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Abstract

The size and complexity of software is continuously

growing, and testing is one of the most important strate-

gies for improving software reliability, quality, and design.

Unit testing, in particular, forms the foundation of the test-

ing process and it is effectively supported by automated

testing frameworks. Manual unit-test creation is difficult,

monotonous and time-consuming. In order to reduce the ef-

fort spent on this task, several tools have been developed.

Many of them can almost automatically produce unit tests

for regression avoidance or failure detection.

This paper presents a practical comparison methodol-

ogy to analyze different unit-testing creation tools and tech-

niques. It validates the effectiveness of tools and spots their

weaknesses and strengths. The validity of this methodol-

ogy is confirmed through a real case experiment, in which

both the manual implementation and different automatic

test generation tools (based on random testing) are used.

In addition, in order to integrate and exploit the benefits of

each technique, which result from the comparison process,

a testing procedure based on “best practices” is developed.

Keywords: testing; comparison methodology; failure

detection; regression testing; automatic test generation tools

1 Introduction

Testing is an important and widely-accepted activity to

verify a software at runtime. It can be performed at three

different stages with increasing granularity: single class (or

module) testing, classes (or modules) group testing, whole

system testing [35]; which are usually referred to as: unit

testing, integration testing and system testing. Each stage

has its own difficulties and strategies, and different tech-

niques are available. In this paper, we decided to con-

centrate our efforts on unit testing, which constitutes the

foundation for other testing levels. In particular, we con-

sider object-oriented software and the Java programming

language, but our results could be easily transposed to be

useful for different programming languages and paradigms.

The xUnit testing [2] framework was created in order to

improve object-oriented programmer productivity in devel-

oping and running unit-test cases. Through it, it is possible

to easily write unit tests that exercise and make assertions

about the code under test. Each test is independent of each

other and it is usually written in the same language as the

code they test. The xUnit framework is intentionally sim-

ple to learn and to use, and this was a key design criteria:

the authors wanted to be sure that it “was so easy to learn

and to use that programmers would actually use it” [28].

The developer, with a simple command, could automati-

cally run all the xUnit tests he created and then, after the

execution, receive the report generated by the framework

with the number of successes and the details of any failures.

In this article, we consider JUnit [1], which is the Java

flavor of the xUnit framework. Although it is the “de-facto”

standard tool to automatically execute Java unit tests, there

are other interesting alternatives that could be effectively

used (e.g., [10]).

In industry, testing is used for quality assurance, because

it provides a realistic feedback on system behavior, reliabil-

ity and effectiveness. At the same time, testing -especially

unit testing- can be tedious and difficult, and it often con-

sumes a considerable amount of time [31]. For this rea-

son, research is now highly active in producing testing tech-

niques capable of automatically creating unit tests. The us-

age of these tools is not already equally standardized as JU-

nit usage.

In a previous article [7], we compared the effectiveness

of unit-test cases which were automatically created with

manually written ones. We used various automatic test cre-

ation tools, based on random testing, and we proved that

they can produce trustworthy and useful test cases, and can

improve and speed-up testing engineers’ tasks. We also

showed the advantages which result from the manual cre-

ation of unit tests, that cannot yet be achieved by automatic

tools. Finally, we noted that the success rate of this kind of

testing depended to a great degree on proper planning and

proper use of these testing tools. Thus, we briefly outlined
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some “best practices” for integrating the manual and auto-

mated test processes, in order to effectively produce unit-

test cases and obtain benefits from all the techniques.

As scientific research is highly active and motivated in

this particular field, the tools we examined and compared in

[7] have since been further enhanced [33], studied in more

detail [32] or replaced with more effective tools [15, 39].

Also the only commercial software we included [5], which

was highly experimental, was replaced with a more stable

version [4] in order to address the company’s business.

These automatic unit-test generation tools evolve ex-

tremely quickly, and thus we consider it significant to out-

line a comparison methodology to help the test engineer to

analyze the capabilities of different tools, which can thus be

exploited and fit into the correct testing “best-pratices”.

In order to effectively extract this methodology, we use

the real-world case study we conducted in [7]. We show,

in detail, the comparison method we used and its validity.

Then, we see what its advantages and shortcomings are, and

how it could be usefully extended. Finally, we outline how

the results obtained could be used in “best practices” ca-

pable of exploiting and integrating the different techniques

which were analyzed.

In Section 2 we introduce unit testing and we show its

main objectives. Then, in Section 3, we present the exper-

imental study showing the environment in which we con-

ducted it, describing which unit testing techniques and tools

we used, and discussing its validity. Later (Section 4), we

point out the comparison we adopted to study this real world

case and we explain how we analyzed the different facets of

the results which we obtained through the different testing

approaches. Consequently, we outline the abstract com-

parison methodology. Finally in Section 5, we propose

the “best practices” to effectively exploit the different tech-

niques used.

2 Unit testing

Ideally tests are implemented in the flow of the software

development process, which means at increasing granular-

ity. Only when we have some module/class implemented

and their unit test cases ready, can we advance creating in-

tegration tests or new features. For example, it is possible to

proceed in a cyclical manner by first writing unit tests for a

few classes, then developing the necessary integration tests

for those classes, then restarting again with new classes and

their unit tests, which leads to further integration testing,

and restarting the cycle again until the system is completed.

Within this process unit test cases fill the foundation of the

whole testing system and other testing parts can rely on first

checking.

The principal aims of unit testing are the same as func-

tional testing: verify the behavior of the tested component

and help in finding implementation defects. The difference

consists in their target: unit testing is mainly focused on

small source code parts which are separately testable. Unit

test cases input small functions or methods with specific

values and check the output against the expected results,

verifying the correct code behavior.

2.1 Failure detection and regression avoidance

Unit testing is mainly used to achieve two objectives:

searching for defects in new -or not previously tested- code

and avoiding regression after the evolution of code already

under test. In the first instance, through test cases, the test

engineer tries to check if the code is correctly implemented

and does what it is expected to do; in the second situation

failing tests warn that a software functionality that was pre-

viously behaving correctly stopped working as intended.

For this reason, in literature and industry we find unit-

test generation tools that address those two different issues:

failure detection and regression avoidance. In the former

case tools try to spot unwanted or unexpected behavior,

which could lead to a detection of failure. In the latter case

they generate “tests that capture, and help you preserve, the

code’s behavior” [4]. They will “pass”, if the code behaves

in the same way that it did at the moment of their creation,

but will “fail” whenever a developer changes the code func-

tionalities, highlighting unanticipated consequences.

As we focus essentially on tools which are based on ran-

dom testing, the main difference between tools that create

unit tests for failure detection purposes and tools that gen-

erate regression tests is how they deal with the oracle prob-

lem. “An oracle is any (human or mechanical) agent which

decides whether a program behaved correctly in a given test,

and accordingly produces a verdict of “pass” or “fail” [...]

oracle automation can be very difficult and expensive” [3].

When automatic generation tools produce regression

tests, the source code which is provided is supposed to be

without defects. For this reason, those tools generally con-

sider the system itself as a sort of oracle: everything it out-

puts in reply to an input is the expected and correct answer.

