
145

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Incremental verification of consistency properties of large-scale workflows from
the perspectives of control flow and evidence life cycles∗

Osamu Takaki, Izumi Takeuti, Takahiro Seino, Noriaki Izumi and Koichi Takahashi
National Institute of Advanced Industrial Science and Technology (AIST)

2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan
{o-takaki, takeuti.i, seino-takahiro, n.izumi, k.takahashi}@aist.go.jp

Abstract

We investigate consistency properties of workflows from
the perspectives of control flow and evidence life cycles
for incremental verification for large-scale workflows. For
modeling complicated business processes in developing
large-scale information systems, it needs to develop large-
scale workflows that consist of a lot of small workflows. As
a workflow becomes larger and larger, it becomes harder
and harder to verify the workflow. Therefore, it is useful
to verify large-scale workflows “incrementally”, that is, to
verify small workflows before they are integrated to form the
large-scale workflows. However, in order to verify a work-
flow incrementally, it is necessary to consider consistency
properties of not only a whole workflow but also a subgraph
of the whole workflow. Thus, we extend the correctness
property of acyclic workflows to that of acyclic workflows
with multiple starts and/or ends. Correctness of workflows
is one of the most important consistency properties for im-
proving workflow quality from the control flow perspective.
Extended correctness is a natural extension of the original
correctness property and is preserved in the vertical com-
position and vertical division of workflows. We also define
a consistency property for evidence life cycles in workflows
with multiple starts. Moreover, in order to validate the con-
sistency properties above for incremental verification, we
investigate real workflows and explain how to verify the
consistency properties by using an example.

Keywords: workflow, verification, correctness, evidence
life cycle, incremental verification

∗This work was supported by ’Service Research Center Infrastructure
Development Program 2008’ from METI and Grant-in-Aid for Scientific
Research (C) 20500045.

1. Introduction

For developing large-scale information systems, it needs
to model business processes that the systems support. A
workflow, or a workflow diagram, is one of the most well
known specifications for modeling of business processes.
As business processes become more and more complicated,
the workflows for modeling them become larger and larger.
In the requirements analysis stage of developing large-scale
information systems, for example, a number of engineers
are needed for developing the workflows, which are divided
into a number of smaller workflows. As a result, it has be-
come harder for an engineer to verify the overall workflow
in one operation. A method is thus needed for verifying
large-scale workflows. One approach is to develop and ver-
ify workflows in parallel. We call such an approach “in-
cremental verification”. For incremental verification, small
workflows should be verified before they are integrated to
form a large scale workflow. However, in order to verify
a workflow incrementally, it is necessary to consider con-
sistency properties of not only a whole workflow but also
a subgraph of the whole workflow, that can not completely
satisfy the definition of a usual workflow. Thus, it needs to
re-consider conventional consistency properties of a work-
flow from several perspectives.

Verifying the consistency of workflows from the control
flow perspective is important, and several consistency prop-
erties have been defined and several verification methods
have been developed. Correctness is one of the most stan-
dard consistency properties of acyclic workflows from the
control flow perspective [10] (also [6] and [17]). However,
these properties and methods can only be used to verify the
overall workflow as a whole, not to incrementally verify
workflows.

In this paper, we extend the correctness property to en-
able us to verify workflows incrementally. We consider
workflows with multiple starts and/or multiple ends and ex-
tend the correctness of existing workflows to that of the ex-
tended workflows. A workflow in standard workflow lan-



146

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

guages, such as XPDL [23] and YAWL [19], has a sin-
gle start and a single end. Verification of the consistency
properties of workflow subgraphs requires consideration of
workflows that may have multiple starts and/or multiple
ends.

Extended correctness is a natural extension of the orig-
inal correctness. Extended correctness is preserved in the
vertical composition and division of the workflows. Ex-
tended correctness is a necessary and sufficient condition
for obtaining a workflow with a single start and a single
end. The workflow is correct in the sense of the original cor-
rectness property. It is obtained from a workflow satisfying
extended correctness by appending appropriate workflows.

This paper is based on a previous one [13]. The main
difference between them is the definition of a consistency
property of evidence life cycles in a workflow with mul-
tiple starts and/or multiple ends. Here “evidence” means
an annotation on a workflow, which denotes a document
on which information is written, and/or with which some-
thing is approval, during the process of an operation. In
[12] and [14], this property for a workflow with a single
start is defined, based on “instances” of the workflow. We
define the property for a workflow with multiple starts, by
using “closed” subgraphs of the workflow. We define closed
subgraphs of a workflow in this paper, while instances of a
workflow are defined elsewhere [9]. Given this consistency
property, one can incrementally check evidence life cycles
in a workflow with multiple starts.

This paper also generalizes preservation theorems of ver-
tical composition and workflow division (see Theorem 4.2
in this paper or ([13], Theorem 4.2)). This generalization,
which is described in Theorem 4.4 in this paper, is easier to
understand than that previously presented ([13], Appendix
B).

The remainder of this paper is organized as follows. We
define workflows with multiple starts and/or multiple ends
and define vertical composition and workflow division in
Section 2. We give a definition of an extended version of the
original correctness property over acyclic workflows with a
single start and a single end in Section 3. We refer to this
correctness property as “extended correctness”. We show
the fundamental theorems of extended correctness in Sec-
tion 4. We also give a definition of consistency of evidence
life cycles in a workflow with multiple starts and/or multiple
ends in Section 5. The definition is based on the previous
one for a workflow with a single start [12]. We discuss the
validity of extended correctness, consistency of evidence
life cycles and incremental workflow verification based on
the consistency properties in Section 6. Using an example,
we investigate real workflows and explain how to incremen-
tally verify control flow consistency for a large workflow.
We discuss related work in Section 7 and summarize the
key points in 8.

Figure 1. Shapes of nodes in workflows

2. Workflows

In this section, we define workflows. Moreover, we de-
fine certain composition and division of workflows. Work-
flows in this paper are essentially the same as those in pre-
vious studies such as [10], [6] and [17], except the point
that a workflow in this paper may have multiple starts and
ends. There are several languages of workflows with multi-
ple starts and ends (see Section 7).

In this paper, we discuss workflows only on the control
flow perspective. Therefore, we omit notions that are not
relevant to control flow of workflows. For example, in this
paper we do not consider data flow or actors in workflows.

Definition 2.1 (Workflows) A workflow denotes a directed
graphW := (node,arc) that satisfies the following prop-
erties.

1. node is a non-empty finite set, whose element is
called a node inW .

2. arc is a non-empty finite set, whose element is called
an arc inW . Each arcf is assigned to a node called a
source off and another node called a target off .

3. Each node is distinguished, as follows: trigger, ter-
minal, input, output, activity, XOR-split, XOR-join,
AND-split and AND-join.

We employ the symbols in Figure 1 to describe nodes
in a workflow in this paper.

4. Whenever an arcf has a nodex as the target (or the
source) off , x hasf as an incoming-arc (resp. an
outgoing-arc) ofx. The numbers of incoming-arcs and
outgoing-arcs of a node are determined by the type of
the node. We itemize them in the following table.

incoming-arcs outgoing-arcs
trigger, input 0 1

terminal, output 1 0
activity 1 1

XOR-, AND-split 1 = 2
XOR-, AND-join = 2 1

Table 1. Numbers of incoming- and outgoing-
arcs of a node

5. W has at least one start and at least one end.



147

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

6. For a nodex in W , there exists a trigger or an input
s and a path onW from s to x, where a pathπ from
s to x denotes a sequenceπ = (f0, . . . , fn) of arcs in
W such that the source off0 is s, the target offn is x
and that the target offi is the source offi+1 for each
i < n. Moreover, there exists a terminal or an outpute
and another path onW from x to e.

