
Adding Secure Deletion to an Encrypted File System on Android Smartphones

Alexandre Melo Braga, Alfredo H. Gallinucci Colito

Centro de Pesquisa e Desenvolvimento em Telecomunicações (Fundação CPqD)

Campinas, São Paulo, Brazil

{ambraga,acolito}@cpqd.com.br

Abstract—Nowadays, mobile devices are powerful enough to

accomplish most of the tasks previously accomplished only by

personal computers; that includes file management. However,

on many devices the file deletion operation misleads the user

into thinking that the file has been permanently removed,

when that is usually not the case. Also, with the increasing use

of encryption, attackers have been directed to weaker targets.

One of them is the recovery of supposedly deleted data from

flash memories. This paper describes a way to integrate secure

deletion technologies in an encrypted file system in Android

smartphones.

Keywords-secure delete; secure storage; encrypted file

system; flash memory; mobile devices; Android.

I. INTRODUCTION

Nowadays, many users keep their sensitive data on
mobile devices. However, mobile devices are vulnerable to
data leakage. As the amount of digital data grows, so does
the theft of sensitive data through loss of device, exploitation
of vulnerabilities or misplaced security controls. Sensitive
data may also be leaked accidentally due to improper
disposal or resale of devices.

With the increasing use of encryption systems, an
attacker wishing to gain access to sensitive data is directed to
weaker targets. One possible attack is the recovery of
supposedly erased data from internal storage, possibly a flash
memory card. To protect the secrecy of data during its entire
lifetime, encrypted file systems must provide not only ways
to securely store, but also reliably delete data, in such a way
that recovering them from physical medium is almost
impossible.

The new generations of mobile devices are powerful
enough to accomplish most of the tasks previously
accomplished only by personal computers. That includes file
management operations (e.g., create, read, update, and
delete). Also, today’s devices possess operating systems that
are hardware-agnostic by design and abstract from ordinary
users all hardware details, such as writing procedures for
flash memory cards.

Additionally, it is a real threat the misuse by intelligence
agencies of data destruction standards as well as embedded
technologies, which can suffer from backdoors or inaccurate
implementations, in an attempt to facilitate unauthorized
access to supposedly deleted data. In fact, there is a need for
practical security technologies that work at the operating
system level, under the control of the user. This technology
has to be easy to use in everyday activities and easily

integrated into mobile devices with minimal maintenance
and installation costs.

This paper describes a way to integrate secure deletion
technologies to an encrypted file system in Android
smartphones. This work is part of an effort to build security
technologies into an integrated framework for mobile device
security [1][2].

The remaining parts of the text are organized as follows.
Section II offers background information. Section III
discusses related work. Section IV details the proposed
integration of encrypted file systems and secure deletion
functions. Section V presents a performance evaluation for
the secure deletion function. Section VI discusses
improvements on the proposed approach. Section VII
concludes this text.

II. BACKGROUND

Traditionally, the importance of secure deletion is well
understood by almost everyone and several real-world
examples can be given on the subject: sensitive mail is
shredded; published government information is selectively
redacted; access to top secret documents ensures all copies
can be destroyed; and blackboards at meeting rooms are
erased after sensitive appointments.

In mobile devices, that metaphor is not easily
implemented. All modern file systems allow users to
“delete” their files. However, on many devices the remove-
file command misleads the user into thinking that her file has
been permanently removed, when that is not the case. File
deletion is usually implemented by unlinking files, which
only changes file system metadata to indicate that the file is
“deleted”; while the file’s full contents remain available in
physical medium. This simple procedure is called logical or
ordinary deletion.

Unfortunately, despite the fact that deleted data are not
actually destroyed in the device, logical deletion has the
additional drawback that ordinary users are generally unable
to completely remove her files. On the other hand, advanced
users or adversaries can easily recover logically deleted files.

Deleting a file from a storage medium serves two
purposes: (i) it reclaims storage to operating system and (ii)
ensures that any sensitive information contained in the file
becomes inaccessible. The second purpose requires that files
are securely deleted.