Thus, they will create only not failing tests, and, in this way,

they take a “snapshot” of the tested system state.

On the other hand, tools that generate unit tests that re-

veal bugs in code cannot consider the tested system as the

oracle, because it could provide both right and wrong an-

swers to inputs, as it is not supposed to be without defects.

For this reason, these tools need another way to know if the

received output is the expected one or not (i.e. to solve the

oracle problem). The tools we examined in [7], use a differ-

ent approach to tackle this issue. One of them [14] considers

unexpected exceptions that are raised as evidence of a possi-

ble failure. It does not need the test engineer to provide any

additional information before submitting the source code to



131

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

the tool. Another software [33] requires more information

about the tested class, such as class invariants. These prop-

erties will be used as the oracle: if the tool discovers an

instance in which the submitted code does not respect the

requested invariants, a failing unit test will be created. If

the test engineers want to use this tool, they have to spend

time preparing a more detailed input, which actually consti-

tutes the oracle.

Finally, it is important to underline that failure detection

tests and regression tests have different targets and for this

reason they are mainly created in a different way. However,

from the moment unit tests are implemented, they become

part of the same unit test suite. A test that is used now to

reveal a defect, can be incorporated later in the test suite and

used as a regression test. A regression test that is not failing

now, could be an effective failure detection test in the future

or in a different implementation.

This already gives a hint of “best practices” which ex-

plain how to exploit and integrate both tests which are auto-

matically generated by tools with different targets and tests

which are manually implemented.

3 The experimental study

In [7] we wanted to show which approach was the best

one when the test engineer had to decide whether to use

tools which automatically generate unit tests and how. We

chose to apply both manual and automatic techniques to a

real case study, to have the chance of showing authentic

data.

3.1 The Freenet Project

The Freenet Project [13] peer-to-peer software (hence-

forth Freenet) was chosen as subject for experiment, be-

cause it had all the features which we were interested in and

which we considered relevant for our experiment validity.

Freenet is free software which allows the publishing and

obtaining of information over the Internet, avoiding censor-

ship. To achieve this, the network it creates is completely

decentralized and publishers and consumers of information

are anonymous. Communications between network nodes

are encrypted and are routed through other peers to make

communication tracking extremely difficult.

The software was subject to three drastic changes which

caused important modifications of Freenet functionalities

and its development team. For this reason, Freenet as-

sumed, over time, many of the characteristics that allows

us to equate it with legacy software [36].

Like with legacy software, many of the developers who

created Freenet are not working on the project anymore,

even though much of the source code they implemented is

still in use and form an important part of the application.

Then there is a crucial lack of documentation both for old

source code and for new pieces of it; furthermore this is

an issue for both high and low level documentation. For

this reason, to fully understand Freenet functioning, or even

only little parts of it, it is necessary either to read the cor-

responding source code or to interact with the developers

community. As with many legacy software, the few active

developers are constantly busy and they put most of their ef-

fort into developing new functionalities rather than revising

the existing codebase.

Tests are so important that “the main thing that distin-

guishes legacy code from non-legacy code is tests, or rather

a lack of comprehensive tests” [18]. Also in this sense,

Freenet is a legacy software: when we started the experi-

ment it had only 14 test cases for the whole source code,

which included more than 800 classes.

The main difference between legacy software and

Freenet lies in the fact that the latter is still under heavy

development and evolution. This aspect, however, does not

have any relevance to our study, so we have chosen Freenet

to represent not only software without a pre-existing signif-

icant test suite, but also legacy software in general.

Positively, Freenet is open source code and was devel-

oped in Java, which is a language that is fully supported by

the majority of automatic unit test generation tools. In this

way, we had the possibility of comparing the most and lat-

est relevant examples of industry and academic research in

this field.

Furthermore, even though the software had many aspects

related to legacy software, the developing structure was

modern and efficient. It had effective mailing lists and an

active IRC channel populated by the most important project

developers. The code was maintained in a functional Sub-

version repository and we were granted full privileges to it.

Finally the infrastructure to insert JUnit tests was already

prepared and there was also support for continuous integra-

tion and test.

The changes we described earlier correspond to release

0.3, release 0.5 and release 0.7. During our experiment we

used the last release which was the official one.

3.2 Development environment

The development environment for the experiment has

been the GNU/Linux operating system provided with SUN

Java 5 SE, Eclipse Europa IDE, Ant build tool version 1.7,

JUnit version 3.8. During manual tests implementation

hardware performance has not been an issue, whereas we

got serious benefits in computational time using a dedicated

workstation (dual Intel Xeon 2.8Ghz processor, with 2GB

of Ram) when generating tests with the automatic tools and

calculating the value of some of the metrics.

The developer who implemented unit tests manually was
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a graduate student with a reasonable (about three years) in-

dustrial and academic experience in Java programming. He

also had a basic knowledge of xUnit, previously developed

using SUnit (the SmallTalk xUnit dialect) [2].

3.3 Procedure

In order to gain a better knowledge of the Freenet source

code, environment and community, we began the experi-

ment dedicating three full-time working months (which cor-

responded to almost 500 hours) to the manual implementa-

tion of unit tests. Then we started studying automatic test

generation tools and we created tests using them. At the end

we performed the comparison between each test suite that

was generated using different techniques.

The decision to start with the manual implementation of

tests made it easier to decide which and how many classes

to put in our study domain. We decided to concentrate our

efforts on support “leaf” classes (i.e. without outgoing ref-

erences), because they offer two important advantages: they

do not have significant references to other classes in the

project -which means they are easier and faster to study

and comprehend- and they are support classes, very sim-

ilar to library classes, so they are often referenced through

the whole code, and this allowed us to see the testing effects

spread as broadly as possible across the system.

At the end of the creation of manual unit tests, we had

two different “snapshots” of the Freenet system, that we

used as a basis for further testing. First we had the source

code which was present at the beginning (i.e. without unit

tests), in which we found certain bugs through manual test-

ing; and we had the source code after manual testing, which

was modified to remove bugs and included the regression

tests which we had manually implemented.

In order to successfully compare manual unit test imple-

mentation and automatic unit test generation tools, we used

these two source code snapshots in a different manner. The

first “snapshot” (i.e. without any manual modification) was

useful for comparing failure detection capabilities. Using

the source code as it was before the manual work, we were

able to compare the bugs which had been found throughout

manual implementation with the bug set that was detected

by automatic tools. This comparison was possible only by

working on the same source code basis, and allowed us to

effectively spot similarities, advantages or faults of different

the techniques.

On the other hand, we used the second “snapshot” to

compare regression tests, manually and automatically gen-

erated. We already had manually implemented regression

tests for this snapshot (which result from the manual test-

ing), so it was more appropriate to use tools to generate

regression tests over the same code, to see if their regres-

sion avoidance capability was less effective, similar or even

better than the manual implementation.

It is still possible to checkout the source code we used as

a basis for our tests, using the official Freenet Subversion

repository.