Remark 2.2 In the previous paper [13], a workflowW is
restricted to be aconnectedgraph. That is, [13] assumes
that, for each nodesx andy in W , there exists a sequence
(x0, . . . , xn) consisting of nodes ofW such thatx0 = x,
xn = y and that there exists an arc inW betweenxi and
xi+1 for eachi < n. However, in this paper, we also
consider a workflow which is not connected. The reason
why we consider some unconnected graphs as workflows is
only because we have to consider unconnected workflows
in Theorem 4.4 in Section 4. Actually, one can regard a
workflow as a connected graph when they do not consider
the theorem above.

Remark 2.3 In what follows, triggers and inputs are called
“start nodes” or “starts”. Moreover, terminals and outputs
are called “end nodes” or “ends”.

WF(n,m) denotes the set of all workflows withn starts
andm ends andWF :=

∪
n,m WF(n,m). For a subgraph

V of a workflowW , arc(V ) denotes the set of all arcs in
V , start(V ) the set of all starts inV andend(V ) the set
of all ends inV .

We next define vertical composition and division of
workflows.

Definition 2.4 (Vertical composition of workflows) Let
W1,W2 ∈ WF, E ⊂ end(W1) andS ⊂ start(W2).
Moreover, assume that there exists a bijectionf from E to
S. Then,W1 ∗f W2 denotes the workflow obtained from
W1 andW2 by executing the following procedures.

(1) Remove all ends ofE and their incoming-arcs.

(2) Remove all starts inS and their outgoing-arcs.

(3) For the sourcex of the incoming-arc of each ende in E
and the targety of the outgoing-arc of each startf(e)
in S, add the arc fromx to y.

W1 ∗f W2 is called the vertical composition ofW1

andW2 by f , and the arcs made in (3) above are called
connecting-arcs fromW1 toW2 by f .

For simplicity, in the remainder of this paper, we omit
“f ” in W1 ∗f W2 and identify eache ∈ E with f(e) ∈ S.

Example 2.5 The workflow in Figure 2 is the vertical com-
position of workflowsW1 andW2, where the bijection
function is expressed by two dot-lines in Figure 2, which
mapse1 to s1 ande3 to s2.

Figure 2. Vertical composition of workflows

Remark 2.6 In fact, all elements ofE should be output
nodes and those ofS input nodes. However, it is not im-
portant to distinguish terminal nodes and output nodes (or
trigger nodes and input nodes). Therefore, for simplicity, in
the remainder of this paper, we assume that a start node de-
notes an input node only and an end node denotes an output
node only, respectively.

Definition 2.7 (Vertical division of workflows) For a
workflow W , if there exist workflowsW1 andW2 with
W = W1 ∗ W2, thenW is said to be vertically divided
intoW1 andW2.

3. Correctness and extended correctness

In this section, we explain correctness of workflows with
a single start, which is defined in [10], and define an ex-
tended version of correctness, which we call extended cor-
rectness, and which is defined on workflows with multiple
starts and multiple ends. Several basic theorems of extended
correctness is shown in Appendix A.

In the remainder of this paper, we consider only acyclic
workflows, which have no loop. In what follows, a work-
flow denotes an acyclic workflow.

Definition 3.1 For a workflowW and a starts in W , an
instance ofW from s denotes a subgraphV of W that sat-
isfies the following properties.

(1) V containss but does not contain any start excepts.
Moreover, for eachx ∈ V , there is a path onV from s
to x.

(2) If V contains an XOR-splitc, thenV contains a single
outgoing-arc ofc.

(3) If V contains a nodec other than XOR-split, thenV
contains all outgoing-arcs ofc.

For a workflowW , INS(W ) denotes the set of all in-
stances ofW andINS(W, s) the set of all instances ofW
from s.



148

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 3. Four workflows

Example 3.2 We explain instances of workflows, by using
the four workflows in Figure 3.

(1) The workflowWI has three instancesU I
1, U I

2 andU I
3,

whereU I
1 is the path from the starts1 to the ende1, U I

2

is the path froms2 to e1 andU I
3 is the path froms2 to

e2.

(2) The workflowWII has similar instancesU II
1 , U II

2 and
U II

3 to those inWI.

(3) The workflowWIII has two instancesU III
1 andU III

2 ,
whereU III

1 is the path froms1 to e1, andU III
2 consists

of the path froms2 to e1 and that froms2 to e2.

(4) The workflowWIV has similar instancesU IV
1 andU IV

2

to those inWIII.

Definition 3.3 LetW be a workflow.

(1) A subgraphV of W is said to be deadlock free if, for
every AND-join r in V , V contains all incoming-arcs
of r.

(2) A subgraphV of W is said to be lack of synchroniza-
tion free if, for every XOR-joinm in V , V contains a
single incoming-arc ofm.

Correctness is a consistency property of workflows in the
viewpoint of control flow of them (cf. [10] or [17]). This
property was defined on workflows with a single start and
a single end in [10] and [17]. One can easily extend cor-
rectness into that over workflows with a single start and
multiple ends by using instances ofW . So, we consider
correctness as a consistency property of a workflow that has
a single start but may have multiple ends.

Definition 3.4 (Sadiq and Orlowska [10]) A workflowW
with a single start is said to be correct if every instanceV
of W is deadlock free and lack of synchronization free.

From now, we extend the correctness property above for
workflows with multiple starts and/or multiple ends. In or-
der to define the extended correctness, we introduce some
basic concepts.

Definition 3.5 For a workflowW and a non-empty sub-
graphV of W , V is said to be closed if each nodex in
V satisfies the following properties.

(1) If x is an XOR-split, thenV contains a single outgoing-
arc ofx and the incoming-arc ofx.

(2) If x is an XOR-join, thenV contains a single incoming-
arc ofx and the outgoing-arc ofx.

(3) Otherwise, V contains all incoming-arcs and all
outgoing-arcs ofx.

For a workflowW and a set of starts inW , CL(W )
denotes the set of all closed subgraphs ofW andCL(W,S)
the set of all closed subgraphsV ofW with start(V ) = S.

Note that, unlike instances of workflows, a closed sub-
graph of a workflow may not be connected as a graph.

Example 3.6 We explain closed subgraphs of workflows,
by using the previous four workflows in Figure 3.

(1) All instancesU I
1, U I

2 andU I
3 of WI are also closed sub-

graphs ofWI. Moreover,U I
1 ∪ U I

3 is an unconnected
closed subgraph ofWI.

(2) The workflowWII has two closed subgraphsU II
1 ∪U II

2

andU II
3 in Example 3.2.2.

(3) All instancesU III
1 andU III

2 ofWIII are also closed sub-
graphs ofWIII.

(4) WIV has a single closed subgraph, that isWIV itself.

Definition 3.7 LetW be a workflow.

(1) For U1, U2 ∈ INS(W ), U1 andU2 are said to con-
flict on an XOR-splitc if U1 andU2 sharec but the
outgoing-arc ofc in U1 differs from that inU2.

(2) LetU be a set of some instances ofW andc an XOR-
split. Then,U is said to conflict onc if there exists a
pair (U,U ′) onU that conflicts onc.

Definition 3.8 LetW be a workflow andS be a non-empty
subset{s1, . . . , sn} of start(W ). Then,S is called an in-
port ofW if S satisfies the following properties: for each
Ui ∈ INS(W, si) (i = 1, . . . , n), if {U1, . . . , Un} is not
conflict on any XOR-split inW , thenU1∪· · ·∪Un is closed.



149

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Example 3.9 We explain in-ports of workflows, by using
the previous four workflows in Figure 3.

(1) There are three non-empty subsets ofstart(WI): {s1},
{s2} and {s1, s2} (= start(WI)). INS(WI, s1) =
{U I

1} andU I
1 is a closed subgraph by Example 3.6.1.

