
Test Case Generation Assisted by Control Dependence Analysis

Puhan Zhang
China Information

Technology Security
Evaluation Center

Beijing, China
zhangph2008@gmail.com

Qi Wang
Renmin University of China

Beijing, China
China Telecom Corporation

Beijing Company
Beijing, China

wangq@163.com

Guowei Dong
China Information

Technology Security
Evaluation Center

Beijing, China
dgw2008@163.com

Bin Liang, Wenchang Shi
School of Information

Renmin University of China
Beijing, China

{liangb,
wenchang}@ruc.edu.cn

Abstract—The paper proposes and develops a new test case
generation tool named Symbolic Execution & Taint Analysis
(SYTA) that can capture implicit information flows by control
dependence analysis. When running, SYTA traces execution
paths to track constraints on symbolic variables. Some
equivalence relationship asserts will be constructed to store
the equivalence information among variables for control
dependence analysis. If a security sink is reached, SYTA
builds a constraint, path conditions and equivalence
relationship asserts, which are to be sent to a constraints
solver. The test cases will be generated from possible
counterexamples in constraint solving. Compared with
traditional static analysis tools, SYTA can track implicit
information flows, and generate test cases by control
dependences analysis effectively.

Keywords-test case generation; control dependence; implicit
information flow; symbolic execution

I. INTRODUCTION

Nowadays, test case generation has become the most
important step of code testing, which is usually realized by
the symbolic execution approach. If there exists a bug, the
test cases can help programmers to find the spot that causes
the error.

A traditional Fuzzing approach is a form of blackbox
testing which randomly mutates well-formed inputs and use
these variants as test cases [1][2]. Although Fuzzing can be
remarkably effective, the limitations of Fuzzing are that it
usually provides low code coverage and cannot drive deeper
into programs because blind modification destroys the
structure of inputs [3]. In a security context, these limitations
mean that potentially serious security bugs, such as buffer
overflows, are possibly missed because the code containing
the bugs is even not exercised.

Combining general static analysis with taint analysis to
test applications and draw test cases is presently the hottest
research technique, such as TaintScope [6]. Taint analysis
allows a user to define the taint source and propagate the
taint following specific propagation policy during execution,
and finally, trigger a particular operation if the
predetermined security sink is hit.

Unfortunately, this smart Fuzzing technique bears many
pitfalls [4], among which missing the implicit information
flows is the most critical one. Contrary to explicit
information flows caused by direct assignment, implicit
information flows are a kind of information flow consisting

of information leakage through control dependence. The
example shown in Figure 1 discloses the nature of implicit
information flows. There is no direct assignment between
variables h and l in the sample program, but l can be set to
the value of h after the if-then-else block by control
dependence. Even though the early attention and definition
of the implicit flow problem dated back to 1970’s [5], no
effective solution has been found. Some newly-developed
tools, such as TaintScope [6], detour implicit information
flows and limit their analysis only to explicit information
flows, which incur the following three problems:

 Missing implicit information flows may lead to a
under-tainting problem and false negative. As a
result, the security vulnerabilities caused by control
dependence will not be detected. Especially, it is
critical to capture implicit flows in privacy leak
analysis.

 Control dependence is also a common programming
form in benign programs. For example, some
routines may use a switch structure to convert
internal codes to Unicode in a Windows program
such as the following code segment. switch(x){ case
a: y = a; break; case b: y = b; break; ……}. It
indicates that it is necessary to analyze the implicit
information flows for common software testing.

 To counter the Anti-Taint-Analysis technique,
implicit information flows must be analyzed
effectively [7]. Malware can employ control
dependence to propagate sensitive information so as
to bypass traditional taint analysis.

To address these limitations and generate test cases with
tainting techniques, we propose and develop a new tool
called Symbolic Execution & Taint Analysis (SYTA), which
can generate test cases by considering implicit information
flows. Compared with traditional static analysis tools, SYTA
can track implicit information flows and generate test cases

1:h := h mod 2;

2:if h = 1 then

3: l := 1;

4:else

5:l := 0;

6:end if

Figure 1. A sample program of implicit information flow

138Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

by control dependences analysis effectively. Though it is
hard to say what percentage of a program can be classified
as implicit information flow, it may reveal some
vulnerabilities that explicit information flow is unable to.

