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Abstract— This paper presents a modelling approach based on 
the Possibility Theory to reproduce drivers’ choice behaviour 
under Advanced Traveller Information Systems (ATIS). The 
Possibility Theory is introduced to model uncertainty 
embedded in human perception of information through a fuzzy 
data fusion technique. Drivers’ choice models are often 
developed and calibrated by using, among other, Stated 
Preferences (SP) surveys. An experiment is presented, aimed at 
setting up an SP-tool based on driving simulator developed at 
the Technical University of Bari. The obtained results are 
analysed in order to compare the outcomes of the proposed 
model with preferences stated in the experiment.  
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I.  INTRODUCTION 
The study of travellers’ behaviour in Advanced 

Travellers Information Systems (ATIS) contexts is a crucial 
task in order to properly simulate phenomena like 
compliance with information, route choices in presence of 
information, etc. Several researchers have dealt with 
conceptual models of drivers’ behaviour under information 
provision. Basic idea in these models is that each driver 
updates his/her knowledge of costs of alternatives using 
provided information. Then, he/she compares the updated 
costs of alternatives and chooses, among them, the best one 
from his point of view. However, since both knowledge of 
alternatives and information are rarely perfect, uncertainty 
affects single person’s decision. Handling uncertainty is 
therefore an important issue for these models. Approaches 
followed by different scientists to face this issue can be 
arranged into two main groups, according to how uncertainty 
has been modelled. In the first group, the approach followed  
generally uses randomness to represent uncertainty. For this 
kind of models, unavailability of full numerical data could 
limit the model reliability; in fact, these models are generally 
unable to handle non-numerical values of parameters. On the 
contrary, models included in the second group can  easily 
model un-certainty through verbal, incomplete or imprecise 
data using the concepts of Fuzzy Logic. In fact, the 
fundamental concepts of Fuzzy Sets Theory, linguistic 
variables, approximate reasoning, and computing with words 
introduced by Zadeh have more understanding for 
uncertainty, imprecision, and linguistically articulated 
observations. These concepts support “the brain’s crucial 

ability to manipulate perceptions-perceptions of distance, 
size, weight, colour, speed, time, direction, force, number, 
truth, likelihood, and other characteristics of physical and 
mental objects. A basic difference between perceptions and 
measurements is that, in general, measurements are crisp 
whereas perceptions are “fuzzy” [1]. First, Teodorović and 
Kikuchi [2] proposed a route choice model based on Fuzzy 
Set Theory.  In order to estimate models of the travellers’ 
behaviour, observation of reactions is needed. The most 
adopted approach for collecting data is the Stated 
Preferences (SP) one. Two main types of tools for SP in 
ATIS contexts are the most popular: driving-simulators 
(DSs) and travel-simulators (TSs). Both methods are 
computer-based. DSs are characterised by a greater realism, 
provided that the respondents are asked to drive in order to 
implement their travel choices, as it happens in the real 
world. In TSs, travel choices are entered after having 
received a description of travel alternatives and of associated 
characteristics, without any driving. In most cases, data have 
been collected by using TSs, as for instance in 
[3][4][5][6][7]; while only a limited number of studies have 
been carried out by adopting DSs [8][9][10][11][12]. In this 
work, an experiment has been carried out at the Technical 
University of Bari. Other than the assessment of the internal 
consistency of the experiment allows for validating the 
simulation environments, thus showing that more trials and 
experiments worth to be implemented. The network 
reproduced in the virtual experiment refer to real one in Bari 
(Italy). Moreover, the respondents recruited for the 
experiments were travellers familiar with the networks. The 
network has been proposed to respondents in the simulations 
in a double configuration, with and without ATIS. In turns, 
the configuration without ATIS was presented to respondents 
with some variants, reproducing different congestion levels 
and travel times, accordingly with their statistical distribution 
in the real world. The paper is structured as follows. In the 
next section, the possibility theory and the data fusion 
analytical formulation are presented. In section 3, the 
experiment designed to acquire information about drivers’ 
choice behaviour through a driving simulator is described. In 
section 4, results of the proposed model are carried out and, 
in the last section, conclusions are reported. 

II. MODELLING PERCEPTION AND DATA FUSION 
An informative system, like the ATIS, may provide 

information to users before they begin the trip (pre-trip 
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information) or while they are moving (en-route 
information). In the first case, static choice models are 
involved; in the second case, dynamic ones. In both cases, 
travellers combine information with their previous 
experience to obtain a prediction about the cost of each path 
and to choose the best one. 