So,{s1} is an in-port ofWI. Similarly, {s2} is also an
in-port of WI. However,{s1, s2} is not an in-port of
WI, since{U I

1, U
I
2} is not conflict on any XOR-split in

WI, butU I
1 ∪ U I

2 is not closed (cf. Examples 3.2.1 and
3.6.1).

(2) WII, too, has three non-empty subsets{s1}, {s2} and
{s1, s2} of start(WII). However,{s1} is not an in-
port ofWII, since{U II

1 } is not conflict on any XOR-
split in WII, but U II

1 is not closed (cf. Examples
3.2.2 and 3.6.2). Similarly,{s2} is not an in-port of
WII. Moreover,{s1, s2} is not an in-port ofWII, since
{U II

1 , U
II
3 } is not conflict on any XOR-split inWII, but

U II
1 ∪ U II

3 is not closed.

(3) WIII has two in-ports{s1} and {s2}. However,
{s1, s2} is not an in-port ofWIII, since{U III

1 , U III
2 }

is not conflict on any XOR-split inWII, butU III
1 ∪U III

2

is not closed (cf. Examples 3.2.3 and 3.6.3).

(4) WIV has a single in-ports{s1, s2} (cf. Examples 3.2.4
and 3.6.4).

Definition 3.10 LetW be a workflow andI a subset of the
power set ofstart(W ). Then,W is said to satisfy extended
correctness forI if the following properties hold.

(1) I is a set of some in-ports ofW .

(2) start(W ) is covered with I, that is, everys ∈
start(W ) is contained in some element ofI.

We call theI above a covering in-port family ofW .

Definition 3.11 A workflow W is said to satisfy extended
correctness ifW satisfies extended correctness for some
covering in-port family.

Definition 3.12 LetW be a workflow.

(1) For an in-port I of W , the set {end(V )|V ∈
CL(W, I)} is called the out-port family ofW for I and
denoted byO(W, I).

(2) For an in-port familyI ofW , the set{(I,O(W, I))|I ∈
I} is called the out-port assignment ofW to I and de-
noted byO∗(W, I).

For the assignmentO∗(W, I) of a workflowW to an in-
port family I,

∪
O∗(W, I) denotes

∪
I∈I O(W, I), that is

the set of all out-ports ofW for all in-ports inI. That is,∪
O∗(W, I) = {end(V )|V ∈ CL(W, I) & I ∈ I}.

Example 3.13 We explain extended correctness of work-
flows and out-port assignments of them, by using the previ-
ous four workflows in Figure 3.
(1) By Example 3.9.1,WI satisfies extended correctness for
{{s1}, {s2}}. Moreover,

O∗(WI, {{s1}, {s2}}) =
{({s1}, {{e1}}), ({s2}, {{e1}, {e2}})}.

(2) By Example 3.9.2,WII does not satisfy extended cor-
rectness.
(3) In the same way asWI, WIII satisfies extended correct-
ness for{{s1}, {s2}}. Moreover,

O∗(WIII, {{s1}, {s2}}) =
{({s1}, {{e1}}), ({s2}, {{e1, e2}})}.

(4) By Example 3.9.4,WIV satisfies extended correctness
for {{s1, s2}}. Moreover,

O∗(WIV, {{s1, s2}}) = {({s1, s2}, {{e1, e2}})}.

4. Fundamental theorems of extended correct-
ness

In this section, we show fundamental theorems of ex-
tended correctness. These theorems are utilized for incre-
mental verification for large-scale workflows. Proofs of the
theorems in this section are shown in Appendix A.

The first theorem shows that extended correctness is a
conservative extension of original correctness.

Theorem 4.1 For a workflowW with a single start,W is
correct if and only ifW satisfies extended correctness.

Theorem 4.1 insures that extended correctness adequate
property to be a natural extension of original correctness.

We next show that extended correctness is preserved by
vertical composition and division of workflows. For sim-
plicity, we fix workflowsW1,W2, a non-empty subsetE0

of end(W1), a non-empty subsetS0 of start(W2), and as-
sume that there exists a bijectionf : E0 → S0. We also
identifyE0 with S0 and abbreviate the vertical composition
W1 ∗f W2 toW1 ∗W2.

We first show the theorem above in a special case (The-
orem 4.2), and then show that in the general case (Theorem
4.4).

Theorem 4.2 Assume thatend(W1) = E0(= S0) =
start(W2) and letI be a covering family ofstart(W1).
Then, the vertical compositionW1 ∗W2 satisfies extended
correctness forI if and only if
(1)W1 satisfies extended correctness forI, and
(2)W2 satisfies extended correctness for

∪
O∗(W1, I).



150

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 4. Obvious extension of a workflow

Definition 4.3 LetW be a workflow, and fori = 1, . . . , n,
let fi be an arc with source a start node and with tar-
get an end node. Then, theobvious extensionof W by
{f1, . . . , fn}, which is described byW [f1, . . . , fn], denotes
the unconnected workflow obtained fromW by adding arcs
f1, . . . , fn.

We illustrateW [f1, . . . , fn] by Figure 4.

Theorem 4.4 LetS2 := start(W2)− S0
1 andI be a cov-

ering family of start(W1) ∪ S2. Then, the vertical com-
positionW1 ∗W2 satisfies extended correctness forI if and
only if
(1)W1 satisfies extended correctness for

{I ∩ start(W1)|I ∈ I & I ∩ start(W1) 6= ∅}.

(2)W2 satisfies extended correctness for

{O ∩ start(W2) | O ∈
∪

O∗(W1[f1, . . . , fk], I)

& O ∩ start(W2) 6= ∅},

wheref1, . . . , fk denote arcs with source a start node and
with target an end node (see Figure 5).

Theorems 4.2 and 4.4 claim that one can verify extended
correctness of a workflowW := W1 ∗ · · · ∗Wn by calcu-
lating of the in-port families and the out-port assignments
of W1, . . . ,Wn. In the usual case, the calculation is not so
complicated since most workflows have at most three start
nodes (see Section 6).

Example 4.5 Consider WI, WIII and WIV in Figure
3. Then, by the functionf : {e1, e2} → {s1, s2}
with f(e1) = s1 and f(e2) = s2, one can con-
sider nine vertical compositionsWX ∗ WY , where
X and Y are I, III or IV, respectively. By Exam-
ple 3.13,

∪
O∗(WI, {{s1}, {s2}}) = {{e1}, {e2}},∪

O∗(WIII, {{s1}, {s2}}) = {{e1}, {e1, e2}} and∪
O∗(WIV, {{s1, s2}}) = {{e1, e2}}. Therefore, by

Theorem 4.2,WI ∗WI, WI ∗WIII andWIV ∗WIV satisfy
extended correctness, but there is no other composition that
satisfies extended correctness.

1For setsX andY , “X − Y ” denotes the difference set{x ∈ X|x 6∈
Y }.

Figure 5. W1[f1, . . . , fk]∗W2[g1, . . . , gm] (= W1 ∗
W2)

Figure 6. Another type of composition

On the other hand, sinceWII does not satisfy extended
correctness (see Example 3.13.2), one can obtain no work-
flow satisfying extended correctness by composingWII and
any workflow.

Remark 4.6 It is not a trivial problem whether a consis-
tency property of workflows is preserved in certain compo-
sition or division of them. As an example, we give another
compositionWA]WB of workflowsWA andWB in the way
of Figure 6. Note that there exists control flow betweenWA

andWB in both directions. WhileWA does not satisfy ex-
tended correctness,WA]WB satisfies extended correctness.
Therefore, the composition does not satisfy a property sim-
ilar to Theorem 4.2 (or Theorem 4.4).

As the last part of this section, we define “extensible
property” of workflows and show that the property is equiv-
alent to extended correctness.

Definition 4.7 For a workflowW , W is said to be exten-
sible if there exists a workflowW0 such thatW0 ∗ W is
correct.