Secure data deletion can be defined as the task of

deleting data from a physical medium so that the data is

106Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

irrecoverable. That means its content does not persist on the

storage medium after the secure deletion operation.
Secure deletion enables users to protect the

confidentiality of their data if their device is logically
compromised (e.g., hacked) or stolen. Until recently, the
only user-level deletion solution available for mobile devices
was the factory reset, which deletes all user data on the
device by returning it to its initial state. However, the
assurance or security of such a deletion cannot be taken for
granted, as it is highly dependent on device’s manufacturer.
Also, it is inappropriate for users who wish to selectively
delete data, such as some files, but still retain their address
books, emails and installed applications.

Older technologies [14] claim to securely delete files by
overwriting them with random data. However, due the nature
of log-structured file systems used by most flash cards, this
solution is no more effective than logically deleting the file,
since the new copy invalidates the old one but does not
physically overwrite it. Old secure deletion approaches that
work at the granularity of a file are inadequate for mobile
devices with flash memory cards.

Today, secure deletion is not only useful before
discarding a device. On modern mobile devices, sensitive
data can be compromised at unexpected times by adversaries
capable of obtaining unauthorized access to it. Therefore,
sensitive data should be securely deleted in a timely fashion.

Secure deletion approaches that target sensitive files, in
the few cases where it is appropriate, must also address
usability concerns. A user should be able to reliably mark
their data as sensitive and subject to secure deletion. That is
exactly the case when a file is securely removed from an
encrypted file system.

On the other hand, approaches that securely delete all
logically deleted data, while less efficient, suffer no false
negatives. That is the case for purging techniques.

III. RELATED WORK

This section briefly describes related work on the subjects

of secure deletion and encrypted file systems on mobile

devices, particularly Android.

The use of cryptography as a mechanism to securely

delete files was first discussed by Boneh and Lipton [6].

Their paper presented a system which enables a user to

remove a file from both file system and backup tapes on

which the file is stored, just by forgetting the key used to

encrypt the file.

Gutman [14] covered methods available to recover erased

data and presented actual solutions to make the recovery

from magnetic media significantly more difficult by an

adversary. In fact, the paper covered only magnetic media

and, to a lesser extent, RAM. Flash memory barely existed

at the time it was written, so it was not considered by him.

Kyoungmoon et al. [12] proposed an efficient secure

deletion scheme for flash memory storage. This solution

resides inside the operating system and close to the memory

card controller.

Diesburg and Wang [16] presented a survey summarizing

and comparing existing methods of providing confidential

storage and deletion of data in personal computing

environments, including flash memory issues.

Wang et al. [19] present a FUSE (File-system in

USErspace) encryption file system to protect both

removable and persistent storage on devices running the

Android platform. They concluded that the encryption

engine was easily portable to any Android device and the

overhead due to encryption is an acceptable trade-off for

achieving the confidentiality requirement.

Reardon et al. [7]-[10] have shown plenty of results

concerning both encrypted file system and secure deletion.

First, Reardon et al. [11] proposes the Data Node Encrypted

File System (DNEFS), which uses on-the-fly encryption and

decryption of file system data nodes to efficiently and

securely delete data on flash memory systems. DNEFS is a

generic modification of existing flash file systems or

controllers that enables secure data deletion. Their

implementation extended a Linux implementation and was

integrated in Android operating system, running on a

Google Nexus One smartphone.

Reardon et al. [7] also propose user-level solutions for

secure deletion in log-structured file systems: purging,

which provides guaranteed time-bounded deletion of all data

previously marked to be deleted, and ballooning, which

continuously reduces the expected time that any piece of

deleted data remains on the medium. The solutions

empower users to ensure the secure deletion of their data

without relying on the manufacturer to provide this

functionality. These solutions were implemented on an

Android smartphone (Nexus One) and experiments have

shown that they neither prohibitively reduce the longevity of

flash memory nor noticeably reduce device's battery

lifetime.

In two recent papers, Reardon et al. [8][9] study the issue

of secure deletion in details. First [9], they identify ways to

classify different approaches to securely deleting data. They

also describe adversaries that differ in their capabilities,

show how secure deletion approaches can be integrated into

systems at different interface layers. Second [8], they survey

the related work in detail and organize existing approaches

in terms of their interfaces to physical media. They further

present taxonomy of adversaries differing in their

capabilities as well as systematization for the characteristics

of secure deletion approaches.