To incorporate information on system conditions in the 
choice process, we assume that drivers: 

• have some experience about the attributes of the 
transportation system; 

• use information to update his experience; 
• choose an alternative according to his updated 

experience. 
Since the drivers’ knowledge about the transportation 

system could be imprecise or approximate, it can be 
expressed in the same way we used for perceived 
information. So, both drivers’ knowledge and information 
can be expressed in terms of Possibility, like in Figure 1. 

 

 
Figure 1. Possibility distributions of experience and information 

To update knowledge of the system, drivers aggregate 
data coming both from their experience and from current 
information. However, aggregation could not be always 
meaningful, since data coming from different sources can be 
far from each other, and thus not compatible. Therefore, a 
suitable aggregation function should include also a measure 
of compatibility. 

To measure compatibility, Yager and Kelman [13] 
proposed the relationship R:X2 → I = [0,1] such that: 

• ∀x ∈X, R(x,x) = 1 
• ∀(x,y )∈X2, R(x,y) = R(y,x) 
• For a given x, R(x,y) is a convex fuzzy set. 

A suitable expression for a compatibility function R 
defined in X2 is : 
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where k must be carefully selected case by case, to obtain 
a proper compatibility measure. Extension to Xn of R is also 
possible, through the relation: 

 R(x1,….xn) = )x,R(xmin ji1,...nji, =
 (2) 

In this paper, we have used for data fusion the Ordered 
Weighted Average (OWA) operator and the compatibility 
function R, defined in (1). 

Given a set A= {a1, a2,…..an} and a fusion function F, an 
OWA operator is a weighting vector W= [w1, …wn] such 
that: 

• wi∈[0,1]; 
• Σi wi = 1; 
• F(a1, a2,…..an) = Σi bj wj 

in which bj is the j-th largest element of A. By adjusting the 
weighting vector, we can represent different drivers’ 
attitudes: when W favours the smaller valued arguments in 
the aggregation process it reflects an aggressive driver, 
otherwise it reflects a cautious driver. 

O’Hagan [14] suggested a method to calculate the 
weights wi (i = 1,…n) through the following simple 
mathematical programming problem: 
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where hn(i) = 
1-n
i-n

, and β∈[0,1] is a coefficient representing, 

in our case, drivers’ cautiousness. Note that, if fusion 
involves only two sets, then h2(1) =1, h2(2) =0. Thus, from 
the constraints of previous program (Eq. 3): 
 w1 = β, (4) 
 w2 = 1-β. (5) 

The basic hypothesis we have made in this work to set up 
a value of β, is that drivers’ cautiousness is a function of 
uncertainty related to perceived information. Let us explain 
this last concept through an example. Assume that the shorter 
one of two alternative paths is temporarily closed by barriers. 
In this case, information that path is closed is not uncertain, 
that is U(I) = 0, and drivers must choose the longer path. 
This means that the OWA operator should favour the largest 
value, that is w1 = 1, and consequently β = 1 from (4). 
Conversely, if instead of barriers there is an informative 
system giving very vague information about the condition of 
the path, uncertainty U(I) is very large, and drivers should 
prefer to rely on their own experience. In this case, the OWA 
operator favours the smallest value, that is w2 approaches 1 
and thus, from (5), β approaches 0. From this example, it 
appears that the parameter β can be interpreted also as 
drivers’ compliance with information. In fact, β = 1 means 
that the driver is totally compliant with information, β = 0 
means the opposite. 

Experimental studies have been carried out in last years 
by some researchers to find out a value of drivers’ 

19Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation



compliance. Different values, ranging from 0.2 to 0.7, have 
been found, mainly due to the fact that β is affected by the 
level of uncertainty imbedded in information. In this study 
we have assumed that: 

• drivers’ compliance with information decreases 
with increasing of uncertainty. This means that the 
relative elasticity  of compliance with respect to 
uncertainty is negative. In analytical terms: 

dU(I)/U(I)
β / dβ <0; 

• the increase of compliance with additional 
information is greater in case of ignorance than in 
case of complete knowledge. That is, the relative 
elasticity  is a function of uncertainty itself.  

