
The Rise of the Web for Agents
Ruben Verborgh, Erik Mannens, Rik Van de Walle

iMinds – Multimedia Lab – Ghent University
Gaston Crommenlaan 8 bus 201

B-9050 Ledeberg-Ghent, Belgium
{ruben.verborgh, erik.mannens, rik.vandewalle}@ugent.be

Abstract—Autonomous intelligent agents are advanced pieces
of software that can consume Web data and services without
being preprogrammed for a specific domain. In this paper, we
look at the current state of the Web for agents and illustrate
how the current diversity in formats and differences between
static data and dynamic services limit the possibilities of such
agents. We then explain how solutions that strive to provide
a united interface to static and dynamic resources provide an
answer to this problem. The relevance of current developments
in research on semantic descriptions is highlighted. At every
point in the discussion, we connect the technology to its impact
on communication. Finally, we argue that a strong cooperation
between resource providers and developers will be necessary
to make the Web for agents emerge.

Keywords-Software agents; Semantic Web; Web services

I. INTRODUCTION: THE WEB FOR AGENTS

A. Imagining intelligent agents
Artificial intelligence has always been a dream of man-

kind [1], and the Web is bringing new opportunities to create
automated, intelligent behavior. After all, the World Wide Web
is arguably the largest collective work of knowledge ever
produced. A significant amount thereof is publicly available,
giving any human access to massive amounts of information.
Any human indeed, but what about machines?

While today, the Web houses many search engines [2], their
functionality largely comes down to keyword search: to answer
a certain question, a search engine can help us find documents
with related keywords, but we have to read and interpret those
documents ourselves. Although very convenient, it does not
mark the endpoint of our desires: it would be so much easier
if a machine could directly answer our question.

It is not hard to imagine an intelligent agent [3] that looks
up facts online—and we could also contemplate on all sorts
of other tasks such an agent might take over from us: order
groceries, plan a holiday, submit tax returns, etc. However
easy it is to imagine, it turns out very hard to implement
such a universal agent. With the release of Apple’s Siri on
the iPhone, we have seen a glimpse of the potential of agent
technology, but even Siri is still programmed specifically for
certain domains [4]. A truly universal agent must be able to
use the Web to do things it has not been preprogrammed for.

In this paper, we investigate exactly how far away we are
from such a universal intelligent agent. We take a look at
current possibilities for machine agents, and identify missing
links that need to be resolved before we all can witness the rise
of the Web for agents.

B. The Web’s role in communication history
To understand the significance and impact of the Web for

agents, we have to view it in a richer historical perspective.
Technology has always played an important role throughout
the evolution of human communication, to the extent that
several technological advances have contributed to the de-
velopment of new models. Figure 1 illustrates the evolution
through the four communication models detailed below.

• one to one—The invention of writing [5] made it possible
to communicate complex messages from one person to
one other person at the same time, without the require-
ment for these individuals to meet. Traditional writing
only recently lost its dominant position in interpersonal
communication to electronic media.

• one to many—Conveying the same message to larger
audiences involved manual copying until the invention
of the printing press [6]. Even in today’s technological
society, printed works remain an important means of
spreading knowledge.

• many to many—The World Wide Web [7] made a
radical change in the communication model by enabling
bidirectional interactions. The scalable nature of the Web
makes it indeed possible for more people than ever before
to engage in worldwide communication.

• between humans and machines—The Semantic Web [8]
aims to introduce another group of actors in the model:
machines, which can range from software programs to
any kind of electronic device. However, the degree of
autonomy of such automated agents is currently limited.

Therefore, in the next section, we address the agent concept
as a communication question, and elaborate on the current
barriers between humans and machines on the Web. In Sec-
tion III, we look at necessary changes in the future. Finally, we
conclude in Section IV with a summary of what agents need.

II. MACHINE-ACCESSIBLE RESOURCES TODAY

On today’s Web, many resources are already machines-
accessible in different ways and with varying degrees of
automated interpretability. In most cases, clients need to be
programmed for a specific purpose and tailored to a specific
resource implementation. We will mention machine-accessible
data embedded in HTML documents (both standardized and
non-standardized), machine-accessible data in separate docu-
ments, and on-demand resources generated by Web services,
and discuss their advantages and disadvantages.

69Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

writing
one to one

print
one to many

Web
many to many

Semantic Web
between humans and machines

Fig. 1. Technology made communication evolve from a one-to-one to a many-to-many model. The future could bring human-machine intercommunication.

A. HTML with annotations

The Semantic Web’s most common data format, RDF
(Resource Description Framework, [9]), has a well-known
counterpart that can be embedded in HTML, called RDFa [10]
(derived “from RDF in attributes”). The recent 1.1 update
supersedes the 1.0 version, which exclusively focused on
XHTML. RDFa has become somewhat of a success story
of the Semantic Web that also gained visibility outside
of the scientific community. A prominent example of this
is GoodRelations [11], an ontology to describe products,
which was adopted by Google to enhance product search
results [12]. Google thereby provided a clear incentive for
product providers to enhance their HTML representations with
machine-accessible information.

A second major incentive to use RDFa came from Facebook,
who based the initial version of the Open Graph protocol
on RDFa [13]. This protocol enables HTML pages to become
objects people can talk about and share on Facebook and
other social networks [14]. Given the importance of social
media marketing nowadays, many website owners chose to
provide RDFa metadata in the Open Graph vocabulary. This
latter property is also the downside of Open Graph: the
documentation seems to imply that the vocabulary choice is
fixed. Instead of reusing existing ontologies [15], a new one
was created, without providing links to define meaning in
terms of other ontologies.

Another example of non-reuse was the introduction of
Schema.org [16] by Google, Bing, and Yahoo!, widely con-
sidered an answer to Facebook’s Open Graph protocol.
Schema.org leaves the RDFa path by annotating human-
readable text with HTML microdata [17], again with a specif-
ically designed vocabulary. The Semantic Web commu-
nity reacted quickly and released an RDFS schema for
Schema.org [18], which eventually resulted in an official OWL
version of the schema. The Schema.org annotation method has
also been made compatible with RDFa Lite [19].

By now, the major issue with having similar but different
vocabularies should be apparent: in how many vocabularies do
we need to annotate a single HTML page to be understandable
by all consumers? If any major RDFa consumer can impose
a vocabulary on webmasters, annotating Web pages becomes

a never-ending task. Only recently, one year after the launch of
Schema.org, Twitter announced another annotation mechanism
called Twitter Cards [20], which has a considerable overlap
with the Open Graph vocabulary—and, consequently, with
Schema.org. This implies that the same semantic content has
to be expressed differently three times to be interpretable by
the major Web traffic sources Google, Facebook, and Twitter.
This is an alarming observation, since RDF ontologies were
precisely created to enable interchangeable data, which is, after
all, supposed to be the added value of semantic technologies.

From a communicational standpoint of view, we could
say that, while common (and even standard) languages are
used, every agent refuses to communicate in a lingo different
from its own. It remains an open question whether any of
the consumers of annotated HTML will support formats or
vocabularies endorsed by others. As its Structured Data Testing
Tool [21] shows, Google is able to extract RDFa and other
data marked up with different vocabularies (including Open
Graph metadata), but it is unsure whether this data will be
used and if so, whether it will carry the same importance as
Schema.org metadata. For the moment, only limited search
result enhancements are performed, even if the annotations
are written in the Schema.org vocabulary. However, the pro-
vided metadata fields are sufficiently powerful to enable a
broad automated understanding of basic content properties,
so increased usage can be expected in the future. To verify
this, the aforementioned tool can generate a preview of how
additional semantic annotations currently affect search results.

The diversity also forms a burden for implementors of intel-
ligent agents, who cannot rely on one standardized vocabulary.
For example, HTML itself has a single way of specifying a
page title, namely the title tag, whereas each of the three
aforementioned annotation mechanisms have different means
of expressing the same thing. Fortunately, independent im-
plementors are not bound by the business-driven decisions
that prompted Facebook, Google, and Twitter to each favor or
even exclusively support a different technique. If we assume
the availability of an ontology that brings together similar
terms from the different vocabularies, Semantic Web rea-
soning techniques can translate content from one vocabulary
to another [22]. Therefore, support for one format could be
sufficient for agents to support all of them.

70Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

B. Machine-targeted document formats

In addition to embedding machine-processable data in
human-targeted representation, it can also be expressed di-
rectly in a machine-targeted format. One such format is of
course RDF. We can distinguish two cases: either the RDF
version is a machine-friendly alternative representation of
a human-targeted document, or either the RDF version is the
unique representation of the data. The first case is not unlike
RDFa, where an HTML document always accompanies the
embedded RDF data. However, isolating machine data from
human data has the benefit of separating concerns, since only
one of the data streams is needed at a time. Thanks to the
Linked Data movement and principles, many datasets have
already been made available as RDF [23].

At the moment, RDF is however not the default choice for
many Web developers to expose data in a machine-processable
way. While a few years ago XML was a common structured for-
mat, the JavaScript Object Notation (JSON, [24]) has become
increasingly popular and is now ubiquitous, mainly thanks to
its simplicity and native compatibility with the dominant Web
client language JavaScript. JSON allows to represent complex
hierarchical data efficiently, but unfortunately does not have
any inherent semantics associated with data fields. As a result,
clients have to be programmed to understand a specific type
of JSON information. Furthermore, since JSON lacks native
identification support (such as URIs in RDF), it if difficult to
identify individual resources or to make circular references.

The JavaScript Object Notation for Linking Data (JSON-LD,
[25]) provides a solution to these problems by bridging be-
tween JSON and RDF. It adds an id property to JSON fragments
to enable identification of resources, and a context property
to identify the semantics of data fields. Communication-wise,
JSON-LD and RDF have equal expressive power, but the latter
has the benefit of native JavaScript support, providing maximal
parsing speed and familiarity for developers without prior
Semantic Web knowledge. In that sense, JSON-LD is a hybrid
language: its semantic grounds in RDF make it interpretable by
automated clients, whereas its JSON format offers an accessible
interface for developers of such clients.

C. Web services

As stated in the introduction, the envisioned tasks of
agents are not limited to information retrieval. Far more
possibilities—and a greater complexity—reside in performing
so-called world-changing actions, which alter the state of dig-
ital or real-world objects. Many Web services [26] offer such
actions, for example posting comments, ordering books, or
reserving tickets. Preprogrammed clients do not need to know
what task a service performs, because the author of the client is
the one who interprets the service’s functionality. The situation
is different for an autonomous agent: if it wants to complete
a certain task, it has to find a service that offers the desired
functionality and it then needs to figure out how to invoke that
service. Similarly to the role of machine-interpretable metadata
in HTML documents, clients need a service’s metadata to
understand its capabilities and modalities.

Currently, most Web service documentation is only writ-
ten in human language for developers. Many frameworks
for discovery and machine-processable description of invo-
cation modalities have been created, notably UDDI [27] and
WSDL [28]. However, these frameworks do not reach beyond
the technical aspects of a service, and therefore serve as
assisting technologies for application developers instead of as
metadata for autonomous agents.

The crucial difference with static data is the world-changing
aspect: when retrieving information resources, no harm can
be done because the application state doesn’t change. Since a
service can have side-effects, it can potentially be dangerous
to issue requests without understanding what is going to
happen. While the irrelevance of data can be determined
afterwards, upon which that data can safely be discarded,
the determination of a service’s results after its invocation
comes too late if that action cannot be rolled back. The write
aspect is indeed as important as the read aspect, but currently
underdeveloped [29]. Therefore, autonomous intelligent agents
on today’s Web are scarce, and those that exist are limited to
a specific, pre-programmed domain, such as is the case with
Apple’s Siri.

III. MACHINE-ACCESSIBLE RESOURCES FOR THE FUTURE

We will now have a look at techniques to make resources
machine-accessible that are currently under development or
research, of which we believe they will play a major role on the
future Web for agents. Some of these techniques are already
in use today, while others are still in the research stage or
awaiting adoption.

