the objects of focus (i.e., icons,
arrows, brackets, and identifiers), ground compose
undifferentiated background (i.e. the white background)

. Establish
Hazard Risk . System Safety
Analysis Analysis Requirements

[ToA, Haz] § [HzLg] —> [Haz]< § ,[Risks]—>[Risks]‘ § )[Req]

Proximity: elements close to each Uniform Connectedness: connected
other are perceived as forming a elements are perceived as more related
group than elements that are not connected

Figure 10. A fragment of Fig. 1 illustrating the use of Gestalt principles

E. Tool appropriateness
TA.1 The language must have a precise syntax.

The syntax of the SaCS language (see [5]) is defined in
the EBNF [40] notation. EBNF is a meta-syntax that is widely
used for describing context-free grammars.

TA.2 The language must have a precise semantics.

A structured semantics for SaCS patterns is defined in [5]
in the form of a schematic mapping from pattern definitions,
via its textual syntax in EBNF [40], to English. The non-
formal representation of the semantics supports human inter-
pretation rather than tools, although the translation procedure
as described in [5] may be automated. The presentation of the
semantics of patterns as a text in English was chosen in order
to aid communication between users, possibly with different
technical background, on how to interpret patterns.

FE. Organisational appropriateness

OA.1 The language must be able to express the desired
conceptual safety design when applied in a safety context.
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The application of the SaCS pattern language produces
composite patterns that are instantiated into conceptual safety
designs. A composite pattern expresses a combination of basic
patterns. The basic patterns express safety engineering best
practices and concepts inspired by international safety stan-
dards and guidelines, e.g., [23][24][27]. International safety
standards and guidelines describe concepts and practices for
development of safety critical systems that may be perceived
as commonly accepted. The SaCS pattern language is tested
out in two cases. The first concerned the conceptualisation of a
nuclear power plant control system, while the second addressed
the conceptualisation of a railway interlocking system, fully
detailed in [17] and [18], respectively. In both cases it was
possible to derive a conceptual safety design using the SaCS
language as support as well as model how patterns were
applied as support.

0OA.2 The language must ease the comprehensibility of best
practices within conceptual safety design for relevant target
groups like system engineers, safety engineers, hardware and
software engineers.

We have already explained how basic patterns represent
concepts and best practices inspired by safety standards and
guidelines. Each basic pattern addresses a limited number of
phenomena. Basic patterns are combined into a composite
pattern where the composite addresses all relevant challenges
that occur in a specific context. A composite pattern as the
one presented in Fig. 1 ease the explanation of how several
concepts within conceptual safety design are combined and
applied.

Wong et al. [41] reviewed several large development
projects and software safety standards from different domains
with respect to cost effectiveness and concludes that although
standards provide useful and effective guidance, safety and
cost effectiveness objectives are successfully met by effective
planning and by applying safety engineering best practices ev-
idenced in company best practices throughout the development
life cycle. Compared to a standard or a guideline, a composite
pattern in the SaCS language may be used to capture such
a company specific best practice. In order to accommodate
different situations, different compositions of patterns may be
defined.

OA.3 The language must be usable without the need of
costly tools.

Every pattern used in the cases described in [17][18] was
interpreted and applied in its context by a single researcher
with background from safety engineering. A conceptual safety
design was produced for each case. Every illustration in
[51[17][18] and in this paper is created with a standard drawing
tool.

V. RELATED WORK

In the literature, pattern approaches supporting develop-
ment of safety critical systems are poorly represented. In the
following we shortly discuss some different pattern approaches
and their relevancy to the development of conceptual safety
designs.

Jackson [42] presents the problem frames approach for
requirements analysis and elicitation. Although the problem
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frames approach is useful for detailing and analysing a problem
and thereby detailing requirements, the problem classes pre-
sented in [42] are defined on a very high level of abstraction.

The use of boilerplates [43][44] for requirement specifica-
tion is a form of requirement templates but nonetheless touches
upon the concept of patterns. The boilerplate approach helps
the user phrase requirements in a uniform manner and to detail
these sufficiently. Although boilerplates may be useful for
requirement specification, the focus in SaCS is more towards
supporting requirement elicitation and the understanding of the
challenges that appear in a specific context.

Withall [45] describes 37 requirements patterns for as-
sisting the specification of different types of requirements.
The patterns are defined at a low level; the level of a single
requirement. The patterns of Withall may be useful, but as
with the boilerplates approach, the patterns support more the
specification of requirements rather than requirements elicita-
tion.

Patterns on design and architecture of software-based sys-
tems are presented in several pattern collections. One of the
well-known pattern collections is the one of Gamma et al.
[8] on recurring patterns in design of software based systems.
Without doubt, the different pattern collections and languages
on system design and architecture represent deep insight into
effective solutions. However, design choices should be founded
on requirements, and otherwise follow well established prin-
ciples of good design. The choice of applying one design
pattern over another should be based on a systematic process
of establishing the need in order to avoid design choices being
left unmotivated.