On the basis of these hypotheses, the following linear 
relationship between relative elasticity  uncertainty level has 
been carried out: 

 
dU(I)/U(I)

β / dβ
 = − γ⋅Υ(Ι) (6) 

and hence: 

 γU(I)e
1  β =  (7) 

where γ is a parameter to be calibrated, which takes into 
account individuals’ attributes like age and gender. When n 
different sources provide information Ii (i=1,…n) with 
uncertainty  U(Ii), compliance rate is calculated as 

 )γU(I1,...ni ie
1min β

=
=  (8) 

Now, to incorporate the compatibility concept in the 
fusion function, we follow the method suggested in [13]. 
Therefore, let 

• Ai (i= 1,…n) be a collection of fuzzy sets. Recall 
that fuzzy sets and Possibility distributions can be 
represented in the same way; 

• B = F(Ai) be the result of aggregation; 
• Aiα=[ liα, riα] be the α-cut associated with Ai; 
• l*α = maxi[liα] be the largest lower bound of any α-

cut; 
• r*α = mini[riα] be the smallest upper bound of any 

α-cut; 
• U*α = inf{x | R(l*α,x) ≥ α} be the smallest value 

compatible with l*α  at level α; 
• V*α = sup{x | R(r*α,x) ≥ α} be the largest value 

compatible with r*α, at level α. 
Provided that U*α ≤ r*α and V*α ≥ l*α, the α-cut of B can 

be calculated as: 
 Bα = [F(d1α,… dnα), F(e1α,… enα)] (9) 

where: 
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The information fusion model incorporates important 
aspects, such as: 

• dynamic nature of information integration. The 
perceived cost of an alternative is influenced by the 
user’s previous experience and memory;  

• accuracy of the informative system. The more 
accurate information is, the more important is the 
effect on the drivers’ perception;  

• non-linear relationship between information and 
perception.  

The parameter β itself is function of information, so that 
the updated cost is a non-linear function of information. 

Possibility is a useful concept in representing decision-
maker’s uncertainty about the attributes of individual 
alternatives, but cannot be used directly by analysts; for this 
reason, a conversion to Probability values on the basis of a 
justifiable principle is needed. 

To pass from Possibility to Probability we use the 
probabilistic normalization ( 1=∑i ip ), along with the 
Principle of Uncertainty Invariance, systematized by Klir and 
Wang [15]. This principle specifies that uncertainty in a 
given situation should be the same, whatever is the 
mathematical framework used to describe that situation.  

Under the requirement of normalization and uncertainty 
equivalence, we should use a transformation having two free 
coefficients. Thus, according to Geer and Klir [16], we use 
the log-interval scale transformations having the form: 
 Πi = β⋅(pi) α (11) 

where Πi is Possibility and pi Probability of the i-th 
alternative; α and β are positive constants. 

From (11) we obtain: pi = (Πi/β)1/α and, applying the 

probabilistic normalization, β=
α
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To calculate ε, we use the Principle of Uncertainty 
Invariance. Given an ordered Possibility distribution {Π1, 
Π2,… Πi, Πi+1,… Πn} for which is always the case that Πi ≥ 
Πi+1, the possibilistic counterpart of the probabilistic 
uncertainty, called U-Uncertainty, is given by the following 
function: 

 U = ( ) ilogΠ - Π 2

n
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According to the Principle of Uncertainty Invariance, 
information I and uncertainty U must have the same value:  
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where Πn+1 = 0 by definition. Numerical solution of (14) is 
always possible, except when Πi = K ∀i, K∈[0, 1]. However, 
in this case, from (12) we can easily obtain pi = 1/n ∀i. 
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III. DESIGN OF THE EXPERIMENT 
In order to carry out the SP experiments, a PC-based 

driving simulator of Technical University of Bari has been 
adopted (Figure 2). 

The UC-win/Road driving simulator software was used. 
This software is developed by FORUM8, a Japanese 
company. UC-win/Road is plugin-based, allowing to extend 
software functionalities by using the UC-win/Road SDK 
Framework that allows for Delphi code. In our case, a plugin 
was created for data acquisition during driver's simulation, 
allowing to record for successive analyses (and in CSV 
format) data related to speed, position, steering, etc. In 
particular, we have employed data related to position in post-
processing in order to observe route choices made by 
respondents. The simulation system works on a single 
computer provided with NVidia Graphic Card (1Gb of 
graphic memory) and a Quad-Core CPU, which guarantees 
very good real-time rendering and computation 
performances. The simulation is based on a steering wheel 
(Logitech™ MOMO Racing Force Feedback Wheel), able to 
provide force feedback, as well as six programmable buttons 
(ignition, horn, turn signals, etc.), sequential stick shifters 
and paddle shifters. A 22" wide-screen monitor was used in 
order to have a good field of view, also showing internal car 
cockpit with tachometer and speedometer. Environmental 
sounds are reproduced to create a more realistic situation.  

