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CENICS 2017

Forward

The Tenth International Conference on Advances in Circuits, Electronics and Micro-
electronics (CENICS 2017), held between September 10-14, 2017 in Rome, continued a series of
events initiated in 2008, capturing the advances on special circuits, electronics, and micro-
electronics on both theory and practice, from fabrication to applications using these special
circuits and systems. The topics covered fundamentals of design and implementation,
techniques for deployment in various applications, and advances in signal processing.

Innovations in special circuits, electronics and micro-electronics are the key support for a
large spectrum of applications. The conference was focusing on several complementary aspects
and targets the advances in each on it: signal processing and electronics for high speed
processing, micro- and nano-electronics, special electronics for implantable and wearable
devices, sensor related electronics focusing on low energy consumption, and special
applications domains of telemedicine and ehealth, bio-systems, navigation systems, automotive
systems, home-oriented electronics, bio-systems, etc. These applications led to special design
and implementation techniques, reconfigurable and self-reconfigurable devices, and require
particular methodologies to be integrated on already existing Internet-based communications
and applications. Special care is required for particular devices intended to work directly with
human body (implantable, wearable, ehealth), or in a human-close environment (telemedicine,
house-oriented, navigation, automotive). The mini-size required by such devices confronted the
scientists with special signal processing requirements.

The conference had the following tracks:

 Design, models and languages

 Electronics technologies

 Reconfigurable Architectures, Tools and Applications

 Cyber-Physical Security

We take here the opportunity to warmly thank all the members of the CENICS 2017
technical program committee, as well as all the reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly
thank all the authors that dedicated much of their time and effort to contribute to CENICS
2017. We truly believe that, thanks to all these efforts, the final conference program consisted
of top quality contributions.

We also gratefully thank the members of the CENICS 2017 organizing committee for their
help in handling the logistics and for their work that made this professional meeting a success.

We hope that CENICS 2017 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the field of
circuits, electronics and microelectronics. We also hope that Rome, Italy provided a pleasant
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environment during the conference and everyone found some time to enjoy the historic charm
of the city.
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Abstract—Embedded systems are known as valid 

candidates to efficiently support image and video processing 

algorithms. Their high flexibility, speed performances and low 

power consumption are mainly due to the joint design of their 

software and specific hardware portions. The Zynq All 

Programmable System on Chip, that integrates ARM 

processor and high performance programmable logic 

resources, is nowadays often preferred to the more traditional 

realization platforms, such as Application Specific Integrated 

Circuits (ASICs) and Digital Signal Processors (DSPs). In this 

paper, we evaluate two different design strategies, each with its 

own Zynq-based support platform, giving to the designers 

useful hints on how to identify the best design choices for the 

target application. The first support platform presented here 

also makes use of an embedded operating system (OS); it 

significantly limits the required design efforts and time-to-

market. The second architecture is realized without the OS 

support, and of course reaches much higher performances 

than the former, but requiring higher development and 

verification times. Both platforms exploit a hardware 

accelerator for the function of interest. As a case study, a 

simple but complete image processing architecture has been 

designed by using both the above platforms. Performances 

measurements revealed that an approximate speed 

improvement between 4 and 52 times could be obtained with 

respect to an all-software implementation. 

Keywords–Embedded Systems; Image Processing; Zynq . 

I. INTRODUCTION  

In the last few years, the development of even more 

complex and computationally intensive video processing 

algorithms has been made possible due to the ever-

increasing technology progress. Many of these algorithms 

are adopted in a large variety of applications where real-

time performances play an important role. In these cases, 

software-oriented implementations, running on general 

purpose CPUs, might not satisfy the tight speed constraints. 

Faster and more efficient implementations can be achieved 

with the aid of hardware accelerators that allow exploiting 

proper computational parallelisms. Embedded systems are a 

well known approach to speed up image and video 

processing algorithms by conjunct software/hardware 

special designs [1]. Such heterogeneous architectures allow 

trading off the advantages offered by the flexible software 

and the high performance hardware portions of the design 

[2]. Nowadays, among several possible realization 

platforms, the FPGA-based is the most interesting one. Its 

reduced design efforts and time-to-market make such an 

approach more appreciated than those based on ASICs 

fabrication [3]. The lower power dissipation and higher 

speed performances attainable by using such realization 

strategy make it preferable with respect to the DSP-based 

counterparts [4].  

Usually, designing an embedded system for video 

processing, the designer must take into account that most 

algorithms perform both pixel-level and frame-level 

computations. Due to their higher computational 

complexity, pixel-level processing have a great benefit by 

the inclusion in the embedded system of a dedicated 

hardware accelerator. On the contrary, frame-level 

elaborations often process only few frame descriptors. Thus, 

they do not represent a bottleneck for the overall 

application. In this case, a pure software implementation can 

be easier, more flexible and does not compromise the 

system performances. It is then clear why, in order to 

conjugate the high-speed capability of a hardware 

implementation with the flexibility provided by a software 

design, heterogeneous System-on-Chips (SoCs) based on 

FPGA have been recently recognized as the most promising 

approach [5].  

However, hardware-software (HW/SW) co-design 

shows several challenges for the designer. Not only the 

application has to be partitioned into software and hardware 

tasks, but also the communication between them has to be 

efficiently managed. 

In this paper, we evaluate two different design strategies 

for the design and the implementation of real-time 

embedded systems for image and video processing based on 

a FPGA SoC. Each of the two designs presented here has its 

own strengths and weaknesses. The former shows an 

extreme flexibility and a moderate performance, whereas 

the latter requires more design efforts but allows much 

higher speed performance to be reached. As a case study, a 

complete image processing architecture, which includes 

image capturing from a webcam, Sobel filtering and output 

visualization on a monitor, has been implemented. All 

experiments have been performed by using a Zedboard 

1Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-585-2
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equipped with the Xilinx Zynq XC7Z020-CLG484 SoC. 

Performance measurements revealed that the frame rates of 

such designed embedded systems range between 4 and 52 

times the frame rate attainable by a pure software 

counterpart. The rest of the paper is organized as follows. In 

Section II, a brief background and the most relevant state of 

the art related works are reviewed. The first evaluated 

architecture is introduced in Section III, whereas Section IV 

describes an example of application to perform fair 

comparisons. A different design approach is then 

investigated in Section V. Finally, some conclusions are 

drawn in Section VI. 

II. BACKGROUND AND RELATED WORKS 

The essence of embedded systems design is 

implementing a specific set of functions in order to 

accomplish constraints on performance, costs, emissions, 

power consumption, etc [6]. Figure 1 shows the typical 

architecture of a generic embedded system. In general, one 

or more programmable processing units (CPUs) are used. 

Depending on the application domain, the embedded 

systems can have external memory blocks, communication 

interfaces and several I/O peripherals. While CPUs are 

traditionally software programmed, custom application 

specific circuits accelerate more time consuming processes. 

The first preliminary design step is the efficient HW/SW 

partitioning of the target application. It consists of splitting 

the application into computational tasks to be executed 

either by software routines or by hardware modules. 

Depending on this partitioning, speed performances and 

design complexity can be traded off. The generally used 

approach is to profile the application by means of specific 

CAD tools [7] in order to indentify its computational loads. 

Speed performances can be optimized allocating the 

processing of the most time-consuming tasks to custom 

hardware accelerators. The remaining non-critical tasks are 

executed by software routines running on the host general 

purpose processor. To avoid communication bottlenecks, in 

a similar approach, the host processor and the hardware 

accelerators must exchange and transfer data to each other 

with high throughput and low latency. 

The emerging approach based on heterogeneous 

programmable SoCs is stimulating many application fields 

[8]. In this section, a group of significant related works are 

briefly reviewed. 

A prototyping environment for heterogeneous 

CPU/FPGA systems is described in [9], in which a host 

machine is coupled to a Xilinx Virtex 6 FPGA through the 

PCI Express Bus. As shown in [10], the limited bandwidth 

of the communication bus reduces the achievable 

performances.  

A Cadence virtual platform modeling the Xilinx Zynq-

7000 SoC is adopted in [11] to implement an Adaptive 

Cruise Control Unit. This virtual prototyping environment 

allows using the SystemC language for the portable 

implementation of software and hardware modules, thus  

 

 
Figure 1. The typical structure of an Embedded System. 

avoiding VHDL designs and speeding up the simulation of 

the overall system. A similar approach is adopted also in 

[12], where a very high abstraction design approach, based 

on the use of OpenCV and SystemC, is proposed as an 

efficient strategy to design embedded systems. 

A study about the portability of the OpenCL 

programming model is, instead, presented in [13]. OpenCL 

is a framework for targeting heterogeneous platforms based 

on the C/C++ language. 

This approach allows a HW/SW co-design that is 

independent of the adopted hardware platform to be 

obtained. Thus, the code can be easily re-targeted to 

different platforms. In [13], experiments conducted by using 

the Altera SDK for OpenCL (AOCL), however, demonstrate 

that the same test code performs differently on different 

platforms, thus requiring specific optimizations.  

In [14], several real-time image processing algorithms 

are implemented on a Zynq-based hardware platform. This 

study exploits a task partitioning of the target application 

based on performances improvements. Linux operating 

system is hosted on the ARM CPU inside the Zynq to easily 

manage the video acquisition by software routines. An 

efficient communication strategy between hardware 

accelerators and the host CPU is realized through the 

AMBA Advanced Extensible Interface (AXI).   

With the main objective of reducing the time-to-market 

of the developed system, the approach described in [15] 

exploits the Xillybus IP core to guarantee a fast 

communication between hardware and software components 

of the overall system. To this aim, the communication is 

managed by software thanks to some useful functions 

included in the Xillybus library. 

In the next section, we evaluate such an approach as a 

generally valid support to design heterogeneous embedded 

system architectures for real-time image processing. The 

Xillinux open source operating system is hosted on the CPU 

and it manages the communication with the hardware 

implemented into the FPGA portion of the Zynq chip as a 

regular peripheral.  

III. THE XILLYBUS-BASED PLATFORM 

The main target of the platform described below is to 

furnish an efficient hardware support to develop real-time  
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Central Processing Unit 

(CPU) 
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devices 

Output 

devices 
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Figure 2. Xillybus-based platform. The PS section hosts the OS 

components, whereas the PL section implements hardware accelerators and 

Xillybus IP core. 

image and video processing applications in embedded 

systems, with reduced implementation time.  

The platform evaluated in this section is structured as 

depicted in Figure 2. The Zynq processing system (PS) 

consists of a dual core ARM Cortex – A9 processor, while 

the programmable logic (PL) is based on the Artix-7 FPGA 

fabric for minimizing power consumption. 

The ARM processor is able to host OSs such as Linux, 

Real Time Operating System (RTOS), Windows, etc. The  

 Zedboard is also equipped with 512 MB DDR3 memory 

and a 256Mb 4-bit SPI Serial NOR Flash memory. The 

latter supports speeds up to 400Mbps and hence it is suitable 

for storing boot loaders and kernel of one of the above OSs. 

      The system detailed below exploits a set of precompiled 

sub-systems, namely the Xillybus package, able to facilitate 

the communication tasks between the PS, the external 

peripherals and the accelerators. The Xillybus package 

makes also available the Xillinux open source OS that is a 

complete graphical Ubuntu 12.04 LTS-based Linux 

distribution, well suitable for rapid development of mixed 

software/logic designs [16]. It is a collection of software 

tools that supports roughly the same capabilities of a 

personal desktop computer running Linux. Xillybus 

distribution comes with two different synthesizable cores: 

the XillyLite IP core that allows a simple direct address/data 

transfer; and the Xillybus IP core that allows data streams to 

be transferred to/from the custom hardware accelerator [17].  

The designed architecture is illustrated in Figure 3. It 

can be observed that a XillyLite core is used to access a 

block RAM, whereas the Xillybus core is adopted to 

transfer data from the PS to/from the custom hardware 

accelerator [18]. All IP cores are also connected to the PS 

by an AXI-Lite interface.   

When connected to the Xillybus IP core, the hardware 

accelerators can be accessed by the PS like a common 

peripheral, which communicates with the OS through 

specific device drivers.  

The interface between the software drivers and the 

software application is represented by the device files 

provided by Xillybus. These files can be opened, read and 

written like any files inside the user space application, so it 

is possible to implement a high level abstraction for PS-PL 

communication.  

The PS manages the data transfer to capture the frames 

from a webcam through the USB port and to store them into 

the DDR3 external memory. Other memory accesses, 

related to the data transfers to/from the custom hardware 

accelerator, are governed by the Xillybus IP core through 

the high performances ports in the PS section. The 

acquisition operation is easily implemented in software by 

using video libraries and camera drivers. Whereas, the PL 

was used to hardware implement the following components: 

• The Xillybus IP core that communicates with the PS 

through the AXI full and AXI Lite interfaces;  

• The XillyLite IP core that communicates with the PS 

through the AXI Lite interface; 

• The custom hardware accelerator; 

• Two FIFOs, used as input and output interfaces between 

the Xillybus core and the custom hardware accelerator; 

• A VGA controller connected to an external monitor that 

displays the output of the custom hardware accelerator 

stored in the DDR3 external memory. 

In the designed architecture, the processor works as 

master during the configuration of the VGA controller, the 

XillyLite IP core and the Xillybus IP core. This 

configuration corresponds to a control signals transfer, 

needed to inform the hardware IP cores about the image 

resolution, the DDR memory addresses etc.  

 Each data transfer through an AXI interface occurs as 

summarized in the following: 

• In a read process, the slave device address is sent by the 

master interface over the read address channel. Then, the 

addressed slave interface sends the corresponding data 

over the read data channel to the master. 

• In a write process, the master interface sends the slave 

device address to which the data is to be written and 

corresponding data. On successful write at the slave 

interface, the slave sends a response over the write 

response channel to flag the transfer completion.  
   

 
Figure 3. Architecture used within the ZedBoard to evaluate the Xillybus-

based platform. 
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An AXI Interconnect IP core multiplexes the access by 

the master to the three slaves and the Xillybus IP core acts 

as an interface between the PS and the custom hardware 

accelerator. This architecture can be easily customized to 

perform virtually any image and video processing algorithm 

without re-design either the top-level architecture or the 

interface modules required to acquire input images/videos 

and to display/store the resulting frames.  

Data transferred to/from the PS from/to the hardware 

accelerator flows through the input and output FIFOs, as 

shown in Figure 3. FIFOs can be configured according to 

the applications requirements, but they must comply with 

the constraints of the device drivers provided by Xillybus. 

As an example, the Xillybus drivers can be configured to 

transfer 8, 16 or 32-bit data words so the data width of the 

FIFOs must be set accordingly. The wr_en, rd_en, full and 

empty control signals manage the synchronization between 

the Xillybus IP core and the hardware accelerator. 

The complete data flow implemented within an 

embedded system designed by using our platform is 

described in the following: 

• The PS converts the RGB frame, captured by the 

webcam, into the 8-bit grayscale format and, 

subsequently, it transfers the pixels to the external 

DDR3 block memory. The frame is transferred from the 

DDR3 memory to the PL through the Xillybus interface. 

This operation is performed by the software routine 

running on the PS, which communicates with the 

Xillybus drivers through the available “open” and 

“write” functions applied on the specific device file, as 

shown in Figure 4. Then, the pixel transfer from PS to 

the Xillybus IP core occurs through the high 

performance S_AXI_ACP port. As a response, the 

Xillybus IP core activates the write enable (wr_en) 

signal of the input FIFO. 

• If the input FIFO is not empty and the hardware 

accelerator is ready to receive the input pixels, the read 

enable (rd_en) signal is asserted and a stream of pixels is 

sent to the hardware accelerator. 

• When valid data is available on the output port of the 

hardware accelerator, the latter asserts the write enable 

(wr_en) signal of the output FIFO, which receives a 

stream of data produced by the user-defined 

computational logic. The output data stream continues 

until the output FIFO becomes full. If this condition 

occurs, the output FIFO asserts its full signal and the 

hardware accelerator temporarily stalls the transfer.  

 

 

 

 

 

 

 

 
     Figure 4. Use of "open" and "write" functions in the software routine. 

                   

       Figure 5. Use of "open" and "read" functions in the software routine. 

• The software running on the PS invokes the “open” and 

“read” functions of the Xillybus driver, as described in 

Figure 5, so data stored in the output FIFO is transferred 

to the DDR3 through the S_AXI_ACP/Xillybus 

connection. In hardware, this operation corresponds to 

assert the rd_en signal of the output FIFO.  

• The output image is finally transferred from the DDR3 

to the VGA controller that is connected to an external 

monitor. The PS is involved in this operation only to 

send the control signals to the VGA controller through 

its M_AXI GP port. Pixels to display are transferred 

from the DDR3 to the VGA controller through the high 

performance S_AXI_HP port of the PS. The latter is not 

involved during the data transfer so it can run the next 

software routine. 

In the proposed design support platform, the Xillybus IP 

core and the custom hardware accelerator work with the 

same clock, so the write/read operations to/from the input 

and output FIFOs occur at the same rate. The clock is 

produced by the PS with a frequency of 100MHz, which is 

the highest frequency supported by the Xillybus IP core 

[19]. The usage of synchronous streams is the preferred 

choice when tight synchronization is needed between the 

software running on the PS and the hardware implemented 

in the PL. However, in order to increase performances, 

multiple clock domains can be adopted if the hardware 

accelerator can run at clock frequencies higher than 

100MHz. In such a case, asynchronous FIFOs with different 

input and output clock frequencies have to be employed. In 

particular, the write (read) operation into (from) the input 

(output) FIFO is performed at the Xillybus clock rate, 

whereas the write (read) operation into (from) the output 

(input) FIFO is performed at the clock rate of the hardware 

accelerator. 

IV. THE CASE STUDY: A SOBEL FILTER IMPLEMENTATION 

As an example of application, the above described 

design platform has been used to implement an embedded 

system which filters digital images. The 3×3 Sobel filter 

[20] is hardware implemented and applied to 320×240 

pixels frames captured by the external camera. Image 

filtering has been chosen as the case study since it has a 

computational complexity sufficiently high to highlight the 

advantages offered by the HW/SW co-design over the all-

software counterpart.  

The hardware accelerator has been developed with the 

Vivado High Level Synthesis (HLS) tool that allows 

describing the hardware circuit in a high level programming                                        

 int fdr; 
 unsigned char *buffer; 

 //Open Xillybus interface to transfer data from PL to PS 

 fdr=open(“/dev/Xillybus_read_device”, O_RDONLY); 
 read(fdr, buffer, sizeof(buffer)); 

 //Close Xillybus PL-to-PS interface 

 close(fdr); 

 int fdw; 
 unsigned char *buffer; 
 //Open Xillybus interface to transfer data from PS to PL 

 fdw=open(“/dev/Xillybus_write_device”, O_WRONLY); 

 write(fdw, buffer, sizeof(buffer)); 
 //Close Xillybus PS-to-PL interface 

 close(fdw); 
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TABLE I. RESOURCE UTILIZATION.

 

language (C++) and converting the code into a 

synthesizable RTL description. Input and output interfaces 

of the custom hardware accelerator have been configured as 

FIFOs, in order to guarantee the compatibility with the two 

FIFOs connected to the Xillybus IP core. The FIFOs have a 

data width and a depth of 8 bit and 2048 words, 

respectively.  

Table I summarizes the overall FPGA resources 

utilization of the implemented architecture. The number of 

the total used look-up tables (LUTs) is very limited, about 

7% of the LUTs available in the XC7Z020-CLG484 chip; 

the number of required flip-slops (FFs) and 32Kbyte block 

RAMs (32K BRAMs) is even lower (3.5% and 2.8%, 

respectively). 

The software application, running on the PS, exploits 

OpenCV library functions [21] to manage the input frames 

captured by the USB camera. The input pixels are converted  

from the RGB to the 8-bit grayscale format and transferred 

to the DDR3 memory. The software application is 

responsible for transferring the pixels to the Xillybus IP 

core, retrieving the output pixels from the hardware 

accelerator and storing them to the DDR3 memory. Finally, 

the software application starts the data transfer from the 

DDR3 to the VGA controller. Figure 6 shows two output 

video frames obtained by the implemented architecture. 

To measure execution time of each task, the appropriate 

software timing library has been used. Since the data 

transfer through the Xillybus can be performed by varying 

the number of bytes transferred at each write/read function 

call, we evaluated the execution time as a function of the 

bytes packet size. As depicted in Figure 7, the total 

execution time drastically decreases when the packet size 

increases. But, the minimum execution time of about 118.3 

ms is reached for a packet size of ≈5000 bytes and it is 

maintained until 9600 bytes.  

           
Figure 6. Some input and output video frames. 

 
         Figure 7. Execution time vs. the packet dimension. 

              TABLE II. EXECUTION TIMES. 

 

This result suggests to adopt transfer of ≈5000 bytes each, 

because this also limits the depth of the input and output 

FIFOs.   

Table 2 shows the timing breakdown that is split into 

three main contributions: the hardware processing time 

(Sobel filtering), the PL-PS communication time (“write, 

“read” and “open” of the Xillybus driver) and the remaining 

software execution time (RGB to grayscale conversion and 

data streaming from/to the DDR3 managed by the PS) per 

frame.  

As expected, the software execution time represents the 

highest contribution, mainly due to the OpenCV functions 

for the management of input frame, the format conversion 

and the output frame visualization. The hardware processing 

and the communication between PS and Xillybus IP core 

account only for the 15.5% of the overall execution time.    
In order to estimate the speed-up obtained by the custom 

hardware accelerator, a pure software routine performing 
the same Sobel filtering has been characterized. The latter 
has been executed by the ARM processor hosted in the PS, 
which operates at a 666.66 MHz running frequency. 
Measurements reported in Table 2 show the benefits 
obtained by the heterogeneous design approach. A gain of 
about 4x has been achieved.  

Even though a direct comparison between our results 
and those reported in [15] cannot be performed, due to the 
different user application, a brief discussion is appropriate.  
In [15], a Xillybus-based platform performing the Harris 
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Corner Detection function on 512x384 images has been 
implemented and evaluated. When the PL is clocked at 100 
MHz and the 32-bit Xillybus software interface is adopted, 
the total communication and hardware processing time is 
about 15 ms. The latter is approximately 3.3ms lower than 
result reported in Table 2, which instead has been obtained 
adopting the 8-bit Xillybus software interface. If the 32-bit 
Xillybus software interface is used in the architecture of  
Figure,3, the communication time is reduced 
correspondingly.  

V. THE VDMA-BASED ALTERNATIVE 

 
The high level design approach used above employs a 

ready-to-use communication solution between hardware and 
software components. Due to this, it significantly reduces 
design efforts, the development time and the hardware 
design expertise required for realizing a complete embedded 
system for video processing applications. Of course, such a 
design strategy negatively impacts the overall speed 
performances. In particular, some considerations can be 
done in reference to the Xillybus bandwidth.  

The FIFO configuration provided by Xillybus has a 

maximum bandwidth of about 200 MB/s for each transfer 

direction [17]. On the contrary, the Zynq PS high 

performance ports are able to access the DDR3 memory 

achieving a bandwidth of 1600 MB/s for a 64-bit transfer at 

100 MHz clock rate [22].  

In this section, we examine an alternative design, based 

on the direct use of Video Direct Memory Access (VDMA) 

IP cores [23]. Using this approach, much more architectures 

design knowledge and digital system debugging practice are  

required. The VDMA is a soft core, which provides high 

bandwidth access to external memory and video processing 

IP cores with AXI-Stream interface. The architecture 

designed in accordance with this strategy is illustrated in 

Figure 8. In this case the PS does not support an OS, thus 

the system is oriented to bare-metal application 

architectures. An OmniVision OV7670 CMOS Camera has 

been connected through an I2C interface and an appropriate 

frame capture control sub-system is required. The VDMA0 

transfers captured frames to the DDR3 and, then, after the 

elaboration, from the DDR3 to the VGA display port. The 

VDMA1 transfers the video stream to the custom hardware 

accelerator that performs the specific video algorithm. After 

that, the VDMA1 writes back the filtered results into the 

DDR3 memory. 

Using High Performance AXI ports to access the 

external memory allows the computational load of the 

processor to be significantly reduced. Furthermore, by using 

two different High Performance ports, parallel operations 

to/from the DDR3 can be performed, thus obtaining a 

further considerable performance improvement. In fact, a 

new captured frame can be stored, or a result frame can be 

displayed, while the VDMA1 transfers the pixel stream 

to/from the hardware accelerator. 

                
 

Figure 8. Architecture used within the ZedBoard to evaluate the 
VDMA-based platform. 

 

Due to the overlap between the two phases above 

mentioned, this architecture reaches a processing rate much 

higher than the structure exploiting the Xillybus IP Cores. 

When the same Sobel filter accelerator is implemented 

within this structure, a total execution time of only ≈9.2 ms 

is achieved, thus leading to an overall performance ∼13 

times higher. This result has been obtained with a clock rate 

of 100MHz for the PL section, while the Video Capture IP 

core operates at 30 frames per second in VGA resolution.  

VI. CONCLUSIONS 

In the development of an embedded system based on 
heterogeneous SoCs, of course, the first important design 
step is the efficient HW/SW partitioning of the target 
application. After that, on the basis of the design 
environment, several other significant choices have to be 
done. When only high level description is desired, several 
precompiled supports could be of great help. As shown in 
this paper, an almost complete solution is offered by the 
Xillybus package that contains appropriate communication 
sub-modules and a light OS. 

We designed a test architecture to evaluate the speed 
improvement attainable with such supports and measured a 
speed up of ≈4 times with respect to a pure software typical 
image processing elaboration. Such an approach allows very 
easy interface between the designed architecture and 
peripherals.  

On the contrary, when the speed performance is the 
main concern, a direct and on-purpose design of the entire 
architecture is preferable. In such a case, a further x13 speed 
up has been observed, but at the expense of much more 
design effort and verification time. 
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Abstract—In nanoscale large-scale integration (LSI) manufac-
turing, there exist hotspots on mask patterns, which cause
failures of pattern transfer. Such hotspots are detected by optical
simulation to remove them. However, it requires a long time.
Thus, development of efficient hotspot detection methods is
required. As one of the methods, an existing one based on
approximate string search has been proposed. Although this
method is expected to find hotspots more flexibly than commonly-
used template matching, computation of edit distance matrices
used for approximate string search still requires a long time.
Thus, in this study, we accelerate the computation by using table-
reference of precomputed values and simultaneous computation
of multiple elements. Our experiments showed that our improved
method achieved about 1/11 computation time compared to the
original one.

Keywords–lithography; hotspot; optical simulation; approximate
string matching.

I. INTRODUCTION

In nanoscale large-scale integration (LSI) manufacturing,
lithography process is one of the most important processes,
in which mask patterns printed on photomasks are transferred
to the wafer using exposure equipment. In the process, some
patterns tend to be failed to be transferred because of optical
diffraction. Such patterns are called hotspots [1].

Since the cost of manufacturing photomasks is quite high, it
is better to remove hotspots from the mask patterns in advance.
Thus, lithography engineers apply optical simulation to the
mask patterns received from mask designers. If hotspots are
found by the optical simulation, it is informed to the designers,
and the patterns are revised. This is repeated until all the
hotspots are removed. However, optical simulation is time-
consuming. To reduce the number of times of optical simu-
lation, mask designers need to detect and remove hotspots in
advance. Therefore, some studies on efficient hotspot detection
have been conducted [2]–[6]．

[2] proposed a template-matching-based method, which
directly matches mask patterns and hotspot patterns. A mask
pattern and a hotspot pattern are shown in Figure 1, as
examples. A hotspot pattern is a pattern which should be
detected from a mask pattern. While this method has a high
ability to detect known patterns, its ability to detect unknown
patterns is low. [3] discussed some hotspot detection meth-
ods using some machine-learning methods, such as artificial
neural network (ANN) and support vector machine (SVM).
According to the nature of machine-learning-based methods,
they can detect unknown patterns as hotspots. However, they
cause a large number of false-positive detections. [4] proposed
a hybrid method based on template matching and machine-
learning. Though the hybrid approach improved the accuracy

of detection, the number of false-positive detections is still
large. In addition, it takes 10 to 100 times longer for detection.
[5] adopted a fuzzy-matching model instead of ANN or SVM.
They improved both of execution time of detection and the
accuracy of detection. Although there exist aforementioned
hotspot detection methods, some mask designers use template-
matching to detect hotspot patterns since their execution time
and accuracy do not meet the level required by the designers.

Figure 1. Circuit patterns: (a) mask pattern，(b) hotspot pattern

In [6], we proposed an approximate string matching-
based hotspot detection method for flexible hotspot detection.
Comparing to machine-learning-based methods, this method
can detect hotspot candidates in a short time. Comparing
to template-matching-based methods, this method can detect
hotspot candidates more flexibly (i.e., unknown patterns can
be detected.) However, to calculate the value of each element
in the edit distance matrix for approximate string matching, we
need to refer to three elements in the matrix. Thus, comparing
to template-matching-based methods, in which only one value
is referred for the corresponding calculation, it takes a longer
time for calculation (although it is just a constant coefficient
factor).

Thus, in this paper, we improve the approximate string
matching-based method [6] by using table-reference of pre-
computed values and simultaneous calculation of multiple
elements in the edit distance matrix. Each region of simulta-
neously handled elements is a k× k partial matrix of the edit
distance matrix, where k is the user-defined constant which
decides parallelism. In the proposed method, the calculation of
a region for every possible input set is performed in advance,
and the result is memorized in a reference-table. Then, the
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edit distance matrix is calculated by using the table. For
efficient calculation, the values in a region is encoded to one
word of memory to calculate the values of multiple elements
with only one memory access. Experimental result showed the
high effectiveness of the proposed method in execution time
compared to the existing method [6].