The rest of the paper is organized as follows. Section 2
briefly analyzes the target problem. Section 3 discusses our
methodology and design of SYTA. Section 4 evaluates our
approach. Section 5 summarizes related work. Finally,
Section 6 concludes the paper and discusses future-work
directions.

II. PROBLEM ANALYSIS

This section describes the problem we encounter by
walking the readers through the testing of a sample program
shown in Figure 3 (a). Despite its small size, it illustrates the
most common characteristics of implicit information flows.
There exist three bugs related to control dependence in the
sample program.

1) Array bound overflow in line 29. The program
implies that variable k will be equal to variable i under a
specific condition. If 2 is assigned to i by users, k will be set
to 2 through four control branches, including three ‘if’ and
one loop statements. In line 28, the value to which pointer p
points is 4. Eventually, an array bound overflow will be
triggered when dereferencing p as the index of array a in
line 29.

2) Divide-by-zero in line 30. If 3 is assigned to variable
i by users, through several control branches, *p will be set
to 0 in line 28, then the divisor t becomes 0 in line 30.

3) Denial of service in line 31. If 1 is assigned to
variable i, the result of a DoS attack may occur in the
program in line 31.

In traditional analysis tools, the test cases cannot be
generated for above bugs due to the absence of control
dependence analysis. Take EXE [8] and KLEE [9] as
examples, they are totally based on explicit information
flows analysis. When being applied to the sample program,
though variable i is symbolically executed and analyzed,
those tools can not produce effective test cases, because
there are not any direct assignment relationships among i
and some other variables, such as k, t, and p etc.

Our solution is to take implicit information flows into
consideration, in which the flow of taint is propagated from
variable i to variables j, tmp and k (in line 18, 25 and 30,
respectively, in the source code). Variable p in line 33 is
tainted because of the data flow and it is possible to identify
the bugs and automatically obtain the test case to hit them.

III. METHODOLOGY

SYTA, as a test case generator, actually functions as a
combination of an intermediate language interpreter, a
symbolic execution engine and a taint analyzer. During each
symbolic execution, some lists are built to store information
for taint propagation. Test programs are firstly parsed by a
compiler front-end and converted to an intermediate
language. The corresponding Control Flow Graphs (CFGs)
are constructed as the inputs of SYTA. SYTA will traverse

each CFG and run symbolic execution. It will perform two
kinds of taint propagations during symbolic execution,
collect symbolic path conditions, record the equivalence
information among variables and generate Satisfiability
Modulo Theories (SMT) constraints eventually. An SMT
solver will be employed to solve and check these constrains
to detect potential bugs. If some bugs are found, test cases
will be generated and reported.

A. Overview

The core of SYTA is an interpreter loop that selects a
path, composed of basic blocks and directed by edges of
CFG, to symbolically execute each statement of the basic
blocks and perform two kinds of taint propagations (explicit
and implicit). The loop continues until no basic blocks
remain, and generates test cases if some bugs are hit. The
architecture is illustrated in the Figure 2.

For two kinds of taint analysis, we maintain the Explicit
Information Flow Taint (EFT) lists and Implicit Information
Flow Taint (IFT) lists. Besides, an Equivalence
Relationships (ER) list is maintained to record equivalence
information among variables in condition statements for
control dependence analysis.

At the very beginning of testing, users appoint some
interested variables as the taint sources which are recorded
into the EFT and IFT lists in proper forms. The two lists
involve different taint propagation policies that we design
for explicit and implicit information flows respectively.

When a security sink is encountered, SYTA will invoke
an SMT solver to carry out a query considering the
operation related to current security sink. Current path
conditions and expressions drawn from the ER list will act
as the context of the query, namely, asserts of solving. By
running the query, SYTA checks if any input value exists
that may cause a bug. If a bug is detected, the SMT solver
will produce a counterexample as a test case to trigger the
bug.

B. Implicit Information Flow Taint Propagation

The intuition of taint propagation over implicit
information flows can be illustrated using a sample program
shown in Figure 4.