 More recently, Reardon et al. [10] presented a general

approach to the design and analysis of secure deletion for

persistent storage that relies on encryption and key

wrapping.

Finally, Skillen and Mannan [4] designed and

implemented a system called Mobiflage that enables

plausibly deniable encryption (PDE) on mobile devices by

hiding encrypted volumes within random data on a device’s

external storage. They also provide [3] two different

implementations for the Android OS to assess the feasibility

107Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

and performance of Mobiflage: One for removable SD cards

and other for internal partition for both apps and user

accessible data.

IV. DESCRIPTION OF PROPOSED SOLUTION

The rationale behind the proposed solution is the actual
possibility of performing secure deletion of files from
ordinary Android applications, in user mode, without
administrative privileges or operating system customization.
The solution handles two cases according to the place where
the file already deleted or about to be deleted is stored:

1) The file is already kept by encrypted file system;
2) A file or bunch of files was logically deleted by the

operating system and their locations are unknown.

A. Secure Deletion of Encrypted Files

The simplest way to fulfill the task of securely delete a
file from an encrypted file system is to simply lose the
encryption key of that file and then logically remove the file.
This method does not need memory cleaning (purging) and
is very fast. A prototype was built upon an Android port for
the EncFS encrypted file system [18][19]. To accomplish
this task, the way EncFS manages cryptographic keys had to
be modified. EncFS encrypts all files with a single master
key derived from a password based encryption (PBE)
function. It is seams quite obvious that it is not feasible to
change a master key and encrypt the whole file system every
time a single file is deleted. On the other hand, if each file
were encrypted with its own key, then that key could be
easily thrown away, turning the file irrecoverable. The
modification to EncFS consists in the following steps:
a) Use PBE to derive a master key MK;
b) Use a key derivation function (KDF) to derive a file

system encryption key FSEK from MK;
c) Use an ordinary key generation function (e.g., PRNG)

to generate a file encryption key FEK;
d) Encrypt files along with their names using FEK and

encrypts FEK with FSEK and random IV.
e) Keep a mapping mechanism from FEK and IV to

encrypted file (FEK||IV  file).
A simple way to keep that mapping is to have a table file

stored in user space as application’s data. Care must be

taken to avoid accidentally or purposely remove that file

when cleaning device’s user space. In Android devices, this

can be done by rewriting the default activity responsible for

deleting application’s data. An application-specific delete

activity would provide a selective deletion of application’s

data or deny any deletion at all. The removal from table of

the FEK and IV makes a file irrecoverable. The ordinary

delete operation then return storage space of that file to

operating system. Figure 1 depicts the solution.
Another way to keep track of keys and files is to store the

pair {FEK,IV} inside the encrypted name of the encrypted
file. In this situation, a file has to be renamed before
removed from the encrypted file system. The rename
operation destroys the FEK and makes file irrecoverable.
The ordinary delete operation then return storage space to
operating system.

It is interesting to note that the proposed solution
contributes to solve some known security issues of EncFS
[13][17]. By using distinct keys for every file, a Chosen
Ciphertext Attack (CCA) against the master key is inhibited.
Also, it reduces the impact of IV reuse across encrypted files.
Finally, it eliminates the watermarking vulnerability, because
a single file imported twice to EncFS will be encrypted with
two distinct keys and IVs.

Finally, the key derivation function is based upon
PBKDF2 standard [5], keys and IVs are both 256 bits, and
the table for mapping the pair {key,IVs} to files is kept by an
SQLite scheme accessible only by the application.

B. Secure Deletion of Ordinary Files

In this context, a bunch of files were logically deleted by
the operating system for the benefit of the user, but they left
sensitive garbage in the memory. Traditional solutions of
purging memory cells occupied by those files are innocuous,
because there is no way to know, from user’s point of view,
where purging data will be written.

An instance of this situation occurs when a temporary file
is left behind by an application and manually deleted. This
temporary file may be a decrypted copy of an encrypted file
kept by the encrypted file system. Temporary unencrypted
copies of files are necessary in order to allow other
applications handle specific file types, e.g., images,
documents, and spreadsheets.