Theorem 4.8 For a workflowW , W is extensible if and
only if W satisfies extended correctness.



151

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

If a workflowW is extensible, it is possible that one can
complete a correct workflow (with a single start) fromW
by extendingW “vertically”. On the other hand, Theorem
5.1 in [4] assures that one can modify a correct workflow
W with a single start and multiple ends to that with a sin-
gle start and a single end, which is essentially equivalent to
W . So, Theorem 4.8 assures that, ifW satisfies extended
correctness, one can complete a correct workflow with a
single start and a single end by extendingW vertically and
modifying the extended workflow in the way in the proof of
Theorem 5.1 in [4].

Theorem 4.8 also assures that, if a workflowW does not
satisfy extended correctness, one can not complete any cor-
rect workflow fromW by extendingW vertically. For ex-
ample, sinceWII in Figure 3 does not satisfy extended cor-
rectness, one can not complete any correct workflow from
WII by extending it vertically. This means that, if one likes
to complete a correct workflow fromWII, one has to modify
WII itself. So, it is useful to check extended correctness of
an incomplete workflow (= a workflow with multiple starts
and/or multiple ends) in the making of a correct workflow,
since one may have an opportunity to modify structure of
the incomplete workflow before it grows too large to mod-
ify the structure easily.

5. Consistency of evidence life cycles in a work-
flow with multiple starts

In the previous papers [12] and [14], we define a consis-
tency property of life cycles of “evidences” in a workflow
with a single start. We here define a similar consistency
property for a workflow with multiple starts.

“evidence” is a technical term which means an annota-
tion on a workflow, which denotes a document on which
information is written, and/or with which something is ap-
proval, during the process of an operation. For simplicity,
we often call such documents themselves “evidences”. In
large organizations such as large governments, evidences
such as order forms, estimate sheets, invoices, and receipts
play significant roles for purposes of feasibility, account-
ability, traceability, or transparency of business. Numerous
actual operations are currently based on evidences even if
they are carried out with information systems. Therefore, it
is important to consider workflows in which one can con-
cretely and precisely describe the life cycles of evidences to
analyze requirements in developing large-scale information
systems.

Roughly, the life cycles of evidences mean a series of
states of the evidences, and consistency of evidence life cy-
cles in a workflow means that the workflow has no incon-
sistent life cycles of evidences. In [12] and [14], we define
a consistent property of evidence life cycles in a workflow
with a single start, by usinginstancesof the workflow. We

here define that in a workflow with multiple starts, by using
closedsubgraphs of the workflow.

We precede the definition of the consistency property by
that of evidences in a workflow.

5.1. Evidence

This subsection refers to [14]. We here regard an ev-
idence as a paper document, which is composed, referred,
re-written, judged, stored or dumped in some activities. Un-
like data files, an evidence does not increase. Though one
can make a copy of it, the copy is regarded not to be the
same thing as the original evidence. Moreover, unlike data
in a system multiple people can access simultaneously, an
evidence can not be used by multiple people at the same
time.

In the technical perspective, a list of evidences with
length at least 0 is assigned to an activity, and an evidence
E is defined to be a triple(e, created , removed), wheree
is a label, andcreated andremoved are boolean values. In
what follows, we fix a non-empty setE.

Definition 5.1 Evidenceis a triple (e, created , removed),
wheree is an element ofE andcreated andremoved are
boolean values, that is, they are elements of{true, false}.
For each evidenceE := (e, created , removed), we calle
theevidence labelof E.

Remark 5.2 For simplicity, we abbreviate evidences by the
following ways.

(i) (e, false, false) is abbreviated to “e”.

(ii) (e, false, true) is abbreviated to “(−)e”.

(iii) (e, true, false) is abbreviated to “(+)e”.

(iv) (e, true, true) is abbreviated to “(+)(−)e”.

For a workflowW , we consider an allocation which as-
signs to each activity inW a string of evidences. Note that
such an allocation may assign to some activities the empty
string, i.e., the string with length 0. By using workflows,
one can express a lot of workflows. In order to explain ev-
idences, we give an example of a workflow which explains
how to submit a paper, as follows.

For each workflowW , each activityA inW and for each
evidenceE in the string assigned toA, we callE an evi-
denceonA and callA an activityhavingE.

Remark 5.3 In what follows, we assume that, for each
workflow diagramW and each activityA in W , A does
not have multiple evidences sharing the same evidence la-
bel. We call the conditionthe basic evidence condition.



152

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 7. Workflow of paper submission

Since each workflow diagramW is assumed to satisfy
the basic evidence condition, if an activityA in W has an
evidence labele, A has just one evidenceE with label e.
So, we often say thate is created (or removed) onA if A
has an evidenceE having the(+)-mark (or the(−)-mark,
respectively).

Example 5.4 In the workflow in Figure 7, a paperP is cre-
ated on the activity “Make a paperP ”, and it is removed on
the activity “Submit the paper and the registration form”.
The evidence also appears on the activities “Revise the pa-
per” and “Explain the content ofP to your boss”.

5.2. Consistency property of evidence life
cycles in a workflow with multiple
starts

We here define a consistency of evidence life cycles in
a workflow with multiple starts. This subsection also refers
to [14].

Roughly, the “life cycle” of an evidence means that a
series of states of the evidence. In order to define consistent
life cycles of evidences in workflow in a rigorous manner,
we introduce some new concepts.

Definition 5.5 For a workflowW , aline inW is a sequence
of arcs inW

L = (A1 −−→f1 A2 −−→f2 · · · −−→fn−1 An)

which satisfies the following properties.

(i) A1 is an activity or the start inW .

(ii) An is an activity or an end inW .

(iii) A2, . . . , An−1 are nodes inW , each of that is not any
activity, the start, nor any end.

For a lineL above,A1 is called thesourceof L, An the
target of L andfn−1 thetarget arcof L.

Definition 5.6 A line L is said to beequivalentto another
lineL′ if L andL′ share the source and the target.

Example 5.7 The workflow in Figure 7 has 10 lines, as
follows: (f1), (f2f3), (f2f7), (f4), (f5), (f6f13),
(f8f9f12f13), (f8f10), (f11f12f13) and(f14).

Definition 5.8 A sequenceπ of lines is said to beequiv-
alent to another sequenceπ′ of lines if there exist lines
L1, . . . , Ln andL′

1, . . . , L
′
n such that

π = (A1 −−→L1 A2 −−→L2 · · · −−→Ln−1 An)

π′ = (A1 −−→L′
1 A2 −−→L′

2 · · · −−→L′
n−1 An)

and that, for eachi = 1, . . . , n, Li is equivalent toL′
i.

L ∼ L′ (or π ∼ π′) denotes thatL is equivalent toL′

(π is equivalent toπ′, respectively). Note that every line is
equivalent to itself, and so is every sequence of lines.

Definition 5.9 LetW be a workflow,V a closed subgraph
of W and lete be an evidence inW . Then, theconsistent
life cycleof e onV is the sequenceπ of lines inV

π := (A0 −→L0 A1 −→L1 · · · −−→Ln−1 An)

which satisfies the following properties.

(i) Every activityAi hase.

(ii) If A0 is not the target of any line with source an input
node, thene is created onA0.

(iii) e is not created onAi for anyi with 0 < i 5 n.

(iv) If An is not the source of any line with target an output
node, thene is removed onAn.

(v) e is not removed onAi for anyi with i < n.

Definition 5.10 A workflow W is said tohave consistent
evidence life cyclesif, for each closed subgraphV of W ,
each activityA in V and for each evidencee onA, there is
an essentially unique consistent life cycleπ of e onV which
containsA.

The statement “there is an essentially unique consistent
life cycle π of e on V containingA” means that there is
a consistent life cycleπ of e on V containingA and that
π ∼ π′ for each consistent life cycleπ′ of e containingA.