During the experiment respondents have been asked for 
choosing a route among three alternatives. The context is 
configured in such a way that the choice can be assumed as a 
(possible) switching from a natural reference alternative. As 
already discussed, respondents were recruited for the 
experiment ensuring a familiarity with the experimental 
context. In fact, the simulated networks were part of a real 
network in Bari (Figure 3). The choice set can be viewed as 
composed by a main route (route 1) that connects the 
considered origin-destination pair. Depending on traffic 
conditions, the traffic could spill-back up to a later diversion 
node (detour toward route 2) or even up to an earlier 
diversion node (detour toward route 3). These three different 
conditions (straight route, later detour, earlier detour) are 
conventionally classified here as three different levels of 
congestion (free-flow/low congestion, intermediate 
congestion, high congestion).  

The experiment has been designed in order to have in 
most of the times (70%) the system in the intermediate 
congestion pattern, even if extreme (low and high) 
congestion levels are less frequent. Before starting the 
simulation, respondents can adapt themselves with the 
simulator by driving along each alternative route of the 
choice set, without ATIS and in free-flow traffic conditions. 
After this possible training, respondents are asked to make 6 
successive trials, grouped in 3 driving sessions. At each 
session, respondents drive twice. The Variable Message 
Signs (VMSs) representing the ATIS can be active or not in 
a random way. The activation of the ATIS is a consequence 
of an accident occurred, that perturbs the standard traffic 
pattern to an extent that depends on the accident severity. 

 
Figure 2. Screenshot of the Driving Simulator 

 
Figure 3. Map of the considered network (Bari, Italy) 

TABLE I.  LOCATION OF VMSS AND MAIN RAMPS 

From To Distance 
(m) 

Entrance (A) 1st  VMS 400 

1st VMS I Diversion,  
Exit 13A-Mungivacca 300 

I Diversion,  
Exit 13A-Mungivacca 2nd VMS 700 

2nd VMS 3rd VMS 1100 

3rd VMS II Diversion,  
Exit 12-Carrassi 150 

II Diversion,  
Exit 12-Carrassi Queue/Accident 900 

Queue Exit 11-Poggiofranco 500 
 
The trials are called “without information” when the 

VMSs are not activated; otherwise trials are called “with 
information”. Moreover, two messages are provided through 
ATIS: ‘queue’ and ‘accident’, displayed in a random way 
during all trials. At the first session, respondents can make 
their choices without information to enforce their perception 
of the realism of the simulation in terms of consistency with 
the real network he/she is used to. Then, at a second session, 
respondents are assisted by information (‘queue’ or 
‘accident’). Respondents are provided with information by 
VMSs located on the main road as reported in Table 1.  

The first VMS is 300 meters before the early diversion 
(Mungivacca, toward route 3), the second is 1250 meters 
before the late diversion (Carrassi, toward route 2) and the 
third 150 meters before the same Carrassi diversion node. A 
queue starts in all cases 900 meters after the later diversion 
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node and 500 meters before the exit-ramp of Poggiofranco. 
Depending on the simulated congestion level, the queue can 
spill back more or less. In this scenario VMSs display the 
presence and the position of the queue, but not queue length 
or estimated queuing time. At the end of each trial, 
respondent are asked to answer a questionnaire, where they 
state, as well as other questions, the chosen route, their 
perception of the delay due to the provided information 
(minimum, most expected and maximum time value), if any, 
and the travel time related to their experience on that route. 
These data are required to define the triangular fuzzy 
numbers related to their perceptions in order to apply the 
data fusion technique previously described. 

IV. RESULTS 
Recruitment was performed at the Technical University 

of Bari and 10 respondents were randomly selected. Such a 
small number of respondents is consistent with the pilot 
nature of the study. 

 In trials with information, a respondent perceives a delay 
as he/she reads the message provided by the VMSs. This 
delay depends not only on subjective factors, but also by the 
content of the information itself. Table 2 shows the average 
time in minutes of perceived delay in terms of triangular 
fuzzy numbers. We can observe that the average time for the 
message received 'queue' is lower than that for the message 
'accident'. This effect can be imagined because the 
consciousness of the presence of an accident is definitely 
more effective in terms of perceptions compared to a queue. 

Tables 3 and 4 show the route choice percentages stated 
at the end of the experiment and compared with the 
outcomes of the proposed model. Without information 
(Table 3), it appears that respondents tend to follow the 
fastest route (R1, Poggiofranco). The changing conditions of 
the traffic and the presence of queue or incident events does 
not affect the experience of those who tend to choose the 
fastest route R1 (87%), in normal traffic, 10% of respondents 
choose the intermediate route R2 and 3% the slowest route 
R3. 

In the presence of information (Table 4), the choice 
behaviour varies according to the message displayed on the 
VMSs. The resulting choice behaviour is consistent with the 
perceptions of time delays derived from the information 
provided. A greater perceived delay leads to an increased 
tendency to abandon the preferred path, turning over other 
available alternatives. As previously described, the model is 
characterized by the presence of two parameters k and γ (Eq. 
1 and 8). These parameters are used to calibrate the 
compliance with the information system in relation to the 
provided information. The aim is to find the optimal values 
of these parameters for each respondent in order to better 
reproduce the observed behaviour. For sake of simplicity, we 
have calculated the optimal values of these parameters using 
Genetic Algorithms (GA) to minimize the root mean square 
error (RMSE) between the percentages of observed choices 
and those predicted by the model.  

 

TABLE II.  PERCEIVED DELAY TIME (FUZZY VALUES IN MINUTES) IN 
TRIALS WITH INFORMATION 

Respondent Message ‘queue’ Message ‘accident’ 
Tmin T Tmax Tmin T Tmax 

1 5.5 6.5 8.5 10 15 17 
2 10 15 25 10 15 30 
3 0 0.5 1 2 3 5 
4 4.5 6 10.5 1 2 4 
5 2 3 4 5 7 10 
6 0 0 0 11.5 15 20 
7 2.5 3.5 4 5 8 10 
8 1 2 4 3.5 5.5 8 
9 3 5 10 7.5 12.5 17.5 

10 5 6 10 5 7 11.5 
Average 3.35 4.75 7.70 6.05 9.00 13.30 

TABLE III.  COMPARISON OF ROUTE CHOICE PREFERENCES IN TRIALS 
WITHOUT INFORMATION  

Route Choice % 
Observed Predicted 

R1 86.7 90.5 
R2 10.0 6.8 
R3 3.3 2.7 

RMSE 2.89 

TABLE IV.  COMPARISON OF ROUTE CHOICE PREFERENCES IN TRIALS 
WITH INFORMATION  

Route 
Choice % 

Message ‘queue’ Message ‘accident’ 
Observed Predicted Observed Predicted 

R1 37.50 46.90 0.00 21.65 
R2 62.50 47.22 71.43 69.54 
R3 0.00 5.88 28.57 8.81 

RMSE 10.90 16.96 
 
Tables 3 and 4 also show the result of the comparison 

with observed preferences respectively for trials without and 
with information.  In Table 3, the RMSE value (2.89%) 
shows the effectiveness of the proposed model to reproduce 
drivers’ choice behaviour in absence of information.  

In presence of information, it is important the role of the 
parameters k and γ, whose optimum values have been 
obtained through GA. Table 4 summarizes the results 
obtained relating to the ability of the model to reproduce the 
choice behavior. In the case of ‘queue’ message, the RMSE 
value is 10.90%, lower than the case of ‘accident’ message, 
16.96%. Thus, the proposed model is able to reproduce 
almost correctly the overall behavior and, therefore, the 
effect of information on users’ choices. 

V. CONCLUSIONS 
In this paper, the emphasis was on capturing the 

reasoning process of drivers making en-route choices in 
presence of traffic information. The influence of uncertainty 
in updating the knowledge of attributes of a transportation 
system, like expected travel time on a path, has been 
modelled using the concept of compatibility between 
previous knowledge and current information. The presented 
model points out the relevant role of the Possibility Theory 
in calculating uncertainty and thus drivers’ compliance level 
with released information.  
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A modelling framework, which represents the 
uncertainties embedded in the perception of travel attributes, 
has been developed through the Possibility Theory. The 
model allows the quantitative calculation of users’ 
compliance with information, and thus a realistic updating of 
expected travel time.  

To test the model, an SP experiment has been designed 
using a Driving Simulation Software for generating a virtual 
scenario of the city of Bari (Italy). A sample of 10 
respondents has been identified to drive using a steering 
wheel and pedals. The scenario has been proposed in 
different conditions by combining traffic levels, presence and 
message type using VMSs. Data acquired through 
questionnaires have been used to parameterize the proposed 
model in order to reproduce the resulting driving choice 
behaviour and perceptions. 

The effectiveness of the model has been measured 
evaluating RMSE values between observed and predicted 
preferences. The proposed model has resulted to be very 
effective (2.89% RMSE) in absence of information, where 
no parameterization is needed. Moreover, the model shows 
very good abilities in reproducing drivers’ preferences under 
information provision (10.9% RMSE for ‘queue’; 16.96% 
RMSE for ‘accident’). 

In a wider framework, the outcomes of this paper can be 
used to carry out a road pricing system based on information 
provision. Therefore, a VMS-based Advanced Traveller 
Information System can be used as a tool for traffic 
management.  

Future developments concern the extension of this 
experiment to a greater number of respondents in order to 
better validate the proposed model. Moreover, an improved 
driving simulator is intended to be used for a better user 
experience. 
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