Whether temporary files will or will not be imported
back to the encrypted file system, they have to be securely
removed anyway. A premise is that the files to be removed
are not in use by any application. The secure deletion occurs
in three steps:
1) Logically remove targeted files with ordinary deletion;
2) Write a temporary file of randomized content that

occupies all memory’s free space;
3) When there is no free space anymore, logically deletes

that random file. That action purges all free memory in a
way that no sensitive data is left behind.

The final result of this procedure is a flash storage free of
sensitive garbage. Steps two and three can be encapsulated as
a single function, called memory purging, and performed by
an autonomous application. That application would be
activated by the user whenever she needs to clean memory
from sensitive garbage. The proposed solution adopted this
implementation.

MK

PBE

FSEK

Encrypted file

Encrypted file

KDF

Encrypted file system with
single master key.

Encrypted file system with a
single key per file.

FEK | F_ID
FEK | F_ID

...
FEK | F_ID

encrypts

derives

e
n

cr
yp

ts

Figure 1. Extending an encrypted file system for secure deletion.

108Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

Unfortunately, this procedure has two drawbacks. First, it
takes time proportional to the size of the free space to be
cleaned and the speed of memory writes. Second, this
procedure, in the long term, if used with high frequency,
have the potential to shorten the lifetime of flash memories.

In order to minimize the negative impact over memory
life and avoid excessive delays during operation, steps two
and three from above should not be carried out for every
single file deleted from the system.

C. Limitations of the solution

The protection of cryptographic keys is of major
importance. In spite of being stored encrypted, decrypted
just before being used, and then released, the protection of
cryptographic keys relies on Android security and the
application confinement provided by that operating system.

The proposed solution for memory purging is supposed
to work in user-mode, as an ordinary mobile app, without
administrative access, with no need for operating system
modification, and using COTS devices. These decisions have
consequences for security.

First of all, the solution is highly dependent on the way
flash-based file systems and controllers behave. Briefly
speaking, when the flash storage is updated, the file system
writes a new copy of the changed data to a fresh memory
block, remaps file pointers, and then erases the old memory
blocks, if possible, but not certainly. This constrained design
actually enables the alternatives discussed in Section VI.

A second issue is that the solution is not specifically
concerned about the type of physical memory (e.g., internal,
external SD, NAND, and NOR) as long as it behaves like a
flash-based file system. The consequence is that only
software-based attacks are considered and physical attacks
are out of scope.

Finally, the use of random files is not supposed to have
any effect on the purging assurance, but provides a kind of
low-cost camouflage for cryptographic material (e.g., keys or
parameters) accidentally stored on persistent media. An
entropy analysis would not be able to easily distinguish
specific random data as potential security material, because
huge amounts of space would look random. Of course, this
software-based camouflage cannot be the only way to
prevent such attacks, but it adds to a defense in depth
approach to security at almost no cost.

V. PERFORMANCE EVALUATION OF SECURE DELETION

Table I shows performance measurements for the secure
deletion of ordinary files by purging. The measurements
were taken on two smartphones: (i) LG Prada p940h, with 4
GB of internal storage available and Android 2.3.7; and (ii)
Motorola Atrix with 16GB (only 11 GB available to final
user) of internal storage and Android 2.3.6. File recovery
was performed by PhotoRec recovery tool [15]. Random
files created for purging had size of at most 2 GB.

Tests were performed over internal memory in three
conditions: memory almost free (few files), memory half
occupied (many files), and memory free (no files at all). The
test procedure consisted of the following steps: (a) creation
of ordinary content; (b) logical deletion of that content; (c)

execution of secure deletion procedure; and (d) attempting of
content recovery. Tests have shown that secure deletion time
is proportional to memory size and quite similar to recovery
time, as was expected. LG Prada was cleaned at a rate of one
Gigabyte per minute (1 GB/min). Motorola Atrix was
cleaned at a rate of half Gigabyte per minute (0.5 GB/min).
Additionally, a test over a class C SD card of 4 GB was
carried out at 0.25 GB/min. In all cases, PhotoRec was
unable to recover secure deleted files.