The rest of this paper is organized as follows. First, in
Section II, we explain about lithography, and we provide the
definitions of the approximate string matching problem, the
edit distance, the approximate string search problem, which
is one of the variations of the approximate string matching
problem, and on which our proposing method and [6] are
based. Next, in Section III, the definition of the hotspot
detection problem and the existing hotspot detection method
[6] are shown. Then, in Section IV, we propose an improved
method which uses table-reference. Section VI shows some
experimental results, and finally conclusions are given in
Section VII.

II. PRELIMINARIES

A. Lithography
Lithography is one of the processes of LSI manufacturing.

In the process, a circuit pattern drawn on a photomask is trans-
ferred to the wafer using exposure equipment. A photomask
is one of the masters to make a circuit on the wafer.

Figure 2 illustrates lithography process. In lithography
process, a mask pattern drawn on a photomask is transferred
onto the wafer via lenses, shedding light from above the
photomask. While 193nm laser is commonly used in advanced
lithography processes [7], the minimum pitch between wires
is decreasing, and has reached 14nm. Therefore, some sub-
patterns cannot be transferred correctly because of diffraction
of light. Such a sub-pattern is called a hotspot. An example of
a mask pattern is shown in Figure 3(a). The transferred image
(by optical simulation) of Figure 3(a) is shown in Figure 3(b).
In Figure 3(b), wires are connected at an unintended position,
and some wires are too thin. Therefore, the pattern shown in
Figure 3(a) is a hotspot pattern.
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Figure 2. Principle of photolithography process

B. Approximate String Matching Problem
Approximate string matching problem [8] is one of the

string matching problems, and is a problem to determine if
two given strings are similar or not. In this study, the similarity
between strings is measured by the edit distance explained in

(a) (b)

Figure 3. Hotspot: (a) mask pattern, (b) its transferred image

the next subsection. If the edit distance is less than or equal
to a given threshold, we consider they are similar each other.

C. Edit Distance
Let us consider a pair of characters (a, b)( �= (ε, ε)), where

ε is an empty character, which represents nonexistence of any
character. The operation transforming character a in a string
into b is called an edit operation, and is denoted by a → b.
For example, let us consider a string A = gzh. If an edit
operation g → f is applied to the first character of A, we
get A

′
= fzh as the resultant string of the operation. If an

edit operation z → ε is applied to the second character of A,
we get A

′
= gh. If an edit operation ε → j is applied to

the empty character between the second and third characters
of A, we get A

′
= gzjh. Hereinafter, we call an operation

a → b a substitution if a �= ε and b �= ε. Likewise, we call
an operation a → ε a deletion, and call an operation ε → b
an insertion. Any string can be transformed into an arbitrary
string by applying the edit operations. An edit operation has
its cost denoted by γ(a → b). We assume the costs of edit
operations satisfy the equation below.

γ(a → a) = 0

γ(a → b) + γ(b → c) ≥ γ(a → c)

Suppose strings A and B on alphabets Σ are given. A sequence
of edit operations to transform A into B is denoted as O =
o1, o2, . . . , om. The cost of O is defined as

γ(O) =
m∑

i=1

γ(oi).

The minimum value among the costs of all the sequences each
of which transforms A into B is defined as the edit distance
between A and B [8].

D. Approximate String Search Problem
Approximate string search is to find substrings similar to

a given pattern in a long input sequence. More precisely,
approximate string search is to find all the substrings whose
edit distance to the pattern P are the minimum among all the
substrings (or less then the given threshold t), in the input
sequence S.

We here explain a dynamic programming-based (DP-based)
algorithm for approximate string search [8], [9]. Prepare an
(n + 1) × (m + 1) two-dimensional array D, where D has
n+ 1 rows and m+ 1 columns, n is the length of the pattern
P = a1a2 · · · an, and m is the length of the input sequence
S = b1b2 · · · bm. An element D(i, j) (at (i+1)-th row, (j+1)-
th column) of D is defined by the following equations:

9Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

                            17 / 83



D(0, 0) = 0, D(0, j) = 0,

D(i, 0) = D(i− 1, 0) + del(ai),

D(i, j) = min{ D(i− 1, j) + del(ai),

D(i, j − 1) + ins(bj),

D(i− 1, j − 1) + sub(ai, bj) }

where the functions ins, del, and sub denote the insertion,
deletion, and substitution costs. Figure 4 illustrates the DP-
based calculation of an edit distance matrix, and Figure 5
shows the resultant edit distance matrix. D is called edit
distance matrix, and D(n, j)(1 ≤ j ≤ m) gives the edit
distance between the pattern P and a substring (whose terminal
character is bj) in the input sequence S. If the value is
the minimum among all the D(n, j)(j = 1, 2, . . . ,m) (or
less than the user-defined threshold t), we consider that the
substring is similar to the pattern. The initial character of such
a substring is found by tracing back the DP-based calculation
on D. Figure 6 illustrates how to identify similar substrings.
The details of the identification of similar substrings in our
proposed method are explained in Section III.
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Figure 4. Calculation of edit distance matrix
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Figure 5. Edit distance matrix

III. HOTSPOT DETECTION BASED ON APPROXIMATE

STRING SEARCH

In this section, the existing hotspot detection method based
on approximate string search [6], which we improve in this
study, is explained. In this method, the mask pattern and
a hotspot pattern, which are both two-dimensional data, are
transformed into one-dimensional strings to apply approximate
string search calculating array D by dynamic programming.
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Figure 6. Identification of similar substrings

A. Transformation into One-dimensional Data
Mask patterns and hotspot patterns are image data. We

transform them into two-dimensional array of characters, in
which wire area is represented by 1 and empty area is
represented by 0.

An example is shown in Figure 7. In the left image in it,
the white areas represent wires (or other objects), and the black
area represents an empty space.
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Figure 7. Image data and its corresponding array

We transform the two-dimensional arrays into one-
dimensional data. First, the two-dimensional array of the mask
pattern is divided into rows. Then, the tail of the first row and
the head of the second row are connected. And, the tail of the
second row is connected to the head of the third row. Likewise,
all the rows are connected and the two-dimensional mask
pattern is transformed into one-dimensional data (Figure 8).
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Figure 8. Transformation of mask pattern data

Next, the array of the hotspot pattern is divided into rows,
like the transformation of the mask pattern. Then, for each
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row, don’t-care characters are added so that the number of
characters of the row becomes equal to that of a row of the
mask pattern (Figure 9). A don’t-care character is the special
character which matches any character. By adding don’t-care
characters, mismatch of the positions of the head characters
of the rows of the hotspot pattern is corrected. Note that
such consecutive don’t-care characters can be substituted by
a special character, called a large-don’t-care, to efficiently
calculate the edit distance matrix [6]. Hereinafter, the hotspot
pattern is processed just like the mask pattern.
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Figure 9. Transformation of hotspot pattern data

B. Dynamic Programming
In both of our proposed method and our previous one [6],

since hotspot candidates are searched by using approximate
string search, array D is calculated by using the dynamic
programming shown in the previous section. Except the first
row and column, the value of each element of the array D is
calculated by using the value of its upper, left and upper-left
elements. These calculations are done line by line from the
top to the bottom.

C. Detection of Hotspot Candidates
After calculating array D, substrings similar to the hotspot

pattern are detected as hotspot candidates. To detect hotspot
candidates, we focus on the elements with the minimal values
(less than a user-defined threshold) in the bottom row of D.
Each of these elements is considered to correspond to the
terminal character of a hotspot candidate. Since we assume
the hotspot candidate has the length same as the hotspot
pattern, the initial character can be identified from the terminal
character. The assumption is based on the fact that a hotspot
pattern and candidates similar to the pattern are originally
two-dimensional images, and have the same size or almost
the same size. Figure 10 illustrates an example of hotspot
candidate detection of our methods. (In the example, patterns
are described in regular strings for simplicity.)

IV. PROPOSED METHOD

In this section, we propose an improved hotspot detection
method based on table-reference. Our proposed method is an
extension of the existing method [6]. First, we explain the
basis of table-reference-based edit distance calculation, some
problems for implementation, and our solutions of the prob-
lems. Then, we explain our proposed method, by describing
mask pattern encoding, hotspot pattern encoding, calculation
of the encoded edit distance matrix, and detection of hotspot
candidates.
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Figure 10. Detection of hotspot candidate

A. Table-reference
In our proposed method, calculation of the edit distance

matrix is accelerated by using table-reference of precomputed
values and simultaneous calculation of multiple elements in
the matrix. Each region of simultaneously handled elements is
a k × k partial matrix of the edit distance matrix, where k is
the user-defined constant which decides parallelism. Figure 11
shows an example of 3× 3 region. The number of inputs and
outputs necessary for calculating each region is decided by
k, as shown in Figure 12 (a) and (b). In addition, the values
of the outputs are uniquely determined by the values of the
inputs. Thus, a reference table for calculating a region can be
developed. Hereinafter, a set of inputs for a table refers to an
address (or index) of the table.
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Figure 11. 3 x 3 region in edit distance matrix

A set of inputs for the table consists of the necessary values
for DP-based calculation of the elements in a region. That is,
it consists of the corresponding characters of the mask and
hotspot patterns (2k characters), the k elements to the left of
the region, the k elements to the upper of the region, and the
element to the upper-left of the region (2k + 1 elements in
total). A set of outputs consists of the values of the elements
in the region. Given a region, then we call the partial matrix of
D which includes the region and the elements corresponding
to the inputs of the region, D′ (Figure 11). D′ is equivalent to
the region expanded one column and one row to the upper-left
direction.

However, it is not practical to directly make a table of
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Figure 12. Input-output relation on the calculation of a region : (a) case of
1× 1, (b) case of 2× 2, (c) case of 2× 2 using the difference between

adjacent elements in the edit distance (with input-output names)

region calculation, because it requires a huge memory space.
This is because the range of the value of each element is large,
and thus the number of combinations of the input values of the
table explodes. Thus, we focus on the fact that, by deciding the
reference element (e.g., the upper-left one) of D′, the value of
an element can be represented by the difference between the
element and the reference one, and the value can be calculated
by using only the differences between elements. In addition,
we found the fact that the difference between the adjacent
two elements is -1, 0 or 1 (when an edit cost is defined as 0
or 1). (The proof is omitted due to the limitation of space.)
By adopting difference calculation considering the facts, we
mitigate the virtual range of the value of each element, and
thus the required memory space. Furthermore, only the values
of the elements in the bottom row and the right-most column in
D′ are necessary for calculating the edit distance matrix D (the
values of the other elements are not necessary), because only
the bottom row of D is necessary for hotspot detection. Thus,
the computational complexity of each region can be reduced
to O(k) from O(k2) by table-reference. Examples of sets of
inputs/outputs of a table (the necessary values for calculating
regions) are shown in Figure 12(c).

Moreover, a set of inputs/outputs can be encoded into one
word when k is small. Thus, in that case, the edit distance
matrix can be calculated in the encoded values, so that the
computational complexity of each region is reduced to O(1)
from O(k). Figure 13 illustrates encoded inputs and outputs.

Let (x, y) be the coordinate of the upper-left element of
D′ in the edit distance matrix D. Then, the inputs are

• ax, ax+1, ..., ax+(k−1): mask pattern characters corre-
sponding to the region (input1)

• by, by+1, ..., by+(k−1): hotspot pattern characters cor-
responding to the region (input2)

• cx, cx+1, ..., cx+(k−1): the differences between adja-
cent two elements in the upper-most row of D′ (in-
put3)

• dy, dy+1, ..., dy+(k−1): the differences between adja-
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Figure 13. Encoding of inputs/outputs of region: (a) unencoded
inputs/outputs of 2× 2 region, (b) encoded inputs/outputs

cent two elements in the left-most column of D′
(input4),

and the outputs are

• fx, fx+1, ..., fx+(k−1): the differences between adja-
cent two elements in the bottom row of D′ (output1)

• gy, gy+1, ..., gy+(k−1): the differences between adja-
cent two elements in the right-most column of D′
(output2).

The inputs/outputs are encoded by the encoding functions

P (px, px+1, ..., px+i) =

k−1∑

i=0

px+i × 2(k−1)−i (1)

Q(qx, qx+1, ..., qx+i) =
k−1∑

i=0

qx+i × 3(k−1)−i (2)

to develop a table.
Hereinafter, we call the four inputs, input1, input2, input3,

and input4, and the two outputs, output1 and output2. The
ones composed of binary variables are encoded by using (1),
and the ones composed of three-valued (−1, 0, 1) variables are
encoded by using (2). Therefore, the outputs can be memorized
in two words of memory if log2 3

k is less than or equal to the
bit width of a word. In that case, k × k-element calculation
can be done accessing the memory only two times, so that the
computational complexity of each region is O(1). Note that
the number of possible combinations of the inputs is 22k ×
32k and is an exponential function of k. In our experimental
environment, we developed tables up to k = 5 (0.23GB).

B. Hotspot detection using table-reference
In this subsection, we explain our table-reference-based

hotspot detection method. As mentioned in the previous sub-
section, a table is developed by calculating the output values of
a region for each possible combination of input values before
starting hotspot detection. Then, the table is used for efficient
hotspot detection.

1) Pattern encoding: The mask and hotspot patterns in
two-dimensional arrays are transformed into one-dimensional
strings in the same way as [6]. Next, the mask and hotspot
patterns are divided into k-character substrings and then each
substring is encoded to use the reference table for calculating
the edit distance matrix. Note that, in the hotspot pattern, since
large don’t-care characters cannot be calculated in the encoded
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form, large don’t-care characters are not encoded, and thus they
are not included in a k-character substrings. Each k-character
substring is encoded by using (1). The terminal substring (of
the mask pattern) whose length are less than k is left as an
unencoded string. Likewise, in the hotspot pattern, large don’t-
care characters and the substrings whose length are less than
k (including those resulting from the inserted large don’t-care
characters) are left as unencoded strings.

2) Calculation of edit distance matrix D: Using the en-
coded patterns, the calculation of the edit distance matrix
D is performed by referencing the table. Let us explain the
calculation using Figure 14. First, the values of the element of
the first row and column are set according to the definition
of the edit distance matrix. Next, the region whose upper-
left element corresponding to the element D(1, 1) (region (1))
is calculated by table-reference. After calculating region (1),
the region adjacent to the right of region (1) (region (2))
is calculated. Let region (5) be an example. The input3 of
region (5) is from the output1 of region (3), and the input4 of
region (5) is from the output2 of region (4). In this way, the
encoded outputs of regions can be directly used as inputs to
calculate other regions. After table-reference-based calculation,
the values of the elements in the bottom row of the edit
distance matrix D can be restored by using the value of the
left-most element and the differences between adjacent two
elements obtained by decoding the output1 of each bottom
region.
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Figure 14. Calculation of edit distance matrix by table reference

We have explained the edit distance calculation ignoring
unencoded substrings. Here, let us explain how to handle
unencoded mask pattern substrings using Figure 15(a). First,
the output2 of the region just before the unencoded mask pat-
tern character is decoded to the differences between adjacent
elements in the corresponding column. Next, the values of
the elements are restored using the value of the upper-most
element and the differences between elements. Then, the values
of the elements corresponding to the unencoded substrings are
calculated according to the DP-based definition in the same
way as [6].

Next, let us explain how to handle unencoded hotspot
pattern substrings using Figure 15(b). First, the output1s of
the regions just above the unencoded hotspot pattern character

are decoded to the differences between adjacent elements in
the corresponding row. Next, the values of the elements are
restored using the value of the left-most element and the
differences between elements. Then, the values of the elements
corresponding to the unencoded substrings are calculated ac-
cording to the DP-based definition in the same way as [6].
Also the substrings before the large don’t-care characters are
handled in the same way. Since each row of hotspot pattern
(in a two-dimensional hotspot pattern) means one large don’t-
care character, a hotspot pattern string contains multiple large
don’t-care characters. This calculation is performed for each
large don’t-care character.
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Figure 15. Calculation for unencoded character: (a) mask pattern character,
(b) hotspot pattern character

Finally, if the hotspot pattern character corresponding to
the bottom row is encoded, the values of the elements in
the bottom row of the edit distance matrix D are restored to
find hotspot candidates. If the hotspot pattern character is not
encoded, the values of the elements in the bottom row of D
are calculated according to the definition as mentioned in the
previous paragraph.

3) Detection of similar patterns: After calculating the edit
distance matrix D, patterns similar to the hotspot pattern are
detected from the values of the bottom row of D. The elements
with minimal values (less than the user-defined threshold) are
identified in the same way as [6]. Each of them corresponds
to the terminal character of a hotspot candidate. The initial
character can be identified by the terminal character because
the length of a hotspot candidate is the same as the given
hotspot pattern.

V. EXPERIMENTAL RESULTS

We performed experiments to evaluate our method. In the
experiments, we evaluated the execution time of template-
matching, the existing method [6], and our proposed method
for k = 1, . . . 5, for the same mask pattern (1020 × 1020
pixels) and the same hotspot pattern (250 × 250 pixels), on
a CentOS (release 6.3 (Final)) PC equipped with Intel Core
i7-3770 CPU @ 3.4GHz and 7.6GB memory using gcc 4.4.7.

The experimental results are shown in Figure 16. Our
proposed method achieved the better result compared to [6]
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Figure 16. Calculation time

for each setting of k. When k ≥ 3, our method outperformed
template-matching. We confirmed that the calculation time of
the edit distance matrix D was drastically reduced.

The calculation time of D is inversely proportional to k2.
Thus, it is expected that the decreasing rate of the calculation
time decreases with increasing k. In addition, the time to
make the reference table is proportional to the number of
combinations of input values (i.e., 22k × 32k). That is, the
time is proportional to an exponential function of k. Therefore,
from Figure 16, the sum of the time to make the reference
table and the time to calculate D increases when k ≥ 5.
Thus, we conclude that k = 4 is best under the experimental
environment. The execution time when k = 4 was about
1/11 compared to the existing method [6]. Note that once a
reference table is made, it can be reused. In such a case, k ≥ 5
are potentially effective.

VI. CONCLUSIONS

In this paper, we proposed and evaluated an efficient
hotspot detection method. Experimental results showed that
our proposed method found hotspot candidates much faster
than the existing one [6] on which our method is based. Our
future work includes further improvement of the execution
time and improvement of the accuracy of hotspot detection.
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Abstract—Embedded systems are at the core of many new
emerging technologies and applications, deeply integrated into
our daily lives. Especially, the demand for battery-powered
solutions in consumer-related applications is growing, to support
different environments and fields of application. Therefore, en-
ergy efficiency measures for embedded systems become even more
important. In this paper, a dynamic frequency scaling approach
for embedded systems is presented to reduce the overall energy
consumption while still meeting time constraints within a real-
time operating system. Starting with a general discussion and
mathematical derivation along with an elaboration of the state
of the art, our concept and implementation is discussed. This
includes primarily the developed Worst-Case Execution Time
(WCET) aware Earliest Deadline First (EDF) scheduler which is
used to dynamically scale the frequency at runtime. Moreover, a
use case targeting a real-time smart home application is provided,
which was used to evaluate and compare our implementation in
regard to it’s energy consumption. The respective results are
elaborated alongside possible future work and improvements.

Keywords—dynamic frequency scaling; worst-case execution
time analysis; energy-efficient computing.

I. INTRODUCTION

Embedded systems are the key to many new technologies,
deployed in numerous products and applications, such as smart
homes or modern cars. Especially their interconnection and
coupling with existing networks – in particular, the Internet –
enables new services and functionalities such as sensor fusion,
maintenance, firmware updates, or remote access/control.

However, numerous challenges such as safety and security
concerns emerge, but also energy consumption needs to be
targeted. The latter, is especially of relevance for battery
powered devices deployed in constraint environments. By
developing new storage technologies, or by further reducing
power consumption, battery run- & lifetime can be stretched to
reduce the number of recharge cycles or battery replacements.
Although devices, e.g., ones used in smart homes, require
only a fraction of energy, in sum, the recorded overall power
consumption is not to be neglected. Power usage optimiza-
tions can thus have a significant impact, facilitating also the
development of more maintenance friendly products.

Hence, while originally motivated for general purpose com-
puters and servers, Dynamic Frequency and Voltage Scaling

(DFVS) approaches find their way in the embedded systems
domain. The idea is to reduce clock frequency and/or voltage,
when no computational resources are required, to reduce the
overall energy consumption. At the same time, responsiveness
and other properties must still be ensured in case computation
intensive tasks are raised.

In the context of embedded systems, this is especially of
relevance for real time applications which have to deliver
results in specified time frames, e.g., to guarantee deadlines.
While some being hard ones that have to be met under any
circumstances, e.g., X-by-wire systems, as life threatening
incidents may be the result, others are soft that may be missed
rarely without consequences. The system and its resources
are designed to ensure that the deadline of each task is met
even in worst-case scenarios. One such critical scenario can
be compliance with the Worst-Case Execution Time (WCET),
determined either by code instrumentation and runtime mea-
surements or by static analysis. The latter can be done, e.g.,
by using numerous autonomous tools such as [1] for the
respective embedded architecture. However, these worst-case
scenarios will scarcely occur in the field.

Therefore, the Central Processing Unit (CPU) will fre-
quently be underutilized, consuming power for doing nothing
of purpose for tasks that have already been finished in time be-
fore being scheduled again. This circumstance leaves room for
improvement, e.g., by applying Dynamic Frequency Scaling
(DFS) approaches, to optimize each task according to its dead-
line. In particular, the CPU’s clock frequency can be reduced
to a minimum that is required by a task, but which still ensures
that all deadlines are met. As a result, the time the CPU is idle
and the overall energy consumption can be reduced. Another
positive side-effect of reducing the power consumption is, that
less heat is generated by the device which directly influences
the mechanical design. This in turn can make the difference
for the need of a passive or active cooling system, further
reducing costs and mean time to failure. However, for this
approach, schedulers are required which not only take the
task’s deadlines into consideration but also their WCET to
set the clock frequency accordingly depending on the current
workload to prevent deadline violations. In this context, also
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numerous requirements regarding the system’s architecture and
peripherals have to be anticipated. For instance, separate clock
domains are necessary to prevent errors in clock sensitive com-
munication channels, e.g., Universal Asynchronous Receiver
Transmitter (UART), that are caused by frequency variations.
In this paper, the challenges and opportunities of DFS in
embedded systems are elaborated. Moreover, the concept and
implementation of a Earliest Deadline First scheduler (EDF)
is discussed which takes the derived WCETs from [1] into
account in this scheduling algorithm. To ease the deployment
in existing workflows, an autonomous approach is pursued to
reduce entry barriers and enhance usability. The applicability
and effectiveness of our approach is shown by a use case
targeting a real time smart home application.

The remainder of this paper is structured as follows. In Sec-
tion II, the theoretical background of this paper is elaborated.
Besides the energy consumption model, this also includes the
two major strategies in the context of DFS pursued, being
race-to-halt and frequency variation. Afterwards, in Section III
related work is discussed. Then, in Section IV the developed
EDF scheduler is elaborated as well as the architectural
prerequisites. Section V discusses the use case and identified
problems in regard to DFS and embedded systems. Moreover,
the effectiveness of our approach in regard to energy con-
sumption reduction is shown. Finally, in Section VI this paper
concludes and gives an outlook regarding future work.

II. THEORETICAL BACKGROUND

For the concept and implementation, the effectiveness of
energy saving approaches and scheduling algorithms has to
be estimated and compared. Therefore, the following para-
graphs elaborate the defined energy consumption model and
its components which will be used and referenced in this
paper. Moreover, possible approaches for energy consumption
reduction are discussed.

A. Energy-Model

Generally speaking, power consumption of a CPU is a
function of voltage (V), frequency (f), and capacitance (C),
as in (1).

P = V 2 ∗ C ∗ f (1)

In other words, depending on the platform’s layout, e.g.,
wire lengths and peripherals, a certain capacitance is present.
Hence, optimizations in regard to the printed circuit board
design can be made to lower energy consumption. However,
one can expect that this results only in marginal improve-
ments. Another key element in this equation is voltage due
to its square contribution. Lowering the supply and operating
voltage of a device can therefore have a major impact on
energy consumption. However, in the context of this paper,
embedded devices deployed in a smart home environment are
assumed, which already run on lower voltages. Considering
that several peripherals also require a minimum supply voltage,
further improvements in this field of application are considered

marginal in contrast to advances in frequency scaling. Thus,
the focus of this paper is primarily on this, last, contributor of
the equation. Variations in frequency have a direct proportional
impact on energy consumption. For instance, a reduction of
frequency by a tenth, yields in an energy reduction of a tenth.
In theory, lowering the frequency to zero in (1), results in
a power consumption of zero. In reality, this is not feasible
due to parasitical effects and leaks on devices, e.g., caused by
peripherals and other components, a static power consumption
is present. Hence, in (2), a more accurate equation is provided
which takes this factor into consideration by adding a constant
energy drain.

P = (V 2 ∗ f ∗ C) + Pstatic (2)

Slight deviations due to different hardware instructions, e.g.,
more or less high bits that have to be applied on the instruction
and data bus are not taken into consideration in our energy
consumption model.

Based on (2), several power consumption levels can be
derived, depending on the frequency used. Besides zero, the
lower bound is derived from the platform dependent minimum
frequency (fmin). This frequency depends on peripherals or
system requirements, e.g., guaranteed response time. The
corresponding equation can be seen in (3). The upper bound
is, again dependent on the target platform and its maximum
frequency fmax, shown in (4). In between these boundaries,
several discrete frequencies fdsc are applicable, cf. (5). A
continuous frequency spectrum is not possible as neither a
phase locked loop component does provide that functionality
nor do certain peripherals support it, e.g., UART.

Pmin = (V 2 ∗ fmin ∗ C) + Pstatic (3)

Pmax = (V 2 ∗ fmax ∗ C) + Pstatic (4)

Pdsc = (V 2 ∗ fdsc ∗ C) + Pstatic (5)

B. Approaches

In regard to how energy consumption can be reduced, two
major strategies [2] are prevalent, which are elaborated more
in detail in the following paragraphs.

Race-to-Halt: In a race-to-halt strategy, calculations are per-
formed with maximum frequency, so that the result
is available as soon as possible. Afterwards, the CPU
switches to the idle state which operates at the mini-
mum frequency, until the respective deadline is reached.
Hence, energy consumption consists of two parts. A
certain amount of time t1, using the maximum frequency
and thus, considering (4), results in maximum power
consumption, and the time t2, while in idle state which
has minimum power consumption according to (3). Equa-
tion (6) describes this coherence.

Eavg = t1 ∗ Pmax + t2 ∗ Pmin (6)

Dynamic Frequency Scaling: In case of the dynamic fre-
quency scaling [3] approach, the WCET and the deadline
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of a task are used as parameter to modify the operating
system frequency of the processor. It is designed for
systems that provide high peak performance when needed
and in turn dynamically reduces the power consumption
by decreasing the operating frequency of the CPU when-
ever possible. When a task is scheduled, the processor’s
highest frequency is multiplied with the rate calculated
from the previous parameters, which results in the fre-
quency of the processor. The lowered processor frequency
in turn stretches the execution of the task that still meets
the required deadlines. This principle can be seen in
Figure 1. In contrast to (6), the sum of a certain amount
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Task1

Task2

Cycle Time
f

f

f

f

Idle Time
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Figure 1. DFS - Concept.

of time t1 and t2, using the discrete frequency and thus,
considering (5), results in reduced power consumption.
Equation (7) describes this coherence.

Eavg = (t1 + t2) ∗ Pdsc (7)

III. RELATED WORK

In general, power-aware scheduling [4][5] is a significant
key strategy for battery powered real-time embedded systems
to reduce the power consumption and extend battery life time.
Real-time embedded systems consist of a set of tasks that
are scheduled in a specific order, leaving time slots in which
the processor is underutilized but still draining the battery.
Therefore, modern processors offer a range of sleep modes,
to reduce power consumption. However, due to periodic task
execution (often on an average of a few milliseconds), these
are generally not applicable. In contrast, the time required to
first enter and later on leaving the sleep mode is in the order

of tens of milliseconds which can easily be in the order of a
magnitude of a task’s period. Hence, sleep modes are often not
suitable for real-time embedded systems. However, reducing
the frequency of the processor for the execution while still
satisfying the given deadlines as done with DFS is a feasible
solution, which leads to a remarkable reduction of the energy
consumption.

A general overview on the energy-efficiency of DFS in
resource constraint embedded devices, as well as desktop and
server grade processors is conducted in [6]. Cho et al. [3]
proposes a different approach where frequency and voltage is
scaled down when processing external peripherals. The idea
is to save energy during the time waiting for the results from
the external peripheral. Shin et al. [7] developed a tool that
converts existing programs into a low-energy version based
upon the remaining WCET. The tool automatically retrieves
the appropriate locations in the program where voltage scaling
mechanisms can be inserted.

There exist different scheduling algorithms such as earliest
deadline first that can be used in conjunction with DFS. An
evaluation of several scheduling algorithms is provided in
[8]. The authors conducted an exhaustive simulation in which
they retrieved the most important parameters that affect the
energy consumption. In [9], an optimized version of the EDF
algorithm has been proposed, that further improves energy
savings by about 28% to the original algorithm. [10] extended
the DFS approach for the use with multicore processors.

IV. IMPLEMENTATION

The implementation of our DFS concept needs modifica-
tions in the Real-Time Operating System (RTOS) components
(A) task management, (B) scheduling, (C) context switching,
and (D) application tasks, as described subsequently.