3.4 Manual unit test implementation

To manually create unit tests, we first had to understand

what was expected from the code we wanted to test. A rea-

sonable approach to achieve this understanding is to read

the documentation that was accompanying the code. Unfor-

tunately, as already mentioned, very often it was not present

or very poor and outdated. For this reason, we usually had

to directly study the source code under test. It is not a good

practice to understand what the code is supposed to do by

reading it, because if the code contains defects or the devel-

oper had a wrong understanding of the requirement, study-

ing only the code does not help in finding the problem. In

addition, often we were unable to understand the function-

alities supported by the analyzed code. So we had to search

external documentation to clarify well-known problems that

were addressed by the code (e.g., the DSA algorithm imple-

mentation), or -even worse- we had to contact the Freenet

developers for further explanations. For this reason, the lack

of documentation we encountered created important prob-

lems in the speed of manual testing, which we could not

correctly estimate at the beginning of our work.

When we finally achieved full and correct knowledge of

the classes that we wanted to test, we started writing test

cases. Even though there is some research addressing the

issue [41], there is not any widely accepted method of con-

ducting the manual implementation of unit test cases. For

this reason we decided to follow well-known and broadly

used non-formal testing principles [24, 36].

First of all, when implementing tests, we tried to adopt a

different point of view from the one which was used by the

original code developers. We created a series of test cases

that were intended to “break” rather than confirm the soft-

ware under test. We also deeply analyzed all data structures

that were created or used in each tested class. We created

test cases to verify that data did not lose its integrity when

using classes’ methods or algorithms.

We also performed boundary-value analysis, because it

has been statistically proven to be capable of detecting the

highest number of defects [24]. We checked the code using

the highest and lowest possible values, and we also tried to

use values slightly outside the boundaries. Confirming the

statistics, we found relevant bugs using this technique.

Our tests also performed control-flow path execution,

which consists of trying to execute the code in every pos-

sible path to check the behavior of functions when dealing

with inputs from different subsets. We usually created one

test case for each possible code branch, to improve tests
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readability and facilitate future source code debugging.

We also did exception handling checking to verify if

source code correctly deals with wrong inputs and methods

usage.

Finally we created mock objects [42] to replace the ob-

jects used by the methods under test. This offered a layer

of isolation and allowed us to check the code when dealing

with specific results from external objects which we created

the mock object for.

The failures we gradually found during the manual cre-

ation of unit tests formed a basis of knowledge that was

useful when trying to find bugs in new tested classes.

At the end of this manual activities, we had defined the

Freenet classes that formed the domain of our experiment.

As mentioned earlier, their number was below our and

Freenet developers’ expectations. We supposed that it was

possible to test at least all the classes in the freenet.support

package, however the documentation problems consider-

ably slowed the manual testing process.

As mentioned before (Section 3.3), after the manual test-

ing process we obtained two different “snapshots” of the

source code. The former, which was the source code ba-

sis without any testing, is used to compare the bugs that

were manually found with the ones found through auto-

matic tools, in order to see if they are complementary or

overlapping. The latter, which was the source code after

the manual testing phase (that is after the removal of de-

fects and the creation of the manual unit-test suite), is used

to compare the regression avoidance quality of the different

techniques.

3.5 Automatic generation tools selection

We based automatic unit test generation tools selection

on two criteria. First of all, we wanted to analyze the results

of automatic tools both when dealing with regression avoid-

ance and failure detection, because we supposed that their

effectiveness would be different. Then we chose tools that

were simple for developers to learn or use, as they would be

more easily adopted in an industrial context.

For these reasons, we focused our attention on JUnit Fac-

tory [5] which addresses regression tests creation, JCrasher

[14] which deals with failure detection and Randoop [31]

that can be used for both problems.

JCrasher and Randoop, and presumably also JUnit Fac-

tory, are based on random testing, which consists of provid-

ing well-formed but random data as arguments for meth-

ods or functions and checking whether the results obtained

are correct. This random approach has a few advantages

[14]: it requires low or no user interaction (except when an

error is found), and it is cost-effective. However, one of

the major flaw of random testing is that very low probabil-

ity sub-domains are likely to be disregarded by it [25]. To

deal with this issue, the chosen tools are designed to easily

cover shallow boundary cases, “like integer functions fail-

ing on negative numbers or zero, data structure code failing

on empty collections, etc.” [14]. Finally, we decided not

to use tools that rely on formal specification of the system

under testing (e.g., model-based testing [34, 43]), because

such systems are not common in practice [9], especially for

legacy systems. In addition, in our real case study even an

external model (based on requirements, documentation or

other sources) was not available.

3.6 JUnit Factory

JUnit Factory was developed at AgitarLabs, the research

division of Agitar Software, and it was freely usable upon

registration.

JUnit Factory was different from the other tools we used

because it was proprietary and was only offered as a service.

This means that the user can neither see the software source

code nor download and use the binaries on his computer.

To use the JUnit Factory service, we had to download

a specific Eclipse [17] plugin (the web interface version

was not suitable for a large project, as it was only use-

ful for quickly seeing JUnit Factory results on very small

independent classes). This plugin allowed us to choose

the classes which we wanted to automatically generate unit

tests for. When the selection was completed, the whole

Eclipse project was uploaded to Agitar server and put in a

queue. Some minutes after (the waiting time was influenced

by tested class characteristics, such as lines of code and

complexity) the resulting unit tests were ready and down-

loaded into our Eclipse project and became part of it. JU-

nit Factory creates unit-test cases with a clear variable and

method naming, in order to increase their readability . How-

ever, those tests still remain terse, as depicted in Listing 1.

public void

testBytesToBitsThrowsNullPointerException1()

throws Throwable {

byte[] b = new byte[2];

b[0] = (byte)75;

try {

HexUtil.bytesToBits(b, null, 100);

fail(’’Expected

NullPointerException to be thrown’’);

} catch (NullPointerException ex) {

assertNull(

"ex.getMessage()",ex.getMessage());

assertThrownBy(

HexUtil.class, ex);

}

}

Listing 1. JUnit Factory-generated test case
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From that moment, JUnit Factory tests could be easily

run using the Agitar’s executor. Even though they were very

similar to JUnit tests, they could not be executed using the

standard JUnit framework, because they made use of Agitar

proprietary libraries.

This usage description shows two major shortcomings

of this tool: the user, through a non-secure communication

channel, must upload the code to remote server, where it

could be stored and used for unspecified purposes; and the

service does not generate fully compatible JUnit tests, and

for this reason proprietary libraries and a binary program

must be included in the tested software in order to run them.

In our experiment we used an open source software, so

we had no security issues, but when dealing with the auto-

matic creation of unit tests for a proprietary software, these

are problems that could mean that it is may impede the use

of JUnit Factory.

Finally, due to its proprietary nature, it was not possi-

ble to study JUnit Factory internal functioning, but we had

to rely on Agitar public articles [11]: which stated that it

was based on the same research which formed the basis for

Randoop (see Section 3.8).

3.7 JCrasher

JCrasher generates tests which target failures in the

tested code. It produces type-correct inputs in a random

fashion and attempts to detect bugs by “causing the program

under test to crash, that is, to throw an undeclared runtime

exception” [14]. It is almost completely automatic: no hu-

man supervision is required except for the inspection of the

test cases that have caused an error.