In this sample program, a conditional branch statement
br, namely if (i >= 4) in line 5, decides which statements st
should be executed (j = 5 in line 6 or j = 0 in line 9). The

Figure 2. The architecture of SYTA

Source
code

GCC

Taint
source

STP

Test
cases

CFG
SYTA

User

Note: STP is an SMT solver.

139Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

value of i affect the value of j. Therefore, based on control
dependence, the taint state should be propagated from the
source operand of br, namely the variable i, to st’s
destination operands, the variable j. To achieve this result,
SYTA needs to compute and record post dominance
relationships at the basic-block level before symbolic
execution.

At first, a user appoints variables as taint sources and
SYTA calculates the immediate post-dominant basic block
of the corresponding basic block containing the taint
sources. Insert the pair <i, ipdom_bb> into the IFT list,
where i stands for the tainted variable, and ipdom_bb means
the immediate post-dominate basic block of the current
basic block.

During path travelling, when a basic block is reached,
SYTA compares it with all the ipdom_bbs in the control-
flow based taint pairs in the IFT list in an attempt to find
matches and then remove the matching pairs. After
removing, if the IFT list is not empty, the ipdom of the
current basic block will be calculated and the taint pairs are
formed together with every variable v referenced in the
current basic block. These pairs are added to the IFT list
one by one. In other words, if the target variable i is marked
as tainted, the variables in the current basic block will also
be marked as tainted according to the control dependence
relationship. No further operations will be performed if the

IFT list is NULL and only the explicit information flow
taint propagation goes on.

In a CFG, basic block m post-dominates (ipdom) n
means all directed paths from m to the exit basic block
contain n. If there is no node o such that n pdom o and o
pdom m, we call m is immediate post-dominates n. Just like
that in Figure 4, BB5ipdom BB2.

Take the program in Figure 4 (a) as an example again,
whose CFG and post-dominance tree are shown in Figure 4
(b) and (c), respectively. We assume that variable i is chosen
as a taint source. At first, the IFT list is initialized to be
empty. When line 5 is executed, SYTA will identify the
current statement as a condition statement. The
corresponding ipdom is BB5, a pair <i, BB5> will be added
into the IFT list. The symbolic execution forks here and
finds both paths are feasible. The true branch would be
executed first and line 6 is reached. At this time, the index of
the current basic block is 3, and there are not matching pairs
in the IFT list. The destination operand of the statement, the
left-value j, would be added into IFT list together with its
ipdom BB5 in the form of <j, BB5>. All these two pairs will
be removed when line 11 is reached because BB5 matches
either of them.

C. Explicit Information Flow Taint Propagation

Explicit information flow taint propagation is quite
straightforward compared with the implicit one. Only direct
data dependence, such as assignment operations, needs to be

1: void main(void) {
2: unsigned int i;
3: unsigned int t;
4: int a[4] = { 1, 3, 5, 1 };
5: int *p;
6: int tmp;
7: int j;
8: int k;
9: int x = 100;
10: scanf("%d",&i);
11: if(i >= 4){
12: j = 5;
13: }
14: else{
15: j = 0;
16: }
17: for(j; j<4;j++)
18: {
19: tmp = 1;
20: if(j != i){
21: tmp = 0;
22: }
23: if (tmp == 1){
24: k = j;
25: }
26: }
27: p = a+k;
28: *p = *p - 1;
29: t = a[*p]-1;
30: t = x / t;
31 sleep (t*10000);
32: }

BB12
p = a+k;

*p = *p – 1;
t = a[*p]-1;

t = x/t;
sleep(t*10000);BB7

tmp = 0;

BB0

BB6
tmp = 1;
if(j != i)

BB3
j = 5;

BB5

BB11
if(j <= 3)

BB1
a[0] = 1;
a[1] = 3;
a[2] = 5;
a[3] = 2;

BB4
j = 0;

BB8
If(tmp == 1)

BB9
k = j;

BB10
j = j + 1;

BB1

(a) (b)

Figure 3. The source code and CFG of a sample program under testing

Note: BB5 is a dummy basic
block, which does not
perform any operation. It is
introduced for the ease of
analysis.

140Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

considered in taint propagation.
When an assignment statement is encountered, SYTA

will check whether the operands on the right side of the
statement are included in the EFT list. If the answer is
positive, SYTA will insert the left operand into the EFT list.