VI. IMPROVEMENTS UNDER DEVELOPMENT

The solution for memory purging is the simplest
implementation of a general policy for purging flash
memories. In fact, a general solution has to offer different
trade-offs among security requirements, memory life, and
system responsiveness. The authors have identified three
points for customization:
1. The period of execution for the purging procedure;
2. The size and quantity of random files;
3. The frequency of files creation/deletion.

By the time of writing, different trade-offs among the

three customization points previously identified were being

implemented and evaluated. In all of them, the random file

created in order to clean memory space is called bubble,

after the metaphor of soap cleaning bubbles over a dirty

surface. These alternatives are discussed in next paragraphs.

A. Static single bubble

The solution described in this text implements the idea of
a single static bubble that increases in size until it reaches the
limit of free space, and then bursts. This solution is adequate
for the cases when memory has to be cleaned in the shortest
period of time, with no interruption. A disadvantage is that
other concurrent application can starve out of memory. This
solution is adequate when nothing else is happening, but the
purging.

B. Moving or sliding (single) bubble

In this alternative, a single bubble periodically moves
itself or slides from one place to another. The moving bubble
has size of a fraction of free space. For example, if bubble
size is 1/n of free space, the moving bubble covers all free
memory after n moves, considering the amount of free space
does not change. A move is simply the rewriting of the
bubble file, since flash memories will perform a rewrite in a
different place.

TABLE I. TESTING SECURE DELETION.

LG Prada p940h Few files Many files No files

Free before purging ~3.9 GB 2.21 GB 3.98 GB

Purging time 4min19s 2min37s 4min24s

 Motorola Atrix Few files Many files No files

Free before purging ~10 GB 5,2 GB 10,59 GB

Purging time 18min51s 10min53s 19min22s

109Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

In a period of time equals to T*(n/2), where T is the time
between moves, the chance of finding sensitive garbage in
memory is 50%. This solution is adequate when memory has
a low to moderate usage by concurrent applications. This
solution preserves system responsiveness (usability) but
diminishes security.

C. Moving or sliding (multiple) bubbles

This alternative uses more than one bubble instead of a
single one. The size and amount of bubbles are fixed. For
instance, if bubble size is 1/n of free space, two moving
bubble covers all free memory after n/2 moves each. The
advantage of this method is to potentially accelerate memory
coverage, reducing opportunity for memory compromising.

In the example, two bubbles of size 1/n each can move at
every T/2 period, and then concluding in T*n. Alternatively,
they can move at period T and terminate in 2*T*n, and so
on. This solution is adequate when memory has a moderate
usage by concurrent applications. This solution is
probabilistic in the sense that as smaller the duration of T
and greater the size of bubbles, greater the chance of
successfully clean all memory.

D. Sparkling bubbles

This solution varies the size and amount of bubbles. The
idea is to create a bunch of mini bubbles that are sparkled
over free memory. Bubbles are created and instantly
removed at period T, which can be constant or random
between zero and T. The sparking of bubbles stops when the
sum of sizes for all created bubbles surpasses free space.
Bubble size can be small enough to not affect other
applications.

This solution is adequate when memory has a moderate to
high usage by concurrent applications. This solution is
probabilistic in the sense that as smaller the duration of T,
greater the chance of successfully clean the whole memory.

VII. CONCLUDING REMARKS

This paper discussed the implementation of two user-
level approaches to perform secure deletion of files. One
works on secure deletion of encrypted files and the other
handles de deletion assurance of ordinary (unencrypted)
files. Secure deletion of encrypted files was fully integrated
to an encrypted file system and is transparent to the user.
Secure deletion of ordinary files was fulfilled by an
autonomous application activated under the discretion of the
user. Preliminary performance measurements have shown
that the approach is feasible and offers a trade-off between
time and deletion assurance. Further tests have to be
performed to fine-tune the solution in order to preserve
system responsiveness. Also, a deep security assessment has
to be performed in order to give the actual extend of the
security provided by the proposed solution.