153

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Example 5.11 The workflow in Figure 7 has two closed
subgraph. The first closed subgraph (calledU ) consists of
all nodes except the activity “Explain the content ...” and
all arcs exceptf10 andf11. The second one (calledV )
consists of all nodes and all arcs exceptf9.

For an evidenceP in Figure 7,U has just one con-
sistent evidence life cycle ofP : ((f2f7)(f8f9f12f13)).
V also has just one consistent evidence life cycle ofP :
((f2f7)(f8f10)(f11f12f13)). For another evidenceR,
U andV share the same consistent evidence life cycle ofR:
((f5)(f6f13)). Moreover, they have no other consistent
evidence life cycle ofR. Therefore, the workflow in Figure
7 has consistent evidence life cycles.

For the consistency property of evidence life cycles in
a workflow with multiple starts, one can also have similar
theorems to those in Section 4. Actually, one can easily
show the following theorems.

Theorem 5.12 For a workflow with a single start, the origi-
nal consistency property of evidence life cycles in the work-
flow (cf. [14], Definition 3.10) is equivalent to that in Defi-
nition 5.10.

Theorem 5.13 Let W1 and W2 be workflows, E0 :=
{A1, . . . , An} ⊂ end(W1), S0 := {B1, . . . , Bn} ⊂
start(W2), andf a bijectionE0 → S0 with f(Ai) = Bi.
Then,W1 ∗f W2 has consistent evidence life cycles if and
only if so doW1 andW2 and, for any lineA → Ai in W1

and another lineBi → B in W2, the following properties
hold.

(i) For an evidenceE onA, if E is not removed onA and
if B is not any end node, thenB also hasE andE is
not created onB.

(ii) For an evidenceE onB, if E is not created onB and
if A is not any start node, thenA also hasE andE is
not removed onB.

The consistency of evidence life cycles in a workflow
does not need extended correctness of the workflow. How-
ever, it is meaningless to define the consistency of evidence
life cycles in a workflow which does not satisfy extended
correctness. We show this claim by using a workflowW ∗

II

in Figure 8.
W ∗

II has two closed subgraphs, both of which satisfies the
conditions in Definition 5.10. So,W ∗

II has consistent evi-
dence life cycles. However, the structure ofW ∗

II is the same
as that ofWII in Figure 3, and hence,W ∗

II does not sat-
isfy extended correctness. Actually, if the director returns
the proposalP , the secretary can not receive it nor send it
to the administration division. This example claims that,
for a workflow which does not satisfy extended correctness,

Figure 8. Wrong workflow

the semantics of the consistency of evidence life cycles in
the workflow becomes ambiguous. Conversely, extended
correctness of a workflow assures that the consistency of
evidence life cycles in the workflow has the semantics we
expect if one do not have to consider any set of start nodes
which is not contained in the in-port family of the workflow.

6. Discussion

In this section, in order to validate extended correctness,
consistency of evidence life cycles and their fundamental
theorems in Sections 4 and 5, we investigate real workflows
and explain how to verify the consistency properties of a
workflow by incremental verification.

6.1 Observations

We first investigate 154 workflows, which have been de-
veloped in requirement analysis for a real information sys-
tem that helps one to manage personnel affairs. Each work-
flow has 10 to 30 nodes.

The observations are shown in the previous work [13].

Observation 1 Among the 154 workflows above, there
are 101 workflows that have connections to other work-
flows. For example, there exists a large workflow that con-
sists of 12 small workflows.2 We describe the large work-
flow in Figure 9, whereW1, . . . ,W12 describe the small
workflows in the large workflow. In this figure, we simplify
the small workflows. Especially, we omit all activity nodes
in the small workflows.

We also classify 154 workflows on the numbers of their
start nodes. Then, we have the following result. The result
claims that, in most cases, the maximal in-port family and
its out-port assignment of a workflow are not very large.

2We often consider a “large workflow” to be a set of workflows that
have connections to one another.



154

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 9. Large workflow W

number of start nodes 1 2 3 4 5 6 16
number of workflows 121 24 5 1 1 1 1

Table 2. Classification of 154 workflows on
the numbers of start nodes

Observation 2 In most cases, even if two workflows are
connected to each other, there is only one-way control flow
between the two workflows. For example, while there is
control flow fromW2 toW3 in Figure 9, there is no control
flow fromW3 toW2. As far as the 154 workflows above,
there are about 80 connections of two workflows, but, there
are only 2 connections that have control flow between work-
flows in both directions (one can see an example of such a
connection in Figure 6). Therefore, at least as far as the 154
workflows, vertical composition sufficiently covers connec-
tions between workflows.

Observation 3 As far as the 154 workflows, the order of
development of the small workflows does not completely
correspond to the direction of control flow of large work-
flows that consist of the small workflows. Moreover, there
are some large workflows that plural engineers work to-
gether to develop. In fact,W in Figure 9 has been devel-
oped by two system engineers. In a case like this, incre-
mental verification is especially useful, since it is possible
that one of the engineers can obtain only an incomplete set
of workflows inW .

Summary of the observations The first observation
claims that about two thirds of the 154 workflows are con-
nected to other workflows and that about one fifth of the
154 workflows have multiple starts. The second observation
claims that, while there are about 80 pairs that are vertically
composed, only two pairs are composed but not vertically
composed. This means that 97.5 percent of all pairs that

Figure 10. Workflows U and V

are composed are vertically composed. The last observa-
tion claims that the order of development of small work-
flows does not completely correspond to the direction of
control flow of a large workflow consisting of them. By the
observations, one can claim that it is meaningful to consider
incremental verification for a large-scale workflow that con-
sists of small workflows with multiple starts or vertically
composed.

6.2 Application

In order to validate extended correctness, consistency of
evidence life cycles of a workflow and the fundamental the-
orems of them, we here explain how to verify the consis-
tency properties by incremental verification, by using two
workflowsU andV in Figure 10, that are vertically com-
posed.

As we explained in the third observation in the previ-
ous section,U andV have been developed regardless of the
control flow ofU ∗V . For example, assume that onlyV has
been developed. Dislike original correctness, one can verify
control flow consistency ofV based on extended correct-
ness. LetV do not satisfy extended correctness. Then, by
Theorems 4.2 and 4.4, whatever one developsU ,U ∗V will
never satisfy extended correctness. This means that he/she
should modifyV at this point whenV turn out not to satisfy
extended correctness. Similarly, one can verify consistency
of evidence life cycles ofV even ifV has multiple starts.
He/She should also modify evidence life cycles ofV at this
point whenV turn out not to have consistent evidence life
cycles.

Moreover, assume thatV has been modified to satisfy
extended correctness (and to have consistent evidence life
cycles) and thatU has been developed additionally. If the
workflow U does not satisfy extended correctness or con-
sistency of evidence life cycles, then neither doesU ∗ V .
Therefore, he/she should modifyU at this point. If the
workflowU satisfies extended correctness, he/she can know
whether or notU ∗ V satisfies extended correctness, by
checking conditions of the in-port families ofV and the
out-port assignments ofU (see the comment immediately
after Theorem 4.2). Similarly, If the workflowU has con-
sistent evidence life cycles, he/she can know whether or not



155

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

U ∗ V has consistent evidence life cycles, by checking the
conditions (i) and (ii) in Theorem 5.13.

As above, one can develop and verify the large workflow
U ∗ V in parallel. Incremental verification is a useful ap-
proach, especially in the case of development of large-scale
workflows.

7. Related work

The definition and fundamental theorems of extended
correctness are based on the previous work [13]. In this
paper, we show Theorem 4.4 by a simpler way than that of
the similar theorem in [13].