In addition, when new pairs are added into the IFT list,
the corresponding variables of the pairs should meanwhile
be inserted into the EFT list too. This approach is adopted
because the information flow among variables maybe
proceeds alternately between the two forms. This is a
generally ignored problem. Let’s still take the case in Figure
4 as an example, in the program, there is no explicit
information flow from variable i, exists only an implicit
information flow from variable i to variable j caused by the
if-then-else clause. But the information flow from j to
variable z in line 11 is explicit. If the two kinds of
information flows are processed separately, then in line 11,
the variable z will not be tainted because the variable j is
only tainted with implicit information flow. As a result, no
taint markings will the variable z has, which leads to false
negatives because the value of variable z is influenced by
variable i.

D. Test Case Generation

In KLEE, the context of constraints solving only
contains path conditions. In order to capture the implicit
information flows, the indirect equivalence relationships
between variables are also identified by SYTA and sent to
the SMT solver as asserts. Take the program in Figure 3 as
an example, there exists an implicit equivalence relationship
between k and j (i.e., k == j) after executing line 24. When
the branch condition is not satisfied in line 20, both the
relationships j == i and k == j will hold after line 24. SYTA
will record both equivalent variables pairs in the ER list
rather than only one explicit pair (i.e., j == i).

When a security sink is encountered, two kinds of asserts
will be sent to the SMT solver as the context. One is the path
condition of the current path, the other is a Conjunctive
Normal Form (CNF) formed with pairs in the ER list. As

illustrated in the CFG in Figure 3(b), which is expressed in
the intermediate language, when the execution path is (BB0
 BB1  BB4  BB5  BB11  BB6  BB8  BB9
 BB10  BB11  BB12), the current security sink is a
reference to array a. At this time, the path condition is (i ≤
3 && j≤ 3 && j == i && tmp == 1 && j(1)≥ 3); the
assert drawn from the ER list is (k == i), j(1) is an alias of
variable j. All these expressions are set to be asserts of the
SMT solver. The query submitted is (*p ≥ 0 &&*p ≤ 3).
The counterexamples the SMT solver provides are (i = 2; j =
2; *p = 4). The test case is (i = 2).

Three kinds of bugs are considered in SYTA: (1) array
bound overflow, (2) divide-by-zero, and (3) denial-of-
service.

(1) If the index variable is marked as tainted in a
reference to an array, a query is constructed as (index >= 0
&& index <= upperbound – 1) and be sent to the SMT
solver. Under certain contexts, there exists an array bound
overflow if all the constraints are satisfied and the query is
not.

(2) If the operator is a divisor, and the divisor m is
tainted. Then the sink query (m != 0) is constructed and
sent to the SMT solver together with all the asserts gathered
till now. Divide-by-zero is found if all the constraints are
satisfied and the query is not.

(3) When the function sleep is called, and its parameter
is marked as tainted, then the query (sleep <= 10000) is
constructed and sent to the SMT solver together with all the
asserts. Then the DoS bug exists if all the constraints are
satisfied and the query is not.

In a word, when SYTA encounters a security sink, it will
gather all the path conditions preceding the current statement
and asserts from ER list, the query will be sent to the SMT
solver. If the query is unsatisfied, a test case is generated and
reported with the bug name.

Based on the above discussion, as shown in Table I,
three test cases are generated to detect bugs in the sample
program in Figure 3. They can be used to trigger the array
bound overflow, divide-by-zero and DoS bugs, respectively.

(a) (b)

Figure 4. A fragment of the sample program in Figure 3 and its CFG, post-dominate tree

1: void foo (unsigned int i)
2: {
3: unsigned int j;
4: long z;
5: if(i>=4){
6: j = 5;
7: }
8: else {
9: j = 0;
10: }
11: z = j;
12: }

entry

BB2
if(i >= 4)

BB3
j = 5;

BB4
j = 0;

BB5
z = j;

exit

exit

BB5

BB2 BB3 BB4

entry

(c)

141Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

E. Implementation

As shown in Figure 2, we employ GCC 4.5.0 as the
compiler front-end of SYTA. Source code will be parsed
and convert to GIMPLE intermediate representation; its
CFGs are also built by leveraging GCC. SYTA is
implemented as a pass of GCC, analysis will be performed
at the GIMPLE level. Finally, we choose the commonly
used constraints solver STP [16] as the SMT solver in
SYTA.

IV. EVALUATION

We illustrate two cases that show how SYTA can detect
errors. In the program shown in Figure 5, the control
dependence relationships are based on the switch-case
structure. During analysis, we leverage the GIMPLE
intermediate representation of GCC to process the switch-
case structure. In GIMPLE, a switch-case will be regarded
as a normal if-else structure. When the original taint source
is variable n, a counterexample (n = 245) can be got and the

assignment statement (n = y[n] / x[n-1];) may trigger a
divide-by-zero bug.

In the program shown in Figure 6, there is no explicit
else branch in the if (h < 0) statement. In order to capture the
taint propagation through the missing else branch, an
assisting else branch is inserted into the intermediate
representation, which includes a dummy statement (l = l).
Using the dummy statement, a counterexample (h = 2)
would be found as the test case for the array bound overflow
bug at the last statement.

In this paper, we try to extend the test case generation
technique to cover implicit information flows rather than
only explicit information flows. In theory, it is impossible to
track and analyze all forms of implicit information flows.
Our study shows that some typical forms of implicit
information flows can be effectively tracked to support test
case generation. In this section, we employ two proof-of-
principle samples to demonstrate the ability of SYTA to
track typical forms of implicit information flows. We also
use KLEE (with LLVM v2.7) to analyze the two samples
and the program shown in Figure 3(a). Compared with
SYTA, KLEE, as shown in Figure 7, only provides two test
cases (i.e., i = 1 and i = 2147483648) for feasible execution
paths of the program shown in Figure 3(a), but these cases
can not trigger and report the array-bound-overflow and
divide-by-zero vulnerabilities. Nevertheless, frankly

TABLE I. TEST CASES OF THE SAMPLE PROGRAM BY SYTA

Taint Sources Tainted
Variables

Vulnerability
Type

i = 2; j = 2;
*p = 4;

array bound
overflow

i = 3; j = 3;
*p = 1;
t = 0;

divide-by-zero

i = 1; j = 1;
*p = 2;
t = 25;

dinal-of-service

void foo(int n)

{
Unsigned int y[256];
Unsigned int x[256];

for(int i=0; i<256; i++)
{
y[i] = (char)i;

}

for(int j=0; j<n; j++)
{
switch(y[j])
{
case 0:

x[j] = 13;
break;

case 1:
x[j] = 14;
break;

case 2:
x[j] = 15;
break;

……
case 256:

x[j] = 12;
break;

}
}
n = y[n]/x[n-1];

}

Figure 5. The first case study

void foo(int h)
{

int a[5] = {1,2,3,4,5};
int l = 10;
int k = 0;
if(h < 0){

 l = 0;
}
while(l != 0){

if(l <= 5){
 k++;

}
l--;

}
l = a[k];

}

Figure 6. The second case study

Figure 7. The KLEE analysis result for the program in Figure 3(a)

142Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

speaking, analyzing a large scale real-work system will
require much more computing overhead.

V. RELATED WORK

Even though early attention and definition of implicit
information flow dated back to 1970’s, no effective solution
has been found. Lots of newly-developed tools, like
TaintScope [6], detour the implicit information flow
problem and limit their applications only to explicit
information flows. Some other work limits the processing
of control dependence to predetermined forms, for example,
Heng Yin et al. deal with the API function containing
control dependence specially in their tool Panorama [11];
The system designed by Wei Xu et al. [12] process only
two specific kinds of control flow; Dongseok Jang et al. [13]
only process the branching but not the whole program
leading to low coverage and false negatives.

Some dynamic analysis testing tools are more
comprehensive, like Dytan [10] by James Clause, it can
construct implicit information flow on the binary code but
cannot get the control dependence information from indirect
jump instructions. In DTA++ developed by Min Gyung
Kang et al., information preserving implicit information
flows are traced [14], but the simple dichotomy approach is
too rough and may cause under-tainting problem.

VI. CONCLUSION AND FUTURE WORK

We presented a static analysis tool, SYTA, capable of
automatically generating test cases using symbolic execution
and taint analysis techniques. Using the control flow graph
of the target program and user-appointed taint sources as
inputs, SYTA follows execution paths to track the
constraints on symbolic variables, and maintains two taints
lists for explicit and implicit information flows respectively.
The test cases will be generated from possible
counterexamples in a constraint solving process. Compared
with traditional static analysis tools, SYTA can track
implicit information flows, generates test cases by control
dependence analysis effectively.

At present, in tracking implicit information flows, SYTA
cover only three kinds of sink points, concerning array
bound overflow, divide-by-zero, and denial-of-service,
respectively. By expending taint source points and sink
points, it may cover other kinds of vulnerabilities related to
taint data. For example, by regarding untrusted input
interface functions as taint source points and function
memcpy and the like as sink points, it can detect buffer
overflow vulnerability led to by ineffective input validation.

ACKNOWLEDGMENT

The authors would like to thank the anonymous
reviewers for their insightful comments that helped improve
the presentation of this paper. The work has been supported
in part by the National Natural Science Foundation of China
(61070192, 61170240, 61272493, 61100047), the Natural

Science Foundation of Beijing (4122041), the National
Science and Technology Major Project of China
(2012ZX01039-004), and the National High Technology
Research and Development Program of China
(2012AA012903).

REFERENCES
[1] D. Bird and C. Munoz, “Automatic Generation of Random Self-

Checking Test Cases,” IBM Systems Journal, Vol. 22, No. 3, 1983,
pp. 229-245.

[2] Protos, Web page: http://www.ee.oulu.fi/research/ouspg/protos/,
[retrieved: August, 2014].

[3] J. Offutt and J. Hayes, “A Semantic Model of Program Faults,” in
Proceedings of ISSTA’96 (International Symposium on Software
Testing and Analysis), San Diego, January 1996, pp. 195-200.

[4] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward symbolic
execution (but might have been afraid to ask),” in Proceedings of the
IEEE Symposium on Security and Privacy, May 2010, pp. 317-331.

[5] D. E. Denning and P. J. Denning, “Certification of programs for
secure information flow,” Comm. of the ACM, vol. 20, no. 7, July
1977, pp. 504-513.

[6] T. Wang, T. Wei, G. Gu, and W. Zou, “TaintScope: A checksum-
aware directed fuzzing tool for automatic software vulnerability
detection,” in Proceedings of the 31st IEEE Symposium on Security
and Privacy, Oakland, California, USA, May 2010, pp. 497-512.

[7] L. Cavallaro, P. Saxena, and R. Sekar, Anti-taint-analysis: Practical
evasion techniques against information flow based malware defense.
Technical report, Stony Brook University, 2007.

[8] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proceedings of the USENIX Symposium on Operating
System Design and Implementation, 2008, pp. 209-224.

[9] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler, “EXE: A
system for automatically generating inputs of death using symbolic
execution,” in Proceedings of the ACM Conference on Computer and
Communications Security, October 2006, pp.322-335.

[10] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint
analysis framework,” in International Symposium on Software
Testing and Analysis, 2007, pp. 196-206.

[11] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing system-wide information flow for malware detection and
analysis,” in Proceedings of the ACM Conference on Computer and
Communications Security, October 2007, pp. 116-127.

[12] W. Xu, E. Bhatkar, and R. Sekar, “Taint-enhanced policy
enforcement: A practical approach to defeat a wide range of attacks,”
in Proceedings of the USENIX Security Symposium, 2006, pp. 121-
136.

[13] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An empirical study
of privacy-violating information flows in JavaScript web
applications,” in Proceedings of the ACM Conference on Computer
and Communications Security, 2010, pp. 270-283.

[14] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint
analysis framework,” in International Symposium on Software
Testing and Analysis, 2007, pp. 196-206.

[15] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “DTA++:
Dynamic Taint Analysis with Targeted Control-Flow Propagation,”
in Proceedings of the Network and Distributed System Security
Symposium, February 2011, pp. 205-219.

[16] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and
arrays,” in Proceedings of the 19th International Conference on
Computer Aided Verification, 2007, pp. 519-531.

143Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