ACKNOWLEDGMENT

The authors acknowledge the financial support given to
this work, under the project "Security Technologies for
Mobile Environments – TSAM", granted by the Fund for

Technological Development of Telecommunications –
FUNTTEL – of the Brazilian Ministry of Communications,
through Agreement Nr. 01.11. 0028.00 with the Financier of
Studies and Projects - FINEP / MCTI.

REFERENCES

[1] A. M. Braga, E. Nascimento, and L. Palma, “Presenting the Brazilian
Project TSAM – Security Technologies for Mobile Environments”, in
proceeding of the 4th International Conference in Security and
Privacy in Mobile Information and Communication Systems
(MobiSec 2012), LNICST volume 107, 2012, pp. 53-54.

[2] A. M. Braga, “Integrated Technologies for Communication Security
on Mobile Devices”, The Third International Conference on Mobile
Services, Resources, and Users (Mobility’13), 2013, pp. 47-51.

[3] A. Skillen and M. Mannan, “Mobiflage: Deniable Storage Encryption
for Mobile Devices”, IEEE Transactions on Dependable and Secure
Computing, vol.11, no.3, May-June 2014, pp.224,237.

[4] A. Skillen and M. Mannan, “On Implementing Deniable Storage
Encryption for Mobile Devices”, in 20th Annual Network &
Distributed System Security Symposium, February 2013, pp. 24-27.

[5] B. Kaliski, RFC 2898, PKCS #5: Password-Based Cryptography
Specification Version 2.0. Retrieved [July 2014] from
http://tools.ietf.org/html/rfc2898.

[6] D. Boneh and R. J. Lipton, “A Revocable Backup System”, in
USENIX Security, 1996, pp. 91-96.

[7] J. Reardon, C. Marforio, S. Capkun, and D. Basin, “User-level secure
deletion on log-structured file systems”, in Proceedings of the 7th
ACM Symposium on Information, Computer and Communications
Security, 2012, pp. 63-64.

[8] J. Reardon, D. Basin, and S. Capkun, “Sok: Secure data deletion”, in
IEEE Symposium on Security and Privacy, 2013, pp. 301-315.

[9] J. Reardon, D. Basin, and S. Capkun, “On Secure Data Deletion,”
Security & Privacy, IEEE , vol.12, no.3, May-June 2014, pp.37-44.

[10] J. Reardon, H. Ritzdorf, D. Basin, and S. Capkun, “Secure data
deletion from persistent media”, in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security (CCS
'13). ACM, New York, NY, USA, 2013, pp. 271-284.

[11] J. Reardon, S. Capkun, and D. Basin, “Data node encrypted file
system: Efficient secure deletion for flash memory”, in USENIX
Security Symposium, 2012, pp. 333-348.

[12] K. Sun, J. Choi, D. Lee, and S.H. Noh, "Models and Design of an
Adaptive Hybrid Scheme for Secure Deletion of Data in Consumer
Electronics," IEEE Transactions on Consumer Electronics, vol.54,
no.1, Feb. 2008, pp.100-104.

[13] M. Riser, “Multiple Vulnerabilities in EncFS”, 2010. Retrieve [july
2014] from: http://archives.neohapsis.com/archives/fulldisclosure/
2010-08/0316.html.

[14] P. Gutmann, "Secure deletion of data from magnetic and solid-state
memory," proceedings of the Sixth USENIX Security Symposium,
San Jose, CA, vol. 14, 1996.

[15] PhotoRec, Digital Picture and File Recovery. Available [July 2014]
from: http://www.cgsecurity.org/wiki/PhotoRec.

[16] S. M. Diesburg and A. I. A. Wang, “A survey of confidential data
storage and deletion methods”, ACM Computing Surveys (CSUR),
v. 43, n.1, p.2, 2010.

[17] T. Hornby, “EncFS Security Audit”. Retrived [July 2014] from:
https://defuse.ca/audits/encfs.htm.

[18] V. Gough, “EncFS Encrypted Filesystem”, stable release 1.7.4
(2010). Available [July 2014] from: http://www.arg0.net/encfs.

[19] Z. Wang, R. Murmuria, and A. Stavrou, “Implementing and
optimizing an encryption filesystem on android”. In IEEE 13th
International Conference on Mobile Data Management (MDM),
2012, pp. 52-62.

110Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