JCrasher is based on C. Csallner and Y. Smaragdakis

academic research and its source code is completely avail-

able under the MIT license. The binary executable and its

results could be used freely by a test engineer without any

restriction.

The usage of this tool is straightforward, even though

it requires to be familiar with Apache Ant [6], the popular

Java-based software build system. The user must prepare an

Ant makefile with a specific target to invoke JCrasher [14]

and a simple text file containing the list of classes for which

it must create failure detection tests. Then the tool will cre-

ate JUnit test cases, in a directory specified in a property of

the Ant makefile. Even though the JCrasher target is fail-

ure detection only, it produces both passing and failing unit

tests.

The test creation is a heavy task from a computa-

tional point of view, and this caused memory issues (i.e.

java.OutOfMemory exception raising) leading us to move

our development to the dedicated workstation we described

previously. In addition, resulting JUnit test cases are ex-

tremely terse (e.g., Listing 2) and they are generated in the

same directory as the tested source code.

public void test121() throws Throwable {

try{

java.lang.String s1 = "";

java.lang.String s2 =

"\"\n\\.‘’@#$%ˆ&/({<[|\\n:.,;";

HTMLNode h3 =

new HTMLNode("", "", "");

h3.addAttribute(s1, s2);

} catch (Throwable throwable) {

throwIf(throwable);}

}

Listing 2. JCrasher-generated test case

For these reasons we decided to produce tests for one

class at a time and this also allowed us to separate tests in

different meaningful subdirectories.

The number of test cases which were created varied from

class to class, but it was usually extremely high. For exam-

ple it outputs 100.000 test cases for a single class, many of

which were almost identical. The execution time for such

a vast quantity of tests was not acceptable even for a very

fast system (it took about twelve minutes to check only one

class). For this reason we reduced the number of tests be-

fore integrating them into our Eclipse project, deleting tests

that used inputs from the same subset.

Finally we decided to keep the JCrasher tests which past

in order to verify whether passing tests could be effectively

used as regression tests.

3.8 Randoop

Randoop (Random Tester for Object-Oriented

Programs) is the practical result of research by Dr.

M.D. Ernst and C. Pacheco and, like JCrasher, it is dis-

tributed under the MIT License. Randoop can generate unit

tests to do both regression avoidance and failure detection.

In the first case the generation requires only a very low

human interaction: in order to obtain the regression test

suite, it is sufficient to specify which classes have to be

tested, and their helper classes. Helper classes are needed

because the tool will only generate tests using the specified

classes. For example, in order to effectively test Collec-

tions, it is necessary to input a class (e.g., java.utils.TreeSet)

that allows the tool to instantiate concrete collections. This

class is defined as helper class.

Randoop then accepts a time limit which is an upper

bound for the time it uses for its computations. We found

that ten seconds was long enough to generate meaningful

regression tests. We noted that longer time limits did not

result in enhanced tests, but only lead to a higher number of

tests, which are more expensive when carried out. Finally,
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as Randoop is based on random input generation, its de-

veloper also offers the possibility of feeding Randoop with

different random seed in order to obtain different random

inputs. We note, however, that this possibility did not sig-

nificantly change the produced tests, even though we tried a

lot of different seeds. It is an issue that was also later noted

by Randoop creator in [32], when he was trying to use it

in another real world case. Randoop produces succinct test

cases, where could even be difficult to spot the tested class

(e.g., Listing 3).

public void testclasses15()

throws Throwable {

boolean v0 = false;

freenet.support.SimpleFieldSet v1 =

new SimpleFieldSet((boolean)v0);

String v2 = "";

double v3 = (double)1.0;

double v4 =

v1.getDouble((String)v2,(double)v3);

String v5 = "hi!";

long v6 = (long)100L;

v1.put((String)v5,(long)v6);

assertEquals(

(double)1.0,

(double)(Double)v4);

}

Listing 3. Randoop-generated regression test

On the other hand, Randoop failure detection functional-

ity requires more time to prepare its input, because the user

must write contracts. A contract is the way in which the

programmer defines which are the properties that should re-

main the same in the class under examination. In practice, a

contract is the implementation of a Java interface in which

the developer makes some assertions about the tested object

state. These assertions have to be always true. If during

class checking, Randoop finds a sequence of method calls

and inputs that make a check fail, then the test case which

caused the failure is displayed.

We chose Randoop because we believe that a tool is more

useful for developers, if they can express themselves using

constructs they already know. In fact with this tool, they can

write contracts in Java language. Other solutions [29], on

the contrary, require the learning of a new formal language

to express tested class properties and invariants. Randoop

authors admit that this approach could be less expressive

than using a specific formalism [31], but in our experience

this did not turn out as a limiting factor.

Randoop performances were increased using the dedi-

cated workstation, but its impact was less evident than when

creating tests using JCrasher. Randoop did not suffer the

same memory problem as JCrasher and it was reasonable

to use it on the computer which we also used for standard

programming. This implies that a single developer could

benefit from using it, without the need of a powerful hard-

ware.

As with JCrasher, we keep the tests that found failures

to use them as regression tests. However, there were only a

few of them and their influence was irrelevant.

3.9 Validity

The procedure we used to conduct the experiment led to

relevant results [7], however since we are trying to outline

an abstract method for unit tests comparison, we would like

to suggest some enhancement that could be adopted to in-

crease both validity of results and efficacy of comparisons.

In our experiment the same individual implemented

manual unit tests and produced tests throughout automatic

tools usage. To reduce the possibility of any influence be-

tween these two experiment phases, we first conducted the

manual implementation then the automatic tools usage. In

this way, we avoided bugs that were found by automatic test

generation tools suggesting which tests the engineer could

manually implement. What is more, the fact that we first

conducted the manual part did not influence the automatic

generation (and the experiment results confirmed this), be-

cause the human interaction was extremely low in the au-

tomatic phase. The only exception was when writing Ran-

doop contracts. However, in this case the programmer did

not have to directly write unit tests or give suggestions to

the tool about how to write them. He only had to express

class properties from a higher level of abstraction. For this

reason, the fact that the manual part was done first, influ-

enced only the time necessary to write contracts. The de-

veloper already knew the intended behavior of classes, so it

was sufficient to express this in a more formal way.

In addition, by assigning the same individual to do both

the tasks, we were able to see to what extent his normal abil-

ities could be overcome or helped by the usage of automatic

test generation tools. If we had assigned two different peo-

ple, one for the manual task and one for the automatic tools

usage, we would not have been able to be sure whether their

personal programming abilities had influenced their results.

For this reason, the only way we could suggest improv-

ing the procedure of comparing different testing technique

results, is to use a double-blind trial where professional de-

velopers are asked to implement manual and automatic tests

to a set of representative software components. In this case

a high number of developers is suggested, in order to lower

differences caused by their respective testing abilities. It

would be even better to ask each developer to test differ-

ent parts of the software, using a different technique for

each piece of code. In this way it would be possible to see

the results of different testing techniques (without any in-
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fluence from previous testing of the same code with other

techniques) and not to be concerned about different devel-

opers abilities.

4 Comparison

After we obtained the unit tests through manual imple-

mentation and automatic tools usage, we proceeded to com-

pare the effectiveness of each technique. Here we present

the criteria we used to conduct the comparison and the re-

sults. In this way we attempt to show how these criteria can

be enhanced and extended in order to outline an abstract

methodology to perform a practical unit test effectiveness

comparison.