A. The uniform interface

A key part in our vision is the unification of static re-
sources and services, blurring the distinction between them,
and providing a uniform interface to access all resources.
This makes agent development considerably simpler since
it needs to be programmed only against a single interface,
instead of requiring different bindings for every service. Such
a uniform interface is featured in the work of Roy T. Fielding,
whose doctoral dissertation details the architectural style that
underpins the original design of the Web’s HyperText Transfer
Protocol (HTTP, [30]), and is called REpresentational State
Transfer (REST, [31]). The REST architectural style defines
several constraints on the communication between clients and
servers. These constraints introduce certain desirable proper-
ties in the systems that obey them, including reliability and
scalability. Although HTTP provides the necessary interfaces
to build applications that function according to the REST
architectural constraints, not many of today’s Web applications
actually implement all of them.

According to Fielding, four constraints contribute to the
uniform interface: identification or resources, manipulation of
resources through representations, self-descriptive messages,
and hypermedia as the engine of application state. We will
now go through each of these constraints, and indicate why
they are important for autonomous agents.

71Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

1) Identification of resources: On the Web, resource iden-
tification is achieved through the use of Uniform Resource
Locators (URLs, [32]). A resource is defined as a temporarily
varying membership function, of which the mapping definition
(the function itself) remains constant, but the mapped entity
can vary in time. For example, the resource identified by the
URL http://magazine.example.org/issues/current could
be defined as “the latest issue of Example magazine”, but
could, depending on the month, be the January or February
issue. This resource would be separate from “the January
issue of Example magazine”—even if the current month is
January and the mapped entities are thus the same—because
the mapping definition is different.

The benefit for agents is clearly simplification, because
everything is a resource and is identifiable by a URL. This
means there is no need (or space) for a “service”, since
everything is modelled in terms of resources. For example,
instead of a service that returns tomorrow’s weather forecast
for a specified city, the server provides a resource that gives the
same thing and has a distinct URL. That way, this resource is
indistinguishable from what we have previously called “static
data”—and there is no apparent reason why it should not be.
The reason we often do see a distinction is because the details
of the underlying server implementation are inadvertently
surfacing (e.g., the forecasts are retrieved by a specific script,
which is wrapped as a service rather than modelled as a set
of resources with identifiers).

2) Manipulation of resources through representations:
In HTTP communications, resources themselves are not ex-
changed or manipulated, but rather representations thereof.
A single resource might have multiple representations in
different formats, which allows clients and servers to perform
content negotiation to mutually decide on a representation
they both understand. For example, a browser would indicate
(through Accept headers) a preference for HTML in English or
Spanish (which can be set by the user). Another client might
have a preference for plaintext or JSON. The server will try to
accommodate those preferences to the extent possible.

From a communication viewpoint, this is very beneficial for
agents. They can access, work with, and communicate about
the same resources as those on the human Web. In fact, the
Web for humans and the Web for agents are the same Web:
only the representations are different, since machines are yet
incapable of understanding human language. For the time
being, agents can employ content negotiation to ask for RDF or
JSON-LD content, and perhaps even indicate their preference
for a specific vocabulary. Should the preferred version not
be available, the server can choose to serve a best-effort
representation such as HTML with RDFa.

3) Self-descriptive messages: One of the aspects of self-
descriptiveness of messages is statelessness: every message
should contain all metadata necessary to understand its mean-
ing. For example, to get from the first to the second page of
a listing, a client does not send a “next” message, but rather
a request for the second page resource. This ensures that no
other message is required to understand the request.

Another aspect of self-descriptiveness is the use of standard
methods. HTTP provides only a few generic methods, such
as GET, PUT, POST, and DELETE. This small number of
methods shifts the focus from sending messages to objects
(as is the case in object-oriented programming) to retrieving
and manipulating representations of resources. For example,
instead of sending the findWeather message with “Boston”
as an argument, we perform a standard GET request on the

“current weather in Boston” resource. This again considerably
simplifies agent development, plus it offers guarantees for
several methods: GET guarantees that it will preserve resource
state, while DELETE does not. Both methods guarantee that
they can be executed multiple times without causing additional
effects from the first execution, which POST cannot.

Some Web applications today violate statelessness and/or
do not respect the guarantees of the standard methods. This
can be problematic for agents, as they need to correctly assess
the consequences of requests they make. Even on the human
Web, problems can arise if a method that should not induce
side-effects suddenly does [33].

4) Hypermedia as the engine of application state: The last
constraint necessary to achieve a uniform interface is known as
the hypermedia or HATEOAS (Hypermedia As The Engine Of
Application State) constraint. Due to lack of time, Fielding’s
dissertation does not elaborate on this constraint, but he did so
in later blog posts [34]. Basically, the hypermedia constraint
says that a representation of a resource should contain the
necessary controls to chose possible next steps or actions. For
example, in the hypermedia format HTML such controls are
links, forms, buttons, etc.

If we look at the human Web, we see that the hypermedia
constraint is well-implemented: people never have to manually
type a URL in the address bar to change a page within the
same website. The situation is different for machine-targeted
resources: often, the developer has to configure an agent to
use or construct specific URLs. This limits the capabilities
of agents, since they need hypermedia controls as much as
humans do. With RDF content, such controls are implicitly
defined if URLs (as a special case of URIs) are used as resource
identifiers, since these identifiers then serve as links that can
be followed to look up more information about the resource
(known as dereferencing). However, this only concerns static
resources, as the RDF standard currently does not define
semantics other than retrieval.

If we look at the act of communication, the hypermedia
constraint makes messages provide the context necessary to
gain more insight in the meaning of the resource, both for
humans and agents. Note that, although the message should be
self-descriptive, the representation carried within that message
can have controls to other resources—this is exactly the
purpose of hyperlinks. Although it is possible to add controls
to machine-targeted representations at a later stage [35], this
often involves remodeling the Web application in a resource-
oriented way. The hypermedia constraint is, however, a re-
quirement for agents that want to autonomously discover and
consume resources.

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

B. Semantic description of functionality

While the uniform interface thus creates the necessary
environment for agents, the RDF content type does not provide
sufficient semantics to perform all possible tasks. This is
because RDF is intended for static documents in the first place.
Concretely, if an RDF document contains a URL of a certain
resource, then an agent can predict what will happen if a
GET request is issued: the server will return a representation
of the identified resource. The HTTP specification [30] also
describes the effect of other methods: PUT will place the
entity supplied with the request at the specified URL, and
DELETE will remove the identified resource (given the agent
has sufficient permissions to issue such requests).

However, as the HTTP specification states, “[t]he actual
function performed by the POST method is determined by the
server and is usually dependent on the Request-URI .” This
indicates that HTTP provides no means for an agent to predict
the effect of issuing a POST request to a resource. This is
a major issue, since the POST method is needed often: the
specification mentions examples such as posting messages,
handling form data, and annotating resources. The issue does
not occur on the human Web, because the POST form is usually
accompanied by textual and visual clues, and because we
understand the context in which the form is presented to us.
Agents do not have similar clues at their disposal, since RDF
only describes resources statically. Because of this, agents
require a description of the dynamic aspects of Web resources
in order to understand the effect of methods such as POST.

Earlier description techniques, such as OWL-S [36] and
WSMO [37], were designed with the Web service model in
mind. Web services employ a so-called overloaded form of
POST, the semantics of which do not correspond to those in
the HTTP specification. Therefore, these techniques are not the
right match for Web applications with a REST architecture.

Several description techniques that specifically target REST
are currently the subject of research. One approach to combine
the REST principles and RDF is to start from the SPARQL
query language [38], since it supports update operations from
version 1.1 onwards [39]. This can indeed be a way for
RDF-aware agents to perform state-changing operations on
resources. However, SPARQL is a technology specifically for
machines and is therefore not suited for environments where
other representations are also important, as in the Web for
agents that we envision. Linked Open Services (LOS, [40])
expose functionality on the Web using a combination of HTTP,
RDF, and SPARQL in a way that is more friendly towards differ-
ent representation formats, although the hypermedia constraint
is currently not addressed by this technique.

RESTdesc [41] is a semantic format specifically designed
to describe the effects of POST requests in hypermedia-
driven Web applications. It aims to complement static RDF
descriptions of resources with a dynamic view in an RDF-
like language. Its purpose is to support autonomous agents
in the execution of non-preprogrammed actions on dynamic
resources on the Web.

From a communication perspective, finding a way of letting
machines consume dynamic resources with the same ease as
static resources comes down to semantically expressing what
the effects of manipulating a specific resource are. Eventually,
this should enable agents to choose specific resource actions
based on the functional goals they want to achieve. That way,
a user could instruct an agent to perform a task, which the
agent then can break down in different resource manipulations.
Furthermore, such a resource-oriented approach integrates well
with existing machine-readable data on the Web, whereof
Linked Data is the most prominent example. Agents can then
use this data seamlessly to achieve their goals [42].

IV. CONCLUSION: WHAT THE WEB FOR AGENTS NEEDS

In this paper, we have zoomed in on the obstacles for
agents on today’s Web. Many competing machine-processable
annotation techniques exist, as well as a large variety of RDF
documents. World-changing actions are performed through
Web services, which are separate from other documents on the
Web. In an ideal Web for agents, there is a uniform interface
to all resources, both static and dynamic, removing the current
distinction between documents and services. At the same time,
agents will need a mechanism to understand the effects of
performing state-changing operations on resources.

As long as machines are not able to understand human
language, semantic technologies will remain important for
agents to derive meaning from resources on the Web. We
believe, however, that this is best achieved in a transparent way
such as with the resource and representations model, which
exposes the same resources for both human and machine Web
clients. Or in the words of the famous Scientific American
article: “The Semantic Web is not a separate Web but an
extension of the current one, in which information is given
well-defined meaning, better enabling computers and people
to work in cooperation.” [8]

If we want to take the step to the next communication
model, in which machine agents have the same capabilities
on the Web as humans, we must be willing to work on the
current issues and start building Web applications with all
aspects of the uniform interface. We have only seen the tip
of the iceberg of what is possible with agent technology, and
opportunities will only increase as the number of devices that
join the Web grows on a daily basis. However, it will take
a strong cooperation between Web resource providers and
agent developers to make the rise of the Web for agents happen
in the not-too-distant future.

ACKNOWLEDGMENTS

The described research activities were funded by Ghent
University, the Institute for the Promotion of Innovation by
Science and Technology in Flanders (IWT), the Fund for Sci-
entific Research Flanders (FWO Flanders), and the European
Union.

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

REFERENCES

[1] B. G. Buchanan, “A (very) brief history of artificial intelligence,” AI
Magazine, vol. 26, no. 4, pp. 53–60, 2005.

[2] A. Halavais, Search Engine Society, ser. Digital media and society series.
Cambridge: Polity, 2008.

[3] J. Hendler, “Agents and the Semantic Web,” IEEE Intelligent Systems,
vol. 16, no. 2, pp. 30–37, Mar–Apr 2001.

[4] J. Aron, “How innovative is Apple’s new voice assistant, Siri?” The New
Scientist, vol. 212, no. 2836, p. 24, 2011.

[5] H. Haarmann, Geschichte der Schrift, ser. Wissen in der Beck’schen
Reihe. C. H. Beck, 2002, vol. 2198.

[6] T. Carter and L. Goodrich, The invention of printing in China and its
spread westward. New York: Ronald Press, 1955.

[7] T. Berners-Lee and M. Fischetti, Weaving the Web: The Original Design
and Ultimate Destiny of the World Wide Web by Its Inventor. San
Fransisco: Harper, 2000.

[8] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, vol. 284, no. 5, pp. 34–43, 2001.

[9] G. Klyne and J. J. Carrol. (2004, Feb.) Resource Description Framework
(RDF): Concepts and Abstract Syntax. WC Recommendation. [Online].
Available: http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[10] B. Adida, M. Birbeck, S. McCarron, and I. Herman. (2012,
Jun.) RDFa core 1.1. WC Recommendation. [Online]. Available:
http://www.w3.org/TR/2012/REC-rdfa-core-20120607/

[11] M. Hepp, “GoodRelations: An ontology for describing products and
services offers on the Web,” Knowledge Engineering: Practice and
Patterns, pp. 329–346, 2008.

[12] E. Franzon. (2012, Nov.) Google recommends using
RDFa and the GoodRelations vocabulary. [Online]. Avail-
able: http://semanticweb.com/google-recommends-using-rdfa-and-the-
goodrelations-vocabulary_b909

[13] I. Facebook. (2010) The Open Graph protocol. [Online]. Available:
http://opengraphprotocol.org/

[14] M. Zuckerberg. (2010, Apr.) Building the social Web together. [Online].
Available: https://blog.facebook.com/blog.php?post=383404517130

[15] E. Simperl, “Reusing ontologies on the Semantic Web: A feasibility
study,” Data & Knowledge Engineering, vol. 68, no. 10, pp. 905–925,
2009.

[16] Google, Inc., Yahoo, Inc., and Microsoft Corporation. (2011, Jun.)
Schema.org. Specification. [Online]. Available: http://schema.org/docs/
schemas.html

[17] Web Hypertext Application Technology Working Group. HTML
– microdata. [Online]. Available: http://www.whatwg.org/specs/web-
apps/current-work/multipage/microdata.html

[18] M. Hausenblas and R. Cyganiak. (2011, Jun.) What is schema.rdfs.org?
[Online]. Available: http://schema.rdfs.org/

[19] M. Sporny. (2012, Jun.) RDFa lite 1.1. WC Recommendation. [Online].
Available: http://www.w3.org/TR/2012/REC-rdfa-lite-20120607/

[20] A. Roomann-Kurrik. (2012, Jun.) Twitter Cards. [Online]. Available:
https://dev.twitter.com/blog/twitter-cards

[21] Google. Structured data testing tool. [Online]. Available: http:
//www.google.com/webmasters/tools/richsnippets

[22] A. Hogan, J. Pan, A. Polleres, and Y. Ren, “Scalable OWL 2 reasoning
for Linked Data,” in Reasoning Web. Semantic Technologies for the Web
of Data, ser. Lecture Notes in Computer Science. Berlin / Heidelberg:
Springer, 2011, vol. 6848, pp. 250–325.

[23] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data – The Story So
Far,” International Journal On Semantic Web and Information Systems,
vol. 5, no. 3, pp. 1–22, 2009.

[24] D. Crockford. (2006, Jul.) The application/json media type for
JavaScript Object Notation (JSON). IETF Request for Comments.
[Online]. Available: http://www.ietf.org/rfc/rfc4627

[25] M. Lanthaler and C. Gütl, “On using JSON-LD to create evolvable
RESTful services,” in Proceedings of the Third International Workshop
on RESTful Design, Apr. 2012, pp. 25–32.

[26] K. Gottschalk, S. Graham, H. Kreger, and J. Snell, “Introduction to Web
services architecture,” IBM Systems Journal, vol. 41, no. 2, pp. 170–177,
Apr. 2002.

[27] T. Bellwood, S. Capell, L. Clement, J. Colgrave, M. J. Dovey, D. Feygin,
A. Hately, R. Kochman, P. Macias, M. Novotny, M. Paolucci, C. von
Riegen, T. Rogers, K. Sycara, P. Wenzel, and Z. Wu. (2004, Oct.)
UDDI version 3.0.2. OASIS. [Online]. Available: http://www.oasis-
open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm

[28] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. (2001,
Mar.) Web Services Description Language (WSDL) 1.1. WC Note.
[Online]. Available: http://www.w3.org/TR/wsdl

[29] S. Coppens, R. Verborgh, M. Vander Sande, D. Van Deursen,
E. Mannens, and R. Van de Walle, “A truly Read-Write Web for
machines as the next-generation Web?” in Proceedings of the SW2012
workshop, Nov. 2012. [Online]. Available: http://stko.geog.ucsb.edu/
sw2022/sw2022_paper3.pdf

[30] R. T. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. (1999, Jun.) Hypertext Transfer
Protocol – HTTP/1.1. IETF Request for Comments. [Online]. Available:
http://www.ietf.org/rfc/rfc2616

[31] R. T. Fielding and R. N. Taylor, “Principled design of the modern Web
architecture,” ACM Transactions on Internet Technology, vol. 2, no. 2,
pp. 115–150, May 2002.