There are a lot of researches of consistency properties of
workflows in the viewpoint of control flow of them such as
Aalst [15], Sadiq and Orlowska [9], Aalst [16], Sadiq and
Orlowska [10], Verbeek et al. [21], Lin et al. [6], and Aalst
et al. [17]. However, these researches deal with verification
for a workflow with a single start and a single end as a com-
plete workflow. In fact, a workflow in standard workflow
languages such as XPDL [23] and YAWL [19] has a single
start and a single end.

An open workflow net by Aalst et al. [18] can be con-
sidered to be a workflow with multiple starts and ends, and
their “weak termination” essentially corresponds to sound-
ness (correctness). Another well known workflow language
EPC [3] has workflows with multiple starts and ends. By
Mendling and Aalst [8], a semantics of EPC is given. Based
on the notions above, one can obtain another extended cor-
rectness over (acyclic and cyclic) workflows with multiple
starts and ends. However, the important point in this paper
is that our extended version of correctness is a conservative
extension of original correctness and it is preserved in verti-
cal composition and division of workflows. These theorems
are important for incremental verification based on the ex-
tended correctness. Since [18] and [8] have different pur-
poses from ours, they do not show similar results about their
extended correctness properties to our properties above. It
is expected to show similar theorems based on correctness
properties in [18] and [8].

By Dehnert and Aalst [2], Dongen et al. [20], and
Mendling et al. [7], verification systems of consistency
properties of workflows in EPC are developed. However,
in order to verify consistency of workflows in EPC with the
systems, users have to set start nodes which are fired at the
initial point or the systems have to check all combinations
of start nodes fired at the initial point. So, these approaches
differ from ours.

A standard workflow model by Kiepuszewski et al. [4]
also may have multiple starts and/or multiple ends. How-
ever, the semantics of the workflows in [4] is based on an
assumption that a petri net modeling a workflow has a token
on each initial place in every initial marking. Therefore, the

correctness property of workflows defined in [4] is essen-
tially the same as original correctness.

Kindler et al. [5] investigate “local soundness” for each
sub-workflow in a workflow and “global soundness” for
the whole workflow. The verification approach in [5] uses
“scenario” that are used to verify global soundness of a
workflow W from verification of local soundness of sub-
workflows constitutingW . So, the approach verifies a
workflow based on necessary data for the workflow instead
of the set of all sub-workflows of the workflow. Moreover,
the ways to divide or compose workflows differ from ours.

Siegeris and Zimmermann [11] also investigate cor-
rectness properties of workflows to verify consistency of
a whole workflow based on verifications of that of sub-
workflows of the workflow. The verification approach for
a workflow is based on verification for all sub-workflows
constituting the workflow. Moreover, the ways to divide or
compose workflows in [11] differ from ours, too.

On the other hand, in the previous papers [12] and [14],
we investigate consistency of evidence life cycles in a work-
flow with a single start. We extend the previous work for a
workflow with multiple starts.

Wang and Kumar [22] investigate document-driven
workflow systems, where “documents ” are essentially the
same concept as evidences. They propose a framework
for designing and managing workflows based on struc-
tures and states of documents. While our framework man-
ages control-flow based workflows with evidences, their
framework manages document-driven workflows. Thus, the
meaning of the verification for their workflows differs from
that of consistency of evidence life cycles in control-flow
based workflows.

8. Conclusion

In this paper, we extend the results in our previous work
[13], by adding consistency property of evidence life cycles
in a workflow with multiple start nodes. The consistency
property of evidence life cycles is based on that in a work-
flow with a single start node in [12].

The purpose of this paper is to develop an incremental
verification methodology for large-scale workflows. As a
basis for the verification methodology, we have defined ex-
tended correctness of an acyclic workflow with multiple
starts and multiple ends. Extended correctness is a con-
servative extension of original correctness property over an
acyclic workflow with a single start (Theorem 4.1). We also
consider vertical composition and division of workflows,
and show that extended correctness is preserved in these
operations on workflows (Theorems 4.2 and 4.4). We also
characterize extended correctness of a workflow as extensi-
ble property (Theorem 4.8).



156

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

In Section 5, we define a consistency property of evi-
dence life cycles in a workflow with multiple starts, and
show two fundamental theorems of the consistency (Theo-
rems 5.12 and 5.13).

In Section 6, we investigate real 154 workflows in order
to validate incremental verification for a large-scale work-
flow that consists of small workflows with multiple starts
and/or vertically composed. Moreover, in order to validate
extended correctness, consistency of evidence life cycles of
a workflow and the fundamental theorems of them, we ex-
plain how to verify the consistency properties by using an
example.

Since the workflow language in this paper is simple and
conventional, one can apply the definitions and the theo-
rems of the consistency properties in this paper for incre-
mental verification for acyclic workflows in other languages
such as BPMN [1] and XPDL.

Extended correctness, consistency of evidence life cy-
cles and their theorems in this paper enable us to develop a
concrete method to the consistency properties of large-scale
workflows incrementally. Our next challenge is to develop
a tool that helps one to verify large-scale workflows by the
incremental methodology.

References

[1] Business Process Management Initiative (BPMI).Business
Process Modeling Notation (BPMN) Version 1.0. Technical
report, BPMI.org, 2004.

[2] J. Dehnert and W. M. P. van der Aalst. Bridging the gap
between business models and workflow specifications.In-
ternational Journal of Cooperative Information Systems,
13(3):289–332, 2004.

[3] G. Keller, M. Nuttgens, and A. W. Scheer.Semantische
Prozessmodellierung auf der Grundlage Ereignisgesteuerter
Prozessketten (EPK). Technical Report 89, Institut fur
Wirtschaftsinformatik Saarbrucken, Saarbrucken, Germany,
1992.

[4] B. Kiepuszewski, A. H. M. ter Hofstede, and W. M. P.
van der Aalst. Fundamentals of control flow in workflows.
Acta Informatica, 39(3):143–209, 2003.

[5] E. Kindler, A. Martens, and W. Reisig. Inter-operability
of workflow applications: Local criteria for global sound-
ness. InBusiness Process Management: Models, Tech-
niques, and Empirical Studies (BPM), LNCS 1806, pages
235–253. Springer, 2000.

[6] H. Lin, Z. Zhao, H. Li, and Z. Chen. A novel graph reduction
algorithm to identify structural conflicts. InProceedings of
the 35th Annual Hawaii International Conference on System
Science (HICSS). IEEE Computer Society Press, 2002.

[7] J. Mendling, M. Moser, G. Neumann, H. M. W. Verbeek,
B. F. van Dongen, and W. M. P. van der Aalst. Faulty epcs
in the sap reference model. InInternational Conference on
Business Process Management (BPM), LNCS 4102, pages
451–457. Springer, 2006.

[8] J. Mendling and W. M. P. van der Aalst. Formalization and
verification of epcs with or-joins based on state and con-
text. InProceedings of the 19th International Conference on
Advanced Information Systems Engineering (CAiSE), LNCS
4495, pages 493–453. Springer, 2007.

[9] W. Sadiq and M. E. Orlowska. On correctness issues in con-
ceptual modeling of workflows. InProceedings of the 5th
European Conference on Information Systems (ECIS), pages
943–964, 1997.

[10] W. Sadiq and M. E. Orlowska. Analyzing process mod-
els using graph reduction techniques.Information Systems,
25(2):117–134, 2000.

[11] J. Siegeris and A. Zimmermann. Workflow model compo-
sitions preserving relaxed soundness. InProceedings of 4th
International Conference on Business Process Management
(BPM), LNCS 4102, pages 177–192. Springer, 2006.

[12] O. Takaki, T. Seino, I. Takeuti, N. Izumi, and K. Takahashi.
Verification algorithm of evidence life cycles in extended
UML activity diagrams. InProceedings of The 2nd Interna-
tional Conference on Software Engineering Advances (IC-
SEA 2007). IEEE Computer Society Press, 2007.