We needed universal metrics capable of showing differ-

ences in a deterministic manner, in order to perform a cor-

rect empirical comparison and link each testing technique

with its costs. In addition, such metrics are not only useful

for comparisons, but also to help the test engineer to define

the quality standard that the tests must achieve.

The quality of tests depends on many facets, for this rea-

son we present the different metrics we used to capture as

many characteristics as possible.

4.1 Time metrics

The first metric that we used to compare unit test creation

techniques was generation time. As testing can consume

more than fifty percent of software development time [9],

this metric is crucial, especially considering the fact that the

first target of automatic test generation techniques is often

to dramatically reduce tests production time.

In this generation time metric we combine the time

which is necessary to perform various aspects of tests gen-

eration. When considering the generation time of manually

implemented tests, we also included the hours that were

needed to correctly understand the classes we wanted to

test and the amount of time we spent on them in order to

perform source code refactoring or to improve the existing

documentation. We decided to consider the time which was

required to understand classes under test only for the man-

ual implementation, even though it was also useful for Ran-

doop contracts implementation. In the latter case only a

high level class knowledge was necessary, which was faster

and easier to achieve than the deep knowledge required to

implement manual tests.

The generation time for automatic tools also includes the

hours of effort required to learn their correct and most effec-

tive usage. JUnit Factory learning time was really short: it

had an efficient documentation and it was straightforward to

use. JCrasher had some useful examples which illustrated

its usage in a easy way, for this reason it is quite simple to

understand how to generate tests through it. Finally, Ran-

doop required the longest learning time, because its docu-

mentation was not complete and the user had to learn what

contracts are and how to write them. Fortunately Randoop’s

author replied to our questions in a very short time and has

since improved the documentation.

Automatic tools generation time also includes the

amount of time we spent interacting with them, both be-

fore they generated tests, and afterwards when we were in-

specting them. Randoop generation time includes the time,

which we spent before creating tests, to find helper classes

and to write contracts, and the time -after the test case

generation- to verify if error revealing tests reported real

failures. JCrasher generation time includes the little effort

required to prepare tests and to check error-revealing tests

after their generation. Finally JUnit Factory generation time

does not include preparation or inspection time, because the

Eclipse plugin did all the necessary preparation and the re-

sulting tests were not failing.

Another metric which is time related is test execution

time. Tests are run frequently, unit tests in particular should

be executed every time the tested code is modified, in order

to verify that new errors are not introduced. This is one

of the core extreme programming practice [8] and is also

used in continuos integration and testing techniques. The

majority of unit tests should be fast enough to be executed

very often on a common development computer. For this

reason execution time is an important metric when dealing

with unit tests.

Although this metric could be improved simply by using

a faster hardware, if the number of test cases is exponential

the resulting benefits are less important. In order to deal

with this issue, various strategies -mainly based on running

only a subset of the regression tests- are studied and sug-

gested [37, 30].

In the case study, even though some test cases could take

longer to execute, we noted that the average execution time

of a single test case was almost the same. This also reflects

the fact that each unit test case should only check a small

portion of the tested class [24], and this is usually a fast

task. For this reason, we decided not to report execution

time, but the number of unit test cases created using the

different techniques. This gives a more correct suggestion

of actual test execution time in general.

Table 1 shows these two metrics (generation time and

number of unit tests) by different approaches. We split the

Randoop metrics in two in order to reflect its different us-

ages. The number of unit tests generated with the regression

avoidance feature is much higher than the number unit tests

generated when performing failure detection. In addition,

the latter phase required more work to prepare the test cre-

ation.
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Approach time (hours) test case

Manual 490 160

JUnit Factory 15 1,076

Randoop (failure) 115 12

Randoop (regression) 50 5,928

JCrasher 35 10,000+

Table 1. Tests # and generation time, by ap-

proach

4.2 Regression tests metrics

One of the target of automatic test generation tools is the

creation of reliable regression tests, capable of creating a

sort of safety net which could warn of possible errors intro-

duced while modifying the tested code.

The most popular metric used to measure regression tests

“quality” is code coverage, which is also the easiest metric

to use. The main idea is to measure how much of the source

code is exercised by unit tests during their execution. This is

a white-box metric because it examines the internal cover-

age of the source code, rather than considering it as a black

box.

There are different code coverage types [10], and the

main difference between them is the basic unit they use for

coverage. Class coverage measures the number of classes

that are visited by the test suite; method coverage is the

percentage of methods executed, without considering the

method size; block coverage considers code blocks as the

basic unit; statement coverage (also known as line cover-

age) tracks the invocation of single code statements. Branch

coverage, which can also be found as decision coverage, has

a slightly different functioning because it performs its calcu-

latations measuring which code branches are executed. That

is, it shows whether the boolean value of a control structure

is set to both true and false.

Even though these code coverage flavors show different

and complementary information about the test suite.

public int foo(int a, int b) {

if (a > b) {

//many lines of code

...

return 1; }

else {

//only a few lines of code

return 2; }

}

Listing 4. Line code coverage

For example if we prepare a test that exercises only the

first branch of Listing 4, the corresponding line coverage

will be quite high, because of the relative length of that part.

freenet.support Code Coverage (%)

class Manual JU.F Rand JCrash

Base64 79.5 90.7 93.2 64.6

BitArray 71 97.3 87.7 39.8

HTMLDecoder 55.9 94.6 26.7 91.4

HTMLEncoder 71.1 100 85.8 100

HTMLNode 96.6 100 80.9 29.9

HexUtil 73.9 91.4 68.3 35.7

LRUHashtable 83 100 74.2 55.8

LRUQueue 83 100 88.9 74.2

MultiValueTable 84.8 100 73.9 10.5

SimpleFieldSet 53.8 99.8 64.6 10.1

SizeUtil 82.6 96.9 53.4 53.4

TimeUtil 94.8 100 55.2 45.9

URIPreEncoder 78.7 100 46.1 0.0

URLDecoder 67.5 100 46.5 62.4

URLEncoder 85.7 100 88.8 93.9

Average 77.5 98.0 68.9 51.2

Table 2. Line code coverage

However, in the same situation block and branch coverage

will report a mediocre result. When they calculate it, they

do not consider branch or block length.

At the beginning of this subsection we put the word

quality in quotation marks, because there is much research

[10, 40] explaining that code coverage cannot be considered

as a serious metric to measure unit tests quality. Through

code coverage we can only see which part of the source

code is used during test execution, but not how it is actually

exercised (i.e. meaningfully or not). In [7] we empirically

proved that code coverage is not a correct quality metric

for regression tests. In addition, the results of the analysis

on “code coverage and defect density (defect per kilo-lines

of code) show that using coverage measures alone as pre-

dictors of defect density (software quality/reliability) is not

accurate” [40].

However, code coverage can be used as a “negative met-

ric”: through it we can correctly see which parts of the

source code are not executed by tests. For this reason, it can

be used to help selecting and prioritizing tests, especially

when dealing with a big software, where the test engineer

must be selective about what to test.

We showed that code coverage is not a reliable quality

metric, thus we decided not to put much effort into finding

and using exotic code coverage flavors. We decided to use

the most simple one (i.e. line coverage) to actually see what

we could expect, in terms of code coverage, from different

testing techniques.

Table 2 shows the code coverage that was achieved by

each technique. The highest coverage is obtained by JUnit

Factory, with an average value of 98% and a standard devi-
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ation of 3%. The other techniques results have a decreasing

code coverage average value, but also an increasing stan-

dard deviation value. It is relevant to note that the average

code coverage reached by JCrasher is more than 50%, even

though the tool only produced failure detection tests.

The target of regression tests is to inform the software

developer when a change in the tested code also produced

unexpected side-effects. For this reason, the best way to

verify regression test accuracy is to demonstrate whether

they can spot a change in source code functioning. And

this is what mutation analysis does. The idea of this met-

ric is to introduce mutations in the tested code, for example

changing operators (e.g., substitute “- -” with “++”), vari-

ables (e.g., reset them, invert boolean values) and in other

parts that could be changed without affecting the code exe-

cution. A first practical implementation of this analysis was

proposed in [12] and [26].

When a mutation is introduced and it changes the ex-

pected code behavior, we define the resulting source code

as a mutant. If this behavior change is detected by a test

case, it is said that the test killed the mutant.

A change in the code could produce a functioning that is

not different from the original one, in this case the mutation

creates an equivalent mutant.

public class Mutable() {

public static int aMethod() {

int counter, returnValue;

counter = 0;

while (true) {

//some operations on returnValue

counter++;

if (counter==12)

return returnValue; }

}

}

Listing 5. A not mutated class

For example in Listing 5 we show the original class and

in Listing 6 one of its equivalent mutant.

public class Mutable() {

public static int aMethod() {

int counter, returnValue;

counter = 0;

while (true) {

//some operations on returnValue

counter++;

if (counter>=12)

return returnValue; }

}

}

Listing 6. An equivalent mutant

The effort needed to check if mutants are equivalent or

not, can be very big even for small programs [19]. However,

we only want to compare the results of different techniques

applied on the same source code basis. For this, the same

equivalent mutants will appear in the mutation analysis for

each technique, influencing the results in the same manner

for each technique, without introducing any bias towards

our comparison validity. For this reason, we did not con-

sider necessary to find equivalent mutants produced during

the mutation analysis.

The mutation analysis process first considers the source

code and the corresponding test suite that is not failing (i.e.

it is a suite of regression tests). Later, it creates a single

mutation inside the source code, increasing by one the to-

tal number of mutations created, then it runs the tests again

to verify if the mutant is correctly spotted and killed. If it

is, the number of killed mutants is increased by one. Then

the process restores the starting source code and restarts the

cycle again creating another mutation. It loops until the last

possible mutation is applied and checked. At the end we ob-

tain a percentage which is the the number of mutants killed

divided by the total number of mutants produced. This

value is known as mutation score. The mutation analysis

is an extremely long and repetitive task, and it is not rea-

sonable to conduct it manually. It is necessary to have an

effective tool to automate the process. In our real case study,

we used Jester [23] which can perform the mutation analy-

sis on Java code and creates effective and readable reports.

In these reports it not only summarizes the mutation score

reached, but it also shows the mutants created and which of

them were killed by the chosen test suite.

Using Jester it is also possible to choose which mutations

to perform in order to obtain mutants. It is sufficient to setup

a configuration file, in which the user can specify how a

piece of code could be mutated.

...

%==%!=

%++%--

...

Listing 7. A part of Jester configuration

For example, in Listing 7 we read that each “==” check

will replaced with a “!=” check, and each “++” operator will

be replaced with a “- -” operator. Using this possibility, we

can avoid turning Jester into “a very expensive way to ap-

ply branch testing” [27]. In fact, Offutt explained that “the

power of mutation depends on the mutation operators that

create mutants of the program [...] Experimental research

has found that exchanging 0s and 1s turns out to be almost

useless because any input will find them. This is known as

an “unstable” operator. Replacing predicates gets branch

testing, no more no less” [27]. In our experiment we tried

a mix of different mutations to obtain the best results from

this analysis.
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freenet.support mutation score (%)

class Manual JU.F. Rand. JCrash.

Base64 73 58 49 0

BitArray 46 76 82 7

HTMLDecoder 37 37 14 6

HTMLEncoder 28 59 32 6

HTMLNode 94 98 70 10

HexUtil 59 73 57 0

LRUHashtable 91 91 87 0

LRUQueue 58 100 79 0

MultiValueTable 75 96 59 0

SimpleFieldSet 49 84 48 3

SizeUtil 57 97 24 0

TimeUtil 93 99 17 0

URIPreEncoder 19 82 19 0

URLDecoder 71 86 19 10

URLEncoder 67 87 54 7

Average 61 82 47 3

Table 3. Mutation Score

Table 3 shows the mutation score for each technique. JU-

nit Factory confirms the first position which it also reached

in the code coverage comparison, with a significant score

of 82. Other techniques follow in the same order as in the

code coverage comparison. We want to stress that JCrasher

tests have no value as regression tests: even though the code

coverage that was reached was decent, those tests were not

capable of correctly characterize the system. They did not

notice any significant source code change and thus were not

capable of killing the mutants introduced. In fact, JCrasher

tests are generated to identify only failures, and cannot rec-

ognize wrong behavior in the semantic of the tested class.

This result still confirms that code coverage must not be

used as a quality metric for regression tests. Finally, when

working with JCrasher, the test engineer could discard the

large amount of unit tests that are not revealing faults, be-

cause they are not even useful as regression tests.

4.3 Failure detection tests metrics

In [7] we commented that it is really difficult to deter-

mine an objective method to measure the ability of tests to

detect defects. The number of failures that were found is not

a complete metric to asses test quality, because it is evident

that different defects could have a different impact on the

system. However, in [38] it is shown that it is impossible to

generally classify the severity of a defect without knowing

the context in which the application was used.

Usually “many programmers might say that a null deref-

erence is worse than not using braces in an if statement”

[38]. On the other hand, a logical error caused by a lack of

Approach Found bugs

Manual 14

Randoop 7

JCrasher 4

Table 4. Number of bugs found, by approach

braces could be more severe, and harder to track down, than

a null reference.

For this reason, in [7], we considered the Freenet devel-

opers’ opinion as a further metric. They evaluated the de-

fects detected by the different techniques and they explained

that they had almost the same relevance for the system in-

tegrity.

This opinion allowed us to show table 4, in which we di-

rectly compared the number of defects found to show how

the different techniques handled this task. In the manual

approach, we also considered the semantic bugs we found,

even though they could not be found through automatic

tests. They were errors in the semantic of the tested classes

that could only be discovered by accurately reading and un-

derstanding the source code that was under test.

As a future work it would be interesting to make use of

a static bug finding tool, such as FindBugs [20]. This tool,

which uses syntactic bug pattern detection and a dataflow

component, statically inspects the code to warn about possi-

ble defects. These warnings have different levels of priority,

and this classification could be useful to give a suggestion

about the importance of bugs that automatic unit test gener-

ation tools could find. The process should be this: we run

FindBugs to classify the warnings in the source code, then

we use tools to generate tests and we remove the bugs they

reveal. Then we inspect the code again, using FindBugs,

to see whether the tools were capable of spotting the same

defects and what their relevance was. In this manner we

obtain a sort of classification of the bugs that were found.

However, the most effective way of classifying defects

relevance is still to study the context and rely on developers

opinion. Fortunately, the number of bugs detected is usu-

ally not so high that they cannot be manually inspected and

evaluated.

4.4 Side effects

The last aspect we considered in [7] when we performed

the comparison, was the presence of testing side effects.

During the manual test implementation, the test engineer

was forced to completely understand the tested classes and

methods. In our case, as the documentation was extremely

poor, he had to deeply analyze the source code in order to

create effective tests. This necessity was highly time con-

suming, but also led to important side effects.
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During manual tests, the engineer noticed and fixed some

class performance issues, he increased class readability by

removing code duplication and by using better variable

naming, and he even split one class into two classes in order

to enhance the code reuse.

Moreover, the documentation was improved, not only

because of the comments the engineer added, but also be-

cause he tried to keep his unit tests as clear as possible. In

this way, each unit test was an efficient and updated exam-

ple of the piece of code they tested.

Only Randoop forced the developer to obtain at least a

higher knowledge of the tested code. Instead, the other tools

could be used without knowing anything about the system

under test. For this reason, all the important testing side ef-

fects were not present when using automatic test generation

tools. This means losing an important part of the testing

benefits and is an aspect that must be taken into account

when comparing different testing methodologies.

4.5 A comparison methodology

After detailing how we did the experiment we conducted

in [7], it is now possible to abstract a comparison method-

ology to effectively compare test suites generated through

different techniques, and thus compare the techniques them-

selves.

The first point is to consider failure detection and regres-

sion avoidance as two different tasks that cannot be com-

pared because they have completely different targets. A

failure detection test could be later used as a regression test,

and vice-versa, but in order to compare them we must use

different approaches.

It is even possible to use two different systems to create

failure detection tests. However, the approach we suggest is

the same we used in our experiment. The idea is to use the

same system to compare both failure detection and regres-

sion avoidance ability.

We suggest starting by using the techniques that generate

tests to find defects, and to use them separately but always

on the same source code basis. In this manner, we can see if

there are overlapping detected faults and, at the same time,

we are not influenced by other technique results. In addi-

tion, at the end of this phase, we definitively obtain a more

correct source code, that we can use later to check tools

which generate regression tests.

If the test engineer were able to interact with the devel-

opers of the tested code, they might find agreement on a

common scale to classify the severity of failures. Then the

test engineer should submit the defects he found with dif-

ferent techniques to the developers (in a blind trial manner).

They must return the failures classified. This is the best way

to classify the relevance of errors, otherwise if it is not pos-

sible to interact with developers, the test engineer could use

Approach MS/#(Test cases) Code Cov. MS

Manual 0.38 77.5 61

JU.F. 0.08 98.0 82

Randoop 0.01 68.9 47

Table 5. Test case accuracy, by approach

a tool like FindBugs and proceed as we depicted in Section

4.3.

After having classified the detected errors, it is straight-

forward to compare the different test suites: it is sufficient

to use the number and relevance of failures.

Then the regression tests comparison could take place.

It is reasonable to use the source code that was used for

the preceding phase, but only after having removed all the

errors revealed. Usually tools that create regression tests

consider the code base as bug-free, and, for this reason, it

is useful to try to remove them before with failure revealing

techniques.

As for the preceding phase, the different techniques

should be used separately but always on the same source

code basis. The first metric to calculate is code coverage,

which is useful to get a fast overview of created tests. It

would also be interesting to use coverages other than line

coverage, to see if some techniques are less capable of cre-

ating particular scenarios. Finally, mutation analysis has to

be performed to obtain the correct mutation score for each

test suite. This part is the most important for comparing

regression tests, as it is based on a true quality metric.

After these two phases (failure detection and regression

test quality comparison), we should continue considering

the time metrics. For the generation time it is important to

include every aspect that consumed time during test genera-

tions -from technique learning to code inspection-. Because

there are techniques that greatly improves some of those

parts, and this must be taken into account for a valid com-

parison. For execution time we still suggest not directly

calculating it, for example checking the run time, since a

faster hardware could dramatically change the values. On

the contrary, we suggest considering the number of gener-

ated tests, which is a better metric to have a realistic idea

of test execution time for every kind of computer. Usually

unit tests check a little part of code and for this reason, on

average, they take almost the same time to be executed.

Finally, side effects should be considered. Techniques

that force the engineer to study the source code he wants

to test take a longer time to be used, but they can produce

enormous benefits other than the tests themselves. At the

end of a comparison which is conducted in this way, the

developer has enough information and data to consciously

decide which technique is the best for his particular situa-

tion. He can also decide to use more than one technique. In

the next section we will try to explain what we consider the
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“best practices” in order to integrate and exploit different

techniques with different targets.

5 Best practices

As testing is expensive and time consuming, it is highly

desirable to specify successful procedures for doing so [9].

For this reason, after having shown how to compare dif-

ferent testing techniques in order to become aware of their

strengths and weaknesses, we here outline a procedure to

exploit them so as to improve the testing process.

It is generally agreed that the most effective approach

is to combine different testing techniques [9, 15, 16, 39],

because each technique could spot different types of faults,

and could suffer from a saturation effect [22].

When dealing with a legacy system or a modern system

which is not yet tested (like the one we used in [7]), we sug-

gest starting with tests for leaf classes or functions (see 3.3).

[18] interestingly advises starting from inflection points in

order to spread testing effects both to classes that use the

tested classes and those that are used by them. An inflection

point is a narrow interface to a set of classes. Any change in

a class behind an inflection point is either detectable at the

inflection point, or inconsequential in the application. How-

ever, in [7] we confirmed that finding and understanding in-

flection points is a hard task when dealing with systems that

are not well documented, because the test engineer has to

learn the functioning of many parts of the system and might

have to read a large amount of the source code. That is the

reason why we suggest starting from “leaf classes”, as they

are simple to understand and the benefits from their testing

are spread across each class that uses them.

When creating unit tests for a not yet tested class, it is

reasonable to start from the detection of failure in order to

remove all defects and only then create regression tests. The

first technique to use should be the easiest one, which does

not require the test engineer knowing class functioning in-

ternals. For example, considering the techniques we used in

[7], JCrasher would be the best choice to start testing with.

It requires no test preparation and it can easily find inter-

esting bugs in the code. What is more, the only task that

the test engineer needs to do is to check whether failing unit

tests that JCrasher generated are correctly reporting real er-

rors. By doing this the test engineer starts to gradually learn

what the internal functioning and the meaning of the tested

class are.

After this part, the developer should continue using tech-

niques that only need a high level of knowledge of the class

under test. For example, from our past experiment, we sug-

gest Randoop, because in order to write contracts it is not

necessary to know what the little details of the tested class

are, but only to have understood the general meaning of it.