[32] T. Berners-Lee, L. Masinter, and M. McCahill. (1994, Dec.) Uniform
Resource Locators (URL). IETF Request for Comments. [Online].
Available: http://www.ietf.org/rfc/rfc1738

[33] R. Verborgh. (2012, Jul.) GET doesn’t change the world.
[Online]. Available: http://ruben.verborgh.org/blog/2012/07/19/get-
doesnt-change-the-world/

[34] R. T. Fielding. (2008, Oct.) REST APIs must be hypertext-driven.
Untangled – Musings of Roy T. Fielding. [Online]. Available:
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

[35] O. Liskin, L. Singer, and K. Schneider, “Teaching old services new
tricks: adding HATEOAS support as an afterthought,” in Proceedings of
the Second International Workshop on RESTful Design. ACM, 2011,
pp. 3–10.

[36] D. Martin, M. Burstein, J. Hobbs, and O. Lassila. (2004, Nov.)
OWL-S: Semantic Markup for Web Services. WC Member Submission.
[Online]. Available: http://www.w3.org/Submission/OWL-S/

[37] H. Lausen, A. Polleres, and D. Roman. (2005, Jun.) Web Service
Modeling Ontology (WSMO). WC Member Submission. [Online].
Available: http://www.w3.org/Submission/WSMO/

[38] E. Wilde and M. Hausenblas, “RESTful SPARQL? you name it! – aligning
SPARQL with REST and resource orientation,” in Proceedings of the 4th

Workshop on Emerging Web Services Technology. ACM, 2009, pp.
39–43.

[39] E. Prud’hommeaux and A. Seaborne. (2008, Jan.) SPARQL Query
Language for RDF. WC Recommendation. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query/

[40] R. Krummenacher, B. Norton, and A. Marte, “Towards Linked Open
Services and Processes,” in Proceedings of the Third future internet
conference on Future Internet. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 68–77.

[41] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, J. Gabarró Vallés,
and R. Van de Walle, “Functional descriptions as the bridge between
hypermedia APIs and the Semantic Web,” in Proceedings of the Third
International Workshop on RESTful Design. ACM, Apr. 2012.

[42] J. Domingue, C. Pedrinaci, M. Maleshkova, B. Norton, and
R. Krummenacher, “Fostering a relationship between Linked Data and
the Internet of Services,” in The Future Internet, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2011, vol. 6656,
pp. 351–364. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
20898-0_25

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2012/REC-rdfa-core-20120607/
http://semanticweb.com/google-recommends-using-rdfa-and-the-goodrelations-vocabulary_b909
http://semanticweb.com/google-recommends-using-rdfa-and-the-goodrelations-vocabulary_b909
http://opengraphprotocol.org/
https://blog.facebook.com/blog.php?post=383404517130
http://schema.org/docs/schemas.html
http://schema.org/docs/schemas.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html
http://schema.rdfs.org/
http://www.w3.org/TR/2012/REC-rdfa-lite-20120607/
https://dev.twitter.com/blog/twitter-cards
http://www.google.com/webmasters/tools/richsnippets
http://www.google.com/webmasters/tools/richsnippets
http://www.ietf.org/rfc/rfc4627
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
http://www.w3.org/TR/wsdl
http://stko.geog.ucsb.edu/sw2022/sw2022_paper3.pdf
http://stko.geog.ucsb.edu/sw2022/sw2022_paper3.pdf
http://www.ietf.org/rfc/rfc2616
http://www.ietf.org/rfc/rfc1738
http://ruben.verborgh.org/blog/2012/07/19/get-doesnt-change-the-world/
http://ruben.verborgh.org/blog/2012/07/19/get-doesnt-change-the-world/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSMO/
http://www.w3.org/TR/rdf-sparql-query/
http://dx.doi.org/10.1007/978-3-642-20898-0_25
http://dx.doi.org/10.1007/978-3-642-20898-0_25

	Introduction: the Web for agents
	Imagining intelligent agents
	The Web's role in communication history

	Machine-accessible resources today
	HTML with annotations
	Machine-targeted document formats
	Web services

	Machine-accessible resources for the future
	The uniform interface
	Identification of resources
	Manipulation of resources through representations
	Self-descriptive messages
	Hypermedia as the engine of application state

	Semantic description of functionality

	Conclusion: what the Web for agents needs
	References