[13] O. Takaki, T. Seino, I. Takeuti, N. Izumi, and K. Takahashi.
Incremental verification of large scale workflows based on
extended correctness. InProceedings of the 3rd Interna-
tional Conference on Software Engineering Advances (IC-
SEA 2008). IEEE Computer Society Press, 2008.

[14] O. Takaki, T. Seino, I. Takeuti, N. Izumi, and K. Takahashi.
Verification of evidence life cycles in workflow diagrams
with passback flows.International Journal On Advances
in Software, 1(1), 2008 (to appear).

[15] W. M. P. van der Aalst. Verification of workflow nets. InAp-
plication and Theory of Petri Nets 1997, LNCS 1248, pages
407–426. Springer, 1997.

[16] W. M. P. van der Aalst. The application of petri nets to
workflow management.The Journal of Circuits, Systems
and Computers, 8(1):21–66, 1998.

[17] W. M. P. van der Aalst, A. Hirnschall, and H. M. W. Verbeek.
An alternative way to analyze workflow graphs. InProceed-
ings of the 14th International Conference on Advanced In-
formation Systems Engineering (CAiSE), LNCS 2348, pages
535–552. Springer, 2002.

[18] W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl,
and K. Wolf. From public views to private views:
Correctness-by-design for services. InInformal Proceedings
the 4th International Workshop on Web Services and Formal
Methods (WS-FM), LNCS 4937, pages 139–153. Springer,
2007.

[19] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL:
Yet another workflow language. Information Systems,
30(4):245–275, 2005.

[20] B. F. van Dongen, W. M. P. van der Aalst, and H. M. W. Ver-
beek. Verification of epcs: Using reduction rules and petri
nets. InProceedings of the 17th Conference on Advanced In-
formation Systems Engineering (CAiSE), LNCS 3520, pages
372–386. Springer, 2005.

[21] H. M. W. Verbeek, T. Basten, and W. M. P. van der Aalst. Di-
agnosing workflow processes using woflan.The Computer
Journal, 44(4):246–279, 2001.



157

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

[22] J. Wang and A. Kumar. A framework for document-driven
workflow systems. InProceedings of 3rd International Con-
ference on Business Process Management (BPM), LNCS
3649, pages 285–301. Springer, 2005.

[23] Workflow Management Coalition (WfMC).Workflow Man-
agement Coalition Workflow Standard: Workflow Process
Definition Interface - XML Process Definition Language
(XPDL). (WfMC-TC-1025), Technical report, Workflow
Management Coalition, Lighthouse Point, Florida, USA,
2002.

A. Basic theorems and proofs of theorems

In this section, we show some basic theorems of ex-
tended correctness and theorems in Section 4.

Definition A.1 Let W be a workflow andC the set of all
XOR-splits onW . Then, a phenomenon onW denotes
a functionψ : C → arc(W ) satisfying thatψ(c) is an
outgoing-arc ofc for eachc ∈ C.

Lemma A.2 For a starts and a phenomenonψ, there exists
a unique instance forψ from s, that is, there exists a unique
instanceV from s such that for every XOR-splitc in V the
outgoing-arc ofc in V isψ(c).

Proof. Trivial. �

Lemma A.3 LetW be a workflow,s a start inW , π a path
onW from s andψ a phenomenon onW . Moreover, as-
sume that, for an XOR-splitc in W , if c is the source of an
arc inπ, thenψ(c) is contained inπ. Then, the instance of
W for ψ from s containsπ.

Proof. By induction on the length ofπ. �

Lemma A.4 For a workflow W , W is covered with
INS(W ), that is, every arcf in W is contained in some
instance ofW .

Proof. Let f be an arc inW . Then, there exists a pathπ
with first element the outgoing-arc of some starts ofW and
last elementf . So, by Lemma A.3,π is contained in some
instance inINS(W, s). �

Lemma A.5 For a workflowW , every closed subgraph of
W is deadlock free and lack of synchronization free.

Proof. Trivial. �

Proposition A.6 LetW be a workflow and{U1, . . . , Un} a
set of some instances inW that is not conflict on any XOR-
split inW . Then,U := U1 ∪ · · ·U2 is closed if and only if
U is deadlock free and lack of synchronization free.

Proof. By Lemma A.5,U is deadlock free and lack of syn-
chronization free ifU is closed. So, we assume thatU is
deadlock free and lack of synchronization free and show
thatU is closed.
(1) Let x be an XOR-split. Then, sincex is contained
in some instanceUi, the incoming-arc ofx and some
outgoing-arc(s) ofx are contained inU . Moreover, since
{U1, . . . , Un} is not conflict on any XOR-split inW , the
outgoing-arc ofx that is contained inU is single.
(2) Let x be an XOR-join. Then, sincex is contained
in some instanceUi, the outgoing-arc ofx and some
incoming-arc(s) ofx are contained inU . Moreover, since
U is lack of synchronization free, the incoming-arc ofx in
U is single.
(3) Let x be an AND-join. Then, sincex is contained in
some instanceUi andU is deadlock free, the outgoing-arc
of x and all incoming-arcs ofx are contained inU .
(4) Let x be another type node. Then, sincex is contained
in some instanceUi, all incoming-arcs and outgoing-arcs of
x are contained inU . �

Lemma A.7 LetW be a workflow andI an in-port ofW .
(1) For everys ∈ I andU ∈ INS(W, s), there exists a
closed subgraphV with V ⊇ U .
(2) For everys ∈ I andU ∈ INS(W, s), U is lack of
synchronization free.

Proof. (1) Letψ be a phenomenon such thatU is the in-
stance forψ from s. Then, for eachsi ∈ I there exists the
instanceUi for ψ from si. Since{U1, . . . , Un} does not
conflict on any XOR-split,U1 ∪ · · · ∪ Un is closed. More-
over, for somei 5 n, s = si and henceU = Ui by Lemma
A.2.
(2) By (1) above, there is a closed subgraphV with V ⊃ U .
Thus, we have the result sinceV is lack of synchronization
free by Lemma A.5.�

Lemma A.8 For a workflowW satisfying extended cor-
rectness and a covering in-port familyI of W , W is cov-
ered with

∪
I∈I CL(W, I). Especially,W is covered with

CL(W ).

Proof. By Lemmas A.4 and A.7.(1).�

Lemma A.9 LetW be a workflow satisfying extended cor-
rectness andI a covering in-port family ofW . Then,
end(W ) is covered by

∪
O∗(W, I) :=

∪
I∈I O(W, I).

Proof. By Lemma A.8.�

Lemma A.10 For a workflowW with a single start, ifW
satisfies extended correctness, thenW is correct.

Proof. Let W have only a single starts. Then,W has a
single in-port{s}. So, by Def.3.8, every instance is a closed
subgraph. Thus, by Lemma A.5, we have the result.�



158

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Lemma A.11 Every correct workflow satisfies extended
correctness.

Proof. Every instance of a correct workflowW is a closed
subgraph ofW . So, for the starts of W , {s} is the in-port
of W . �

Proof of Theorem 4.1 By Lemmas A.10 and A.11.�

Definition A.12 Let W1 ∈ WF(n,m) and W2 ∈
WF(m, l).
(1) Let V be a subgraph ofW1 ∗ W2. Then,V dW1 de-
notes the subgraph ofW1 uniquely obtained fromV ∩
W1 by adding all possible ends inW1 that correspond
to connecting-arcs contained inV . Similarly, V dW2 de-
notes the subgraph ofW2 uniquely obtained fromV ∩W2

by adding all possible starts inW2 that correspond to
connecting-arcs contained inV .
(2) For a subgraphV1 of W1 and a subgraphV2 of W2, if
there exists a subgraphV of W1 ∗ W2 with V dW1 = V1

andV dW2 = V2, thenV1 andW2 are said to be able to be
composed, andV1 ∗ V2 denotes the subgraphV above.