In this way, more defects could be revealed and the test en-

gineer further improves his knowledge of the class when he

has to verify and remove them.

In [7] we did not use any automatic test generation tech-

nique which required a low level knowledge of the tested

class, but they could be effective if used in this phase as they

could help the engineer in writing test cases. Otherwise, he

could directly move to manual implementation of tests. It

is evident that this manual work is made much easier by the

automatic phases. Here we suggest not only checking for

implementation defects but also verifying code documen-

tation and searching for semantic errors. These are testing

side-effects that are not produced by automatic tool usage,

but they are a fundamental result of testing.

All the unit tests generated in this first “detection of fail-

ures” phase could be kept to be used later as regression

tests. In the case of automatic tools we suggest keeping only

unit tests that revealed errors, because the comparison also

proved that not failing tests were useful as regression tests.

For example in [7] it was absolutely useless to maintain the

thousands of not failing tests that JCrasher produced, be-

cause they were completely useless regression tests (as de-

picted by the very low mutation score they reached).

The second part should be dedicated to “regression

avoidance”. During the preceding phase we accurately

checked the class we wanted to test, and thus we could be

confident enough about its correctness. For this reason, we

can move to generate regression tests for it. To integrate

the tests we created during the preceding phase, there are

two possibilities: integrating them only by manually writ-

ing regression tests, or by creating regression tests automat-

ically using appropriate tools and then eventually complet-

ing them manually. At the time of writing, and taking into

consideration the tools that are available, the choice should

be based on a trade-off between test creation time and test

execution time.

As depicted in the comparison in [7], the manual creation

is much more time consuming, but has the advantage of re-

quiring less unit test cases than automatic tools to reach a

good mutation score. This implies a shorter time to execute

the whole test suite.

On the other hand, automatic generation tools need a

greater amount of unit tests than the manual implementation

to reach a high score in the mutation analysis. This means

that automatically generated tests will require a longer time

to be executed, and this could create problems when using

continuous testing and integration. In addition, the number

of tests could be so high that it would be a problem to run

them in a common development computer. Fortunately the

research in this field is extremely active and tools are be-

coming more and more effective. For example Randoop,

which is more modern than JCrasher, is able to automati-

cally remove useless unit tests, and JUnit Factory -which is

a commercial software with a bigger team working on it- is
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capable of reaching a higher mutation score than Randoop

with half the tests. Finally, it is always necessary to manu-

ally create unit tests to integrate specific scenarios that were

not exercised by automatically generated tests.

When describing these “best practices”, we assumed the

existence of a program to be tested, but they can also be

easily adapted for adoption in a test driven development

(TDD) [21] process. TDD suggests writing automated unit

tests before developing the corresponding functional code,

in short and rapid iterations. For each small function of the

production code, the developer must first implement a test

which clearly identify and validates what the code should

do. Then the code is only developed to make the test pass,

without adding any additional functionality not exercised by

the test. The last part of every TDD iteration is the refactor-

ing of both the production code and the test code.

The automatic unit test generation tools, that are now

available, can only be used with a preexisting production

source code to test. For this reason, when using a TDD pro-

cess, the first phase is to manually write unit tests defining

the expected functionalities. It is not worth writing many

unit tests, but just concentrate on the few cases that can ex-

actly exercise the purpose of the production class that will

be later implemented. Then, the class could be created fol-

lowing the TDD procedure correctly. Later, the first few

tests that have already been created must be integrated us-

ing tools to generate failure detection tests, in order to check

whether the class implementation is without defects. In this

phase, as the TDD process requires a prior knowledge of

the class to be tested, the developer could take advantage of

any kind of failure detection tools, even though they require

familiarity with the class they must create tests for. After

all the detected bugs are removed, the user must create re-

gression tests. This can be performed manually or using

appropriate tools, and the decision must be based on the

trade-off between execution time and creation time, which

we introduced before in this section. This stage makes the

final refactoring phase easier and faster to accomplish.

By using the procedures we outlined in this section, the

practitioner will receive all the benefits that the different

unit test generation techniques supply. It will be easier to

take decisions about how to schedule time dedicated to the

different techniques.

6 Conclusions and Future Work

This paper outlines a novel comparison methodology

that can be used to analyze the effectiveness of different

unit-test creation techniques. We first explained what unit

testing is and that failure detection and regression avoid-

ance are the two issues that it mainly addresses. Then, we

showed a real case study in which we created different unit-

test suites whose advantages, shortcomings and effective-

ness we wanted to assess . In order to do this compari-

son, we used a methodology that was able to quantitatively

give information about test quality. Consequently, we used

this practical example to abstract a comparison methodol-

ogy that could be used not only in this case, but with unit-

test suites produced through any technique.

For example, in the real case we studied, we realized

that the automatic unit-test generation tools which we chose

are really fast, and that they can produce test cases for a

large number of classes in a very short time, and that they

scale much better than a manual implementation. We also

proved that those tools can create trusthworthy regression

tests, which reach a high code coverage and, more impor-

tantly, a significant mutation score. Moreover, they can help

the test engineer find defects, by the creation of unexpected

scenarios or by adding a further abstraction level to test cre-

ation.

At the same time, the comparison was capable of also

spotting the serious disadvantages that these tools suffer

when compared to the manual testing approach. First, they

do not force the developer to study the code under test. This

means not getting the benefits of an accurate analysis of the

source code: which could result in finding semantic defects,

performing source code refactoring and improving the doc-

umentation. In addition, manually created tests are much

more readable and are clear examples of the code they test.

Moreover, to characterize classes, automatic unit-test cre-

ation tools produce at least ten times more test cases than

the manual implementation, and even more when finding

defects. This could be a problem when employing conti-

nous integration and testing, especially if they are used in

common development computers.

It emerged, from the real case study, that the comparison

methodology was able to richly characterize all the tech-

niques it analyzed. However, in this paper, we also pro-

posed some additional improvements to this procedure, in

order to obtain a further effectiveness enhancement and to

make it possible to use it for any kind of system that needs

a high-quality unit-test suite.

At the end, we also outlined an efficient procedure based

on “best practices”, that can be used by test engineers to ex-

ploit the benefits of different unit-testing techniques. Using

the results from the comparison, they can determine every

tools advantage, and they can thus follow the “best prac-

tices” which explains how inserting each technique in the

testing process can obtain a positive integration and rele-

vant improvements.

A future work can involve the creation of a tool which

automatizes the measurement of regression test quality

(based on code coverage and mutation score) and helps inte-

grate regression tests from different suites. The tool should

report not only the scores, but also all the mutants created,

with the unit-test cases -from all the different techniques-
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that are able to kill them. In this way, the test engineers can

adopt the most effective test suite as a basis, and they can

integrate it with specific test cases from other techniques,

which spot mutants that were not killed by the chosen main

suite. Consequently, the effectiveness of the main regres-

sion test suites receive a significant improvement, without

adding redundant unit-test cases.

Another area of future work is to investigate to what ex-

tent the human factor hinders the full potential of automatic

unit-test generation tools, especially when the user has to

inspect the results of the tool (e.g., in order to verify the

failing unit-test cases) or to provide some input to further

assist it (e.g., writing the class contract).
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