The motivations for a specific design choice are founded
on the knowledge gained during the development activities
applied prior to system design. Gnatz et al. [46] outline the
concept of process patterns as a means to address the recurring
problems and known solutions to challenges arising during
the development process. The patterns of Gnatz et al. are not
tailored for development of safety critical systems and thus do
not necessarily reflect relevant safety practices. Fowler presents
[7] a catalogue of 63 analysis patterns. The patterns do not
follow a strict format but represent a body of knowledge on
analysis described textually and by supplementary sketches.

While process patterns and analysis patterns may be rel-
evant for assuring that the development process applied is
suitable and leads to well informed design choices, Kelly
[10] defines patterns supporting safety demonstration in the
form of reusable safety case patterns. The patterns expressed
are representative for how we want to address the safety
demonstration concern.

A challenge is to effectively combine and apply the knowl-
edge on diverse topics captured in different pattern collections
and languages. Henninger and Corréa [47] survey different
software pattern practices and states “software patterns and
collections tend to be written to solve specific problems with
little to no regard about how the pattern could or should be
used with other patterns”.

Zimmer [48] identifies the need to define relationships
between system design patterns in order to efficiently combine
them. Noble [49] builds upon the ideas of Zimmer and defines
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a number of relationships such as uses, refines, used by,
combine, and sequence of as a means to define relationships
between system design patterns. A challenge with the relations
defined by Noble is that they only specify relations on a very
high level. The relations do not have the expressiveness for
detailing what part of a pattern is used, refined, or combined.
Thus, the approach does not facilitate a precise modelling of
relationships.

Bayley and Zhu [50] define a formal language for pattern
composition. The authors argue that design patterns are almost
always to be found composed with each other and that the
correct applications of patterns thus relies on precise definition
of the compositions. A set of six operators is defined for
the purpose of defining pattern compositions. The language is
exemplified on the formalisation of the relationships expressed
between software design patterns described by Gamma et al.
[8]. As we want the patterns expressed in the SaCS language
to be understandable to a large community of potential users,
we find this approach a bit too rigid.

Smith [51] presents a catalogue of elementary software
design patterns in the tradition of Gamma et al. [8] and
proposes the Pattern Instance Notation (PIN) for expressing
compositions of patterns graphically. The notation uses simple
rounded rectangles for abstractly representing a pattern and its
associated roles. Connectors define the relationships between
patterns. The connectors operate on the defined roles of
patterns. The notation is comparable to the UML collaboration
notation [52].

UML collaborations [52] are not directly instantiable. In-
stances of the roles defined in a collaboration that cooperates
as defined creates the collaboration. The main purpose is to
express how a system of communicating entities collectively
accomplishes a task. The notation is particularly suitable for
expressing system design patterns.

Several notations [53][54][55] for expressing patterns
graphically use UML [52] as its basis. The notations are
simple, but target the specification of software.

VI. CONCLUSION

We have presented an analytical evaluation of the SaCS
pattern language with respect to six different appropriateness
factors. We arrived at the following conclusions:

e  Domain: In the design of the SaCS language we have
as much as possible selected keywords and icons
in the spirit of leading literature within the area.
This indicates that we at least are able to represent
a significant part of the concepts of relevance for
conceptual safety design.

e Modeller: There may be relevant tacit knowledge that
is not easily externalised as the SaCS language is
today. However, the opportunity of increasing the
number of basic patterns makes it possible to at least
reduce the gap.

e  Farticipants: The terms used for concepts have been
carefully selected based on leading terminology within
safety engineering. The SaCS language facilitates rep-
resenting the application of best practices within safety
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design and mirror leading international standards; in
particular IEC 61508.

o Comprehensibility: The comprehension of individual
patterns and pattern compositions is supported by the
use of terms commonly applied within the relevant
industrial domains as well as by the application of
principles of good design in visualisations, such as
the Gestalt principles of perception [35][38].

e  Tool: Tool support may be provided on the basis of
the syntax and semantics of the SaCS language [5].

e  Organisational: Organisations developing safety crit-
ical systems are assumed to follow a development
process in accordance to what is required by standards.
Wong et al. [41] reviewed several large development
projects and software safety standards from differ-
ent domains with respect to cost effectiveness and
concludes that although standards provide useful and
effective guidance, safety and cost effectiveness objec-
tives are successfully met by effective planning and by
applying safety engineering best practices evidenced
in company best practices throughout the development
life cycle. SaCS patterns may be defined, applied, and
combined in a flexible manner to support company
best practices and domain specific best practices.
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