Lemma A.13 Let W1 ∈ WF(n,m) and W2 ∈
WF(m, l).
(1) For eachS ⊂ start(W1 ∗W2) and eachV ∈ CL(W1 ∗
W2, S), V dW1 is a closed subgraph inCL(W1, S) and
V dW2 is that inCL(W2, end(V dW1)).
(2) Conversely, for eachV1 ∈ CL(W1) and for eachV2 ∈
CL(W2, end(V1)), if V1 andV can be composed inW1 ∗
W2, thenV1 ∗ V2 is a closed subgraph ofW1 ∗W2.

Proof. Trivial. �

Lemma A.14 Let W1 ∈ WF(n,m) and W2 ∈
WF(m, l). If W1 satisfies extended correctness for a cover-
ing in-port familyI and ifW2 satisfies extended correctness
for

∪
O∗(W1, I) :=

∪
I∈I O(W1, I), thenW1 ∗W2 satisfies

extended correctness forI.

Proof. We show that eachI ∈ I is an image ofW1∗W2. Let
I := {s1, . . . , sn} ∈ I andUi ∈ INS(W1 ∗W2, si) (i =
1, . . . , n), and assume that{U1 . . . , Un} is not conflict on
any XOR-split inW1 ∗W2. Then,UidW1 ∈ INS(W1, si)
for eachi 5 n, and{U1dW1 . . . , UndW1} is not conflict
on any XOR-split inW1. SinceI is an image ofW1, U1 :=
U1dW1 ∪ · · · ∪ UndW1 is a closed subgraph ofW1.

On the other hand,U2 := U1dW2∪· · ·∪UndW2 consists
of instances inW2, that have elements ofend(U1) as the
starts. Moreover, the set of all the instances inW2 above
is not conflict on any XOR-split inW2. Therefore, since
end(U1) ∈ O(W2, I) ⊂

∪
O∗(W2, I), U2 is a closed sub-

graph ofW2. SinceU = U1 ∗ U2, by Lemma A.13.2,U is
a closed subgraph ofW1 ∗W2. So, we have the result.�

Lemma A.15 Let W1 ∈ WF(n,m) and W2 ∈
WF(m, l). If W1 ∗W2 satisfies extended correctness for
a covering in-port familyI, then so isW1 andW2 satisfies
extended correctness for

∪
O∗(W1, I).

Proof. We first show thatW1 satisfies extended correctness
for I. Let I := {s1, . . . , sn} ∈ I andUi ∈ INS(W1, si) for
i 5 n. Moreover, assume that{U1, . . . , Un} is not conflict
on any XOR-split inW1. Then, there exists a phenomenon
ψ1 onW1 such that eachU is the instance forψ1 from si.
So, we can have a phenomenonψ on W1 ∗ W2 such that
the restriction ofψ to W1 is ψ1. Thus, for eachi 5 n,
there exists the instanceU∗

i of W1 ∗W2 for ψ from si. So,
U∗

i dW1 = Ui for eachi 5 n, and{U∗
1 , . . . , U

∗
n} is not

conflict on any XOR-split onW1 ∗W2. So, sinceI is an
image ofW1 ∗W2, U∗

1 ∪ · · · ∪ U∗
n is a closed subgraph of

W1 ∗W2. Therefore, by Lemma A.13.1,U1 ∪ · · · ∪Un is a
closed subgraph ofW1. So,I is an image ofW1.

We next show thatW2 satisfies extended correctness
for

∪
O∗(W1, I). Let E is an element{e1, . . . , em} of∪

O∗(W1, I) andUi ∈ INS(W2, ei) for i 5 m. More-
over, assume thatU := {U1, . . . , Um} is not conflict on
any XOR-split inW2. Then, there exists a closed subgraph
V1 in W1 such thatstart(V1) ∈ I and thatend(V1) = E.
So, we can have instancesU1

1 , . . . , U
1
k in W1 such that

V1 = U1
1 ∪ · · · ∪ U1

k . For eachj 5 k, we have the subset
Uj of U by Uj := {U ∈ U : start(U) ∈ end(U1

j )}.
Then, for eachj 5 k, U∗

j := U1
j ∗ (

∪
Uj) is an in-

stance ofW1 ∗ W2, and{U∗
1 , . . . , U

∗
k} is not conflict on

any XOR-split onW1 ∗ W2. So, sinceW1 ∗ W2 satisfies
extended correctness forI, U∗

1 ∪ · · · ∪U∗
k is a summation in

W1 ∗W2. Therefore, by Lemma A.13.1,U1 ∪ · · · ∪ Um =
(U∗

1 ∪ · · · ∪ U∗
k )dW2 is a summation inW2, and hence,E

is an image ofW2. �

Proof of Theorem 4.2 By Lemmas A.14 and A.15.�

Proof of Theorem 4.4 By the definition of a vertical
composition (Definition 2.4),W1 ∗ W2 is the same as
W1[f1, . . . , fk] ∗W2[g1, . . . , gm] in Figure 5 (see also Fig-
ure 2). So, the extended correctness ofW1 ∗ W2 for I is
equivalent to that ofW1[f1, . . . , fk] ∗W2[g1, . . . , gm] for I.
So, by Theorem 4.2, it is equivalent to the following prop-
erties (i) and (ii).

(i) W1[f1, . . . , fk] satisfies extended correctness forI

(ii) W2[g1, . . . , gm] satisfies extended correctness for∪
O∗(W1[f1, . . . , fk], I).

Now we first show that the property (i) above is equiv-
alent to (1) in Theorem 4.4. For a subgraphV of
W1[f1, . . . , fk], V is closed inW1[f1, . . . , fk] if and only
if V ∩W1 is closed inW1. Thus, for an elementI of I with



159

International Journal On Advances in Software, vol 2 no 1, year 2009, http://www.iariajournals.org/software/

Figure 11. Workflow W0

I ∩start(W1) 6= ∅, I is an in-port ofW1[f1, . . . , fk] if and
only if I ∩ start(W1) is that ofW1. Therefore, sinceI is a
covering family ofstart(W1[f1, . . . , fk]), the property (i)
is equivalent to (1) in Theorem 4.4.

The property (i) implies that
∪

O∗(W1[f1, . . . , fk], I) is
a covering family ofstart(W2[g1, . . . , gm]). Therefore,
when (i) holds, one can show that the property (ii) is equiv-
alent to (2) in Theorem 4.2 in the similar way to the case of
(i) above. Thus, the extended correctness ofW1 ∗W2 for
I is equivalent to the properties (1) and (2) in Theorem 4.4.
�.

Lemma A.16 For a non-empty finite setS and a subsetS
of the power set ofS with S =

∪
S, there exists a cor-

rect workflowW that has a single starts and thatS =
O(W, {s}).

Sketch of the Proof. Instead of showing this lemma
directly, we give an exampleS := {s1, s2, s3} and
S := {{s1}, {s2}, {s3}, {s1, s2}, {s1, s3}, {s2, s3}, S}
(=the power set ofS), and illustrate a workflowW0 sat-
isfying the properties in this lemma for theS andS above
by Figure 11. (All workflows satisfying the properties in
this lemma can be constructed in similar forms toW0.)

Each outgoing-arc of the XOR-splitc in W0 (see Figure
11) corresponds to an element ofS. Moreover, the numbers
of outgoing-arcs of AND-splitsx1 ∼ x4 in W0 correspond
to the numbers of elements of{s1, s2}, {s1, s3}, {s2, s3}
andS, respectively. Note that outgoing-arcs corresponding
to {s1}, {s2} and{s3} do not have any AND-split, since
{s1}, {s2} and{s3} have a single element, respectively.

Obviously,W0 is correct, and the ex-port family ofW0

for the in-port{s} is S. �

Proof of Theorem 4.8 By Theorem 4.2 and Lemma A.16.
�


