SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

Towards a Compiler for Business Processes — A Research Agenda

Thomas M. Prinz, Thomas S. Heinze,
and Wolfram Amme

Chair of Software Technology, Friedrich Schiller University
Jena, Germany
Email: {Thomas.Prinz, T.Heinze,
Wolfram.Amme}@uni-jena.de

Abstract—Business process management (BPM) and service-
oriented architectures (SOA) promise the development, appli-
cation, maintenance, and improvement of business processes,
i.e., service compositions, as it is done in software engineering.
However, BPM is currently more similar to an unfinished patch-
work and an overall system supporting BPM is missing since it
requires a unified execution engine (a virtual machine), a common
intermediate representation, and eventually a compiler. In this
paper, we motivate the construction of such a system for BPM
and propose an approach including the mentioned sub systems.
Additionally, we show the gaps in current approaches and why
some techniques are not yet fully applicable. We encourage that
system with state-of-the-art approaches and our own ideas of
BPM, compiler construction, and artificial intelligence. Such a
system finally will encourage processes for small and medium-
sized enterprises and for SOA applications.

Keywords—Business Process Management; Compiler; Interme-
diate Representation; Planning; Service-oriented Architecture.

I. INTRODUCTION

It seems that time has come for the efficient and suc-
cessful application of business process management (BPM)
and service-oriented architectures (SOA). There are promising
approaches and techniques for each step of the BPM life cycle
[1], i.e., (1) requirements analysis, (2) design, (3) implemen-
tation, (4) verification and testing, and (5) ongoing improve-
ments. However, Koehler et al. have already emphasized gaps
in the BPM life cycle (especially the missing automation of
process translations into executable processes) which hinder
companies in exploiting the benefits of BPM [2]. Therefore,
BPM is more similar to an unfinished patchwork and a unified
system seriously supporting BPM is needed.

In this paper, we argue for a compiler for business pro-
cesses, i.e., service compositions. Koehler et al. have already
argued for a compiler for business IT-systems and provide
interesting approaches and ideas. Their compiler follows a top-
down approach. However, the implementation of a compiler for
business processes needs both: A well-defined business process
modeling language as input and a machine that executes a pro-
cess for the output. For example, the programming language
Java would not have been so successful if it had not used its
own virtual machine abstracting from the real physical design.

A virtual machine for business processes is similar to a
unified and sufficient intermediate representation (IR) (like a
bytecode for processes). Current process description languages
like the Business Process Model and Notation 2.0 (BPMN) [3]

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

Johannes Kretzschmar
and Clemens Beckstein

Artificial Intelligence Group, Friedrich Schiller University
Jena, Germany
Email: {Johannes.Kretzschmar,
Clemens.Beckstein}@uni-jena.de

and Event-driven Process Chains (EPCs) [4] are primarily de-
signed for high level descriptions of business processes rather
than for technical implementations. Although we do not want
to translate abstract processes into executable ones (since there
is the need for developers supporting that transformation), a
well-defined and common technical basis for the definition of
usable constructs and expressions is needed to guarantee such
a transformation without later risking high additional effort.

As the IR is not suitable for the development of processes
in general (like machine code or Java Bytecode for programs),
it is necessary to provide a more high-level but IR-conform
processing language (like a subset of BPMN and EPCs).
Therefore, that language has to be automatically transformable
into the IR. Such a transformation can basically be done by
a compiler. The compilation process should provide powerful
tools and analyses with useful failure and diagnostic infor-
mation about the process for the developer. These kinds of
information are currently undetailed and so new algorithms
have to fill the gap. Additionally, a tool can handle such
information to provide several options for (semi-) automatic
error handling. Within a dialog between the developer and the
system, the developer can choose the best fitting solution.

Although there are already approaches considering parts
of the mentioned system, little attention has been paid to
their interaction. We identified four important subsystems for a
general overall BPM system: (/) a simple and unified process
engine, i.e., a (virtual) machine, (2) a unified IR, (3) a verifying
compiler translating business processes into that IR, and (4)
an error handling which provides correction proposals being
applied to processes.

In this paper, we consider the state-of-the-art of BPM
systems (Section II) in short. We describe a system consisting
of a compiler, an IR, and a process engine with regard to
state-of-the-art approaches, solutions (Section III) and provide
own research approaches to finally enable the implementation
of such a new approach for a system. Section IV summarizes
and concludes the paper.

II. STATE OF THE ART

There are many tools providing BPMN for BPM e.g.,
Activiti BPM Platform [5], Redhat jBPM [6], IBM WebSphere
[7], AristaFlow BPM Suite [8], and BonitaBPM [9]. These
tools allow for the development, simulation, and execution of
business processes. Furthermore, they have additional features
supporting parts of the BPM lifecycle.

49

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

However, most of those tools use different subsets of and
(intermediate) representations for BPMN such that processes
are not interchangeable between tools without additional effort.
Considering that fact for the programming language Java for
example: It would be strange if there would be a variety of
virtual machines for Java, for each accepting a different subset
of Java bytecode instructions. Apromore [10] is an advanced
process model repository based on a common intermediate
representation (canonical representation) to handle different
process model languages. However, although the repository
benefits from that representation, common parts of process
modeling languages like exceptions, exception handling, sig-
nals, transitions, etc. are not accurately representable.

Our approach calls for the implementation of a core virtual
machine for business process modeling languages that is
extensible by additional tools. Such a core virtual machine
asks for a greatest possible subset of process elements being
accepted by the machine (the IR) and also asks for a compiler,
which constructs the IR form for current process modeling
languages (e.g., Web Services Business Process Execution
Language 2.0 (BPEL) [11], Yet Another Workflow Language
(YAWL) [12], EPCs or BPMN). The compilation process is
not always straightforward as some modeling languages (e.g.,
BPMN) only provide subsets of executable process models
(e.g., BPMN Process Execution Conformance [3] for BPMN).

Compilers for business processes are rare in existing tools.
Most of them take a process as it is and interpret it stepwise.
Sometimes, however, additional information is needed for the
execution of a process which can be derived from a compiler,
e.g., data types, soundness or reference safety. Additionally,
most business process modeling language’s output formats
are not suitable for fast and efficient analyses and compilers
therefore have to create a more compact format.

For this purpose, our approach calls for the implementation
of a compiler that transforms and analyzes a process in
an intermediate and interchangeable representation. The most
common used intermediate representations for business pro-
cesses are specification conform exchange formats or BPEL.
BPEL has the great advantage to be a block-based language.
That, however, is the largest problem for simply transforming
processes of graph-based languages (like BPMN) to BPEL
[13][14]. Furthermore, BPEL was designed to orchestrate
different web services and not to directly execute tasks.

Our approach relies on an intermediate representation for
business processes. That representation should allow and out-
perform existing analyses for the verification of pre-defined
process properties since process validation is very expensive by
currently supported BPM tools. State-of-the-art research con-
siders those verification mechanisms. For example, in previous
work [15], we have focused on compiler-based mechanisms
for finding deadlocks and missing synchronizations. These
techniques are so efficient that we were able to perform the
analyses after each modification of a process model and to
give detailed diagnostic information as shown by our tool
implementation [16].

Besides these compiler-based mechanisms, we argue for
semantic analyses of processes by artificial intelligence (AI)
planning methods. These methods rely on semantic descrip-
tions of process-activities. Semantic descriptions are already
widely used in the field of service-oriented architectures

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

through service description standards, like Web Service Mod-
eling Language (WSML) [17] and Web Ontology Language
for Semantic Web Services (OWL-S) [18]. In contrast to
previous service description standards, these languages allow
the specification of requirements and impacts of a service
regarding a descriptive domain model. With such descriptions,
an Al planner is able to goal-oriented generate an ordered
set of services, which can be executed as a BPEL-like service
composition by workflow engines [19][20]. Because of the fast
growing complexity of planning problems, there are usually
assumptions of the domain models concerning time, execu-
tion, observability and influence aspects [21]. Therefore, Al
planning for workflow generation is only practical in particular
use-cases with simple workflow models. Our approach focuses
on cheaper methods for evaluating a process, which are part
of planning algorithms. Thereby, Al planning could be used
also for more comprehensive workflow descriptions and could
enhance a comprehensive semantic analysis.

III. COMPILER-ENGINE ARCHITECTURE
FOR BUSINESS PROCESSES

In the following, we propose a new BPM architecture.
For this purpose, we explain the overall system first and
subsequently describe each subsystem in detail.

Figure 1 gives a structural overview of the complete sys-
tem. The system has two sides inspired by Amme et al. [22]: a
producer and a consumer side. The producer side is a compiler
being adaptable to each business process development tool.
It accepts an entire process in different process modeling
languages, where a specific front-end containing a parser and
a transformation exists for each language. The internal format
is an IR, which allows for the application of semantic analyses
whose output in turn can be used as input for an error handler,
a coder, and an annotator.

The consumer side consists of an engine and virtual ma-
chine, respectively. It loads a compiled process and extracts the
IR. Then, it executes the IR and performs dynamic semantic
analyses and, in the case of an error, it provides an error
handling which enables for a “rescue” of the running process.

The interface between the producer and consumer side is a
business process repository. The producer side stores compiled
processes within that repository whereas the consumer side can
load them. Furthermore, error handling systems on both sides
utilize the same repository for their analyses.

A. Producer Side

The producer side is divided into a parser, a transforma-
tion, an IR, semantic analyses, and an error handling as well
as a coder and an annotator.

1) Parsing and Transformation: The parser’s task is to
structurally analyze and verify the entire process against its
description language, i.e., a conformance check. Afterwards,
the transformer translates that process into an IR. For this
purpose, the front-end, consisting of the parser and the trans-
former, depends on the process language.

Two approaches can be distinguished: (1) Defining a
mapping from one language to the other [23][24][25] or (2)
creating a parse tree (process structure tree, PST) which is
then used for a translation [26]. Both approaches have their
roots in compiler theory. However, since the PST is similar

50

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

Business process D
\

Developer

i
s I
§ ! z
o) 4 | Process execution [
> I Services/Tools o
° Parser e _ a
& I o
5 T | N N ~
S Syntactic correct process } Dynamic semantic]
oQ
3 | analyser =
2 I o
a |
Transformer | ¢ T
! Runtime error g
) |) [it handler «—
Intermediate representation (IR) | '
I Developer/
[N
! T User
Semantic Coder/ Business
—» — Verificator
analyser annotator process 8
A repository A
[
v ‘ I‘R
<« I
Error handler < | Decoder
> I
I
I
I

—»{ Interpreter
47

Figure 1. System overview containing a compiler and an engine.

to an abstract syntax tree (AST), it provides more structural
information and therefore we prefer the PST as a mapping is
still possible at a later time.

The inclusion of instructions and variables of the business
process constitutes the major problem during the parsing and
transformation. Process instructions can be translated as shown
by Amme et al. [27], using the Concurrent Static Single
Assignment Form (CSSA form) [28]. However, the creation
of CSSA form is currently only suitable for structured graphs.
Most business processes are unstructured, so we have to define
a transformation for those processes and their instructions.

2) Intermediate Representation: A common IR must cover
(almost) all constructs and instructions of currently popular
process languages. Furthermore, it must provide and support
efficient techniques for detailed semantic analyses. Currently,
Petri nets [29] and workflow graphs [30] are commonly used
to represent language-independent and analyzable processes.
Since workflow graphs have Petri net semantics but provide
more structural information, workflow graphs should be used
as they are very similar to (concurrent) control flow graphs of
compiler theory [28].

In previous work, we have defined an extended workflow
graph (eWFG) based on CSSA form [27][31]. In the next
steps, we plan to extend those eWFGs with advanced lan-
guage constructs like OR-joins, events, signals, transactions,
exception handling, and roles.

3) Semantic Analyses: The task of the semantic analyser
is to verify the IR against properties and to restructure the IR,
e.g., for the encoding into a mobile format. Semantic analyses
consist of structural, context-sensitive, content-related, and
goal-oriented analyses. Structural analyses consider only the
control flow of the process without regarding instructions.
Context-sensitive and content-related analyses include those
instructions. Goal-oriented analyses require additional infor-
mation from the developer in which the developer describes
the goals of the process.

Traditionally, process analyses focus on structural process
properties, e.g., soundness [29]. The soundness property guar-
antees the absence of deadlocks in non-deterministic processes.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

We have developed a new approach to detect such deadlocks
in conjunction with all the necessary information to repair
them [15][16]. That approach has to be extended for the IR’s
additional language constructs. Although structural analyses
consider only the control flow, they are suitable pre-processors
for advanced analyses as they reduce the solution and failure
space, c.f. SESE decomposition [32]. One has to show that it
is possible to find further structural information, e.g., nodes
with possible race conditions.

Since structural analyses can result in false-positive and
false-negative analysis results [33], the consideration of data
and instructions is essential to seriously support a process deve-
loper. However, less attention has been paid to process data and
instructions in the literature. Sidorova [33] and our previous
work [27][31] describe ways to include data in semantic
analyses. Approaches of compiler theory can improve context-
sensitive and content-related analyses by deriving predicate-
logic expressions, by using path-sensitive data-flow analyses
[34], by using instruction ordering techniques [35], or by using
demand-driven approaches with backward traverses [36]. Es-
pecially, (C)SSA form is predestined for state space techniques
since each variable is defined once and therefore the state space
of a variable can be directly attached to it. All those approaches
have to be reconsidered in the context of process analysis.

Goal-oriented analyses use approaches of Al planning. For
this purpose, one has to define a precise process domain
(properties which are in the focus of the process) that is used
by the developer to describe the changes in this domain and
the goal of the process. Then, the reachability of the goal can
be verified. Furthermore, analyses can make suggestions to
complete a process with respect to its goals. Our major focus
lies on the adaption of Al planning techniques for the context
of processes.

4) Error Handling: The error handler can improve the
IR process by error correction and restructuring. The results
of the semantic analyses are visualized and explained to the
process’s developer, and the error handler derives proposals
for correction which then can be applied. To this end, the
process has to be decomposed in such a way that failures can

51

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

be corrected locally without side effects.

The application of methods for automatic correction is not
in the main line of research in BPM, resulting in only a handful
of related approaches [37][38][39]. Most approaches consider
preconditions of tasks within the process and how they can lead
to deadlocks. Automatic correction then means to introduce
weak conditions to avoid such deadlocks. Other methods derive
a more general model of the process and afterwards construct
a new process representing that model.

We follow another approach, in which the desired behavior
of the process can never be completly derived from the process
since the intention of the process is only in the mind of the
developer. In this case, error handling has to interact with
the developer to identify the best fitting solution. For this,
approaches of Al planning are considered, which use basic
rules to generate good solution proposals.

5) Coder and Annotator: If the process is correct, such that
all verifiable properties hold, the coder and annotator enrich
the IR with the results of the semantic analyses and afterwards
possibly encode it into a mobile format. Both, the annotation
of business processes as well as a mobile format, have not
been in the focus of research. We want to consider approaches
of compiler theory in which the annotation of programs (e.g.,
Java bytecode) or mobile formats are well understood. Our
mobile format SafeTSA, for example, provides approaches to
efficiently transform programs with a tree structure (AST) and
(C)SSA form [40]. As mentioned before, each process can be
represented by its PST and therefore it is possible to generate
a mobile format, similar to SafeTSA, for business processes.
In summary, we have to generate a SafeTSA conform mobile
format for business processes to encourage their exchange.

B. Business Process Repository

After the process becomes executable, has been verified
and possibly encoded into a mobile format, it can be stored
within a business process repository. Thereby, the repository
should provide features to find fitting process interaction
partners by the use of its (semantic) annotations. For this
purpose, promising proposals for methods [41][42] exist which
can be extended and applied to the development of our system.

C. Consumer Side

As most steps of the consumer side are similar to those
of the compiler, we want to only briefly discuss the engine
in the following. On the consumer side, the business process
is taken from the repository and is transformed back into the
common IR (decoder). During that transformation, the process
has to be verified once again (verificator) with the help of the
annotated information, to guarantee a flawless transfer. As the
results of the semantic analyses on the producer side have been
annotated to the IR, that can be done fast.

Subsequently, an interpreter starts executing the process,
for which Petri net-based or straight-forward (and almost se-
quential) approaches have been described in practice. However,
we prefer to use a virtual machine as process engine since this
approach is sufficient for Java. We imagine a main control unit
loading the process and monitoring its execution. Furthermore,
it starts a subprocess for each new control flow (e.g., after
parallel branches) such that each control flow is handled by a
seperate control unit with its own local memory, arithmetic

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

logic unit, and input/ouput unit. The resulting architecture
provides full parallelism and is able to execute sub processes
on hetergenous subsystems (e.g., in a network). It can request
services and other tools to support (user) tasks. The main
control unit performs dynamic semantic analyses during the
execution of a process to find runtime errors as early as
possible. Since those analyses have full runtime information,
indications of failure situations can be detected before they
occur. A user has then the possibility to correct those failures
with the help of a runtime error handler. Both, the dynamic
semantics analyses and the runtime error handling mechanism,
are based on the process’s annotations, the analyser, and the
error handling techniques of the compiler with the advantage
of having full information about actual variable assignments.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have motivated the construction of a
compiler, a common IR, a virtual machine, and detailed failure
analyses for business process management. We have proposed
a system which allows for the compilation, storing, and exe-
cution of processes based upon its own IR. That system uses
state-of-the-art approaches and ideas from business process
management, compiler construction, and artificial intelligence.
There already exist approaches to realize such a system.

For the future, we recommend to develop and evaluate
a compiler-based development and runtime environment for
business processes without the consideration of data. Those
environments should then be extended for processes with
data. With this in mind, there are four main aspects being
sequential considered: (1) an intermediate representation based
on extended workflow graphs with regard to a virtual machine
and its execution semantics, (2) process properties with static
and dynamic analyses for their verification, (3) an error visual-
ization, handling, and correction, and (4) process annotations
for an efficient information transfer. The major goal is to show
that such a business process management system is possible,
applicable, and efficient. We are sure that such a system is the
future of process development and will support processes for
small and medium-sized enterprises and for the development
of SOA applications.

REFERENCES

[1] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske,
“Business process management: A survey,” in Business Process
Management, International Conference, BPM 2003, Eindhoven, The
Netherlands, June 26-27, 2003, Proceedings, ser. Lecture Notes in
Computer Science, W. M. P. van der Aalst, A. H. M. ter Hofstede, and
M. Weske, Eds., vol. 2678. Springer, 2003, pp. 1-12.

[2] J. Koehler, T. Gschwind, J. M. Kiister, H. Volzer, and O. Zimmermann,
“Towards a compiler for business-it systems - A vision statement
complemented with a research agenda,” in Software Engineering
Techniques - Third IFIP TC 2 Central and East European Conference,
CEE-SET 2008, Brno, Czech Republic, October 13-15, 2008, Revised
Selected Papers, ser. Lecture Notes in Computer Science, Z. Huzar,
R. Koci, B. Meyer, B. Walter, and J. Zendulka, Eds., vol. 4980.
Springer, 2008, pp. 1-19.

[3] OMG, “Business Process Model and Notation 2.0,” formal/2011-01-03,
2011, last access: February 18, 2015.

[4] A. Scheer, “Architecture of integrated information systems (ARIS),” in
Information Infrastructure Systems for Manufacturing, Proceedings of
the JSPE/IFIP TC5/WG5.3 Workshop on the Design of Information
Infrastructure Systems for Manufacturing, DIISM 93, Tokyo, Japan,
8-10 November, 1993, ser. IFIP Transactions, H. Yoshikawa and
J. Goossenaerts, Eds., vol. B-14. North-Holland, 1993, pp. 85-99.

52

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

[5]

[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

Copyright (c) IARIA, 2015.

Alfresco, “Activiti BPM Platform,” http://activiti.org/, last access:
February 18, 2015.

redhat, “jBPM - Open Source Business Process Management - Process
engine,” http://www.jbpm.org/, last access: February 18, 2015.

IBM, “IBM WebSphere software - United States,” http://www.ibm.com/
software/websphere/, last access: February 18, 2015.

AristaFlow, “AristaFlow - Aristaflow BPM Suite fr den BPM-Roundtrip
in einem einzigen Werkzeug,” http://www.aristaflow.com/bpmsuite.
html, last access: February 18, 2015.

Bonitasoft, “Bonitasoft - Open Source Workflow & BPM software,”
http://www.bonitasoft.com/, last access: February 18, 2015.

M. L. Rosa, H. A. Reijers, W. M. P. van der Aalst, R. M. Dijkman,
J. Mendling, M. Dumas, and L. Garcia-Bafiuelos, “APROMORE: an
advanced process model repository,” Expert Syst. Appl., vol. 38, no. 6,
2011, pp. 7029-7040.

OASIS, Web Services Business Process Execution Language Version
2.0, http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html,
OASIS Std. 2, Rev. 0, apr 2007, last access: February 18, 2015.

W. M. P. van der Aalst and A. H. M. ter Hofstede, “Yawl: yet another
workflow language,” Inf. Syst., vol. 30, no. 4, 2005, pp. 245-275.

M. Weidlich, G. Decker, A. GroBkopf, and M. Weske, “BPEL to
BPMN: the myth of a straight-forward mapping,” in On the Move to
Meaningful Internet Systems: OTM 2008, OTM 2008 Confederated
International Conferences, CooplS, DOA, GADA, IS, and ODBASE
2008, Monterrey, Mexico, November 9-14, 2008, Proceedings, Part I,
ser. Lecture Notes in Computer Science, R. Meersman and Z. Tari,
Eds., vol. 5331. Springer, 2008, pp. 265-282.

W. Zhao, R. Hauser, K. Bhattacharya, B. R. Bryant, and F. Cao,
“Compiling business processes: untangling unstructured loops in
irreducible flow graphs,” ITWGS, vol. 2, no. 1, 2006, pp. 68-91.

T. M. Prinz and W. Amme, “Practical compiler-based user support
during the development of business processes,” in Service-Oriented
Computing - ICSOC 2013 Workshops - CCSA, CSB, PASCEB,
SWESE, WESOA, and PhD Symposium, Berlin, Germany, December
2-5, 2013. Revised Selected Papers, ser. Lecture Notes in Computer
Science, A. Lomuscio, S. Nepal, F. Patrizi, B. Benatallah, and
1. Brandic, Eds., vol. 8377. Springer, 2013, pp. 40-53.

T. M. Prinz, N. SpieB, and W. Amme, “A first step towards a
compiler for business processes,” in Compiler Construction - 23rd
International Conference, CC 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014. Proceedings, ser. Lecture Notes
in Computer Science, A. Cohen, Ed., vol. 8409. Springer, 2014, pp.
238-243.

J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel, “The web service
modeling language WSML: an overview,” in The Semantic Web:
Research and Applications, 3rd European Semantic Web Conference,
ESWC 2006, Budva, Montenegro, June 11-14, 2006, Proceedings, ser.
Lecture Notes in Computer Science, Y. Sure and J. Domingue, Eds.,
vol. 4011. Springer, 2006, pp. 590-604.

W3C, OWL Web Ontology Language for Services, http://www.w3.org/
Submission/2004/07/, World Wide Web Consortium W3C Std. 1, Rev. 0,
nov 2004, last access: February 18, 2015.

F. Henni and B. Atmani, “Dynamic web service composition. use
of case based reasoning and Al planning,” in Proceedings of the
4th International conference on Web and Information Technologies,
ICWIT 2012, Sidi Bel Abbes, Algeria, April 29-30, 2012, ser. CEUR
Workshop Proceedings, M. Malki, S. Benbernou, S. M. Benslimane,
and A. Lehireche, Eds., vol. 867. CEUR-WS.org, 2012, pp. 22-29.
H. Nacer and D. Aissani, “Semantic web services: Standards,
applications, challenges and solutions,” J. Network and Computer
Applications, vol. 44, 2014, pp. 134-151.

M. Ghallab, D. S. Nau, and P. Traverso, Automated planning - theory
and practice. Elsevier, 2004.

W. Amme, T. S. Heinze, and J. von Ronne, “Intermediate
representations of mobile code,” Informatica (Slovenia), vol. 32, no. 1,
2008, pp. 1-25.

W. M. P. van der Aalst, “The application of petri nets to workflow
management,” Journal of Circuits, Systems, and Computers, vol. 8,
no. 1, 1998, pp. 21-66.

ISBN: 978-1-61208-387-2

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(33]

[34]

[35]

[36]

[37]

S. Hinz, K. Schmidt, and C. Stahl, “Transforming BPEL to petri nets,”
in Business Process Management, 3rd International Conference, BPM
2005, Nancy, France, September 5-8, 2005, Proceedings, W. M. P.
van der Aalst, B. Benatallah, F. Casati, and F. Curbera, Eds., vol.
3649, 2005, pp. 220-235.

N. Lohmann, “A feature-complete petri net semantics for WS-BPEL
2.0 in Web Services and Formal Methods, 4th International
Workshop, WS-FM 2007, Brisbane, Australia, September 28-29, 2007.
Proceedings, ser. Lecture Notes in Computer Science, M. Dumas and
R. Heckel, Eds., vol. 4937. Springer, 2007, pp. 77-91.

J. Vanhatalo, H. Volzer, and J. Koehler, “The refined process structure
tree,” Data Knowl. Eng., vol. 68, no. 9, 2009, pp. 793-818.

W. Amme, A. Martens, and S. Moser, “Advanced verification of
distributed ws-bpel business processes incorporating cssa-based data
flow analysis,” International Journal of Business Process Integration
and Management, vol. 4, no. 1, 2009, pp. 47-59.

J. Lee, S. P. Midkiff, and D. A. Padua, “Concurrent static single
assignment form and constant propagation for explicitly parallel
programs,” in Languages and Compilers for Parallel Computing, 10th
International Workshop, LCPC’97, Minneapolis, Minnesota, USA,
August 7-9, 1997, Proceedings, ser. Lecture Notes in Computer
Science, Z. Li, P. Yew, S. Chatterjee, C. Huang, P. Sadayappan, and
D. C. Sehr, Eds., vol. 1366. Springer, 1997, pp. 114-130.

W. M. P. van der Aalst, A. Hirnschall, and H. M. W. E. Verbeek, “An
alternative way to analyze workflow graphs,” in Advanced Information
Systems Engineering, 14th International Conference, CAiSE 2002,
Toronto, Canada, May 27-31, 2002, Proceedings, ser. Lecture Notes
in Computer Science, A. B. Pidduck, J. Mylopoulos, C. C. Woo, and
M. T. Ozsu, Eds., vol. 2348. Springer, 2002, pp. 535-552.

W. Sadiq and M. E. Orlowska, “Analyzing process models using graph
reduction techniques,” Inf. Syst., vol. 25, no. 2, 2000, pp. 117-134.

T. S. Heinze, W. Amme, and S. Moser, “A restructuring method for
WS-BPEL business processes based on extended workflow graphs,”
in Business Process Management, 7th International Conference, BPM
2009, Ulm, Germany, September 8-10, 2009. Proceedings, ser. Lecture
Notes in Computer Science, U. Dayal, J. Eder, J. Koehler, and H. A.
Reijers, Eds., vol. 5701. Springer, 2009, pp. 211-228.

J. Vanhatalo, H. Volzer, and F. Leymann, “Faster and more focused
control-flow analysis for business process models through SESE
decomposition,” in Service-Oriented Computing - ICSOC 2007, Fifth
International Conference, Vienna, Austria, September 17-20, 2007,
Proceedings, ser. Lecture Notes in Computer Science, B. J. Krimer,
K. Lin, and P. Narasimhan, Eds., vol. 4749. Springer, 2007, pp.
43-55.

N. Sidorova, C. Stahl, and N. Trcka, “Soundness verification for
conceptual workflow nets with data: Early detection of errors with
the most precision possible,” Inf. Syst., vol. 36, no. 7, 2011, pp.
1026-1043.

J. Fischer, R. Jhala, and R. Majumdar, “Joining dataflow with
predicates,” in Proceedings of the 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2005, Lisbon,
Portugal, September 5-9, 2005, M. Wermelinger and H. Gall, Eds.
ACM, 2005, pp. 227-236.

E. Duesterwald and M. L. Soffa, “Concurrency analysis in the presence
of procedures using a data-flow framework,” in Symposium on Testing,
Analysis, and Verification, 1991, pp. 36-48.

K. Winter, C. Zhang, I. J. Hayes, N. Keynes, C. Cifuentes, and L. Li,
“Path-sensitive data flow analysis simplified,” in Formal Methods
and Software Engineering - 15th International Conference on Formal
Engineering Methods, ICFEM 2013, Queenstown, New Zealand,
October 29 - November 1, 2013, Proceedings, ser. Lecture Notes in
Computer Science, L. Groves and J. Sun, Eds., vol. 8144. Springer,
2013, pp. 415-430.

M. Gambini, M. L. Rosa, S. Migliorini, and A. H. M. ter
Hofstede, “Automated error correction of business process models,” in
Business Process Management - 9th International Conference, BPM
2011, Clermont-Ferrand, France, August 30 - September 2, 2011.
Proceedings, ser. Lecture Notes in Computer Science, S. Rinderle-Ma,
F. Toumani, and K. Wolf, Eds., vol. 6896. Springer, 2011, pp.
148-165.

53

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

[38]

[39]

[40]

[41]

[42]

A. Awad, G. Decker, and N. Lohmann, “Diagnosing and repairing
data anomalies in process models,” in Business Process Management
Workshops, BPM 2009 International Workshops, Ulm, Germany,
September 7, 2009. Revised Papers, ser. Lecture Notes in Business
Information Processing, S. Rinderle-Ma, S. W. Sadiq, and F. Leymann,
Eds., vol. 43. Springer, 2009, pp. 5-16.

C. Wagner, “A data-centric approach to deadlock elimination in
business processes,” in 3rd Central-European Workshop on Services
and their Composition, Services und ihre Komposition, ZEUS 2011,
Karlsruhe, Germany, February 21-22, 2011. Proceedings, ser. CEUR
Workshop Proceedings, D. Eichhorn, A. Koschmider, and H. Zhang,
Eds., vol. 705. CEUR-WS.org, 2011, pp. 104-111.

W. Amme, N. Dalton, M. Franz, and J. von Ronne, “Safetsa: A type
safe and referentially secure mobile-code representation based on static
single assignment form,” in Proceedings of the 2001 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), Snowbird, Utah, USA, June 20-22, 2001, M. Burke and M. L.
Soffa, Eds. ACM, 2001, pp. 137-147.

F. Klan and B. Konig-Ries, “A user-centered methodology for the
evaluation of (semantic) web service discovery and selection,” in 4th
International Conference on Web Intelligence, Mining and Semantics
(WIMS 14), WIMS ’14, Thessaloniki, Greece, June 2-4, 2014,
R. Akerkar, N. Bassiliades, J. Davies, and V. Ermolayev, Eds. ACM,
2014, p. 18.

H. Si and Y. Zhao, “A structured p2p-based approach to semantic

web services publication and discovery,” JISW, vol. 9, no. 7, 2014, pp.
1930-1940.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

54