A. Task Management

In real-time systems, it is common to split the application
into tasks where each of them is responsible for a certain
functionality. Each task has an application specific priority
and stack size that needs to be configured by the developer.
This information along with runtime parameters such as the
current task state or associated event flags is maintained in
a data structure called Task Control Block (TCB). Every task
requires a TCB, which is only accessed by the real-time kernel
and never by the application code due to consistency reasons.
For our implementation, an extension of the TCB is necessary
to preserve the task’s (a) WCET and (b) deadline. These
two parameters are provided as 32-bit unsigned integer and
specified in microseconds. Thus, the maximum value for a
WCET or deadline can be 71.58 minutes which is precise
enough for most applications. The deadline is set to zero
in case of an uncritical task where no deadline is given.
The implemented scheduler needs to consider this as well as
an unspecified WCET (equals zero) to avoid starvation. In
addition, the task control block is extended by two parameters
to define (c) the deadline type, and (d) the time when a task’s
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deadline will be reached. Parameter (c) defines if a deadline
occurs cyclic (e.g., every 10 ms) or depends on a certain event
(e.g., 10 ms after falling edge on a designated input pin).
Parameter (d) defines the absolute deadline as time value in
order to create a reference point for the scheduler. In summary,
these four arguments are added to the TCB for scheduling
purposes.

B. Scheduling

The scheduler selects a process from the ready list to
execute, which is determined by scheduling criteria. Our
scheduling algorithm is based on an earliest deadline first
approach with additional knowledge about the WCET as
shown in Figure 2. The scheduler creates a temporary task
control block for the Task To Schedule (TTS) and sets its
deadline initially to zero. Afterwards, an iteration loop on the
list of Ready Tasks (RT) evaluates the task with the earliest
deadline. In the case of equal deadlines of two or more tasks,
the algorithm chooses the task with the longest WCET. If there
are no deadlines specified, a task selection is not possible with
this algorithm, therefore, a priority based scheduling will be
performed. At this point, the scheduling is completed and the
RTOS continues with the dynamic frequency scaling algorithm
followed by the context switch and the clock adjustment.

1 WCET_AWARE_EDF_Sched()
2 DISABLE_INTERRUPTS()
3 TCB TTS
4 TTS.curDeadline = 0
5 i = 0
6 while i < MAX_TASKS
7 if RT[i].curDeadline < TTS.curDeadline
8 TTS = RT[i]
9 else if RT[i].curDeadline == TTS.curDeadline

10 if TTS.WCET < RT[i].WCET
11 TTS = RT[i]
12 i = i +1
13

14 if TTScurDeadline == NONE
15 TTS = PRIO_Sched()
16

17 dfs_div = DFS(TTS)
18 if(dfs_div < 1)
19 dfs_div = 1
20 error
21 OS_TASK_SW()
22 cpu_clk = Set_CPU_CLK(dfs_div)
23 Adj_PB_CLK(cpu_clk)
24 SysTickUpdate(cpu_clk/TickRate)
25

26 ENABLE_INTERRUPTS()
27 return

Figure 2. WCET-Aware EDF Scheduler.

C. Context Switching

The dynamic frequency scaling algorithm is executed right
before the actual context switch, as shown in Figure 2. This
algorithm (cf. Figure 3) starts with the maximum clock divider
and evaluates if the frequency scaling does not violate any
deadlines.

Since the ratio between execution time and processor fre-
quency is considered linear, a temporary WCET for the task to
schedule can be calculated by multiplying its WCET with the

1 DFS(TTS)
2 dfs_flag = true
3 dfs_div = MAX_DFS_DIV
4 sort(RT,DEADLINE_ASC)
5 while dfs_div > 0
6 WCETtemp = dfs_div*TTS.WCET + AO
7 if WCETtemp < TTS.curDeadline
8 i = 0
9 dfs_flag = true

10 while i < MAX_TASKS
11 WCETtemp = WCETtemp + RT[i].WCET + AO
12 if WCETtemp >= RT[i].curDeadline
13 DFS_Flag = false
14 break // config not possible!
15 i = i + 1
16

17 if dfs_flag == true // config works!
18 return dfs_div
19

20 dfs_div = dfs_div - 1
21 return dfs_div

Figure 3. Dynamic Frequency Scaling.

clock divider. An Administrative Overhead (AO) for context
switch, scheduling etc. is added. If this DFS dependent WCET
is below the task’s deadline, the DFS divider is applicable.
However, it is mandatory to consider that all subsequent tasks
need to meet their deadlines too. By adding the WCET and
AO of the task with the next larger deadline, one can verify
its compliance. This step is repeated for all ready tasks. For
this iteration (cf. Figure 3 Line 9-14), the algorithm assumes
that the RT array is sorted by ascending deadlines, which is
done at the very beginning of the function. Once a divider
is applicable for the entire system, the algorithm returns this
value. A divider of one means, the deadlines can only be
reached without downscaling. An early detection of deadline
violation in the RTOS is also done by returning a value of zero,
which means that at least one deadline cannot be fulfilled even
without reducing the CPU clock. This can be used to settle
appropriate measures, e.g., implement a callback function to
bring the system to a safe and secure state.

D. Deadline Handling by Application Tasks

Since an absolute value for each deadline is necessary to
calculate the DFS divider, the function in Figure 4 needs
to be implemented. It updates the task’s deadline either on
a periodic base where the deadline is added to the current
value or event triggered where the deadline is set according to
the current system time. To guarantee a proper functionality
of the scheduler and DFS algorithm, this function is called
after each task completion (e.g., task cycle done) by the
application’s tasks themselves. For event triggered use cases,
it is mandatory to update the deadline at the occurrence of
influencing events either by the task itself or another task.
Therefore, the developer is responsible to trigger the deadline
updates.

E. Deployment

The selected real-time operating system is Micrium uCOS-
III because it enables the necessary kernel modifications and
supports the chosen target hardware, the Infineon XMC4500-
F100K1024 microcontroller. The microcontroller features an
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1 updateDeadline(TCB Task)
2 if Task.DeadlineType == PERIODIC
3 tempDeadline = Task.curDeadline + Task.Deadline
4 else // deadline event triggered
5 tempDeadline = getSysTime_uS() + Task.Deadline
6 Task.curDeadline = tempDeadline
7 return

Figure 4. Deadline Handler.

ARM Cortex-M4 processor core and allows a system clock
division up to 256 in single steps. Thus, one can adjust the
system clock from 120 MHz down to 468.75 kHz, which
is ideal to test the presented concept. In previous work,
the OTAWA Stack and Worst-case execution time Analysis
(OSWA) tool [1] was developed to evaluate a tasks WCET and
is therefore used for the evaluation in Section V. This analysis
tool is provided by our cloud-based Integrated Development
Environment (cloud-IDE), as presented in [11].

V. EVALUATION

For the evaluation of our concept, a dedicated use case with
a generic implementation of a gateway for smart home devices
was used. The requirements for the use case are as follows:

• Bluetooth Low Energy (BLE) to ZigBee Gateway
• Soft-deadlines for usability reasons

According to [12], a device with human-machine interaction
requires that the maximum response time is ≤ 100 ms to
be experienced as reacting instantaneously by the operator.
In order to provide a well-founded maximum execution time
limit for the implementation of this use case, the following
boundary conditions are defined:

• 60 ms reaction time, sensor from or to ZigBee gateway
• 13 ms reaction time, BLE gateway from or to actuator

The ZigBee latency is assumed and based on the work
of Baviskar et al. in [13], where an average latency of 58
ms was measured. Moreover, an additional safety margin is
added, resulting in an assumption of 60 ms latency from the
ZigBee device to the gateway. A BLE network is usually fast
regarding the time required for the connection establishment
and subsequent data transfer. According to [14], BLE needs
approximately 3 ms for these tasks. Concerning a relay-based
actuator, an additional time overhead of 10 ms for the relay
operation is required.

When using the maximum 100 ms reaction time (TmaxRT),
the subtraction of the delay times for each hardware interface
results in a maximum execution time limit of 27 ms for the
defined task structure, as shown in Equation (8).

Ttasklimit = TmaxRT − TZigBee − TBLE

Ttasklimit = 100ms− 60ms− 13ms = 27ms (8)

Each radio frequency interface (BLE and ZigBee) utilizes
two different tasks, one for receive operations and one for
transmit operations, as depicted in Figure 5. Data is shared
via queues, which are used to transport data from the RF-
controller to the bridge task and vice-versa. The bridge task

is used to determine any operations that are required to share
data between these two links. In addition, a processing task
can be used to insert data, e.g., a gateway condition.

To eliminate influencing external factors on the DFS mea-
surements, the BLE and ZigBee connections are replaced by a
physical loopback via the corresponding UART RX/TX pins,
as shown in Figure 5.

Bridge task
BLE-RX task

BLE-TX task ZigBee-RX task

ZigBee-TX task

Processing task

UART0-TX UART1-RX

UART0-RX UART1-TX

Figure 5. Task Structure with Loopback.

A. Results

According to Equation (8), the maximum execution time
limit for receiving, processing and transmission is 27 ms. Thus,
the deadlines of involved tasks are estimated in order to do not
exceed this limit. In particular, the segmentation is as follows:
7.5 ms for the receive task, 12 ms for the bridge task, and
another 7.5 ms for the transmit task. The deadlines and types
are described in the application, as shown in Table I.

TABLE I. TASK PARAMETERS.

Task Deadline type Deadline WCET
BLE RX once 7.5 ms 1.21 ms
BLE TX once 7.5 ms 1.26 ms
ZigBee RX once 7.5 ms 1.16 ms
ZigBee TX once 7.5 ms 1.20 ms
Bridge once 12 ms 0.96 ms
Processing periodic 1000 ms 1.13 ms

The tasks WCET already include an administrative over-
head [1] and were estimated with the OSWA tool. The
WCET analysis also considers internal RTOS functions that
are relevant. However, no program flow information, e.g.,
loop bounds are available for RTOS internal sections. The
evaluation of these is the most sophisticated part of the entire
analysis because loop bounds cannot be directly derived from
the RTOS source code, since they depend on application
specific parameters. Once the WCET analysis is successfully
accomplished for each task as can be seen in Table I, the
results are imported into the application.

Depending on the deployed peripherals, it is not feasible
to use any CPU frequency because it can prevent specific
peripheral clock configurations that are necessary for external
devices or certain tasks. In case that the peripheral clock
is derived from the CPU clock, the DFS implementation
is rather limited as the peripherals cannot operate at their
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appropriate frequency. Therefore, this use case only considers
the maximum CPU frequency (120 MHz) and the half CPU
frequency (60 MHz), since the peripheral clock can remain on
the same 60 MHz independent of the selected frequency.

Table II shows the three evaluated configurations where the
CPU clock is either set to 120 MHz, variable (DFS) or set
to 60 MHz. The measurements show, that in our use case the
power consumption can be reduced by 19.01% using the DFS
implementation. This is very close to the case where the CPU
clock is generally set to the lower frequency. However, there
are situations where the RTOS switches the CPU frequency to
120 MHz to avoid deadline violations. Operating only on 60
MHz is no option as it would lead to deadline violations.

TABLE II. COMPARISON OF POWER CONSUMPTION.

CPU frequency current power consumption
120 MHz 151.5 mA 499.95 mW
variable (DFS) 122.7 mA 404.91 mW
60 MHz 121.5 mA 400.95 mW

Our DFS implementation closes the gap between power
efficiency and performance for this application. Other use
cases may leave even more space for optimization, while
others cannot be optimized at all because the peripheral clock
configuration would be too restrictive for DFS.

VI. CONCLUSION

In this paper, the implementation and evaluation of a WCET
aware earliest deadline first scheduler for uCOS-III is pre-
sented. The principle of dynamic frequency scaling is applied
therein to achieve a power consumption reduction for real-time
embedded systems applications.

The proof-of-concept and benefits are shown in an exem-
plary use case, by reference of a smart home application
that implements a ZigBee to BLE gateway requiring certain
responsiveness. By the use of the implemented WCET aware
scheduler, a power reduction of 19% was achieved while still
meeting the given deadlines.

The process of deriving the WCET bounds was accom-
plished with the aid of our previously implemented and in
[1] presented OSWA tool. Its integration in state-of-the-art
IDEs provides the possibility to offer the herein presented
DFS implementation with ease to numerous developers due
to it’s seamless integration in prevalent workflows. Therefore,
a widespread field of possible applications is derived as a
developer neither requires in-depth knowledge on DFS nor
its implementation.

The contribution of the herein presented approach leads to
the conclusion, that a major energy consumption reduction is
achieved through the application of the DFS algorithm while
preserving the full capabilities of the system. This is especially
beneficial for low-power devices through:

• Reduced hardware costs by reducing battery capacity
• Dynamic adjustment of CPU utilization determined by

deadline constraints

• Real-time and power constraints are met in different
usage scenarios

Future work is geared towards the possible problem of
deadline inversion, similar to the well known priority inversion
problem. In particular, considering task 1 having a dispropor-
tional or no deadline, task 2 might have to wait for task 1 to
complete, resulting in a miss of the deadline of task 2. This
problem might be solved by the application of mechanisms,
such as priority inheritance, e.g., by inheriting deadlines.
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Abstract—The rising number of mobile applications leads to
the necessity of powerful and energy-efficient designs. Field
Programmable Gate Arrays (FPGAs) depict a suitable solution
to this upcoming challenge. In the recent years, different FPGA
designs have been released, covering the range from low-cost
demands up to high-end applications in different industries. The
downside of the increasing number of electronic functions in,
e.g., vehicles, smartphones, etc., is limited resources of the built-
in batteries. To overcome these limitations, appropriate power
reduction measures have to be implemented at the circuit and
architectural level. The correct function of each FPGA relies
on data flip-flops (D-FFs) as basic data storage element. In this
paper, a new D-FF cell design is introduced and implemented with
focus on substantial power savings for low power applications
and a higher resistance against differential power analysis (DPA),
which is an inevitable step of side-channel attacks. This new D-FF
design is compared to various, already existing implementations.

Keywords—FPGA; D-FF; charge recycling; leakage-current
reduction; differential power analysis.

I. INTRODUCTION

Mobile applications like notebooks, smartphones, tablets
and wearables have changed the usage behavior over the last
years. The access to information shall be available everywhere
and completely independent from classic computers. This
trend can be clearly seen in the current digitalization of vehi-
cles, providing more and more features like driving assistance
systems and interfaces for the connection of smartphones
for displaying installed apps on the embedded infotainment
system. A modern, upper-class vehicle contains more than 70
electronic control units (ECUs) to provide all features desired
by consumers these days [1]. Such applications rely on the
provision of sufficient processing power, which in turn requires
adequate energy resources. Both, handheld computation units
and vehicles have only limited battery capacities, therefore a
necessity for power optimized integrated electronics is given.

One approach to overcome these challenges are FPGAs.
These integrated circuits play a major role for the realization
of adaptive and efficient systems, offering vast reconfiguration
abilities [2] [3]. Reconfigurability goes back on arrays of
memory cells like static random access memory (SRAM).
In order to optimize an FPGA in terms of energy efficiency,
these memory cells have to be extended with power reduction
measures [4]. In addition to that, each FPGA works with flip-
flops, which have an influence on the overall speed of the
design since they are driven by the system clock. Furthermore,

approximately 30% - 70% of the total power in a clocked de-
sign is dissipated by the clocking network, which is absolutely
crucial for the operation of these circuits [5]. In consequence,
by carefully re-designing these commonly used D-FFs, energy
consumption can be decreased by applying static and dynamic
power reduction measures. Power constraints are one of the
most important challenges in modern circuit design. In addi-
tion, cyber security has become a frequently discussed topic
in recent years, due to many incidents and a rising awareness
for data protection. Side-channel attacks, which are based on
differential power analysis, illustrate a possibility how to reveal
confidential data without physical access to critical devices [6].
Thus, dedicated circuit modifications at circuit level shall be
used for catching potential threats.

In this paper, we investigate selected D-FF cell designs on
their low power characteristics, which can not be neglected in
battery-powered systems. In Section II, we give an overview
about related work and key aspects of dependencies between
performance and power consumption. In Section III, we in-
vestigate a selection of existing D-FF designs on their assets
and drawbacks and discuss the simulation results. In Section
IV, we present our charge recycling (CR) D-FF and explain
the implemented circuit improvement methods for static and
dynamic power reduction. In Section V, we discuss simulation
results of the D-FF and analyze the benefits of power reduc-
tion measures based on these simulations. In Section VI, all
previous discussions are summarized and concluded.

II. RELATED WORK

D-FFs are the working horse in different applications, like
storage registers, counters, frequency dividers, etc. FPGAs
resort on these circuits in each slice, which is a basic compu-
tational element, shown in Figure 1.
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Each slice contains one D-FF for storage of computed
values prior to forwarding them to the next configurable logic
block (CLB). Since even a low-cost FPGA, e.g., Xilinx Spartan
3A, contains up to 8320 CLBs [7], one can see the strong
impact on area and energy consumption of these clocked
devices. The relation between consumed power and the supply
voltage, load capacitance and system clock can be seen in (1):

P = αCV 2fClk (1)

The activity factor α represents the cadence of write re-
quests. A reduction of α can be achieved by special memory
cell designs [8] or alternatively with auxiliary comparator
circuitry. Another efficient approach is reducing the operating
voltage. This can be achieved by techniques like dynamic
voltage scaling (DVS), which was evaluated in various pub-
lications [9]. Power gating is certainly the strongest way
to achieve a measurable reduction of energy consumption.
However, this can be only applied, if there is no focus on data
retention. A further possibility for raising the energy efficiency
is lowering the clock frequency fClk. Circuitry, which is not
timing critical can be clocked down to a minimum speed,
which ensures a reliable operation of the system. If certain
circuit parts can be completely stopped while retaining stored
logic values, full clock gating can be a feasible solution to save
power [10]. Both methods can be combined on a coarse-grain
or fine-grain level.

These techniques are only an extract of a set consisting of
different methods on how to handle the challenges of demand-
ing functions. A majority of these solutions require additional
circuitry to be added and implemented at a higher architectural
level. Our approach goes one step further and is based on direct
circuit level improvements to a D-FF by reasonable selection
of a suitable D-FF cell design and substantial modifications
of the internal cell circuitry to achieve better efficiency. The
improvements achieved on that level are essential for important
energy dissipation suppression and are an inevitable step for
optimization to be combined with architectural amendments.

III. D-FF CELL DESIGNS

Different concepts have been introduced in the recent years.
In general, we can distinguish between latches and flip-flops.
Whilst latches are level-sensitive designs, flip-flops are egde-
sensitive. Latches are transparent and therefore not suitable
for timing-critical applications due to possible glitches in the
signal path. For avoiding glitches and in consequence timing
problems in complex designs, many flip-flop designs implicate
the principle of cascading master-slave D-FFs. This standard
design in shown in Figure 2.

Both, master and slave unit, consist of a feedback loop of
inverters and transmission gates. Once Clk is set to HIGH,
the input data provided by D is latched in the master circuit.
At this point, the transmission gate connecting master and
slave circuit, is in cut-off mode and therefore avoiding any
glitches, e.g., direct throughput of D to Q. When Clk is set
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Fig. 2. Master-slave arrangement

to LOW, the stored data at the output of the master circuit
is latched by the subsequent slave unit and provided at the
output node Q. Any changes of D will not influence the logic
value stored at Q due to the fact that both transistors of TG
1 are in cut-off mode. This legacy design was the starting
point for numerous variations in the past. All simulations have
been performed with Cadence tools and a 90nm technology
provided by TSMC at an ambient temperature of 27◦C. The
clock frequency was set to 250MHz.

1) SET D-FF: A simplified implementation is shown in
Figure 3. Whilst the reference design of a D-FF uses 16
transistors in total, this design consists of 10 transistors only,
leading to a higher chip density and reduced manufacturing
costs [11].
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Fig. 3. Single Edge Triggerd D-FF

Instead of 4 TGs, this design works with 1 TG and
achieves the same function by replacing the remaining TGs
by nMOS transistors. This reduction of transistors comes
along with cutting down the number of slower and larger
pMOS transistors. Furthermore, this implementation provides
the generation of both Q and Q. The functionality of the
SET D-FF is similar to the reference design: glitching is
avoided by complementary control of both pass-transistors
M1 and M2. Latching and generation of the output values
is done in the feedback loop after the activation of M2.
Analog to the previous standard design, this concept relies on
the preparation of complementary Clk signals, which requires
additional circuitry for signal generation.

2) Low-power D-FF: Another variation, which displays an
attempt on how to optimize a D-FF with respect to power
consumption, is shown in Figure 4. The key aspect of this
design is to eliminate short-circuit power dissipation from
the feedback path [12] due to the tri-state inverter. Although
keeping the same number of transistor like in the reference
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design, considerable power savings can be achieved. This will
be discussed in the last section of this paper.
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Fig. 4. Low-power modification of D-FF

3) PPI D-FF: In order to get a better performance of a
conventional D-FF, the Push-Pull-Isolation (PPI) D-FF was
presented in [12]. The main advantage of this implementation
is the reduced clock-to-output delay from two gates in the
reference design to one gate in the PPI D-FF, which is shown
in Figure 5.
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Fig. 5. Push-Pull-Isolation D-FF

The insertion of an inverter and a TG between the output
nodes of master and slave latches provides a push-pull effect
at the slave latch. In consequence, the input and output of
the inverter in the slave unit will be driven to opposite logic
values during operation. This design is approximately 31%
faster than the reference D-FF, but has a power overhead of
22%. To counter the increased power consumption 2 pMOS
transistors, M1 and M2, are added to the feedback loops in
the master and slave latches. In direct comparison with the
conventional D-FF, the PPI D-FF improves speed by 56% at
an expense of 6% of additional power dissipation.

For all introduced cell designs in this paper, the average
power consumption, the maximum and minimum power con-
sumption during simulation time were traced and summarized
in Table I. These results show that the reference D-FF dis-
sipates the highest average power consumption by 1186nW ,
due to lack of power savings measures. The maximum power
dissipation confirms this result by revealing a higher consump-
tion by the factor of approximately 4 in direct comparison
with the optimized low-power D-FF. However, this result
was expected and highlights the improvements of previously
introduced designs.

TABLE I. SIMULATION RESULTS (PWR)

D-FF Type Average Power nW Max. Power uW Min. Power fW
Reference 1186 233.3 51.47
SETD 280.3 26.21 22.39
Low-power 272.7 61.55 19.92
PPI 435.4 88.71 28.01

On the other hand, similar results are reflected by measuring
the leakage current of each design, shown in Table II. The
reference D-FF exhibits the highest average leakage current
Ileak by 1262nA, which is approximately fivefold higher than
average Ileak of the low-power D-FF. Analog to the average
leakage current, the maximum leakage current is also allocated
to the reference design and points out that all power-optimized
variations perform better in terms of energy efficiency.

TABLE II. SIMULATION RESULTS ILeak

D-FF Type Avg. Current nA Max. Current uW Min. Current uW
Reference 1262 336.3 346
SETD 265.7 48.94 50.41
Low-power 235.1 28.83 45.9
PPI 403.7 39.4 56.35

The respective simulation results are shown in Figure 6,
which illustrates the input signal D, the clock signal Clk
and the respective power dissipation output profiles for the
presented input sequence with an alternating 0→1→0→1
sequence.

Fig. 6. Comparison Results

All designs exhibit strongly varying power consumption for
each transition on the input nodes during the rising edge of
the Clk signal, which comes along with an exploitable vul-
nerability for side-channel attacks. Glitches can be identified
during the falling edge of Clk, which indicates weaknesses in
the latching mechanism of master and slave latch, therefore
revealing undesired transparency. None of the previously pre-
sented designs is optimized in terms of static leakage current
suppression or energy recovery during runtime, which will be
key aspects of our presented design in the next section.
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IV. CR D-FF

Based on the analysis of drawbacks of existing D-FF
designs, we present a new approach of a low-power, energy-
efficient and glitch-free D-FF, which is suitable for security-
relevant applications with limited energy resources. Referring
to the standard design shown in Figure 2, our intention was to
redesign a new flip-flop cell from scratch. Without any direct
relation to the D-FFs presented in the previous section, we
present our charge recycling (CR) D-FF, which is illustrated
in Figure 7.
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Fig. 7. CR D-FF

This design features a series of dedicated power savings
mechanisms, which will be discussed in the following sections.

A. Charge recycling

Storing and processing logic values in flip-flops, registers,
memories leads to charging and discharging of parasitic ca-
pacitances, which are an essential part of each integrated
circuit. Since the CR D-FF features dynamic logic, periodic
charge & discharge cycles are an integral part of the in-
tended function and require special attention during the design.
This design works with 2 alternating phases during runtime:
precharge & evaluate, which are both triggered by the Clk
signal. Whilst Clk turns to LOW , M5 is turned on and
in consequence also switching on the pMOS transistors M3
& M6. Illustrating a critical point with respect to power
savings within an integrated circuit, the precharge phase is
the more deciding one. Due to the fact that these transistors
are therefore in a conducting state, the capacitances at the
output nodes Out & Out are shortened. Hence, not discharged
electrons at one of the complementary output nodes are used
for charging the previously discharged output node. This effect
is used for equilibrating electron charges and thus relieving
the battery due to the fact that less energy is needed. This is
a strong method for achieving a better performance in terms
of dissipation reduction during dynamic behavior.

After Clk applies a logic HIGH at the gate of M4,
this transistor is turned off whereas M11 is turned on and
subsequently starting the evaluation phase in terms of sensing
the difference between the complementary inputs D & D. One
of the various benefits of sense amplifier based logic is that

even a small ∆ voltage between both input signals will be
sensed and evaluated, providing a higher speed of the D-FF.

B. Dual Threshold CMOS

Leakage currents Ileak during standby contribute to a sig-
nificant amount of total dissipation loss. By adding dedicated
countermeasures, appreciable power savings can be achieved
without investing much effort for realization. This can be
done by the usage of transistors with a high threshold voltage
Vth. Transistors with a high Vth require a proportional higher
VGS voltage at their gate nodes in order to be turned on,
which implies a mitigation of leakage currents. This method
can be combined be applying a negative VGS for leading
transistors into a deep turn-off status and therefore supporting
suppression of leakage currents. This technique should be only
applied carefully on circuit parts, which are not timing-critical
since higher threshold voltages usually equal in slower signal
transition. All transistors in our design are high Vth transistors
for the sake of strongest suppression of Ileak.

C. Multi-oxide technology

Closely related to the previous section, static power
dissipation can be further decreased by improving the
tunneling-barrier for electrons. Undesired tunneling of elec-
trons through the gate to bulk leads to current flows, which
shall be eliminated. The relation between Ileak and the
tunneling-barrier is shown in (2):

Ileak∝A(
Vox
Tox

)2 (2)

Increasing the tunneling-barrier can be realized by increas-
ing the gate oxide thickness Tox. A higher oxide thickness
leads immediately to a reduction of the tunneling current
density Ileak, following the goal to extend battery lifetime
of mobile devices even in standby mode. The drawback of
this technique is similar to the previous one: penalty of the
circuit speed may occur if not applied carefully. Based on this
reason, we decided to use high Tox transistors for M4, M5
and M11. All of these transistors are not timing-critical, since
M4 is used to activate a dedicated sleep mode and M5 for
balancing the outputs. All of these functions are not slowing
the circuit speed.

D. Clk- and power-gating

For further reduction of dynamic power dissipation, cutting
off the Clk signal leads to transfer the circuit to a hold
state, while maintaining the stored data inside the latches.
Circuitry, which is not executing different operations over
runtime, can be kept in a WAIT state, ready to continue
calculation whenever the Clk signal is set to HIGH again.
In the proposed design, M5 & M11 are used for stopping the
D-FF from operating, but still keeping the correct data at the
outputs of the cross-coupled inverters. Of course, additional
circuitry driving and distributing the Clk signal over a whole
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design is an indispensable requirement. This can be provided
by digital clock managers (DCMs), which are not covered by
this paper.

In case that data storage is not necessary, gating of the
supply voltage is an effective method how to save power in
unused parts of a circuit. Power gating can be applied on
different hierarchical levels. Our decision was to follow a fine-
grain approach, leading to equipping the proposed D-FF with a
power gating transistor M4. If the SLEEP signal turns from 0
to 1, M4 is off and therefore disconnecting the D-FF from Vdd.
If this technique is applied in accordance with clock gating,
total rail-to-rail-decoupling (Vdd & Gnd) can be realized.

E. Stacking

Transistor stacking is a further, strong technique for sub-
threshold current reduction. Stacking transistors means to
increase to source voltage VS while keeping the gate voltage
VG at the same level. At a certain point of time, VGS becomes
negative, which leads the transistor into super cut-off mode
and turns it deeply off. The more transistors are stacked in
series, the better leakage current reduction will be. However,
the most significant results can be achieved by adding a
second transistor in series, because the effect of subthreshold
current reduction becomes diminished with a rising number of
transistors. Our proposed D-FF features stacking as a design
principle, e.g., in the pull-down-networks of the slave latch,
realized by M16 M17 and M20 & M21.

V. SIMULATION RESULTS

The CR D-FF senses the inputs D & D at the positive edge
of Clk and stores these data independently from any changes
at the input nodes of this circuit. Due to all implemented circuit
improvements, an average static leakage current of 173nA is
achieved, which is sufficiently low to be accepted. During the
negative edge of Clk, the CR D-FF turns into the precharge
phase, where all internal and external nodes are charged. The
characteristic curves in Figure 8 show one beneficial features
of the CR D-FF over the other discussed designs. This can be
seen in both output curves of Q & Q.

Since this design features charge recycling, the output nodes
and all internal nodes are precharged to Vdd − Vth only,
which is beneficial for the energy balance of this circuit. The
reason for this is that precharge is finished by achieving an
output voltage, which is one threshold voltage below Vdd.
Thus, the less energy from the power supply is required for
precharging the CR D-FF, the more suitable circuitry for low-
power applications will be. Based on the reduced voltage range
at the outputs of the master latch, it is possible to decrease
permanently the supply voltage Vdd Slave. Hence, we choose
a supply voltage of 800mV for the conventional slave circuit,
which supports further power dissipation reduction. For a
better comparison, we enhance Table I with relevant simluation
results of the CR D-FF, shown in Table III.

The results in Table III show that the introduced CR D-FF
outperforms most of the previously analyzed designs in terms
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TABLE III. SIMULATION RESULTS (PWR)

D-FF Type Average PWR nW Max. PWR uW Min. PWR fW
Reference 1186 233.3 51.47
SETD 374.1 32.01 22.39
Low-power 275.7 73.89 19.92
PPI 435.4 110.5 172.3
CR 303.5 13.84 27.59

of average power consumption. It achieves the second-best per-
formance for average power consumption (319.7nW ) and the
best result for maximum power dissipation (13.84uW ). The
minimum power consumption of 27.59fW can be neglected,
since the influence of these contributions is not significant for
the overall performance of all discussed designs. Even though
the conventional low-power flip-flop achieves a slightly lower
average power consumption than the CR D-FF, the peak power
dissipation is approximately quintuple higher and it offers no
resistance features against DPA. Figure 9 shows a comparison
of the average power consumption.

Fig. 9. Comparison of Average Power Dissipation

It can be clearly seen in Table III that the CR D-FF
provides the most constant power consumption among all
considered designs, therefore also providing the best oppor-
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tunities to be chosen in security-sensitive applications. The
smaller the differences in energy consumption between each
data transition are, the more difficult a differential power
analysis will be, which is always the starting point for a side-
channel attack. Hence, the introduced CR D-FF provides both,
remarkable low-power characteristics for mobile, embedded
circuitry, which comes along with a necessity for robustness
against intended attacks. However, benefits in superior energy
efficiency and noticeable robustness against differential power
analysis come at the cost of a higher number of transistors,
shown in Table IV.

TABLE IV. TRANSISTOR COUNT AND POWER VARIATION

D-FF Type Reference SETD LP PPI CR
No. of transistors 16 10 16 18 21
Max. PWR ∆ (%) 18.78 94.7 94.03 98.62 6.8

This fact usually leads to a penalty in required area for
manufacturing, which is certainly an aspect to be considered.
A CR D-FF consists of 21 transistors and requires preparation
of complementary input signals, which depend on additional
wiring and therefore lead to extra area on the chip. On
the other hand, this implementation provides also 2 com-
plementary outputs with no delay between both signals and
no necessity of additional circuitry for generation. Table IV
also emphasizes the differences between the analyzed cells in
switching behavior. Whilst the ∆ of dissipated power of the
CR D-FF never exceeds variations of 6.8% in maximum, the
results of the alternative designs show much higher noticeable
differences. Despite the fact that all designs have been ana-
lyzed without putting a stronger focus on speed and timing
aspects, further measurements on the maximum operating
frequency have been done. For this purpose, the elapsed time
for each switching transition was measured and compared
against each other. Figure 10 illustrates a direct comparison of
the output Q of all considered circuits after being stimulated
with an input signal D. Depending on the switching transition
and the characteristics of the flip-flops, expected differences
on the edge steepness can be identified.

Fig. 10. Comparison of Switching Transitios Of All Designs

Based on these simulation results, the consumed time for
a HIGH → LOW and a LOW → HIGH transition has
been measured and summarized in Table V. The maximum
achievable switching frequency fmax reveals the penalty in
operating speed of the CR D-FF, due to the increased number
of transistors. However, a maximum switching frequency of
≈ 6.4GHz is still a notable result.

TABLE V. TIMING COMPARISON

D-FF Type T High-Low ps T Low-High ps Max. freq. GHz
Reference 42.5 58.3 9.9
SETD 422 101 1.9
Low-power 43.63 51.58 10
PPI 60.48 79.16 7.1
CR 41 114 6.4

VI. CONCLUSION

We analyzed a selected number of existing flip-flop designs
upon their characteristics and suitability for usage in low-
power applications. Beside that, we have investigated each de-
sign on its capabilities to be resistant against differential power
analysis. Our goal was to design a D-FF, which provides both,
a remarkable reduction of power consumption and robustness
against side-channel attacks. Hence, we designed a charge
recycling D-FF, which uses the not discharged electrons at
one of the complementary output nodes to support the battery
during the precharge phase. This benefit comes along with
the fact that the outputs of the master latch are precharged to
Vdd − Vth only, providing the opportunity to power the slave
latch with the same supply voltage (≈ 800mV ). Furthermore,
we applied additional power saving modifications and achieved
remarkable improvements of power reduction and standby
leakage suppression. Simulation results have shown that the
CR D-FF offers the best overall performance with an average
power consumption, which reduced the dissipated power by
about ≈ 75%. Complementary generation of output signals
with no requirement for delay correction is a further advantage
of this circuit when compared to other designs, which do
not feature parallel, complementary creation of D & D. The
variations of the measured power consumption do not exceed
differences of ≈ 7% and remain constant independent from the
switching event, which is sufficient to withstand differential
power analysis and which is not achieved by the alternative
flip-flops. These benefits come at the cost of a higher number
of required transistors and the layout after synthesis of a CR
D-FF requires careful routing of all metal interconnections
between these cells for keeping the parasitic capacitances as
equal as possible.
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Abstract—This paper presents a reconfigurable two-stage 
power amplifier (PA) for use in 4G LTE unmanned aerial 
vehicles (UAVs) applications. The PA using the TSMC bulk 65-
nm CMOS process exhibits a saturated output power of 29.8 
dBm, a power gain of 35.6 dB, a maximum power added 
efficiency (PAE) of 27.2 % at 2.5 GHz and maintains PAE over 
10 % in the output power’s 8 dB back-off zone as required by 
LTE’s power-to-average power ratio (PAPR) specifications. 
The proposed reconfigurable PA architecture, which includes 
four sub PA cells with the power cell switching (PCS) technique, 
allows the high level of efficiency in back-off of output power. 
The four sub-PA cells are composed of three differential cascode 
stages, supplied by 3.3 V and implemented with the segmented 
bias (SB) technique to maintain the high level of PAE, reduce 
the DC power consumption and reconfigure the output 
impedance. 

Keywords- CMOS; Power Amplifier; transformer; segmented 
bias; differential; neutralization technique. 

I.  INTRODUCTION  
Since UAVs are highly mobile devices, they need 

transceivers that minimize space and power consumption 
whilst facilitating mobile applications requiring high bit rates 
over wide coverage areas. CMOS, as a powerful platform, 
has recently demonstrated a tremendous interest in industry 
with a fully integrated radio system-on-chip (SoC) solution 
for transceivers. CMOS power amplifiers designed for 
wireless communications standard, such as LTE, LTE-A and 
WiMAX, require good performances about output power, 
efficiency and linearity. 

Modern high-data-rate communication systems, using 
spectrally efficient modern scheme like Orthogonal 
Frequency-Division Multiplexing (OFDM) with a high 
power-to-average- power ratio (PAPR), require RF power 
amplifiers about high linearity and high efficiency. The main 
challenge for LTE power amplifiers is hence to achieve the 
good trade-off between high linearity and high efficiency 
over wide power range. Furthermore, delivering watt-level 
output power is another challenge for CMOS RF power 
amplifiers because of low break-down voltage and high knee 
voltage of transistors. Several techniques hence have been 
investigated to overcome this limitation of CMOS namely 
stacked transistors [3].  

To find the best linearity/efficiency trade-off while 
reducing thermal problems, the power cell switching (PCS) 

technique [1][2], which can be used to combine output power 
from sub-PA cells, provides a high level of efficiency and 
preserves a good linearity. To push upper back-off efficiency 
of PA, a combination of the PCS technique and the 
segmented bias (SB) [4][5] helps PA not only operate with 
higher efficiency in a wider range of output back-off power 
(OBO) but also deal with the problem of short battery life of 
mobile devices. 

This paper proposes a reconfigurable multi-mode RF 
power amplifier to further enhance efficiency in back-off 
power zone. The proposed PA is composed of four 
differential cascode segmented-biased sub-PA cells to 
achieve high output power and high back-off efficiency, as 
shown in Figure 1. Implemented in the TSMC bulk 65-nm 
CMOS process, the PA achieves high efficiency to 8 dB of 
power back-off and also substantially scales down the 
thermal power consumption. Its operation modes are 
controlled by two bias voltages (Vbias1, Vbias2) of each sub-
PA cell and two supply voltages (Vdd1, Vdd2).  

This paper is organized as follows: Section II discusses the 
concept and design of the reconfigurable power amplifier. 
Section III presents the post-layout simulation results. These 
results include the continuous-wave (CW) simulation data, 
which meet linearity and output power requirements, with 
high efficiency for 4G LTE signals at 2.5 GHz. The paper will 
finish with a short conclusion in Section IV. 

II. CIRCUIT DESIGN 

A. Design of the proposed reconfigurable power amplifier 
The 2.5 GHz CMOS reconfigurable multi-mode power 

amplifier is implemented and simulated using Keysight’s 
Golden Gate in post-layout simulation.  

In Figure 1, the architecture of the proposed 
reconfigurable multi-mode power amplifier is introduced. 
The four parallel sub-PA cells are designed in three-stage 
differential cascode topology with the segmented bias 
technique and the neutralization technique. The transformer 
TR1 achieves the impedance matching between the 100 Ohm 
RF input and the input impedance of driver. The transformer 
TR2 is a power splitter and can be used as an inter-stage 
impedance matching network. The transformer TR3 
combines the power from the four sub-PA cells and matches 
the impedance from the four sub-PA cells to the 100 Ohm  
RF output. 
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By switching each sub-PA cell on/off and adjusting the 
bias point of each transistor in common source of sub-PA 
cells, this PA can be reconfigured to enhance back-off  
power efficiency. 

 
Figure 1. Architecture of the proposed reconfigurable multi-mode PA 

B. Design of sub-PA cells 
To stabilize each sub-PA cell, two neutralization 

capacitors C9, C10  [6][7], which dramatically reduce the 
Miller effect capacitance of differential cascode, are carefully 
added for the sake of maintaining the circuit in the 
unconditionally stable region. Their chosen values are fixed at 
1.23 pF. 
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Figure 2. Sub PA cell with the segmented bias technique 

In order to increase efficiency of the PA stage, a new 
topology based on individually biasing the common source 
stage is proposed in Figure 2. Stacked MOSFET differential 
cascode structure using deep N-well transistors consists of 
two common gate (CG) stages and one common source (CS) 
stage. The capacitors C5, C6  at the gates of each stacked 
transistor are chosen to balance drain source voltage swings 
of four transistors’ CG stages. The external gate capacitance 
and the gate-to-source capacitance of each stacked transistor 
form a capacitive voltage divider to produce the proper in-
phase voltage swing at the transistor’s gate and drain [3]. 
Transistors M5, M6, M7, M8  are biased in class AB and sized 
with a width (W) and a length (L) of 60 µm and 60 nm, 
respectively. 

In the CS stage, transistors ( M1; M2), (M4;  M3)  are 
biased separately in class AB with a size of W/3L  
(20 µm/60 nm) and class C with a size of 2W/3L  
(40 µm/60 nm) respectively. This method keeps the sub-PA 
cells in high power and high efficiency region due to the good 
performances of class AB amplifiers in low power region and 
of class C amplifiers in high power region. The segmented 
bias technique (SB) [4][5] allows to significantly scale down 
DC power consumption compared to class AB.  

 The estimated size of the sub PA cell’s layout is  
396.84 µm x 251.5 µm (Figure 10). 

C. Design of Driver cell 
The driver cell is designed with a differential cascode 

structure and biased in class AB with deep N-well transistors 
for the CG and CS stages (Figure 3). The supply voltage 
(Vdriver) is 2.4 V. This driver aims to increase a level of gain 
of the PA. The neutralization capacitors C2, C3 are also used 
to make this cell unconditionally stable. The size of the driver 
is 272 µm x 115.6 µm, as illustrated in Figure 10. 

Vg

Vbias Vbias

C3C2

M2

M0

M3

M1

R2

R0 R1

C1

Vdriver

RFin+ RFin-  
Figure 3. Driver's structure 

D. Design of transformers 
There are three stacked transformers (TR) [8][9] in the 

full design. The first one (TR1) in Figure 10 ensures the 
impedance matching between the driver’s optimal impedance 
and the 100-Ohm input with the size of 252 µm x 674 µm. 
The second one (TR2) in Figure 10 converts the optimal 
output impedance of driver to the optimal input impedance of 
the four sub-PA cells with the size of 197.3 µm x 1706.1 µm. 
This transformer is also used as a splitter to distribute power 
homogenously to each sub-PA cell. The last one (TR3) in 
Figure 10 with the size of 209.3 µm x 1884 µm matches the 
optimal output impedance of the sub-PA cells to the 100 Ohm 
output. The transformer TR3 is carefully designed in order to 
be robust and reliable under high current levels from four 
sub-PA cells. 

E. Reconfigurable states of PA 
To fulfill the requirements of 4G LTE signals with high 

levels of efficiency, the PA can be switched into four possible 
states in Table. 1 to maintain efficiency over 10% in the 8 dB 
back-off power zone. The four states are defined by two bias 
voltages (Vbias1, Vbias2) of the common source transistors 
and two supply voltages: Vdd1 for the sub-PA cells (1, 4) and 
Vdd2 for the sub-PA cells (2, 3). 
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TABLE 1. CONTROLLED STATES TO RECONFIGURE THE PA 

State Vbias1 Vbias2 Vdd2 Vdd1 Number of 
active PAs 

1A 0.6 0.6 3.3 3.3 
4 1B 0.6 0.45 3.3 3.3 

1C 0.45 0.45 3.3 3.3 
2 0.6 0.45 0 3.3 2 (PA 1, PA 4) 

Three states 1A, 1B and 1C are used in the high power 
(HP) region. In these states, four sub-PA cells are all active. 
More current will be delivered to the load, therefore output 
power can be increased. These states are determined by 
Vbias1 and Vbias2 to satisfy the demands of efficiency, output 
power or linearity. State 2 is used in the medium power (MP) 
region. In this state, the sub-PA cells 2 and 3 are turned off by 
having their supply source (Vdd2) off, whilst the sub-PA cells 
1 and 4 controlled by Vdd1 are kept on. This configuration is 
outlined in Table 1. 

III. POST-LAYOUT SIMULATION RESULTS 

A. S-Parameters results 
This PA achieves promising RF performances and 

performs such good input and output matchings (Figure 4 and 
Figure 5). The values of S11 and S22  at 2.5 GHz are all around 
-20 dB for the four states. The small-signal gains of the PA 
are 36 dB for state 1A and 30.6 dB for state 2 as shown in 
Figure 5. Stability of the circuit is illustrated in Figure 4 . The 
stability factor µ, whose values are over 6 for the four states, 
guarantees unconditional stability of the proposed PA. 

 
Figure 4. Input return loss 𝐒𝐒𝟏𝟏𝟏𝟏 and the stability factor µ 

 
Figure 5. Small signal gain S21 and output return loss S22 

B. RF performances 
The power added efficiency (PAE) is illustrated in Figure 

6, the power gain and the output power with 2.5 GHz single-
tone signals are shown in Figure 7. Both figures include the 
post-layout simulated data. Saturated output power Psat  of 
state 1A and state 2 are 29.8 dBm (high power) and 24.8 dBm 
(medium power), respectively. Maximum power gains of four 
stages are 35.6, 34.3, 32.8 and 30.1 dB, respectively. PAE at 
Psat in state 1A is 27.2 % and PAE at 6dB of OBO in state 2 
(Pout = 23.8 dBm) is 18 %, improved by 11%. State 2 
improves significantly back-off efficiency at the MP region. 
To fulfill the requirement at 8dB of PAPR, this PA is 
reconfigured until 8 dB of OBO and reaches 11.8 % of PAE. 
With the SB technique, DC power consumption is reduced to 
2.53 W for state 1B and 1.2 W for state 2 in Figure 8.  

 
Figure 6. Simulated PAE versus output power 

 
Figure 7. Simulated Gain versus output power 

 
Figure 8. DC power consumption versus output power 

0

2

4

6

8

10

12

14

-25

-20

-15

-10

-5

0

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

µ

S1
1 

[d
B

]

Freq [GHz]
State 1A State 1B State 1C State 2

0

5

10

15

20

25

30

35

40

-30

-25

-20

-15

-10

-5

0

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

S2
1 

[d
B

]

S2
2 

[d
B

]

Freq [GHz]

State 1A State 1B State 1C State 2

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PA
E 

(%
)

Pout (dBm)
State 1A State 1B State 1C State 2

6

10

14

18

22

26

30

34

38

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

G
ai

n 
(d

B
)

Pout (dBm)
State 1A State 1B State 1C State 2

0

1

2

3

4

10 12 14 16 18 20 22 24 26 28 30

Pd
c 

(W
)

Pout (dBm)

State 1A State 1B State 1C State 2

30Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

                            38 / 83



 
Figure 9. Simulated gain, PAE and output power versus frequency 

The 3-dB bandwidth of this PA is 700 MHz from 2.05 
GHz to 2.75 GHz, as illustrated in Figure 9. 

Figure 10 is the layout of the 65-nm CMOS multi-mode 
reconfigurable PA. The estimated size of the entire circuit is 
1.89 mm x 1.575 mm, including the pads. This layout is the 
version used for the incoming tape-out. 

TABLE 2. CHOSEN STATE ACCORDING TO DESIRED PARAMETER 

Desired parameter State Values 
Max. Gain 

1A 

36 dB 
Max. PAE 27.2% 
Max. Psat 29.8 dBm 

High linearity P−1dB 26 dBm 

PAE in power 
back-off 

High power 
(HP) 1C ↑ 6.8% 

@3dB OBO 
Medium 

power (MP) 2 ↑ 8.2% 
@8dB OBO 

Best trade-off HP 1B - 
MP 2 - 

 
Table 2 compares this work with other state-of-the-art 4G 

LTE multi-mode CMOS PAs. This PA achieves a good trade-
off between linearity and efficiency. Gain is significantly 
higher than previous CMOS integrated PAs. 

 
Figure 10. Layout of the reconfigurable power amplifier 

Table 3 outlines the operation of this reconfigurable multi-
mode PA. States of the PA are selected according to desired 
parameters. Therefore, the PA’s efficiency is notably 
augmented in back-off power region. Furthermore, this PA is 
capable of being the best trade-off between efficiency and 
linearity in state 1B and state 2 for the high and medium power 
regions, respectively, as shown in this table.  

IV. CONCLUSION 
In this paper, a fully integrated 4G LTE reconfigurable 

CMOS PA is discussed and implemented. This PA achieves a 
maximum output power of +29.8 dBm and a maximum PAE 
of 27.2 % at 2.5 GHz. Using the segmented bias technique, 
this PA allows a PAE of over 10 % to be maintained in the 
output power’s 8 dB back-off zone as required by LTE’s 
PAPR specifications. The operation mode of the PA is 
controlled by two bias voltages of each sub-PA cell in order 
to trade-off between high linearity and high efficiency. 
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TABLE 3. COMPARISON WITH RECENT 4G LTE MULTI-MODE CMOS PAs 

Parameter This work [10] [11] [12] [13] 
Freq. [GHz] 2.5 1.95 0.7 – 1.0 1.7 - 2.0 1.9 
Technology 65nm 130nm 180nm 180nm 40nm 
PAPR [dB] 8 7 7 7.5 12 
Size [mm2] 2.98 4.48 2.52 1.56 2.94 
Supply [V] 3.3 3.3 2 3.5 1.5 
Psat [dBm] 29.8 29.3 > 13.6 (P−1dB) 26 28 
Gain [dB] 35.6 29.3 19.6 15 22 
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Moreover, for the purpose of preserving high back-off PAE, 
two sub PA cells can be turned off to keep the PAE over 14 % 
in back-off power zone of 5dB to 7dB.  
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Abstract—Field Programmable Gate Arrays (FPGAs) provide
a promising opportunity to improve performance, security and
energy efficiency of computing architectures, which are essential
in modern data centers. Especially the background acceleration
of complex and computationally intensive tasks is an important
field of application. The flexible use of reconfigurable devices
within a cloud context requires abstraction from the actual
hardware through virtualization to offer these resources to service
providers. In this paper, we enhance our related Reconfigurable
Common Computing Frame (RC2F) approach, which is inspired
by system virtual machines, for the profound virtualization of
reconfigurable hardware in cloud services. Using partial recon-
figuration, our hardware and software framework virtualizes
physical FPGAs to provide multiple independent user designs
on a single device. Essential components are the management of
the virtual user-defined accelerators (vFPGAs), as well as their
migration between physical FPGAs to achieve higher system-wide
utilization levels. We create homogenous partitions on top of an
inhomogeneous FPGA fabric to offer an abstraction from physical
location, size and access to the real hardware. We demonstrate
the possibilities and the resource trade-off of our approach in a
basic scenario. Moreover, we present future perspectives for the
use of FPGAs in cloud-based environments.

Keywords–Cloud Computing; Virtualization; Reconfigurable
Hardware; Partial Reconfiguration.

I. MOTIVATION

Cloud computing is based on the idea of computing as a
utility. The user gains access to a shared pool of computing
resources or services that can rapidly be allocated and released
“with minimal management effort or service provider inter-
action“ [1]. An essential advantage, compared to traditional
models in which the user has access to a fixed number of
computing resources, is the elasticity within a cloud. Even
in peak load situations, a sufficient amount of resources are
available [2].

With the theoretically unlimited number of resources, their
enormous energy consumption arises as a major problem
for data centers housing clouds. One possibility to enhance
computation performance by simultaneously lowering energy
consumption is the use of heterogeneous systems, offloading
computationally intensive applications to special hardware co-
processors or dedicated accelerators. Especially reconfigurable
hardware, such as Field Programmable Gate Arrays (FPGAs)
provide an opportunity to improve computing performance [3],
security [4] and energy efficiency [5].

A profound and flexible integration of FPGAs into scalable
data center infrastructures which satisfy the cloud character-
istics is a task of growing importance in the field of energy-

efficient cloud computing. In order to achieve such an integra-
tion, the virtualization of FPGA resources is necessary. The
provision of virtual FPGAs (vFPGAs) makes reconfigurable
resources available to customers of the data center provider.
Therefore, service providers will be called users throughout
this paper. The users can accelerate specific services, reduce
energy consumption and thereby service costs.

The virtualization of reconfigurable hardware devices is a
recurring challenge. Decades ago, the virtualization of FPGA
devices started due to the limitation of logical resources [6].
Nowadays, FPGAs have grown in size and full utilization
of the devices cannot always be achieved in practice. One
possibility to increase utilization is our virtualization approach
which allows for flexible design sizes and multiple hardware
designs on the same physical FPGA. One challenge of this
approach are the unsteady load situations of elastic clouds,
which process short- and long-running acceleration services.

In this paper, we introduce our virtualization concept for
FPGAs, which is inspired by traditional virtual machines
(VMs). One physical FPGA can consist of multiple vFPGAs
belonging to different services with different runtimes. Each
vFPGA can be configured using partial reconfiguration [7] and
the internal configuration access port (ICAP). The vFPGAs
are, therefore, flexible in their physical size and location.
Moreover, they are fully homogenous among each other and
thereby become a wholesome virtualized cloud component,
which supports even an efficient migration of a whole vFPGA
context. Especially the vertical scaleability of vFPGAs from
small designs up to full physical FPGAs is gaining impor-
tance by providing efficient utilization of the reconfigurable
resources in modern cloud architectures.

The paper is structured as follows. Section II introduces
similar concepts and related research in the field of virtu-
alization of reconfigurable hardware, cloud architectures and
bitstream relocation. In Section III, we give an overview on our
virtualization concept. Our prototype, which implements our
concept with homogenous and in their size flexible vFPGAs,
is presented in Section IV followed by device utilization,
vFPGA size and performance results in Section V. Section VI
concludes and gives an outlook.

II. RELATED WORK

The provisoning of reconfigurable hardware in data centers
and cloud environments has gained more and more importance
in the last years as shown by the overview from Kachris et al.
[8]. Initially used mainly on the network infrastructure level,
FPGAs are now also employed on the application level of
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data centers. Typical use cases in this field are background
accelerations of specific functions with static hardware designs.
The FPGAs’ special feature to reconfigure hardware at runtime
is still used rather rarely. Examples are the anonymization of
user requests [9] and increasing security [4] by outsourcing
critical parts to attack-safe hardware implementations. In most
cases, the FPGAs are not directly useable or configurable by
the user, because the devices are due to a missing provisioning
or virtualization hidden deeply in the data center.

A comparable contribution with stronger focus on the trans-
fer of applications into an FPGA grid for high performance
computing is shown in [10]. The application focus on a single
cloud service model with background acceleration of services
using FPGAs. An approach which places multiple user designs
on a single FPGA is introduced by Fahmy et al. [11], using
tightly attached FPGAs to offload computationally intensive
tasks. The FPGAs are partially reconfigurable and can hold up
to four individual user designs. The approach was extended
by Asiatici et al. in [12] with additional memory virtualization.
A cloud integration model with network-attached FPGAs and
multiple user designs on one FPGA is introduced by Weeras-
inghe et al. [13].

The term virtualization itself is used for a wide range
of concepts. An example for abstractions on the hardware
description level is VirtualRC [14], which uses a uniform hard-
ware / software interface to realize communication on different
FPGA platforms. BORPH [15] provides a similar approach,
employing a homogeneous UNIX interface for hardware and
software. The FPGA paravirtualization pvFPGA [16], which
integrates FPGA device drivers into a paravirtualized Xen
virtual machine, presents a more sophisticated concept. A
framework for the integration of reconfigurable hardware
into cloud architecture is developed by Chen et al. [17] and
Byma et al. [18].

Approaches more closely related to the context-save-and-
restore mechanism required by our migration concept can
be found in the field of bitstream readback, manipulation
and hardware preemption. In ReconOS [19], hardware task
preemption is used to capture and restore the states of all flip-
flops and block RAMs on a Virtex-6 to allow multitasking
with hardware threads. In combination with homogenous bit-
streams for different physical vFPGA positions, methods like
relocation of designs as shown in [20], provide an opportunity
for an efficient context migration of virtualized FPGAs.

III. FPGA VIRTUALIZATION APPROACH

As the cloud itself is based on virtualization, the integration
of FPGAs requires a profound virtualization of the reconfig-
urable devices in order to provide the vFPGAs as good as other
resources in the cloud. Furthermore, it is necessary to abstract
from the underlying physical hardware.

A. Requirements for Virtual FPGAs in a Cloud Environemnt
As discussed in Section II, the term virtualization is used

for a wide range of concepts. The application areas of FPGAs
in clouds require a direct use of the FPGA resources to be
efficient. Thus, an abstraction from the physical FPGA infras-
tructure is only possible in size and location. Our approach
is related to traditional system virtualization with VMs that
corresponds to a Type-1 bare-metal virtualization with use of
a hypervisor [21]. This kind of virtualization is designed for
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Figure 1. Paravirtualization concept used in RC2F to provide virtual FPGAs
(vFPGAs) using partial reconfiguration. vFPGAs can be combined to group

larger regions and thereby provide more resources.

the efficient utilization of the physical hardware with multiple
users. Therefore, it is necessary to adapt the required FPGA
resources closely to the requirements of the users’ hardware
design capsuled by vFPGAs. By this, an efficient utilization
of the physical hardware with multiple concurrent vFPGAs on
the same hardware can be achieved.

Furthermore, the vFPGA has to appear as a fully us-
able physical FPGA with separated interfaces and its own
infrastructure management like clocking and resetting. For an
efficient cloud architecture which requires elasticity [1], it is
necessary to migrate vFPGAs with their complete context (reg-
isters and BlockRAM), which requires to enclose a complete
state management of the vFPGA as described in [22]. An
extraction of internal DSP registers is not supported in recent
Xilinx FPGAs and must be considered in the design.

B. FPGA Virtualization Approach
We decided to virtualize the FPGA similar to a paravirtual-

ized system VM executed by a hypervisor to provide access to
the interfaces. Figure 1 shows an FPGA virtualization inspired
by the paravirtualization introduced before. The virtualization
is limited to the interfaces and the designs inside the re-
configurable regions, which constitute the actual vFPGAs as
unprivileged Domain (DomU). Each vFPGA design is gener-
ated using the traditional design flow with predefined regions
for dynamic partial reconfiguration [7] and static interfaces.
The vFPGAs can have different sizes (Figure 1) and operate
completely independent from each other. The infrastructure
encapsulating the vFPGAs has to be located in the static region
corresponding to a privileged domain (Dom0) or hypervisor.

The interface providing access to the vFPGAs is a so-called
frontend interface, which is connected inside the hypervisor to
the backend interface in the static FPGA region. There, all
frontends are mapped to the static PCIe-Endpoint and the on-
board memory controller inside the Dom0, which also manages
the states of the vFPGAs.

IV. FPGA PROTOTYPE RC2F
Our prototype RC2F introduced in [23] provides multiple

concurrent vFPGAs allocated by different users on a single
physical FPGA. The main part of the FPGA frame(work)
consists of a hypervisor managing configuration and user cores,
as well as monitoring of status information. The controller’s
memory space is accessible from the host through an API.
Input- and output-FIFOs are providing high throughput for
streaming applications. The vFPGAs appear to the user as
individual devices inside the System VM on the host.
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Figure 2. Virtualization frame RC2F with hypervisor, I/O components and
partial reconfigurable areas housing the vFPGAs. The vFPGAs have access

to the host using PCIe (FIFO interface and config space), to the Cloud
network using Ethernet and the virtualized DDR3 memory.

A. System Architecture
The physical FPGAs are located inside a host system

and are accessible via PCIe. On both hardware components
(host and FPGA), there are hypervisors managing access,
assignment and configuration of the (v)FPGAs. Based on
our concept, we transform the FPGAs into vFPGAs with an
additional state management and a static frontend interface as
shown in Figure 1. Our architecture, designed to provide the
vFPGAs, is shown in Figure 2. The hypervisors manage the on-
chip communication between backend and frontend interfaces
for PCIe (Our prototype uses a PCIe-Core from Xillybus for
DMA access [24]), Ethernet and a DDR3 RAM. The RAM is
virtualized using page tables, managed by the host hypervisor,
which also manages the vFPGA states we introduced in [22].
The number of frontends and their locations are defined by
the physical FPGA architecture as shown in Figure 6. The
Hypervisor Control Unit manages the ICAP controller and the
vControl units, which maintain and monitor the vFPGAs.

To exchange large amounts of data between the host (VM)
and the vFPGAs a FIFO interface is used. To exchange state
and control information the vFPGAs can be controlled by the
user via a memory interface as shown in Figure 3. The memory
is mainly intended for simple transfers and configuration tasks
like resets, state management (pause, run, readback, migrate)
and the selection of a vFPGA system clock. In addition to these
static fields, there is also a user-describable memory region
which can be used as virtual I/O. The communication using
Ethernet is also provided but out of the scope of this paper.

B. Configuration of the FPGA Hypervisor
The tasks of the FPGA hypervisor are the management

of its local vFPGAs and their encapsulation, the state man-
agement, as well as the reconfiguration using the ICAP. The
interaction between host and FPGA hypervisor is based on
the configuration memory shown in Figure 4, which includes

4 Virtualisierung der FPGAs für den Einsatz in einer dynamischen Cloud-Architektur
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Abbildung 4.8: Konfigurationsspeicher für die vFPGAs mit festen und vom Nutzer definierbaren Bereich.
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Abbildung 4.9: Architektur eines vFPGAs des RC2F mit Konfigurationsspecher (vControl) und Kommunikationskanä-
len. Die Datenleitungen für den Speicher und die beiden FIFOs sind je doppelt als Ein- und Ausgabe
vorhanden.

Kennung zu ermöglichen. Der Nutzer kann den Zustand seines vFPGAs einsehen und ändern, wobei der
Hypervisor eine höhere Priorität hat. Der Nutzer kann ebenfalls auf Basis des Systemtaktes eine eige-
nen Takt für seinen vFPGA auswählen und diesen auch zurücksetzten. Die Möglichkeiten entsprechen
im Wesentlichen denen eines einfachen vollwertigen physischen FPGAs. Der hintere Teil des Konfigura-
tionsspeicher liegt in der rekonfigurierbaren Region und kann völlig frei vom Nutzer beschrieben werden.
Der Beriech kann als einfache I/O-Ports des vFPGAs angesehen werden, wodurch der Nutzer in seinen
Gestaltungsmöglichkeiten Freiheiten wie auf einem physischen FPGA hat.

4.4.2 Zustände der vFPGAs und deren Verwaltung

Um die vFPGAs wie Virtuelle Maschinen nutzen zu können sind entsprechende Zustandsübergänge und
deren Verwaltung erforderlich. Die Steuerung erfolgt dabei vom Host-Hypervisor aus über den zuvor er-
läuterten Konfigurationsspeicher des FPGA-Hypervisors. Ein direkter Zugriff der Nutzer selbst auf die
Zustände ist ebenso auch vom Konfigurationsspeicher der vFPGAs möglich. Abbildung 4.10 gibt einen
Überblick über die möglichen Zustände und deren Übergänge. Um den kompletten Lebenszyklus abzu-
decken ist dabei neben den Zuständen auf dem FPGA noch weitere Zustände auf dem Host-Systems
innerhalb des Hypervisors erforderlich um analog zu Betriebssystemen die vFPGA-Designs als Instan-
zen anzusehen, welche direkt Nutzern zugeordnet sind und auch Nutzerspezifische Daten enthalten
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Figure 3. Register and memory interface for the management of vFPGAs
accessible by the user VM (rc2f_cs).4.4 Entwurf der Virtualisierung für FPGAs im Cloud-Einsatz – RC2F
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Abbildung 4.7: Prototypischer Aufbaue des Konfigurationsspeicher für den FPGA-Hypervisor zur Administration des
physischen FPGAs einschließlich der Bereiche für die Verwaltung von bis zu 30 vFGPAs.

ein separater Beriech reserviert. Eine Zuordnung von vFPGA und realen Nutzer ist dabei lediglich dem
Hypervisor auf dem Host bekannt.

4.4.1.2 vFPGA Steuereinheit

Die vFPGAs, welche vom Nutzer wie in Abbildung 4.9 abgebildet wahrgenommen werden, stellen ein
eigenes (wenn auch virtuelles) System dar und verfügen als solches eigene Kommunikationskanäle und
einen eigenen Konfigurationsspeicher wie auch der Hypervisor. Die beiden zum Datenaustauch vorge-
sehenen Kanäle sind dabei der Streaming- und der Paketbasierte Kanal, welche in Abschnitt 4.3.3 als
notwendig erachtet worden sind. Der vFPGA Konfigurationsspeicher, welcher in Abbildung 6.1.2.2 ab-
gebildet ist wird in den Speicher der Nutzer-VM eingeblendet und kann mit Hilfe der in Abschnitt 5.1.3
erläuterten API konfiguriert werden, beziehungsweise auch von außen, ohne VM, über die Netzwerkver-
bindung. Mit Hilfe des Moduls zur

Der Konfigurationsspeicher ist dabei in zwei Teile eingeteilt. Der statische Bereich der vom Nutzer in
seinem Design nicht verändert werden kann, sondern nur im Inhalt um eine Systemweite eindeutige
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Figure 4. Register and memory interface for the management of the FPGA
hypervisor accessible by the host hypervisor (rc2f_gcs).

configuration of the FPGA hypervisor (system status, reconfig-
uration data and status) and the administration of the vFPGAs.
Other important vFPGA-related entries are an AES-key for
encryption of the vFPGA-bitsteam and the allocated vFPGA
region(s) for additional validation during reconfiguration. The
information inside the FPGA hypervisor are only accessible
and modifiable through the host hypervisor.

C. The Role of the Host-Hypervisor
Our virtualization concept on the host-system includes

passing through the vFPGAs’ FIFO channels and the config-
uration memories from the host-hypervisor to the user VMs
(DomU) and the FPGA hypervisor memory to the management
VM (Dom0). The overall system architecture on hypervisor
level of host and FPGA is shown in Figure 5. The frontend
FIFOs and the FPGA memories are mapped to device files
inside the host hypervisor. There, our system forwards the user
devices to the assigned VM using inter-domain communication
based on vChan from Zhang et al. [25] in our Xen virtualized
environment, similar to pvFPGA [16].

The management VM thereby accesses the FPGA hypervi-
sor’s configuration memory and the ICAP on the FPGA via a
dedicated FIFO interface for the configuration stream (read and
write). Thus, only the hypervisors can configure the vFPGA
regions on the physical FPGA whereby a sufficient level of
security can be guaranteed.
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homogenous to allow migration of vFPGAs.

D. Mapping vFPGAs onto physical FPGAs
In our example we use six frontends on a Xilinx Virtex-7.

Depending on the resources required, the utilization of up to
six different-sized vFPGAs is possible with the same static
without reprogramming. If one of the vFPGAs covers more
than one region, only one frontend connection is used as
shown in Figure 1. Among the vFPGAs, the partition pins (PP)
between the static and the reconfigurable regions are placed
with identical column offset as shown in Figure 6. The regions
forming the vFPGAs are not free from static routes as for
example the region vFPGA 5 shows.

To reduce migration times, all components which hold
the context of the current vFPGA design as registers, FIFOs
or BlockRAM, are placed at the same positions inside each
vFPGA. Therefore, it is necessary that all of these positions
exist in each region. Hardmacros like PCIe-Endpoints or
parts of the FPGA infrastructure interrupt the homogenous
structures. Thus, we establish homogenous vFPGAs, which
are identical among each other by excluding these areas in all
vFPGAs as shown in Figure 6. The advantage of this approach
is that only one mask file is necessary to extract the content
of the different vFPGAs. Furthermore, it allows the provision
of almost identical vFPGAs.

E. Extended Design flow
For our virtualization we extend the Xilinx Vivado design

flow to generate vFPGA bitstreams from user-netlists for

every possible vFPGA position. First, directly after synthesis
the required region size (single, double, etc.) is chosen (see
Table I for appropriate vFPGAs). Afterwards, the design is
placed at a first vFPGA region. Before the routing step, the
vFPGA region is expanded over the full width of the vFPGA
for unlimited routing of the design inside the uninterrupted
region. The placements of the same design for all the other
vFPGA positions are created by setting the LOC (Location)
and BEL (Basic Element Location) information accordingly
to the initial placed design. Only the routing is carried out for
the additional vFPGA designs to allow static routes inside the
different vFPGAs, resulting in designs with identical register
and BlockRAM positions for each vFPGA locations on the
physical FPGA. After generation of the first bitstream, a
mask for extracting the context bits is generated to allow an
efficient migration in significantly less time compared to our
first approach in [22]. This allows flexible placement of the
vFPGA designs at various positions in a cloud system, as
well as the migration between vFPGAs on the same or to
other physical FPGAs. The bitstreams required for all possible
vFPGA positions belonging to a single user design are stored
as virtual reconfigurable accelerator images (vRAI).

F. Description of vFPGAs
The execution of a vRAI requires allocation of a vFPGA

which fulfills all requirements. Therefore, it is necessary to
describe the vFPGAs in a particular configuration file. Figure 7
gives an overview of such an configuration, which is evaluated
by the resource management system to allocate the necessary
resources. After allocation the host hypervisor chooses from
the vRAI the appropriate bitstream and configures the device.

service = ’ba’ #Background Acceleration Service
name = ’vfpga-kmeans’ #vFPGA/User Design Name
vm = [’vm1-pvm’] #VM-Instance Name
vfpga = 1 #Number of vFPGA
size = [3] #vFPGA Size
memory = [2000] #DDR-Memory Size in MByte
vif = [’ip=10.0.0.43’] #vFPGA-IP
boot = [’running’] #Initial vFPGA-State
design = [’kmeans.vrai’]#Initial Design

Figure 7. Configuration file for the allocation of a single vFPGA with
network access and external memory of 2 GByte.

V. IMPLEMENTATION RESULTS AND SCENARIO

The resources required for the implementation described in
the previous section are shown in the following with a real-
world scenario based on our motivation from Section I.

A. Implementation
The resource consumption of our prototype introduced in

Figure 2 is shown in Table I. Furthermore, the table introduces
the size of homogenous vFPGA regions as outlined in Figure 6.

#»ρ =

(
SliceLUTs

SliceRegister
BlockRAM

DSP
...

)
(1)

is used in the following to describe the resources. The aggre-
gated homogenous vFPGAs #     »ρagg can be calculated using

#      »ρagg = #           »ρsingle · nagg − (nagg − 1) · #     »ρppr (2)

where #           »ρsingle are the resources of a single vFPGA region, nagg
is the number of aggregated vFPGAs and #     »ρppr represents the
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partition pin region (PPR) necessary to exclude the unused
frontend interfaces from the grouped vFPGAs. The open
frontends are therefore treated as stubs and are securely sealed
using a partial vFPGA bitstream. The cost of the provision of
identical vFPGAs are in the case of our Virtex-7 XC7VX485T
FPGA only 6.44% of slices registers/LUTs and 8.33% of the
BlockRAM tiles compared to a compete, but inhomogeneous
region. In our floor planning shown in Figure 6 there are
no further DSPs affected. All regions except the largest one
(Hexa), which has only one possible position, are homogenous.

The throughput between vFPGAs and host (PCIe Gen2 8x
on a Xilinx VC707) with different numbers of concurrently
active vFPGAs is shown in Figure 8. The throughput of a single
design is limited by a user clock of 100 MHz and a 64-bit data
interface. Starting from three vFPGAs, a limitation due to the
concurrent users occurs. The throughput shown in Figure 8 is
the minimal guaranteed throughput for each vFPGA.

The size of the vRAI packages and the number of possible
locations on the physical device are shown in Table II. With
69.2 MByte, a quad vFPGA with bitstreams for three possible
positions and a mask file for context migration is the largest
vRAI package. Compared to our first approach, the information
necessary for context migration is reduced by several orders
of magnitude by using homogenous vFPGAs.

D
ur

ch
sa

tz
 in

 G
B

yt
e/

s

0

450

900

1,350

1,800

Datenmenge in MByte

0,5 1 2 4 8

Lesen Schreiben

Single Read

package size (MB)MB/s Mean std

0.5 33.2174616128511037.0099899986957032.5508585155362030.54063273334530029.4106747250475026.7850524025633029.0542382832599033.9839261689112029.50413723283130030.47143158443910031.252840325748 2.80200902948665

1 49.4874660602119058.6560425265692 50.15782136775430055.7226276432836062.6323973799364049.1712187617276050.54821868368660055.1973188215500045.6152561008666057.6952277099541053.488359505554 5.02290886560428

2 114.96989561965600119.6287779619770083.8173432303212 109.19387373720900116.8331076265530098.3273192803942 105.7129795679990090.7576040976515082.34858527025100112.17174552161000103.376123191362 13.06041935488240

4 106.39858583683300180.70243192615100173.8340099622420176.75770344848300107.68149731723100171.85612959563300192.49606941994500198.29159964367300156.91812129106900196.80384438961200166.173999283087 31.86969669479020

8 260.02767248275400240.1238990609280271.4802255015990244.97846203689000255.47319325245800287.03977293811500248.08040812223800287.3119546748730 270.83025133885000252.0850835600920261.74309229688 15.94277175393070

16 358.5776124662560371.22100800192600365.765349841413 350.6385672684750374.1993952560650388.8891923565620359.791065015107 416.33512722309600372.3580393726110382.5907540405640374.036611084208 17.7524847842273

32 465.87061753810300426.35556298388300485.25058073928200466.2466963435760477.82377216121000556.5821424751150460.17032911221400479.4474062562950468.9726392713810530.5977542387150481.731750111977 34.94125725597450

64 671.0770501585620659.4327507648750661.3309727461620654.288529652045 673.0887818160470648.0252443588650628.994371079922 674.3089095337600632.7356264346090664.8428568863380656.812509343118 15.1770170146252

128 746.0934044886970777.4744646682120770.2683040911050774.3953964141990785.5860409717330785.7080979578280775.0732004492810756.2560780824060773.8279456864920787.2936497784890773.197658258844 12.5002380068447

256 802.4226076841430802.2080575563450802.4579541555850802.4750276470340802.4849621389700802.4633106276200802.4986161705480802.5109211282640802.5004693873770802.4752080376910802.449713453358 0.0840430602313

512 802.5968414283160802.5945823521750802.5693959205720802.601210222376 802.5888860919060802.6043692351850802.6030176292940802.5949906956500802.6064320980310802.5983582269790802.595808390048 0.0101122774319

1024 802.4226076841430802.2080575563450802.4579541555850802.4750276470340802.4849621389700802.4633106276200802.4986161705480802.5109211282640802.5004693873770802.4752080376910802.449713453358 0.0840430602313

Single Write

Mean std

0.5 688.3617884015840679.183660250612 663.789445311988 685.218706246179 675.3144199830440671.825548648674 674.8449959587550673.4199356396930668.913417181503 678.5291360575810675.94010536796106.9245854588828

1 719.0131107472770732.7200097719490739.1197637827530728.700374787284 739.9941172173390723.5786156041460737.5745301125040 738.6479176505350730.8853387879290732.7832661396960732.3017044601410 6.6467872641011

2 763.1805656321630766.1097056047190764.814234378617 764.777872804452 763.8209149097020766.7515597130850765.6901346983110766.0689849035990761.912678997624 764.8338465505460764.79604981928201.4087603127583

4 784.1534608223810781.7523409747550780.3917752803430779.0620793860330781.1233505009000782.4752085553700783.0205033520190782.6661357738370782.1714713212690783.0613329482720781.9877658915180 1.3982248593214

8 792.1075053910290791.9719608443870791.4184336668830792.6591811325380792.0159201022270790.8749636035930790.6521735368640792.5137229316790793.0785954720410793.1026496847230792.03951063659600.8059270532933

16 796.3234045077900795.4000886660250796.9151256663080796.2905732777260795.7848458390200796.8842601218870796.1475610959860798.2477994700770796.959284185946 797.2549340211990796.62078768519600.7700823304090

32 799.3901408969590799.4628845424520799.3543226315620799.539967075736 799.5054469224690799.9750964645540799.0790606028520799.2541378028600799.5227856944880799.3932374865330799.44770801204700.2200507351250

64 801.1798551654690800.5890658040060800.8800089929530800.7391225150270801.0789927954330800.5477262503640800.8875833834980801.183666195989 800.7929674553260800.3112705350860800.81902590931500.2702825201301

128 801.9569618560420801.6485310843900801.8368918091750801.4583730305550801.8399161615840801.6807184117210 801.7176901504480 801.6891754078440801.7299711712760 801.6109532478750801.7169182330910 0.1312041000567

256 802.3407481346790802.3332176608980802.3010270939640802.2469920448380802.2486720057400802.3483782846300802.2485092775120802.3303031677810802.2182265865060802.3017635654040802.29178378219500.0448712141281

512 802.4924439190780802.5527987669010802.4464695489650802.5289118336600802.5016033447530802.4892260454040802.4675128083170802.5535421444230802.5377065678640802.421475706819 802.49916906861800.0426239141019

1024 802.3407481346790802.3332176608980802.3010270939640802.2469920448380802.2486720057400802.3483782846300802.2485092775120802.3303031677810802.2182265865060802.3017635654040802.29178378219500.0448712141281

Single Total

Mean std

0.5 721.579250014436 716.193650249308 696.340303827524 715.759338979524 704.725094708091 698.610601051237 703.899234242015 707.403861808604 698.417554414334 709.000567642021 707.192945693709 8.0626069103406

1 768.500576807489 791.376052298518 789.277585150507 784.423002430568 802.626514597275 772.749834365874 788.12274879619 793.845236472085 776.500594888796 790.47849384965 785.790063965695 9.88067702195953

2 878.150461251819 885.738483566697 848.631577608938 873.971746541661 880.654022536256 865.078878993479 871.40311426631 856.826589001251 844.261264267875 877.005592072157 868.172173010644 13.3337862858238

4 890.552046659215 962.454772900907 954.2257852425850955.819782834515 888.804847818131 954.331338151004 975.516572771963 980.957735417509 939.089592612337 979.865177337884 948.161765174605 31.7665962932475

8 1052.13517787378 1032.09585990531001062.89865916848001037.63764316943 1047.48911335469 1077.91473654171 1038.7325816591 1079.82567760655001063.90884681089 1045.18773324481001053.78260293348 15.8742445550638

16 1154.90101697405001166.62109666795 1162.68047550772 1146.92914054620001169.98424109509001185.77345247845001155.93862611109 1214.58292669317 1169.31732355856 1179.84568806176001170.6573987694 18.3097782607925

32 1265.26075843506 1225.81844752634 1284.60490337084 1265.78666341931 1277.32921908368 1356.55723893967001259.24938971507 1278.70154405916001268.49542496587001329.99099172525001281.17945812402 35.0629019730244

64 1472.25690532403001460.02181656888001462.21098173912001455.02765216707 1474.16777461148001448.57297060923001429.88195446342 1475.49257572975 1433.52859388993001465.15412742142001457.63153525243 15.2625961534979

128 1548.05036634474001579.12299575260001572.10519590028001575.85376944475001587.42595713332001587.38881636955001576.79089059973001557.94525349025001575.55791685777001588.90460302636001574.91457649194 12.4415666028133

256 1604.76335581882001604.54127521724001604.75898124955001604.72201969187001604.73363414471001604.81168891225001604.74712544806001604.84122429605001604.71869597388001604.77697160310001604.74149723555 0.0761550464931

512 1605.08928534739001605.14738111908001605.01586546954001605.13012205604 1605.09048943666001605.09359528059001605.07053043761001605.14853284007001605.14413866590001605.0198339338 1605.09497745867 0.0467157954049

1024 1604.76335581882001604.54127521724001604.75898124955001604.72201969187 1604.73363414471001604.81168891225001604.74712544806001604.84122429605001604.71869597388001604.7769716031 1604.74149723555 0.0761550464931

Dual Write

package size (MB) MB/s

0.5 580.1670375081180 575.420950894716 637.9764652477680 632.3631178875170 618.7857725732460 587.6793148441670 595.0227864291100 596.8631159410220 613.4682510979670 596.4493421092830 604.9672337673170 601.8526406888550 589.3495419642020 606.0773719043250 588.0719876792850

1 639.4241559760190 636.3152070269880 662.9979926212930 635.8336510305170 643.6936420568500 627.0453654351860 627.8015284269820 625.7725393474780 637.9207481033040 658.7506520070650 624.4438548732000 647.4920078224260 641.3282054559450 656.8736881161390 617.3289354839640

2 662.8311107359240 667.2778578586350 673.9988406190100 664.189475601792 666.8407601638870 672.0566115383060 655.7285070940590 671.3781718366050 652.5475217742860 670.3856777682030 663.6794881145610 659.9717256432850 691.6714865558650 662.307784095579 677.4517110478470

4 688.1224665444970 666.1021369556740 672.8201531770160 678.5238835116490 683.4336950494040 669.0530982184440 682.9692638433720 674.2518821700150 670.6928264366480 671.3140546724210 703.2215234251910 662.1694247762100 667.9708858901080 685.3017446447330 677.9483651967540

8 681.7475228427830 674.143828229042 681.278733595502 676.0539392837550 676.4675612434210 677.8281850286180 674.2978235243190 678.540150588875 676.2128009868530 671.5959572899250 681.7108940492180 675.8354601135040 676.8743824262210 678.8213431748160 677.627827949221

16 679.6910865154430 678.6883857558260 686.0856002135590 679.7054464919380 686.8941824657530 680.7715381280240 682.6259789876750 679.8450441688950 686.78641789165 676.6978306115540 685.8936682249970 676.6253116271230 683.2161809093870 683.1483023466420 687.1920735670720

32 685.8216495443650 681.397397418916 682.2149868187660 680.5229812984190 682.223987872999 680.5814957138140 685.6347836747920 680.6703986481740 685.3275444921030 680.8677560759220 684.9105495825090 679.4337921876400 684.8732934495920 677.9219275211300 680.0823101416080

64 689.3217212299840 679.8273794736740 688.0924458839760 687.4691913117880 688.8274986241260 682.4367704260160 684.6957613467580 680.5118012161570 687.9120773599860 684.3076937293870 682.1897323071870 679.5556646755690 684.9784032898270 684.7394594196890 682.8007499359480

128 691.8620061861510 685.451569768488 691.8656196149180 685.0824953198360 683.2206980224340 678.083292653083 681.4944817319460 681.0634223882900 680.6440179126430 675.6057140732170 688.7042486711100 686.391310295755 690.7248531401310 686.2960506714650 689.4782884247400

256 690.7955321634470 685.932316647948 594.876668446798 582.0235541843230 627.8143960956230 619.1390327422300 692.2465350949870 686.9674163522670 690.9770643904220 686.6707680385710 600.2035697440260 613.82591304983 688.5808746355590 684.6491621845330 689.4321159097110

512 581.2327277088570 579.323765147584 690.260459101332 685.3372276249020 690.7929142281990 685.6223986601450 590.0381085221900 581.8292163496330 691.6032344057310 687.4543140176220 588.3406580333870 585.1098187475980 688.6972577061740 684.404685576521 691.7298424553280

1025 690.7955321634470 685.932316647948 594.876668446798 582.0235541843230 627.8143960956230 619.1390327422300 692.2465350949870 686.9674163522670 690.9770643904220 686.6707680385710 600.2035697440260 613.82591304983 688.5808746355590 684.6491621845330 689.4321159097110

Triple Write

package size (MB) MB/s

0.5 421.6135677555340 380.3337271005470 412.66828212236300 403.3748215557630 416.5795961154890 416.2320792070000 477.5120992147620 392.6716665715840 431.5925429887530 524.7856238679450 488.4110152703810 503.22527041973600 446.7097053336820 382.9809373019320 450.79025823813700

1 445.63199460796700 435.133536457984 458.8711849565170 485.72053271112400 453.19081430620900 490.1098945439800 516.8033102617100 479.67130773131100 411.1643109341050 418.5573971788140 430.1115310224440 435.5761530838220 426.69454120897200 450.15497145712800 439.17778911207100

2 461.2317328559830 437.1755876442960 455.42005912129000 467.92961369855600 448.7765282759580 458.492628727456 439.05477646166000 454.99597820748700 455.94292379155900 434.4229555894980 470.30371295289800 459.34221437359600 445.42023577688200 441.6696758706050 452.0262132996910

4 461.78531281435500 440.9343687037080 456.1170914057120 454.06387844654400 455.5553860129430 456.5563690364200 457.5799436336060 457.38658560656800 448.21267921403900 447.9310404130220 456.9738594598380 453.7715566638210 453.88264111828700 437.065946935516 453.06635120209300

8 448.9799566555940 453.14218739465900 454.9587701465120 454.0609502442140 456.6050276370400 457.5212196788350 456.4106130674650 453.4731951748180 455.6484684021290 510.00443612242300 503.51238270350900 529.2488682675370 454.0096888202360 455.36843003116700 454.73964564765300

16 453.15284306315200 448.2126032056190 453.66105966286500 454.90143971576700 454.8256999338990 456.4659292152790 454.9965746945530 451.0987905996600 454.5484756489670 457.1793629154410 450.3318092316500 455.3840189236560 473.5449973573070 438.1136138747300 475.4605071829540

32 453.3149929521250 454.7264598752790 454.56968242807100 451.96723846592000 456.46457085925800 455.86154774386400 451.7633428911720 454.8593335211560 451.3862131228880 455.2840012003640 455.8004614550520 456.6398473503560 456.1501956316440 458.10289013261100 456.3908254756960

64 457.86022323081200 458.69613280438200 458.39984547164800 457.7654803690270 458.33673658177100 458.86609249296400 457.4576916463180 458.36037572977200 458.54228535064800 454.99599327027200 455.9977665494620 455.21704607654600 455.11701728102500 457.0080197038990 455.4848730959740

128 457.19629046720500 457.7095653039150 457.6769034335940 453.54027358820900 454.3422367519620 454.155790239711 455.72621118916600 456.47948668809700 456.4239368607460 455.2066579673970 456.42457499152000 455.7884119765600 455.9771857323680 459.07143101644300 457.20465319054800

256 454.9251794501560 455.73481829805400 455.25156996822600 456.50718555055500 457.54626599654700 457.41730500569900 453.71708404683900 454.53939617141400 454.6491585491150 455.3284208608260 456.1071015129660 456.34148559677000 456.18837409415000 456.99493112734400 457.23328397514500

512 455.8385628737450 456.58589039633000 456.77010159753300 456.06712550861900 456.72922118840900 456.80745717162800 455.9219373033600 456.5686413485650 456.6957972684540 456.0448265813670 456.8399155281810 456.8819286480710 454.64172767828300 455.37372937292800 455.37205519835500

1024 454.9251794501560 455.73481829805400 455.25156996822600 456.50718555055500 457.54626599654700 457.41730500569900 453.71708404683900 454.53939617141400 454.6491585491150 455.3284208608260 456.1071015129660 456.34148559677000 456.18837409415000 456.99493112734400 457.23328397514500

Dual Read

0.5 34.51671819327300 34.02895730234180 33.21555343008770 32.936605102941200 31.21429530549990 30.852226264752600 35.7520442417061 35.299436476984500 37.05293158988080 36.59217858932130 36.78656387888570 36.36017760359220 29.252954203078800 23.506556589540600 23.097409643697500

1 61.5816598527248 60.842109599416700 67.3402450821021 66.61557152935190 65.56436627260270 64.93168236987240 57.91851510845980 57.209481858502100 55.74563970380320 55.147568389732900 60.356195834820200 48.37811659663180 63.3226578333319 62.607045685853400 68.25350731144450

2 111.45417420988400 110.34516245051200 118.48046409165000 116.91942586816400 106.04128847146100 105.41164421966500 118.53697204589900 79.82978368751910 104.08962895387900 103.6823894784390 112.33549351293500 91.21077364802780 100.64587482810400 100.00835456829200 104.43685918258900

4 141.08288048367600 140.0872479808770 175.1457588172340 173.82250377500200 170.66664971245800 168.9904890090820 175.27422906655300 173.8976433511540 182.98162871760700 181.24015102082400 186.585333203758 185.45857652916800 144.56851275162900 201.68112220269200 172.43356809703400

8 259.79562372905400 258.47285019174200 273.2954954164430 272.18223154246600 243.10038475244700 274.5043307062900 235.4441240312100 265.38171687707400 234.33413481310000 263.09510631259600 269.31361616588800 267.4013481364190 270.73913297953300 269.11918693430500 292.8516462777240

16 365.28063970439900 399.5068397928860 385.58914427668300 351.44008188902700 408.0759846119500 408.752129821807 377.5840444691020 344.52547329045900 297.9752253047210 297.7211014998660 386.67598891505400 351.6004030582880 371.8455130729040 341.2448010720330 368.4245764009930

32 486.4472012544090 434.0939088972200 531.6366830371580 497.42803956615600 449.2651956545210 426.73541275822000 475.65644679077000 448.54333161960500 438.2781081237010 463.79999776737200 479.7422693206620 480.91289114106000 482.70835344896900 455.4332217643780 492.2182737926980

64 589.5865527221350 644.2698293280880 686.4045235601160 647.5305978770350 679.9209795203020 639.6203613523280 649.9354467982010 660.0932114616390 688.4624470329710 645.0530667055520 617.2229954698660 663.3166162116200 629.570638954476 684.8926070198570 683.0015001399360

128 691.7825150783900 686.7582929762120 691.2734187855180 685.8351951026360 682.3708371409680 677.3554496040050 682.8706867685370 681.6294199211110 680.683864533321 675.6584915078300 688.8588384896980 685.8790062243170 689.49942262763 686.7541613420520 689.9958850047030

256 690.9156955657590 686.4305136449090 542.7665964842080 537.1516120103100 563.5384374422090 560.2265637715630 692.2525854044770 687.4633309255300 691.6245491119540 686.3686703296470 536.2193463215770 541.9960782574280 688.2749546773080 684.6869482134640 690.1999990978220

512 557.7408046549080 557.3665400103840 690.2527115490580 685.5893963713770 690.6849629471290 685.9144467415530 554.0768137796780 550.4001739764760 691.813612517017 687.8577629340040 559.0578283851180 558.0018366901850 688.9218483621950 684.51884074604 691.4790735964100

1024 690.9156955657590 686.4305136449090 542.7665964842080 537.1516120103100 563.5384374422090 560.2265637715630 692.2525854044770 687.4633309255300 691.6245491119540 686.3686703296470 536.2193463215770 541.9960782574280 688.2749546773080 684.6869482134640 690.1999990978220
Dual Total

0.5 614.683755701391 609.449908197058 671.192018677856 665.299722990458 650.000067878746 618.53154110892 630.774830670816 632.162552418006 650.521182687847 633.041520698604 641.753797646202 638.212818292448 618.602496167281 629.583928493866 611.169397322982

1 701.005815828744 697.157316626405 730.338237703395 702.449222559869 709.258008329453 691.977047805058 685.720043535442 682.98202120598 693.666387807107 713.898220396798 684.80005070802 695.870124419058 704.650863289277 719.480733801993 685.582442795408

2 774.285284945808 777.623020309147 792.47930471066 781.108901469956 772.882048635349 777.468255757971 774.265479139958 751.207955524124 756.637150728165 774.0680672466410 776.014981627497 751.182499291313 792.317361383969 762.316138663871 781.888570230436

4 829.205347028173 806.1893849365520 847.9659119942500 852.346387286652 854.100344761862 838.0435872275250 858.243492909924 848.1495255211690 853.674455154255 852.554205693245 889.806856628949 847.628001305378 812.539398641737 886.982866847425 850.381933293788

8 941.543146571837 932.616678420784 954.574229011945 948.236170826221 919.567945995868 952.3325157349080 909.7419475555280 943.921867465949 910.546935799953 934.69106360252 951.024510215105 943.2368082499240 947.613515405755 947.940530109121 970.479474226945

16 1044.97172621984 1078.1952255487100 1071.67474449024 1031.14552838096 1094.9701670777000 1089.52366794983 1060.2100234567800 1024.37051745935 984.761643196371 974.4189321114200 1072.56965714005 1028.2257146854100 1055.0616939822900 1024.3931034186800 1055.6166499680600

32 1172.2688507987700 1115.49130631614 1213.8516698559200 1177.95102086457 1131.48918352752 1107.31690847203 1161.29123046556 1129.21373026778 1123.6056526158000 1144.66775384329 1164.6528189031700 1160.3466833287 1167.58164689856 1133.3551492855100 1172.3005839343100

64 1278.9082739521200 1324.0972088017600 1374.4969694440900 1334.9997891888200 1368.7484781444300 1322.0571317783400 1334.6312081449600 1340.6050126778000 1376.3745243929600 1329.3607604349400 1299.4127277770500 1342.8722808871900 1314.5490422443 1369.6320664395500 1365.8022500758800

128 1383.6445212645400 1372.2098627447 1383.1390384004400 1370.9176904224700 1365.5915351634000 1355.43874225709 1364.3651685004800 1362.6928423094000 1361.32788244596 1351.2642055810500 1377.5630871608100 1372.27031652007 1380.22427576776 1373.0502120135200 1379.4741734294400

256 1381.7112277292100 1372.36283029286 1137.64326493101 1119.1751661946300 1191.3528335378300 1179.3655965137900 1384.4991204994600 1374.4307472778000 1382.6016135023800 1373.0394383682200 1136.4229160656000 1155.82199130726 1376.8558293128700 1369.3361103980000 1379.6321150075300

512 1138.9735323637700 1136.69030515797 1380.51317065039 1370.9266239962800 1381.4778771753300 1371.5368454017000 1144.1149223018700 1132.2293903261100 1383.41684692275 1375.3120769516300 1147.3984864185000 1143.1116554377800 1377.6191060683700 1368.92352632256 1383.2089160517400

1024 1381.7112277292100 1372.3628302928600 1137.6432649310100 1119.1751661946300 1191.3528335378300 1179.3655965137900 1384.4991204994600 1374.4307472778000 1382.6016135023800 1373.0394383682200 1136.4229160656000 1155.8219913072600 1376.8558293128700 1369.3361103980000 1379.6321150075300

Triple Read

0.5 31.314615017597600 31.482442588195200 30.799234503758100 28.438476307940200 36.90037715823310 28.082605623243600 27.801912988140300 28.53539868740150 28.226880070427500 37.23715523377010 28.42104128606220 28.79191230030700 26.31728864789140 33.92037775536660 25.99972705829570

1 66.19910215146410 52.690806837957100 51.66116503345580 50.81203810825400 64.43513221589710 63.40618081366030 50.162337960691400 50.684073767401700 61.78504727750140 54.46979077328240 54.298803877371200 44.384863743011200 65.11990866465270 63.94450045565460 64.73219125486310

2 97.59351412425220 82.47259792985100 99.19411720593610 86.8023718266822 105.51615113261000 103.87518320988900 80.45808322059280 79.9863889133216 79.52916185290910 75.29302922010610 74.35942882659480 104.28967955070400 100.87535096140600 101.12521068108900 99.70566977880730

4 187.46153418247400 190.32727260802800 185.53478967948700 168.7192483651490 168.3149395185340 167.36022177288100 157.0658291123930 136.20933406067700 137.92041931209500 177.1185429206340 150.03582708167600 148.6782127918860 165.1740845618150 144.20206976703700 140.94465059784800

8 211.9595232695450 237.1642327881580 137.65768382276400 245.65674964646900 246.23912994309800 243.9385104427490 256.8037776691360 229.72572083178200 256.0343368803250 249.78870933351100 250.08892831143400 248.15679249096700 246.68872691421800 198.02229757270100 196.85899551967100

16 321.67510918593900 323.9096865043190 320.28151400909100 271.9834073026710 314.5944293270820 313.33487765926200 319.972680755443 322.6520120938330 318.2683473512340 270.3720571152570 315.444133555583 269.7460170237100 273.7041148046790 340.585173477031 274.30155329786000

32 380.19899450431800 380.5390490526990 379.3930936073740 376.69444715815400 372.94531581458200 373.680596122969 369.9660577568680 311.8724941532770 370.4632647996590 376.3171349842760 376.7926524566250 375.68145324664200 386.19741040076000 323.4969873336930 322.8805491446850
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0.5 707.192945693709 1263.86616440347 1374.56774351744 1501.50001112727

1 785.790063965695 1401.13371173734 1508.00968095595 1668.57309775588

2 868.172173010644 1542.96210737859 1644.33673405423 1890.49807924442
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Figure 8. Throughput between host and FPGA with different numbers of
concurrent vFPGAs. The diagram shows for each number of vFPGAs the

average throughput of one representative vFPGA. The aggregated throughput
is thereby the average throughput of all vFPGA compositions on the device.

B. Scenario
In the following, we show a scenario based on a typical

real-world application for our virtualization approach. The goal
is it to migrate vFPGA designs to achieve a high utilization
as shown in Figure 9(c). In a system with jobs arriving and
being finished at different points in time, situations as shown
in Figure 9(a) can occur. The fragmentation of the physical
FPGA restricts only one small vFPGA and one aggregated
double sized vFPGA. By migrating the design from user 3 from
vFPGA 5 to vFPGA 0 as shown in Figure 9(b), an area for a
group of three vFPGAs (triple) becomes available and makes
higher utilization of the physical device possible.

VI. CONCLUSION AND OUTLOOK

This paper presented a comprehensive virtualization con-
cept for reconfigurable hardware and its integration into a
cloud environment. Our definition of the term virtualization

vFPGA 0: Empty

vFPGA 4: Empty

vFPGA 2: User 2 - Design BSMC10

vFPGA 3: Empty

vFPGA 1: User 4 - Design Crypto

vFPGA 5: User 3 - Design BSMC10

FP
G

A
-H

yp
er

vi
so

r
(P

C
Ie

 +
 D

D
R

)

FPGA-Hypervisor
 (Ethernet + ICAP)

Fr
on

te
nd

 0
Fr

on
te

nd
 1

Fr
on

te
nd

 2
Fr

on
te

nd
 3

Fr
on

te
nd

 4
Fr

on
te

nd
 5

(a) Fragmentation of the physical FPGA caused by
dynamic de- and allocation.
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(b) Defragmentation providing aggregated vFPGA
regions for larger designs.
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(c) Utilization of the free region with a design using
three aggregated vFPGAs (Triple).

Figure 9. Szenario with different users and designs on a Xilinx Virtex-7
XC7VX485T with six (vertically) scaleable vFPGAs.

is inspired by traditional VMs whose functionalities are trans-
ferred to reconfigurable hardware. We develop a paravirtual-
ized infrastructure on a physical FPGA device with multiple
vFPGAs. The concept is integrated into a framework, which
allows for interaction with the vFPGAs similar to traditional
VMs. We create homogenous regions for the vFPGAs on the
physical FPGA to optimize the process of vFPGA migration
between different physical FPGAs. Implementation details
are described, the necessary resources and the virtualization
overhead are presented.
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TABLE I. NUMBER OF AVAILABLE RESOURCES INSIDE THE STATIC AND THE AGGREGATED VFPGA REGIONS AND UTILIZATION OF STATIC CONTAINING
INFRASTRUCTURE AND HYPERVISOR. THE PARTITION PIN REGION (PPR) IS NECESSARY TO EXCLUDE AND ISOLATE UNUSED PARTITION PINS (PP).

Ressource Static Utilization of static region PPR Into aggregated vFPGA regions
region HFa Pb Ec Md Total Single Dual Triple Quad Quint Hexae

Slice LUTs 94,824 26% 3% 2% 11% 42% 1,200 30,800 60,400 90,000 120,800 151,600 188,400
Slice Register 189,648 11% 2% 1% 4% 18% 2,400 61,600 120,800 180,000 241,600 303,200 376,800

Block RAM Tile 369 23% 2% 2% 3% 30% 0 100 200 300 400 500 600
DSPs 726 – – – – – 20 340 660 980 1,320 1,660 1,940
aHF: Hypervisor and Frontends bP: PCIe-Endpoint cE: Ethernet dM: DDR3 Memory eLargest region without considering homogeneity

TABLE II. SIZE OF A SINGLE BITSTREAM FOR A VFPGA REGION, NUMBER
OF POSSIBLE POSITIONS INSIDE THE FPGA AND SIZE OF THE VRAIS.

Single Dual Triple Quad Quint Hexa

Bitstream (MByte) 4.8 9.0 13.0 17.3 21.3 25.3
Locations 6 5 4 3 2 1
vRAI (MByte) 33.6 54.0 65.0 69.2 63.9 50.6

One significant result of this paper is that the provision
of homogenous FPGA resources is possible with state-of-the-
art FPGAs. We think that such approaches are necessary for
establishing FPGAs in modern data centers housing clouds.
Certainly, when cloud providers like Amazon expand their
cloud architectures with high-end FPGAs, such as Xilinx
Virtex-7 UltraScale devices [26] it is necessary to utilize the
hardware efficiently with multiple designs in a scaleable frame
inside one physical FPGA. Such kind of flexible approach
allows for adaption the individual resources to the users’
requirements.
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Abstract—The search for local alignments in genetic sequences is
a common challenge in the field of bioinformatics. The problem
is to find similar subsequences in genetic sequences of different
lengths. Usually, the search is done in a genome database that
contains hundreds of millions of sequences and rising. Due to the
large amount of data, the speed is of a high concern. The search
for a local alignment between a query-sequence and a database-
sequence is usually done with the Basic Local Alignment Search
Tool (BLAST) algorithm. In this work, an implementation of
an accelerator for the BLAST algorithm on a low-cost Field-
Programmable Gate Array (FPGA) is presented. The data is
processed in a tree-like hardware architecture. The advantages
and disadvantages of the presented approach are shown and
discussed. Finally, an outlook is given on the pending issues
of the current implementation. The main contribution of this
paper is the focus on an implementation with support of low-cost
hardware.

Keywords–FPGA; BLAST; DNA; local alignment

I. INTRODUCTION
In the field of bioinformatics, the comparison of genetic

sequences is as challenging as it is important. Usually, a query-
sequence is compared with a set of sequences that are stored
in a genome-database. The goal is to find partial or complete
similarities. This is for example useful if an unknown virus
is analyzed because properties of the unknown virus can be
derived from similarities to known entities.
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Figure 1. Chart of the number of genetic sequences stored in the
genome-database of the National Center for Biotechnology Information

(NCBI) over time [1].

Over the last decades, the size and number of genetic
sequences stored in genome-databases has risen considerably,
as shown in Figure 1. Further growth of the databases is to
be expected, due to the shrinking costs of genome sequencing
(see Figure 2). As a result, a fast and efficient implementation
of the search-algorithms is mandatory.

The preferred method for the comparison of genetic se-
quences of different lengths is the local alignment search.
Where the global alignment search is well suited to find
similarities in sequences of equal or similar length, the local
alignment search is utilized to find similar subsequences in
genetic sequences of different lengths. However, this process
conveys an extremely high computational effort. An estab-
lished approach is the BLAST algorithm which has been
introduced by Altschul et al. [3].

There have been several works on the acceleration of the
local alignment search with high-performance FPGAs [4]–[6].
Usually, the proposed accelerators utilize clusters of several
high-performance FPGAs. There are even industrial BLAST-
accelerators based on such hardware available, like [7]. How-
ever, in this work an implementation on a low-cost FPGA
development and education board is presented and analyzed.
It is based on a tree-like data-flow [8] architecture.

The rest of this work is structured as follows. In Section II,
the principles of the BLAST algorithm are introduced. Based
on this introduction, in Section III, an implementation of the
BLAST algorithm on a low-cost FPGA board is described. In
Section IV, the results of this implementation are presented.
Furthermore, the advantages and disadvantages compared to an
implementation in software are discussed. Finally in Section V,
this work is summarized and a prospect to further optimization
is given.

II. BACKGROUND
The BLAST algorithm is used for the search of similarities

(i.e., local alignments) between a query-sequence and the
sequences of a genome-database. It generates a list of positions
or regions that are similar between the query-sequence and the
database-sequence. Additionally, the significance of every hit
is generated as a measure of the similarity.

The BLAST algorithm can be divided into five steps which
are described in the following. It has to be remarked that
the first four steps have to be executed for all entries in the
genome-database and are therefore especially time-sensitive.

Step 1: Creation of the hit-matrix
For the search of a query-sequence w in a database-

sequence u with a scoring-function σ(α → β) both sequences
are segmented into overlapping words of the length q ∈ N.
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Figure 2. Chart of the cost per sequenced genome over time [2].

The following example is assuming a word length of q = 3:

AVKTCSGA⇒ {AVK, VKT, KTC, TCS, CSG, SGA} (1)

The resulting set of words is called w-mers. The generated
words are called q-words. The scoring-function σ is used
to determine the degree of similarity between a symbol of
the query-sequence and a symbol of the database-sequence.
Depending on the sequence-type usually either the Block Sub-
stitution Matrix (BLOSUM) or the Point Accepted Mutation
(PAM) matrix is used to determine the degree of similarity.
Deletions and insertions are handled as follows:

σ(“-”→ β) = σ(α → “-”) = −∞ (2)

Assuming i and j are the indexes in the query- and the
database-sequence, a pair (i, j) is a hit, if for a threshold k
the following inequation is true:

i ∈ {0 ... |u| − q + 1} (3)
j ∈ {0 ... |w | − q + 1} (4)

scoreσ (u[i ... i + q − 1]︸              ︷︷              ︸
q-word in u

,w[ j ... j + q − 1]︸                ︷︷                ︸
q-word in w

) ≥ k (5)

Every q-word of the query-sequence is compared with every
q-word of the database-sequence by the scoring-function σ.
The results are stored in a hit-matrix, as shown in Figure 3.

Step 2: Extraction of relevant hits
To optimize the following steps three and four, the relevant

hits in the hit-matrix are identified. Therefore, all hits that are
located adjacently on a common diagonal are grouped like
shown in Figure 4. Usually, a hit-length d is specified as the
minimal length of the diagonals. The gray hits in Figure 4 are
not grouped and will therefore be sorted out.

q-Words of the database-sequence u

q-
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ds
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nc
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Figure 3. An exemplary hit-matrix generated by the first step of the BLAST
algorithm.
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Figure 4. An exemplary hit-matrix after the extraction of relevant hits by the
second step of the BLAST algorithm.
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CCAGGTATCTTAGGGCTATATTCTATATACGTAGAAGATTACTATTTCGGACTAGCGATG

XdXd
Xd

Xd

ATTGCTAGTCAGGGACTCTCTTCTCTATTCGTATATGATTACTGACCTACTATCTCGTAC

ATGGGGCTAGATGTCACGGCCAGTATATACGTAGAAGAACGTGCAAGCGATAGCTGCTAA

Figure 5. An example of a gapped extension for two different sequence pairs.
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Figure 6. An exemplary hit-matrix after the ungapped extension by the third
step of the BLAST algorithm.
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Figure 7. An exemplary hit-matrix after the gapped extension by the fourth
step of the BLAST algorithm.

Step 3: Ungapped extension
If a pair of hits is aligned on the same diagonal and its

distance is lower then the maximum distance δ, a point (i, j)
between the hits is extended in both directions on the common
diagonal. The sensitivity of the extension is determined by
the drop-off parameter Xd ≥ 0. For a leftward extension, the
sequences u[1 ... i − 1] and w[1 ... j − 1] are compared. For a
rightward extension, the sequences u[i ... |u|] and w[ j ... |w |]
are compared. The scores of those comparisons are summed up
and the maximum Xmax is stored. If this value is lower than the
drop-off parameter (Xmax − Xd), the extension is stopped. The
sequences generated by this stage are called maximum-scoring
segment pair. An exemplary result is shown in Figure 6.

Step 4: Gapped extension
In this step, regions of high similarity with acceptable gaps

between two sequences are determined. This is for example

HD

HitMerger HitMerger HitMerger HitMerger

HitMergerHitMerger

HitMerger

HD HD HD HD HD HD HD

Result memory (SRAM or FIFO)

Main
Logic

Adress calculation

Time
Counter

DB
Seq.

Host
PC

Figure 8. Global structure of the tree-like architecture for the acceleration of
the BLAST algorithm on a FPGA.

useful to skip insertions or deletions in a sequence, which can
be for example caused by mutations. In the hit-matrix, the
result is a shift of the diagonal (see Figure 7).

After identifying a region of high similarity, a point (i, j)
between two hits is chosen as a starting point. Then, this point
is expanded towards the two selected hits. The symbols of
the two sequences are compared and the result is summed up,
where a match corresponds to +1 and a mismatch corresponds
to –1. The extension is stopped when the sum falls below
Xmax−Xd . In Figure 5, this process is shown for two different
sequence pairs.

Step 5: Output generation
In this step, the local alignments between the query- and

the database-sequence are sorted by relevance and stored in a
list.

III. IMPLEMENTATION
In this section, an implementation of the first two steps of

the BLAST algorithm on a FPGA is described. These steps
have been chosen because in sum they convey the majority of
the computational effort, as has been shown by Cameron et
al. [9]. The implementation is based on a tree-like architecture
for the parallel extraction and combination of local alignments
between a query- and a database-sequence (see Figure 8).

Due to restrictions of the current implementation, the
scoring-function σ is realized as equality-function:

σ(α → β) =
{

True, Hit for α = β

False, noHit for α , β
(6)
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Figure 9. Structure of a hit-detector.

The maximal size of a sequence-element is five bit because a
protein can have only up to 21 different amino acids. An empty
or uninitialized element is described by the vector "00000".

The Time Counter (see Figure 8) is used for benchmark
purposes only. The database-sequence is stored in the DB Seq.
memory. The query-sequence is stored directly in the leaves
of the tree-like structure. The rest of the blocks is described
in the following subsections.

A. Hit-detector
The hit-detectors (HD in Figure 8) are the leafs of the

tree. As shown in Figure 9, a hit-detector consists of a chain
of n hit-matchers and a hit-extractor. The hit-matchers are
basically arranged as two parallel shift registers – one for the
query-sequence and one for the database-sequence – that can
be shifted independently. Furthermore, they contain the logic
for the scoring-function σ. The q-words introduced above are
generated by AND gates of the width q.

First, the query sequence is loaded to the hit-matches.
Then, the hit-extraction is started by shifting the database-
sequence into the hit-matchers. The hit-extractor stores the
positions and lengths of all hits that occur while shifting in
the database-sequence.

B. Hit-merger
The hit-mergers (as depicted in Figure 10) are the nodes

of the tree. They are used to merge overlapping hits of the
previous stage in a binary tree. The previous stage can either
be the hit-detectors of the first level or other hit-mergers.

The incoming hits are buffered in two FIFOs, one for the
left child and one for the right child. If an entry of the left
FIFO contains a right-aligned hit, the hit is stored in the left
buffer. If an entry of the right FIFO contains a left-aligned hit,
the hit is stored in the right buffer. If the hit combination unit
detects an overlapping hit (between FIFO and FIFO or FIFO
and buffer), the hits are merged and sent to the next level of
hit-mergers or the result memory. Hits that can not be merged
(i.e., do not overlap) are sent directly to the next level.

The length of the FIFOs depends on the hit-detector width
w, the width of the q-words q and the current level in the tree
th as follows:

f =
w

q + 1
· 2(th−1) (7)
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Figure 10. Structure of a hit-merger.

The word-width of the FIFOs depends on the hit-detector
width w, the current level in the tree th and the maximum
query-length lmax as follows:

width = ld(w) + ld(th − 1) + ld(lmax) (8)

IV. RESULTS
In this section, the FPGA based implementation presented

above is compared to an implementation in software and
the impact of different parameters (i.e., query length, q-word
size and hit-detector width) is evaluated. The FPGA based
implementation is executed on an “Altera DE2 Development
and Education board” with a clock of 50 MHz. The board con-
tains a “Cyclone II 2C35” FPGA with 33 216 logic elements
and 483 840 total RAM bits. The software implementation is
executed on a Personal Computer (PC) with an Intel Core i5
Central Processing Unit (CPU) at 2.80 GHz and 8 GB Random
Access Memory (RAM).

Variation of the query length: Table I shows a compar-
ison of the computation times between PC and FPGA under
variation of the query length. For all query-sequences, the same
database-sequence with a length of 1 813 bases is used. The
computation time of the software implementation is propor-
tional to the query length. In contrast, the computation time
of the FPGA implementation is rising much slower in relation
to the query length. This is because the hits are combined in
a binary tree, resulting in logarithmic characteristics.

TABLE I. COMPARISON OF THE COMPUTATION TIMES BETWEEN PC AND
FPGA UNDER VARIATION OF THE QUERY LENGTH.

Query length Hits PC / ms FPGA / ms FPGA / clock cycles

8 149 12.855 1.201 60093
32 786 55.155 1.219 60974
64 1598 94.331 1.246 62304

128 3050 195.607 1.296 64791
256 6263 316.306 1.406 70310
512 12081 640.919 1.611 80594

1024 23871 1241.095 2.006 100326
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Variation of the q-word size: Table II shows a com-
parison of the computation times between PC and FPGA
under variation of the q-word size. For all calculations, the
same database-sequence and query-sequence are used. They
have a length of 1 813 bases and 32 bases. Both, the PC
implementation and the FPGA implementation show only little
variance of computation time in respect to the q-word size.

TABLE II. COMPARISON OF THE COMPUTATION TIMES BETWEEN PC AND
FPGA UNDER VARIATION OF THE Q-WORD SIZE.

q-Word size Hits PC / ms FPGA / ms FPGA / clock cycles

1 10844 47.630 1.288 64419
2 2866 47.009 1.230 61517
3 786 40.605 1.219 60974
4 199 52.516 1.217 60899
5 51 36.553 1.217 60888

Variation of the hit-detector width: Table III shows a
comparison of the computation times between PC and FPGA
under variation of the hit-detector width. For all calculations,
the same database-sequence and query-sequence are used.
They have a length of 1 813 bases and 127 bases. The hit-
detector width has a high impact on the computation time
of the FPGA implementation. This is because the results are
processed sequentially in the hit-matchers. A lower hit-detector
width results in more levels of hit-mergers and therefore a
more parallel calculation. However, the global amount of nec-
essary FIFO-memory is increased by lowering the hit-detector
width. This is limiting the possible degree of parallelization,
especially for large query-sequences.

TABLE III. COMPARISON OF THE COMPUTATION TIMES BETWEEN PC
AND FPGA UNDER VARIATION OF THE HIT-DETECTOR WIDTH.

Hit-detector width Hits PC / ms FPGA / ms FPGA / clock cycles

4 3029 152.202 0.233 11897
8 3029 152.142 0.392 19630

16 3029 152.136 0.681 34086
32 3029 152.132 1.286 64295
64 3029 152.148 2.523 126160

V. CONCLUSION AND FUTURE WORK
It has been shown that the first two stages of the BLAST

algorithm can be implemented efficiently in a parallel tree-
like structure, even on a low-cost FPGA. However, for large

nucleotide sequences the hit-detector width is limited to a
lower bound, due to the available amount of fast on-chip
memory. Of course, the hit-detector width can be increased
to support larger sequences, but the result is an increased
computation time.

In future work, the steps three and four of the BLAST
algorithm could be implemented and evaluated according to
the first two steps, to enable a complete calculation on the
FPGA and thereby remove the overhead for communication.
Additionally, the current implementation is not fully utiliz-
ing the available hardware, because the analysis of the next
database-query is started only after the previous analysis is
complete. It should be possible to decrease the computation
time by starting the next analysis as soon as the FIFOs of
the next level of hit-mergers are empty. However, a complex
control logic would be necessary to prevent collisions and
to attribute the results. Finally, an implementation of a more
advanced scoring-function like the BLOSUM or PAM matrix
would increase the quality of the results.

REFERENCES
[1] National Center for Biotechnology Information (NCBI), “GenBank

and WGS statistics,” http://www.ncbi.nlm.nih.gov/genbank/statistics/, ac-
cessed: 30. July 2017.

[2] National Human Genome Research Institute (NHGRI), “The cost of se-
quencing a human genome,” https://www.genome.gov/sequencingcosts/,
accessed: 30. July 2017.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of Molecular Biology, vol.
215, no. 3, 1990, pp. 403–410.

[4] M. Gokhale et al., “Building and using a highly parallel programmable
logic array,” IEEE Computer, vol. 24, no. 1, Jan. 1991, pp. 81–89.

[5] M. R. Mahmoodi, H. Nikaein, and Z. Fahimi, “A parallel architecture
for high speed BLAST using FPGA,” in 2014 22nd Iranian Conference
on Electrical Engineering (ICEE), May 2014, pp. 57–61.

[6] M. Yoshimi, C. Wu, and T. Yoshinaga, “Accelerating BLAST compu-
tation on an FPGA-enhanced PC cluster,” in 2016 Fourth International
Symposium on Computing and Networking (CANDAR), Nov 2016, pp.
67–76.

[7] “Accelerated BLAST performance with Tera-BLAST™: a comparison
of FPGA versus GPU and CPU BLAST implementations,” TimeLogic
biocomputing solutions, Tech. Rep., 2013.

[8] P. Evripidou and C. Kyriacou, “Data-flow vs control-flow for extreme
level computing,” in 2013 Data-Flow Execution Models for Extreme
Scale Computing, Sept 2013, pp. 9–13.

[9] M. Cameron, H. E. Williams, and A. Cannane, “Improved gapped align-
ment in BLAST,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 1, no. 3, July 2004, pp. 116–129.

43Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-585-2

CENICS 2017 : The Tenth International Conference on Advances in Circuits, Electronics and Micro-electronics

                            51 / 83



A Synthesizable VHDL Export for the
Custom Architecture Design Tool CustArD

Thomas Fabian Starke, Timm Bostelmann, Helga Karafiat and Sergei Sawitzki

FH Wedel (University of Applied Sciences)
Wedel, Germany

Email: starke.thomas@yahoo.de, {bos,kar,saw}@fh-wedel.de

Abstract—The research of reconfigurable architectures usually
goes hand in hand with a high amount of non-recurring work
for Electronic Design Automation (EDA) tool development or
adaption. Therefore, in previous work, a heterogeneous archi-
tecture template for application domain specific reconfigurable
logic was proposed. The goal of this template is to allow the
optimization of a reconfigurable architecture towards a specific
application domain and to reduce the effort for tool generation
in architecture research. In this work, a method to export the
described architecture for synthesis is presented. It can be used
for a silicon or Field-Programmable Gate Array (FPGA) overlay
implementation and thereby extends the usability of the existing
design flow. In the future, this work could even be used do derive
a detailed timing-model for the designed architectures.

Keywords–FPGA; architecture design; VHDL; CustArD

I. INTRODUCTION
Highly flexible FPGAs [1] address the demands of fast

product lifecycles perfectly, where the non-recurring engineer-
ing costs and the slow development process of Application
Specific Integrated Circuits (ASICs) are prohibitive. However,
the main disadvantage of such flexible, reconfigurable logic
structures lies in the vast amount of configuration and com-
munication overhead and hampers their use for high volume
or high performance applications. The overhead is caused
by the configuration memory of the logic blocks and the
routing resources, as well as by the routing network itself.
As shown by Kuon et al. in [2] – compared to a standard
cell implementation – this overhead increases the area of the
chip by a factor of 40 and the power consumption by a factor
of 12. Additionally the delay times are increased because the
switch- and connection-boxes used for the flexible routing are
much slower than fixed connections, resulting in a 3.2 times
slower design. A very detailed analysis of the gap between
FPGAs and ASICs is presented by the same authors in [3]. It
is also shown, that the overhead can be reduced significantly if
the right special function blocks (e.g., multipliers or memory)
are included in the FPGA design. The main problem herein is,
that the demand for special function blocks varies considerably
with the application. Obviously, a high amount of unused
special function blocks has a direct negative impact on the area
efficiency. Moreover, the clock frequency can also be reduced
because of longer signal paths between the actually utilized
resources. Simply put, flexibility can be traded for efficiency
(in a smaller set of applications) and the other way around (see
also [4]).

In fact, modern FPGAs are equipped with coarse-grained

logic to make them more competitive. Furthermore, many
specialized reconfigurable architectures have been proposed by
the scientific community over the last decades. For example, a
datapath oriented FPGA architecture – implementing parallel
routing – has been introduced by Leijten-Nowak et al. in [5].
It reduces the necessary amount of configuration memory by
sharing configuration memory bits between routing resources
as proposed by Cherepacha et al. in [6]. Furthermore, a highly
hierarchical, heterogeneous architecture (Tree-Based Hetero-
geneous FPGA Architecture) was introduced and evaluated by
Farooq et al. in [7]. Both techniques are shown to be bene-
ficial for arithmetic intensive applications like Digital Signal
Processing (DSP). At the same time, especially the usage of
memory sharing reduces the flexibility of the architecture.

Unfortunately, architecture research often demands the
development or at least an adaption of a complete toolchain.
This makes the exploration of new architectures very time-
consuming and complicates the comparison of architectures
that have been developed using different tools. As in the papers
quoted above, academic toolchains are usually customized to-
wards a rather fixed architecture. They only allow to configure
the proposed architecture to some extent, but not to modify
its global structure. To some degree the Verilog-to-Routing
(VTR) Project for FPGAs which has been introduced by Rose
et al. in [8] is an exception in this regard. The VTR project
offers a very flexible and sophisticated academic development
toolchain for FPGAs. It allows a detailed description of a
hypothetical architecture, including timing information. Even
an export for synthesis has been proposed by Kim et al. in
[9]. The architecture description language grants a very flexible
definition of Configurable Logic Blocks (CLB). The CLBs can
contain for example fracturable lookup-tables, custom routing
resources like bus-multiplexers, custom logic and hierarchical
clusters [10]. However, the general structure of the architecture
– an island-style grid of logic blocks – is still fixed. Special
function blocks and different CLBs have to be placed column-
wise in the grid, meaning a column can only contain one type
of logic. Considering this, even though VTR is great for EDA
and island-style FPGA architecture research, its architecture
description language is not fully suited for a wide and rapid
exploration of the architecture design space as it is envisioned
by the authors of this work.

Therefore, a heterogeneous architecture template for appli-
cation domain specific reconfigurable logic was proposed in
[11] by Bostelmann and Sawitzki. A class of reconfigurable
architectures – a meta-architecture – which can be flexibly
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optimized towards a specific application domain was intro-
duced. It supports hierarchical, heterogeneous structures, as
well as parallel datapath connections. In addition, a concept
for a corresponding design flow has been proposed in [12].
It allows a directed exploration of application domain specific
architectural optimizations. By the derivation of specialized
architectures from a very flexible meta-architecture the design
flow allows to:

1) Rapidly optimize an architecture towards a specific
application domain

2) Improve the comparability between different derived
architecture instances

3) Reduce the effort for tool generation
In this work, based on the previous publications mentioned

above, an extension for the export of the described architecture
to a Hardware Description Language (HDL) is introduced. It
can be used for a silicon or FPGA overlay [13] implementation
of the designed architecture. The current implementation sup-
ports an export as synthesizable Very high speed integrated
circuit HDL (VHDL) code with direct support of the Intel
FPGA Quartus tools.

The rest of this work is organized as follows. In Section II,
the concepts of the meta-architecture and the corresponding
design flow that have been proposed in previous work are
summarized. In Section III, the implementation of the HDL
export is described. In Section IV, exemplary results of the
HDL export are presented. Finally, in Section V, this work is
summarized and an outlook to further work is given.

II. BACKGROUND
This section is split into two parts. First the degrees of

freedom and the global structure of the meta-architecture used
in this work are described and then the concept of the extended
design flow is depicted.

A. Meta-Architecture Description
The reconfigurable architecture is described on function

block level. A basic set of configurable function blocks is
provided, but can also be extended by the user. The basic set
consists of the following function blocks:

LUT lookup-table
REG register or single flipflop
MUX multiplexer
MEM memory
IO input and output buffer
SB switchbox (bi- or unidirectional)
CB connectionbox (bi- or unidirectional)
IP fixed IP core from a library
GRID grid of blocks or grids
The global structure of the architecture is based on two

types of grid. The first one is a ‘repeating grid’ which repeats
one block (or an other grid) n × m times. The second one is
a ‘custom grid’ which can contain a custom compilation of
blocks (or other grids like shown in Figure 1). By supporting
recursive grids the design of highly hierarchical, tree-based
architectures without a huge top-level grid is encouraged.
Of course, the description of flat island-style architectures is
possible as well, by simply using a top-level ‘repeating grid’.

B. Design Flow
The design flow for the meta-architecture described above

is shown in Figure 2 as proposed in [11]. The user creates an

Grid (2x1)

Core

Core

CoreCore

Grid (1x3)

(a) Flat view of the recursive grid structure

Architecture
Grid (1x3)

Block
Core

Block
Grid (2x1)

Block
Core

Block
Core

Block
Core

(b) Tree view of the recursive grid structure

Figure 1. An exemplary recursive grid structre, consisting of two grids and
four cores

architecture in a graphical architecture design tool called Cus-
tom Architecture Design Tool (CustArD) or derives it from a
template. The design tool was first presented by Sternberg et al.
in [14]. CustArD exports an internal Architecture Description
File (ADF), as well as an HDL description of the architecture.
This feature is the major topic of this work. The user can
then select a set of reference or benchmark applications, which
are synthesized and mapped to the architecture based on the
ADF. After this step, an analysis tool provides the user with
an early evaluation of the block utilization. This is especially
interesting if the impact of special function blocks for a given
set of applications is explored. It allows for example a directed
optimization of the provided resources towards a specific appli-
cation domain. After a complete toolchain iteration the analysis
tool provides a detailed evaluation including benchmark results
and the utilization of routing resources. This can be used
to explore new routing techniques or again to optimize the
architecture towards a specific application domain, for example
by adapting the width of parallel datapath routing elements.

III. IMPLEMENTATION
The VHDL export plugin maps the CustArD representation

of an architecture into a VHDL representation. This is achieved
by mapping each CustArD architecture component to its
corresponding VHDL representation.

A. VHDL Primitives
The architecture in CustArD consists of primitives whose

complexity can vary from a simple logic gate to a com-
plex Intellectual Property (IP) core. For the VHDL export
the following primitives are used: logic gate (AND, NAND,
NOR, NOT, OR, XNOR, XOR), multiplexer, flipflop, Lookup
Table (LUT), selector, wire, Static Random-Access Memory
(SRAM), Connection-Box (CB) and Switch-Box (SB). Fur-
ther primitives can be added through storage of their VHDL
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Figure 2. A Flowchart of the described design flow for heterogeneous reconfigurable architectures
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Figure 3. Schematic of the global organization of the configuration memory

representations in the export plugin.
Global Signals: Currently only fully synchronous designs

are supported. As a result the signals clk and reset that are
needed by some VHDL primitives like a flipflop are handled
globally. In the VHDL export, they are marked with the prefix
global in all primitives that make use of them.

Configuration Signals: To use the exported architecture for
an application some components like LUT or switchboxes have
to be configured. This is done through a JTAG-like configura-
tion mechanism with a shift register. All components that need
configuration are serially connected as shown in Figure 3 and
store the configuration information internally. The length of
the configuration register depends on the information that is
needed for each component. The signals used for configuration
are marked with the prefix config in the corresponding VHDL
primitives.

Wire: A wire connects an input signal directly to an
output signal. It is the most simple primitive in CustArD. Its
export could have been implemented with a special treatment
which would have reduced the complexity of the VHDL
code. However, a special treatment would lead to a higher
implementation complexity and less consistency. Therefore,
even this trivial component is exported as a VHDL primitive.

Lookup Table: A LUT stores precomputed information that
is available at runtime. The data is stored in the LUT during
the configuration. Therefore the VHDL primitive of a LUT
contains a configuration register (see Figure 4). It consists
of n = 2asw words, where as asw stands for address signal
width. The size W of a word corresponds to the output signal

config_in config_out MSB LSB
W0W1Wn-1Wn

...

Figure 4. Organization of the configuration memory for a LUT
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TOP: t_opin0t_opin1
...t_opinn-1t_opinn

Figure 5. Organization of the configuration memory for a switchbox

width osw of the LUT. As a result, the overall size of the
configuration register has W · 2asw bits.

SRAM: The SRAM is like a LUT, except that the informa-
tion can be stored and changed at runtime. It is assumed that
the input vector width isw is equal to the output vector width
osw and that the number of words stored in the SRAM is 2asw,
where asw stands for address signal width. The resulting size
of the SRAM is 2asw · isw bits.

Selector: The selector is similar to a multiplexer except that
the output signal is chosen during configuration time instead
of runtime. Therefore this component needs a configuration
register of size ld(isw) bits.

Switchbox: The standard switchbox in CustArD uses bidi-
rectional pins. In order to minimize the hardware complexity,
an advanced switchbox has been implemented which has fixed
input and output pins on each side. The internal connection
structure was implemented as a disjoint switchbox. As a
simplification, it is additionally defined that the amount of
the vertical input and output pins must be the same as the
amount of the horizontal ones. The configuration register (see
Figure 5) defines in which way the input pins and output pins
are connected, according to the contraints of a unidirectional
disjoint switchbox.

Connectionbox: The connectionbox is a special form of a
switch box and is used for configurable connections between
logic elements and horizontal or vertical connecting structures.
In order to provide maximum connectivity, any input pin can
be assigned to any output pin of the connection box. Figure 6
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Figure 6. Organization of the configuration memory for a connectionbox

shows the structure of the configuration register within the
connectionbox.

B. VHDL-Export-Plugin
The HDL-export traverses the architecture tree and calls

the corresponding processing routine for every node, which
then passes the calculated information towards the root. The
utilzed routines are described below.

Core: The core object represents a leaf of the architec-
ture tree. It is directly translated into a VHDL primitive.
Therefore, the entity declaration of a VHDL file is read
and the signal names, as well as the generic identifiers are
mapped to the identifiers used in CustArD. The generic
mapping declaration is designed from the configuration values
deposited in CustArD. It is stored in VHDL objects. All related
CustArD signals are stored in a dictionary like {Pingroup :
[(Pinnumber, [(Terminal 1, Terminal 2,Net)∗])∗]}, where Ter-
minal 1 corresponds to the source and Terminal 2 to the sink.

IO-cores which are the in- and output of the architecture,
are processed differently. For them no VHDL primitives are
created, but the signals of the IO-cores are integrated into a
global list that is only processed at the root element of the
tree.

Grid: A grid represents a node of the architecture tree and
is translated into a VHDL file. For all elements of the grid the
following steps are processed.

1) A VHDL file is created for each of the subtrees
through a call of the block method.

2) The instantiation of the VHDL file is created and
inserted into the grid VHDL file object including
the creation and storage of the port and generic map
declaration.

3) The signals of the instance are entered into the grid
VHDL file as local signals.

4) If there are configuration signals within the port of
the instantiated VHDL object, the configuration bus
is extended by this object and the configuration action
signals within the grid are adjusted.

All detected signals from the VHDL instances are assigned by
a matching algorithm. All signals that couldn’t be matched,
lead to different parts of the architecture tree and are therefore
passed up to the next instance.

Block: A block is a container class within the CustArD
architecture tree and, in addition to a grid or a core element,
contains further meta information, such as a unique block ID
and a referenced flag. The processing method of a block, first
creates the associated VHDL file object from the grid or core
element. If this is not a primitive object, the associated VHDL
file is generated from the VHDL file object. The determined
signals of the subtrees are used as inputs or outputs of this
VHDL entity and are specified in the port declaration. Blocks
can also be used several times within the architecture tree. This

Figure 7. Imlementation of a simple CLB in CustArD

TABLE I. EXPORT TIME FOR AN ARCHITECTURE CONSISTING OF TWO
PRIMITIVES IN A 5 X 5 GRID

Number of connections time / s used memory / MB

0 0.63 <1.5
320 0.68 <1.5

is indicated by the reference flag within the block. If this is
the case, the obtained information about the interface of these
subtrees is stored in a global block cache. If such a block is
recompiled, the translation can be interrupted directly at this
level and replaced by the cached content, which significantly
reduces the translation effort and the number of resulting
VHDL files.

Architecture: The architecture element represents the root
of the architecture tree. Similar to the block, it can contain a
core or a grid element. The processing of this node is similar
to that of the block, but all internal signals must be mapped
at this level so that only the IO-core signals, as well as the
con f ig and global signals are included.

IV. RESULTS
In this section, the runtime and memory usage of the

VHDL export plugin are discussed, depending on the number
of connections, number of used primitives and the architecture
tree depth. Figure 7 shows a simple CLB architecture designed
in CustArD which consists of one 1 x 5 grid and five different
primitives. The result of the VHDL export plugin consists
of three VHDL primitives and one VHDL file representing
the grid of the CLB architecture. Figure 8 shows a Register
Transfer Level (RTL) plot of the export in Intel FPGA Quartus.

Table I shows the export time for an architecture consisting
of two primitives in a 5 x 5 grid, with and without wiring. It
shows that the number of connections has only little influence
on the runtime of the export plugin. Table II shows the export
time for an architecture consisting of ten different primitives
in a architecture tree with a depth of four. The runtime of the
export plugin depends on the number of primitives and the
maximum depth of the architecture tree. This is manageable
even for larger structures, since they usually consist of ref-
erenced blocks or grids that are used multiple times but are
exported only once.

TABLE II. EXPORT TIME FOR AN ARCHITECTURE CONSISTING OF TEN
DIFFERENT PRIMITIVES IN A ARCHITECTURE TREE WITH THE DEPTH OF

FOUR

Number of connections time / s used memory / MB

0 0.50 <1.0
10 0.50 <1.0
30 0.65 <1.0
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Figure 8. Intel FPGA Quartus RTL view of the exported CLB shown in Figure 7

V. CONCLUSION AND FUTURE WORK
In this work, an extension for the custom architecture

design tool CustArD was presented. It was shown how a
reconfigurable architecture that has been optimized towards a
specific application domain can be exported to a synthesizable
VHDL format. The results for a simple LUT design were pre-
sented. Furthermore, it was shown that the export is reasonably
fast for small designs. The automatic generation of project files
for the Intel FPGA Quartus tools allow a seamless utilization
of the results.

In future work, an export to the Verilog HDL language is
planned to establish consistency between the input and output
file formats. Since the internal data-structures and concepts
are HDL-independent, this should not be very complicated.
Furthermore, larger architectures should be benchmarked to
show the real-world applicability of this approach. Finally, the
usability of this export tool could be increased even further by
the creation of more building blocks (e.g., configurable DSP
blocks).
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Abstract—High performance simulation of processor architec-
tures at instruction set / behavioral level often utilizes Dynamic
Binary Translation (DBT) techniques to achieve an efficient map-
ping to the simulation host. While the behavior of most standard
processor operations can be directly translated into host proces-
sor instructions due to their similarities, the behavior of complex
application specific instructions or peripheral components are less
suitable for host processor execution. In this paper we discuss
the migration of application specific behavioral processor model
partitions to field programmable accelerator hardware to achieve
an overall co-simulation speedup. For an in-depth evaluation, the
integration of an off-the-shelf Field Programmamble Gate Array
(FPGA) into our DBT-based processor simulation framework
RUBICS (Retargetable Universal Binary Instruction Conversion
Simulator) was considered. RUBICS is a flexible behavioral
modelling and simulation platform framework for embedded
processor architectures and complete Systems-on-a-Chip (SoC).
In a case study, we show the behavior model migration of an
application specific peripheral co-processor into a synthesizable
hardware description mapped to the FPGA accelerator. Only
minor changes are required to the original ARMv7 processor
model description given in RUBICS’s dedicated Architecture
Description Language (ADL). An overall simulation speedup
between 300% and 540% has been achieved by migrating the
main calculation partition of a numeric transform peripheral to
the FPGA accelerator. Challenges of the communication-driven
model partitioning as well as the achievable simulation speedup
are discussed.

Index Terms—Processor Simulation; Dynamic Binary Trans-
lation; FPGA Accelerator.

I. INTRODUCTION

The behavioral simulation of embedded processor cores is
essential for a successful design of System-on-a-Chip (SoC)
architectures. Beside the processor core behavior, a detailed
analysis of interaction and communication between processor
core and peripheral/dedicated components plays an important
role in the SoC test/verification process.
The current complexity of hardware- and software-components
requires an analysis of the SoC as a whole at an early
stage of the design process. Contrary to performance-oriented
approaches that focus on peripherally observable behavior
(emulation), the behavioral simulation additionally has to
provide a short modeling turn-around cycle as well as the
demanded observability of the relevant model state. To achieve
this, a behavioral processor simulator should provide rapid
modeling capabilities at a high abstraction level (instruction
set, instruction behavior, IO behavior), visibility of internal
flow (registers, data path), as well as a high simulation
speed. As an increased state visibility introduces additional

modelling, execution and data recording effort, the simulation
model has to be carefully adapted to the particular observation
requirements. This can be achieved e.g. by injecting selective
debug operations into the behavioral model specification.
Beside the early design stage requirements the simulation
environment could also be used to reconstruct the execution
profile of embedded software modules. Through architecture
model instrumentation, a detailed control- and data-flow trace
may be obtained for an in-depth software analysis.
The most essential part of the processor simulation is a model
description that provides information for equivalent mapping
the target instruction flow to the simulation host. The quality
of the translation process and the resulting fitness to the host
processor architecture determines the achievable simulation
performance. Common methods used for high speed behavior
level processor simulation utilize binary translation techniques
[1]. The trade-off between translation effort amortization and
available performance can be effectively improved by apply-
ing just-in-time (JIT) compilation, where target instruction
sequences are dynamically mapped to the host processor at
runtime. Common approaches of JIT-based simulators and
emulators use widely available runtime environments, such as
Java Virtual Machine (JVM) [2], Common Language Runtime
(CLR) [3] or PyPy [4] as well as dedicated compilers like Tiny
Code Generator (TCG) [5]. As a matter of fact, the translation
quality essentially depends on the degree of similarity of
both target and host processor architectures. This problem
especially involves the mapping of dedicated custom target
instruction set extensions or peripheral models. It can be
overcome by supplying a more flexible mapping platform on
the simulation host, thus allowing a higher degree of adaption
as a result of the translation. A promising platform extension
approach is the integration of FPGA hardware in conjunction
with a partitioning of the simulation model.
In this work, we focus on static translation of the FPGA
partition, although it might also be possible to benefit from
just-in-time utilization of the FPGA.
Among different available simulation environments, we have
chosen the RUBICS [6] platform framework, which utilizes the
open ECMA International Common Language Runtime (CLR)
[7] standard platform. Advanced retargetability and modeling
capabilities are provided through a dedicated architecture
description language (ADL), whereas extensibility is granted
by the underlying CLR language support (C#, VB, etc.).
External component libraries (DLL) facilitate the integration
of complex peripheral model descriptions as well as FPGA-
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Figure 1. RUBICS Platform Framework

based model partitions into the ADL description without any
changes to the simulation core.
In this paper, sections II and III introduce the RUBICS simula-
tion platform and the provided processor architecture descrip-
tion methodology. Section IV outlines the binary translation
based simulation process. A detailed description of custom
hardware mapping to an FPGA accelerator and its performance
evaluation is given in sections V and VI respectively. Finally,
a summarized discussion and generalization of the achieved
results is given in section VII.

II. SIMULATION PLATFORM

The chosen simulation platform framework RUBICS pro-
vides the underlying infrastructure for high-performance pro-
cessor simulation. It allows both structural and behavioral
architecture description in a dedicated architecture description
language (ADL) and supports embedding external core or
peripheral models. Enhanced test and debug capabilities enable
versatile control/observation of the simulation process. The
framework is composed around a core component, that can be
dynamically extended by loading simulation model or support
libraries at runtime. Any Common Language Runtime (CLR)
[7] compatible module can be made available to the RUBICS
platform framework. Beside the behavioral model description
in a supported language the CLR, it also grants direct access
to the native system resources of the simulation host. This
significantly simplifies both the integration of custom hardware
models into the core model as well as extending the simulation
host by additional FPGA-hardware. The CLR furthermore
implements a dynamic execution interface to host processor
which complies to the Common Intermediate Language (CIL)
bytecode specification. The versatile bytecode interface is not
only used for CLR module representation, but is also target
by the dynamic binary translation process. Figure 1 gives an
overview of the basic structure of the RUBICS framework.

The integration of FPGA hardware into the simulation host and
its application as processor simulation accelerator is generally
supported by the RUBICS platform framework in two different
variations.

• Loose coupling by a bus interface for peripheral or co-
processor models

• Tight coupling by a plugin interface for direct access from
the ADL behavioral model

Although both possibilities could have been considered for
further investigations, we focus on the bus interface integration
for partitioning reasons. The plugin access would require
advanced low latency communication properties, which the
available interface of the chosen FPGA hardware platform
unfortunately could not offer.

III. ARCHITECTURE MODEL

The main concept of a retargetetable processor simulator by
mean of combining a generic infrastructure with a dedicated
architecture description language (ADL) was already sug-
gested in [2]. Contrary to a programming language or hardware
description language, an ADL model can be specified using a
common structural template. The remaining description work
only requires the specification of unique structure and behav-
ior, such as processor state, instruction set, and instruction
behavior. The architecture description is composed of different
sections:

• import References to CLR library models,
• bus Bus-oriented loosely coupled devices
• plugins Tightly coupled plugins,
• context, Context state variables,
• decoder, Instruction decoder description,
• behavior, Instruction behavior description,
• interrupts, Interrupt description.
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1 bus mem {
2 unit = 8;
3 endian = LITTLE;
4 access {
5 byte = 1;
6 short = 2;
7 word = 4;
8 }
9 devices {

10 ram mem {
11 base = 0;
12 size = 0x40000000;
13 }
14 fpga fpga_dev {
15 base = 0x40000000;
16 size = 0x10000000;
17 }
18 }
19 }
20 plugins {
21 plugin.fpga fpga_plug;
22 }
23 context {
24 uint pc;
25 }
26 decoder {
27 fetch {
28 bus = mem;
29 pc;
30 }
31 context {
32 uint instruction_word;
33 }
34 operation oper {
35 instruction_word = fetch.word;
36 IPC;
37 }
38 }
39 behavior {
40 operation IPC {
41 fpga_plug.ExecFunc();
42 pc += 4;
43 }
44 }

Figure 2. Architecture Description Language

Figure 2 shows a simplified architecture model with both
tightly and loosely coupled model components mapped to an
FPGA accelerator. The description consists of structural and
behavioral specifications. For demonstration reasons, the in-
struction behavior only includes a program counter increment
followed by a plugin function ExecFunc() invocation.
The declaration of the memory bus mem not only describes
the main memory and peripheral mappings, but also specifies
an embedded FPGA based accelerator device fpga_dev.
Detailed access pattern sizes and alignment hints are given
in the access section, that makes the bus interface avail-
able to the behavioral operations as named expression, e.g.
mem.byte[<address>]. Through the unit attribute the
data granularity (smallest addressable data unit) can be set.
Although the general execution flow is implicitly determined
by the RUBICS core, the fetch environment has to provide
the information about the proper instruction memory interface
(mem) and the fetch address (pc) of the next instruction. The
decoder may maintain its own global context context, which
is especially favorable when decoding complex instruction
sets.
The ADL makes the standard CLR data types available to

the decoder and instruction behavior descriptions. Unique type
conversions will be done automatically. A huge selection of
support functions is available for specifying dedicated bit-level
and floating point operations. Fixed point literals are handled
with arbitrary length upon its use in a particular variable
operation or assignment. This significantly simplifies constant
propagation and reduces the number of required range checks.
The architecture description will be translated into an internal
Intermediate Representation (IR), which holds the information
needed for the binary translation and the JIT compilation
process.

IV. BINARY TRANSLATION

The binary translation is the main task prior execution
on the simulation host. After the target architecture and the
application binary have been loaded and the Program Counter
(PC) has been set to the appropriate start address, execution
flow is transferred to the main simulation loop. According to
the decoder specification in the IR, the instruction stream gets
decoded and behavioral IR operation are issued and executed
until the flow hits a break condition. A simplified simulation
flow is outlined in Figure 3.
As behavioral operations are tied directly to particular address
ranges, they can be cached to avoid redundant decode opera-
tions. In case of a cache-miss, a decode operation is invoked,
which stores a new behavioral block to the simulation cache.
The decode operation can be avoided in case of a cache-hit
and the behavioral operation block is directly available for
execution. Only instructions on consecutive addresses can be
mapped to a single cache entry. The size of the behavioral
operation block (dynamic block) is limited by application bi-
nary control flow transfer instructions (e.g. branches). Special
handling of non-contiguous control flow is reflected by the
exit keyword (end of dynamic block) inside the decoder
specification. A sufficiently high dynamic block size is vital
of a low cache lookup rate and thus for a high simulation
performance.
In a first step, the binary translation creates a sequence of
instruction tailored copies of the behavioral IR, which will then
be optimized to eliminate redundant operations and variable
access. The additional optimization effort (flow analysis) can
easily be amortized, except for very short simulation runs.
During the translation of the IR, native interface and plugin
invocations are directly handled using native CLR calls for
low overhead. A lookup-based memory delegator offers low
latency access to multi-device bus interfaces with nearly con-
stant time aperture access. Target memory blocks are directly
mapped to virtual user address space of the simulation host
by operating system functions utilizing copy-on-write pages.
Furthermore, hot-spot compilation [8] is applied to the simu-
lation process, which delays the translation of the behavioral
IR copies into CIL bytecode until they have reached a certain
execution count threshold. The final translation of the CIL
bytecode into host machine instructions is transparently main-
tained by the CLR-internal JIT compiler.
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V. EMBEDDING CUSTOM HARDWARE

For a reasonably complete behavioral processor description,
the core architecture ADL model has to be extended by addi-
tional peripheral or plugin models. This is already supported
by the RUBICS platform framework by its library concept.
The behavior of a loadable library component can easily be
specified using any CLR compatible programming language
(C#, VB, etc.). Depending on the communication pattern and
resource requirements, a migration of any RUBICS library
component to an FPGA accelerator is basically possible. To
achieve this, a synthesizable Register Transfer Level (RTL)
model partition has to be manually created and described using
a Hardware Description Language (HDL). The FPGA mapping
decision is driven by the availability of such a HDL description
(or the effort to create this description) and the potential
performance gain including the communication overhead.
As FPGAs can only be accessed by the simulation host using
a limited scale of available processor interfaces, inter-partition
communication overhead directly relates to the simulation host
platform. Although it would be possible to consider tightly
coupled processor/FPGA host platforms, the best cost/perfor-
mance trade-off can be achieved by integrating an inexpen-
sive PCIe-based FPGA-board into a PC/workstation environ-
ment. Unfortunately, PCIe-based inter-partition communica-
tion heavily depends on the available PCIe transfer profiles,
thus limiting the influence on communication latency and
throughput. Therefore, only a streaming-based communication
approach could be considered in this work.
Figure 4 illustrates the embedding of a custom behavioral
model into the simulation process using FPGA hardware.

VI. PERFORMANCE ANALYSIS

In a particular case study, the FPGA hardware integration
into the simulation host and its utilization as execution plat-
form for a custom peripheral model can be demonstrated. The
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Figure 4. Simulation Environment with FPGA-Hardware

host system is composed of a fairly recent Intel Core-i5 6500
(SkyLake) with 16GB DDR4 memory. Through a standard
PCIe expansion connector a Terasic DE5-Net FPGA board
(Altera/Intel Stratix V FPGA) [9] is plugged into the main
board. Only four PCIe-Lanes are used for communication.
The system runs Debian Linux using an unpatched Kernel
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v4.10.1. All performance measurement were carried out on
an ARMv7 Thumb2 instruction set model [10] in a RUBICS
v0.6 platform framework on top of MONO CLR v4.8. The
peripheral model chosen for FPGA mapping has been selected
with main emphasis on implementation simplicity and inter-
face fitness to the available PCIe IP-core. A decimation-in-
frequency Fast Fourier Transform (FFT) model [11] with three
different block sizes was evaluated using both a C#-based CLR
thread as well as a coupled FPGA-based implementation. The
description of the FPGA partition not only includes Verilog
HDL RTL modules, but also structural component declarations
required for automated FFT IP-core generation using QSys
wizard of Quartus Prime v15.1. A XILLYBUS PCIe streaming
controller IP-core [12] supplies the underlying communication
infrastructure including a Linux OS device driver. Although
the intended optimization goal was performance-oriented, the
available FFT pipeline capabilities could not be fully utilized
due to a maximum clock frequency of 250 MHz limited by
the XILLYBUS PCIe-core.
Figure 5 summarizes the achievable overall simulation runtime
reduction resulting from the FPGA accelerator using different
FFT block sizes. A more detailed impression on particular
calculation and transfer effort can be obtained from Figure 6.
To neglect JIT amortization effects, the measurement results
have been averaged over a total of 1000 FFT runs respectively.
The overall simulation performance gain including transfer
overhead reaches between 300% with an FFT block size of
16384 points and 540% with an FFT block size of 262144
points. The latter is the maximum FFT size that could be
implemented using Quartus QSys wizard.
The FPGA resource consumption is dominated by the FFT
component and reaches 25. . . 30% of the available DSP and
RAM blocks, whereas the remaining logic including XILLY-
BUS glue components utilizes only 2-4% of the chip capacity.
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Figure 6. FPGA Calculation vs. Transfer

VII. CONCLUSION AND FUTURE WORK

In this paper, we have shown the integration capabilities of
application specific custom hardware models into the RUBICS
behavioral simulation flow. An acceleration of the simula-
tion process could be achieved by the utilization of coupled
FPGA hardware on the simulation host. This approach is
especially useful for complex behavioral models of peripheral
components of processor-based SoC. Furthermore, the em-
bedding of external models into the architecture description
was demonstrated, which allows tight or loose coupling of
external custom models to the core architecture. Through
the selected migration of a custom FFT model partition to
a loosely PCIe-coupled FPGA board a simulation perfor-
mance improvement compared to the standalone mapping to
the simulation host has been demonstrated. The achievable
runtime-benefit increases with the mapping advantage of the
FPGA compared to the host processor and the reduction of
transfer overhead between the FPGA- and host-partitions. The
selected FFT example does not fully comply these demands,
thus resulting in a comparatively low performance gain. Espe-
cially the communication latency of the throughput-oriented
XILLYBUS IP-core lowers the achievable overall simulation
performance significantly. A definition of more realistic par-
titioning properties and goals would therefore be desirable.
Beside the computational resource specification, this would
also include precise knowledge about the request/response
communication round-trip time. Also, the availability of a
low-latency PCIe IP-core would be generally preferable for
obtaining an increased overall integration efficiency of tightly
coupled custom hardware models on FPGA. Furthermore, the
communication latency can be entirely neglected by breaking
the request/response scheme and avoid stalling the simulation
progress while waiting for any hardware response. The case
is most relevant to uni-directional fire-and-forget transfers like
execution flow trace recording, which is subject of prospective
investigations.
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Abstract—Given the recent increase in frequency, sophistication
and success of cyber-attacks against critical IT infrastructure,
such as the Smart Grid, the urgent need for advanced cyber-
security solutions is clearly evident. This paper presents a
security information analytics (SIA) framework, using various
data analytics methods to detect anomalies in metered data, that
may indicate attacks. The implementation of the SIA tool has
been applied to a live micro-grid test-bed for the modeling of
normal behaviour and for performance analysis. Furthermore,
the framework is scalable, allowing additional analysis tools and
resilient control solutions to be incorporated, further enhancing
the reliability of the system.

Keywords–Cyber-physical systems; Intrusion detection; Cyber-
security

I. INTRODUCTION

Critical infrastructures have, traditionally, been operated as
stand-alone systems, with dedicated communication networks,
thus protecting them from the outside world. However, ad-
vances in Cyber-Physical Systems (CPS), like the smart grid,
expose new vulnerabilities, which can be exploited by cyber-
criminals intent on carrying out malicious attacks [1], [2].
Recent cyber-attacks on energy utilities demonstrate that cyber-
criminals are increasingly targeting critical infrastructures and
learning how interact with and use such systems.

For example, on December 23, 2015, hackers deployed
malware into the systems of multiple regional power dis-
tribution companies in Ukraine, causing an outage that left
around 700,000 customers without electricity. The attackers
used BlackEnergy along with a destructive component called
KillDisk to disrupt machines, thus increasing the time required
to restore normal operational mode and remove evidence of an
attack [3]. Whilst the first version of BlackEnergy was only a
common trojan, able to execute different DDoS attacks[4], it
was later reconfigured and extended by incorporating modules
to target industrial control systems (ICS). The Sandworm
Team, to whom the Ukrainian attack has been attributed [5],
are known to have carried out previous attacks, which were
reported to not only involve classic strategic espionage, but
also to target SCADA systems [6], leveraging a supplementary
module in BlackEnergy that scans an IP block for open ports
used by SCADA control systems. Furthermore, recently sur-
faced malware, such as Havex, exhibits the capability to target
control systems. Havex was originally used between 2011
and 2013 during the ‘DragonFly’ campaign [7] that targeted
energy, gas and oil companies, in which one of the infection
vectors used was the water hole technique – compromising
SCADA software companies’ websites by repacking malware
with the legitimate software.

An important feature of the malware described above is its
ability to capture screenshots and record operators’ activities
in the compromised machines, thus, remedying the attackers’
lack of expert knowledge about the ICS. With knowledge of
the system model, an attacker may successfully achieve an
attack which will not be detectable to a system operator [8].

The evolution of attackers, attack methods and exploitable
vulnerabilities clearly results in changing risks confronting
smart grid security. The success of the attacks, detailed above,
indicates that the security tools and applications, currently in
use, are failing to protect critical infrastructures from advanced
attackers. New tools and methodologies for both detecting and
reacting to attacks are, thus, needed to fill the gap and limit
the current threat landscape.

Much of the existing work on CPS security relies on the
assumption that perfect knowledge of the physical system is
available to the designer of the control and estimation system
[2] or that the dynamics of the system can be modelled
as discrete-time state transitions, using techniques such as
Kalman filtering [9]. However, these methods are not always
practical or accurate for complex systems with interdependen-
cies between components, and can result in the use of over-
simplified models which do not characterise the complexities
and dynamics of the system well [9]. Furthermore, when the
control system is based on a simplified system model, an
attacker who can acquire sufficient knowledge of the system
model may be able to generate an attack that will go undetected
[8].

The smart grid already collects a vast amount of informa-
tion that can be used to develop new security analytics tools to
quickly and accurately detect cyber-attacks. These data allow
the behaviour of the grid, under normal operating conditions,
to be modelled. The detection of anomalies or deviations
from normal behaviour, which may indicate attacks, is an
important precursor to building resilient control systems, the
final aim of which is to create critical infrastructures that repair
or reconfigure themselves, in response to an attack. Apart
from being able to spot obvious policy violations by applying
a priori rules that compare measured data to thresholds or
look for correlations across events, one possible feature in
a consolidated security analytics tools could be assimilating
diverse data sources to identify possible cyber-attacks that are
invisible from the perspective of any one of these actions, but
could be revealed by jointly considering several independent
actions.

In this work, a framework for enhanced smart grid security
is proposed, which enables anomaly detection by means of
the joint implementation of various data analytics algorithms,
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including methods driven by expert system knowledge and
statistical analysis, as well as data-driven techniques from
machine learning. The algorithms process the available data,
intelligently exploiting the inherent redundancies in the system.
The framework, called a Security Information Analytics (SIA)
tool, is designed to be flexible, in order to allow other methods
and algorithms to be incorporated over time.

The remainder of this paper describes the approach fol-
lowed to develop the SIA tool for the smart grid. The threats
faced in smart grid security, along with requirements and
constraints for security analytics, are highlighted in Section II.
This is followed by an introduction to the Nimbus testbed,
which was used to develop and validate the SIA tool, in Sec-
tion III. The paper continues with a description of the internal
architecture of the SIA tool in Section IV. The preliminary
results are outlined in Section V and some conclusions are
discussed in Section VI.

II. SMART GRID SECURITY

A. Smart Grid Threats
The NESCOR failure scenarios [10] are an extremely

valuable resource for anyone trying to understand and mit-
igate potential cyber physical attacks against a smart grid
environment. Scenarios are organized in terms of impact and
each scenario addresses attacker profile, attack method and
exploited vulnerability, as they are relevant to that particular
scenario. The scenarios are organized into six domains:

1) Automated Meter Infrastructure (AMI)
2) Distributed Energy Resources (DER)
3) Wide Area Monitoring, Protection, and Control

(WAMPAC)
4) Electric Transportation (ET)
5) Demand Response (DR)
6) Distribution Grid Management (DGM)

In this work, the focus is on the security of the meters,
due to their importance in the smart grid infrastructure, con-
sidering, primarily, the NESCOR scenarios that are related to
meter forgery and mass-disconnection attacks:

• AMI.1 Authorized Employee Issues Unauthorized
Mass Remote Disconnect: an employee within the
utility, having valid authorization, issues a “remote
disconnect” command to a large number of meters.

• AMI.9 Invalid Disconnect Messages to Meters Impact
Customers and Utility: a threat agent obtains legit-
imate credentials to the AMI system and issues a
disconnect command for one or more target meters
or schedules a disconnection to occur automatically at
a later time.

• AMI.10 Unauthorized Pricing Information Impacts
Utility Revenue: a threat agent sends out unauthorized
pricing information, such as Time-of-Use (TOU) pric-
ing. This may result in either a loss or increase in
utility revenue until the invalid price is recognized.
Such an attack leaves the electricity supplier open to
legal challenges from its subscribers.

• AMI.14 Breach of Cellular Provider’s Network Ex-
poses AMI Access: inadequate security implementa-
tion in the AMI monitoring and control backup system
allows a threat agent to execute an attack on the

AMI implementation during a business continuity or
disaster recovery scenario. Access to these backup
systems allows a threat agent to perform malicious
activity.

• AMI.32 Power Stolen by Reconfiguring Meter via
Optical Port: Many smart meters provide the capability
of re-calibrating the settings via an optical port, which
can be misused by economic thieves, who offer to
alter the meters for a fee, changing the settings for
recording power consumption and often cutting utility
bills by 50-75%. This requires collusion between a
knowledgeable criminal and an electricity customer,
and will become widespread because of the ease of
intrusion and the economic benefit to both parties.

B. Requirements and Constraints
In order to detect attacks, such as those outlined above,

as well as unforeseen attacks, including those in which the
attacker has gained knowledge of the ICS, the SIA tool aims to
incorporate various different methods and algorithms, in order
to provide a reliable and robust security solution for the smart
grid. The primary requirements for such a system include the
following:

• Minimise the probability of an undetected attack.
• Minimise the delay between the start of an attack and

its detection.
• Minimise the probability of false alarm.

The first two requirements aim to reduce the impact of attacks
by ensuring that interventions can take place immediately,
minimising any financial losses, damage to physical com-
ponents or danger to human life. Arguably as important as
the first two requirements, minimisation of the false alarm
probability avoids costly unnecessary interventions and, also,
ensures that alerts are not ignored by operators. Secondary
requirements include intuitive interfaces for visualisation and
querying of data, integration into existing work flows, and
allowing both real-time response and long-term investigations
to be easily executed. However, these secondary requirements
are considered to be outside of the scope of this paper.

There are many constraints that must be overcome in order
to implement robust and reliable security analytics tools that
will meet the afore-mentioned requirements. The dataset gen-
erated in the smart grid is very large and disparate, requiring
massively parallel processing for a real time implementation.
As such, any algorithms that are used, must be suitable for
distributed processing and computational efficiency is an im-
portant consideration. The measurement precision of meters is
limited and varies between devices, this can limit the potential
for anomaly detection. Furthermore, when jointly considering
the measurements from multiple meters throughout the system
between the readings from different meters, synchronization,
or the lack thereof, is a factor that must be carefully considered,
in particular, for time-varying systems.

III. INTRODUCTION TO NIMBUS TESTBED

The Nimbus Microgrid is a low-energy test bed commis-
sioned by United Technologies Research Center (UTRC) in
Cork, Ireland [11]. Along with an electrical microgrid, the test
bed incorporates the thermal heating system of the Nimbus
and Rubicon buildings of the Cork Institute of Technology,
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to create a live-in laboratory for demonstrating building and
climate controls.

A. Description
The Nimbus micro-grid (Figure 1) consists of the following

components:

• A wind turbine
• A Li-Ion battery
• A combined heat and power unit
• A feeder management relay to couple the microgrid

to the building grid
• A set of local loads

Figure 1. A simplified diagram of the Nimbus Test Bed

The microgrid and the connected thermal system are ex-
tensively monitored using a network of electrical meters and
other sensors. These measurements, together with relevant
information about gas and electricity power consumption mea-
surements and prices, as well as thermal and electrical loads
and weather and wind forecasts, are continuously available
from the system and are collected into the data historian. The
flow of information is outlined below.

B. Data Flow
1) Measurement: The primary points of data collection

are the eight 3-phase electrical meters, each of which
measures twenty-eight variables:

• three phase-neutral and three phase-phase volt-
ages,

• four line currents (three phases and neutral),
• total active (±), reactive (±), and apparent energy,
• active, reactive and apparent power per phase,
• total active and apparent power, and power factor,
• frequency.

The meter measurements make up the bulk of the col-
lected data, accounting for a total of 224 variables.
Furthermore, the battery, the combined heat and power
unit, the wind turbine, the thermal storage tanks, and their
associated inverters, all record the variables pertinent to
each unit. These units also contain internal checks that
generate alarms and warnings, which are communicated
to the system.

2) Collection: The data variables listed above are com-
municated by the meters and system components to a
programmable logic controller (PLC), which also logs
other data from the system, such as the position indicators
of all control valves and the status of breakers. It also acts
as the conduit for the commands sent to the system, such
as changes to the system mode and set points, commands
to the breakers, as well as manual overrides. In total, 1252
variables are logged every second.

3) Display & Logging: The PLC communicates the data
to the SCADA PC, which runs the human-machine-
interface (HMI) tool shown in Figure 1, which displays
the monitoring variables. The HMI also serves to display
and acknowledge system alarms and warnings. The PC
stores the variables into a database on the hard drive.

4) Test Bed Middleware: The Test Bed middleware is
hosted on a PC on the same network as the SCADA PC.
The middleware PC uses open platform communications
(OPC) to periodically request the current variable values
from the SCADA interface, which it parses and stores in
another database on its hard drive. The middleware also
acts the interface for any client (e.g., Matlab) to access
the data using Simple Object Access Protocol.

IV. SIA APPLICATION

The SIA application is an interactive smart grid security
analytics tool, implemented in R for the detection of anomalies
in the Nimbus micro-grid. In this section, the architecture,
algorithms used, and implementation of the tool are described
in some detail.

A. SIA Architecture
The SIA application is composed of three main compo-

nents: the security analytics engine, which tidies the SCADA
data, runs the outlier algorithms, and makes a list of identified
outliers; the web application, that visualizes the data and helps
analysts to understand the security status of the grid; and a web
API, an interface which can be used to feed security analytics
intelligence into resilient control and remediation systems, to
react to the threat or investigate the attack. This paper focuses
on the security analytics engine.

B. Anomaly Detection Algorithms
There are five different methods of anomaly detection

incorporated in the current implementation of the SIA tool
and further methods will be added in ongoing work. The key
idea behind the approach is to exploit redundancies, both in
the data itself and in the outputs from the various methods, in
order to improve the reliability of the anomaly detection.

The five currently implemented methods can be broadly
categorized as knowledge-based or data-driven. The
knowledge-based methods rely on expert knowledge of
the micro-grid and its specific meters, or of the type of attack
that might be carried out. For example, the voltage at any
given meter is limited by the specifications of the equipment
and the preconfigured value set by the test-bed operators.
Similarly, a specific attack mode might cause multiple sensors
to power off almost simultaneously; explicitly considering this
type of attack can help it to be differentiated from a power
fault. The data-driven category describes methods, such as
machine learning, which rely on the data itself to learn the
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normal behaviour of the system, with no explicit assumptions
made about the source of the data or the relationships between
variables.

The SIA application is comprised of the five anomaly
detectors described below. The single-variable outlier detector,
rule-based outlier detector and dead sensor clustering algo-
rithm are considered to be knowledge-based, whilst the smart
detector and Kullback-Leibler distance are considered to be
data-driven.

1) Single-variable outlier detector: This outlier detector is
the simplest implemented in the analytic engine. The detector
identifies if the value of a measured variable falls outside of a
predefined range for that variable. The threshold can be defined
by known specification limits on equipment or operational
thresholds. In this case, the thresholds were defined by the
specifications of the meters used in the NIMBUS test-bed.

2) Rule-based outlier detector: The rule-based detector
exploits redundancies in the measured variables to find anoma-
lies. Each meter measures multiple closely related variables,
some of which are not physically independent. As an example,
consider the six different voltages measured by an electrical
meter: the magnitudes of three phase-to-neutral voltages and
three phase-to-phase voltages. Since only five independent
variables exist in the voltage system (three magnitudes and
two relative phases), it is evident that there is one exploitable
redundancy: each voltage vector needs to form a triangle with
two others to create a closed system, as shown in Figure 2.
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Figure 2. 3-Phase Voltage Phasors

Obtaining an equation from a redundancy requires expert
knowledge. As an example, for Figure 2, Equation 1 sums the
phases of the voltages:
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]
= 1. (1)

To account for measurement noise in the meter and other
factors, such as sampling resolution and synchronization, his-
torical data can be used to find the statistical distribution of
the left hand side (LHS) of the equation. At any time, then, the
value of the LHS for the current measurement can be compared
to the historical distribution to calculate the probability of

measuring that value. One or several thresholds can then be
set on the probability that indicate the degree to which each
redundancy check is violated.

In order to reduce false-positives, the number of violated
equations is used as an outlier score. Namely, out of a total of
twenty-one rules per meter, if less than three rules are violated,
this is likely a false positive and can be safely ignored, however
if more than six rules are violated the event is labelled as
severe.

In order to remain portable, the system makes no as-
sumptions about the variable output protocol or format. The
equations are formatted using generic names for each variable.
The rules are adapted to match the data format in use with a
parsing routine. These rules can, then, be used directly with
the input dataset.

3) Dead sensor clustering algorithm: This detector is
designed to alert operators to the mass disconnection sce-
narios (AMI.1, AMI.9, AMI.14) discussed in Section II-A.
This algorithm groups disconnected sensors using the time
between disconnection. Multiple sensors in the same subnet
work dropping within a few hours of each other likely points
to an isolated hardware failure and poses a lower risk than
a malicious attack. A much more severe event is a mass
disconnection scenario where multiple related sensors receive
a command to shut down within a few minutes of each other.

The dead sensor clustering procedure, illustrated in Fig-
ure 3, groups sensors into a cluster if they have disconnected
within a time window which can be defined by the user.
The time window is reset each time a sensor is disconnected
and the cluster grows until no more sensors are disconnected
within the time window. The cluster is defined as anomalous
if the number of sensors associated with it is above a user-
configurable threshold that should be defined in relation to the
system size. This detector could be used to override a mass
disconnection command and stop the attack at an early stage.

Time

Se
ns

or
s

Anomalous Cluster

Benign Cluster

Figure 3. Diagram of the dead sensor clustering algorithm, showing the
process by which disconnecting sensors are clustered together using a

sliding time window. An orange node denotes a disconnected sensor, blue
nodes denote connected sensors and grey nodes denote sensors that may be
connected or disconnected. The time periods indicated in green represent the
window. Here, a cluster with three or more sensors is considered anomalous.

4) Kullback-Leibler Distance: The Kullback-Leibler (KL)
distance measures the difference between two distributions. In
this case the symmetrized KL distance is used to determine
by how much the daily measurements made by the sensors
differ from a predefined baseline. Outliers are defined by those
measurements which have a KL distance larger than a user-
configurable value. In this work, the KL distance is calculated
for each of the calculated rules, relating the redundant vari-
ables.
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This detection algorithm serves to validate the results of
the equations for an entire day against the baseline, and so it
can not be used when running in real-time.

5) Smart Anomaly Detector: The so-called smart detector
is a machine-learning (ML) algorithm that learns the normal
behaviour of the system from the meter measurements to
create a model. New measurements are, then, compared to
the model and any instances which do not fit are classified as
anomalous. In contrast to the rule-based anomaly detector, the
smart detector produces a binary decision rather than a score.

ML algorithms are typically classified into supervised or
unsupervised methods, depending on whether they require
labelled data or not, respectively. Supervised methods typically
work on data samples from two or more labelled classes, for
example, normal and anomalous. The challenge with smart
grids, and other anomaly detection exercises, is the lack of
labelled anomalous data. In particular, it is very difficult to
acquire known attack/fault data from smart grid installations
and, even if such labelled anomalies were available, the case
of new, unforeseen attacks or anomalies is not considered. One
alternative is to assume that all data available represents normal
behaviour, and to modify the supervised learning algorithm to
work with a single class. Such algorithms are known as one-
class ML, novelty detection, or anomaly detection algorithms
in the literature. The algorithms learn the normal behaviour of
the system, and then label any new data as anomalous if it
does not fit with the model.

There are multiple anomaly detection ML algorithms in
the literature, including variants of support vector machines
(SVM), 1-Nearest Neighbour methods, parzen density esti-
mation, and modified neural networks. In this work, a one-
class support vector machine was used [12], [13], using the
libsvm implementation [14]. Due to the diversity of electrical
appliance behaviour, an individual model was trained for each
meter in question. Some of the meters are connected to single-
phase appliances while others to tri-phase industrial devices.
As a result, some models include all variables used in the static
rule-based detector, whilst others include a subset.

C. Combination of Anomaly Detector Outputs
The output from rule-based and smart anomaly detectors

can be combined to reduce false-positives, by considering the
overlapping subset of anomalous samples, detected by more
than one detector. The single-variable detector is not included
in the combination as it already provides an easily managable
number of anomalies. In addition, this detector only examines a
limited number of measurements, meaning the detection scope
is much more restricted than the other detectors. This makes
a combination with the single-variable detector inappropriate.

The combination is done by comparing the timestamps
flagged as outliers by the smart anomaly detector and the rule-
based detector. To get more information about which kinds of
outliers are being detected by the smart detector, the overlap
is examined as a function of the severity of the anomaly as
defined in Section IV-B2.

V. RESULTS

The results of the various outlier detection algorithms are
visualized in the web application portion of SIA. However,
here we present the results of the rule-based and smart anomaly

detectors only as they highlight some of the constraints and
challenges in developing an effective smart grid analytics
system.

A day worth of data collected at the Nimbus testbed using
a stable time resolution of 15 seconds is used here. Note that
this resolution is described as stable as this granularity does
vary within the time range. The varying time resolution must
be considered when comparing results of different algorithms
and examining the severity of an outlier.

The Nimbus micro-grid is composed of 8 smart meters; in
Figure 4 a typical output from the outlier detectors is shown
for a single meter. Note that only the single variable and rule-
based detectors are included here. To address AMI.32, high-
risk rules are defined and highlighted to the operator. These are
a subset of rules which contain electrical currents. The current
has been chosen as a potential at-risk variable for manipulation
by agents wanting to reduce the cost of electricity.

The total number of anomalies flagged by the rule-based
detector in a single day is 20840 over all 8 meters. This volume
of outliers is clearly too high for effective remediation. This
highlights the need to either improve the detection algorithms
to improve their performance, or combine these results with
complementary methods to reduce the false positives.

The former requires a deep and specialized understanding
of the system to more accurately model meter behaviour. This
approach is both time consuming, and reduced the ability of
the system to be utilized in a different environment.

Figure 4. Number of outliers flagged as a function of time. Shown are the
results from the rule-based and single variable detectors for a single sensors
over a period of one day. The dotted distributions correspond to the number

of outliers detected by the rule-based detector. The green distribution
corresponds to all rules, while the red corresponds to so-called high-risk

rules only. Anomalies detected by the single variable detector are marked by
crosses.

Here, a combination of the rule-based detector and the
smart anomaly detector results as described in Section IV-C
is presented.

Examination of a days worth of data shows that a combina-
tion reduces the outliers by 70% compared to the rule-based
detector alone. In addition, the combination filters out 80%
of the low severity outliers while keeping over 93% of high
severity outliers (Table I).
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TABLE I. OVERLAP OF SMART AND RULE-BASED DECTORS BY
SEVERITY

Severity Overlap (%)

Low 17.7
Medium 56.2
High 93.7

VI. CONCLUSION AND FUTURE WORK

The ever evolving security landscape presents a very real
threat to critical infrastructure such as the smart grid. New
technologies and modes of operation are required to protect
the smart grid from increasingly sophisticated attacks. Ex-
ploiting data analytics is key in this effort. An overview of
the design constraints for a security data analytics framework
were presented along with a concrete implementation. The SIA
application consists of an analytics engine designed to detect
different attack and failure scenarios, and a web application
interface to facilitate operations. Five anomaly detection algo-
rithms were presented. These reflect both current approaches,
relying on pre-existing knowledge and assumptions, and new
approaches, that depend on data to create models with minimal
domain-specific knowledge. Measurements from the micro-
grid are affected by multiple effects, which as a whole, limit
the performance of the rule-based approach. In order to reduce
false positives, a combination with an ML-based detector was
carried out with some success. Remedying the limitations of
the rule-based approach would require a greater understanding
of the specific measurement components, and lead to an
overspecification of algorithm. This would require significant
work and reduce the applicability of such a model to other
systems. Smart detectors which learn the behaviour of the
system from the data can detect anomalies making minimal
assumptions about the kinds of attack patterns, making the
system more secure against future threats.
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Abstract—Energy management systems are used to control energy
usage in buildings and campuses in order to provide reliable
energy supply and maximize user comfort while minimizing
energy usage. The heterogeneous, distributed, and dynamically
evolving nature of energy management systems based on internet
of things introduces new and unexpected risks that cannot be
solved by current state-of-the-art security solutions. For this, new
paradigms and methods are required in order to i) build security
into the Information Communication Technology (ICT) system at
the outset, ii) adapt to changing security conditions, iii) reduce
the need to fix flaws after deploying the system, and iv) provide
the assurance that the ICT system is secure and trustworthy at
all times. This paper provides a holistic overview of designing a
secure framework for Internet of Things (IoT) system, where the
framework will be implemented as part of an ongoing H2020
project called ANASTACIA: Advanced Networked Agents for
Security and Trust Assessment in Cyber-Physical System (CPS)
based on IoT Architectures.

Keywords–Cyber-physical systems; Intrusion detection; Cyber-
security

I. INTRODUCTION

The aim of a modern Energy Management System (EMS)
is to enhance the functionality of interactive control strategies
leading towards energy efficiency and a more user friendly
environment. Typically, the EMS operates several building
systems, such as the supervisory control and data acquisition
(SCADA), which controls the smartgrid of one or more build-
ings, and the Building Management System (BMS), which
controls the building heating demand, security system, fire
alarm system, etc. Heating, ventilation, and air conditioning
(HVAC) is considered to be the highest source of energy
consumption in the building operation, and the systems most
affecting user comfort [1].

Historically, EMS systems were installed when potential
security threats were only physical. In addition, having EMS
connected on a segregated network reduces the risk of cyber
and remote attacks. However, the evolving in building con-
trol requires connecting EMS to Internet of Things (IoT) to
optimize accurately the user needs and building operations
[2]. By connecting EMS to the building communication net-
work, the possibility of EMS cyber-attack increases, which
can lead to significant financial impact. The StuxNet cyber-
attack supposedly targeting a nuclear-enrichment plant (by
corrupting the measurements and actuator signals) in Iran
[3], and BlackEnergy malware targeting several electricity
distribution companies in Ukraine [4], are concrete examples

of cyber-attacks. Thus, it is crucial to make the control of EMS
to be resilient against cyber-crime.

The existing frameworks for EMS consider the system
integration, connectivity and optimal control performance. The
cyber-security in the EMS framework is mainly performed
based on running tests and benchmarks to evaluate the possible
cyber-attacks and their impact [5].

As part of an ongoing research in ANASTACIA project [6],
this paper aims to propose a high-level framework architecture
for Cyber-Physical System based on IoT, where EMS is an ap-
plication of CPS. In this framework, we develop a trustworthy-
by-design autonomic security framework with testing, vali-
dation and security optimization capabilities. ANASTACIA
framework combines several elements from different domains:
from IoT controllers to virtual functions accessible through
Software Defined Network (SDN) interfaces, orchestration of
security policies and enforcement of security preferences in
heterogeneous scenarios.

In Section II, we present a CPS model used to show
the usage of the developed security framework. Section III
explains the the developed cyber security framework architec-
ture. Section IV discusses a validation methodology to proof
the efficiency of the developed framework. Finally, Section V
provides a conclusion and future work.

II. CYBER-PHYSICAL SYSTEM MODEL

ANASTACIA CPS model provides a representation of how
ANASTACIA framework can be integrated within a CPS. Fig-
ure 1 depicts the ANASTACIA system model. ANASTACIA
is envisioned to enable trust and security by-design for CPS
based on IoT and cloud architectures. In general terms, an
IoT Infrastructure can be seen as a system with two well
differentiated planes. The Data Plane is closer to the physical
domain and is composed of IoT devices, the network that
interconnect them and in general, the elements providing
resources, such as servers or routers. On top of the Data
Plane is the Control Plane that enables the management of
the underlying devices. These include either IoT controllers
that directly control the devices resources (sometimes even
integrated in the same device) or Virtual Interfaces (i.e., VNFs)
that are able to control/access to the Data Plane resources
through the cloud.

IoT platforms are currently threatened by a myriad of
external dangers. Advanced attacks targets IoT platforms
by taking in account the existing vulnerabilities in devices
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Figure 1. CPS Modeling

with poorly managed/configured security settings (i.e., default
passwords) or even by using social engineering techniques
that engage users to install malwares or disclose passwords.
ANASTACIA is built on top of IoT platforms to protect them
against such threats. ANASTACIA is conceived as a policy
based framework where system admins, at the User plane,
set a specific security policy that must be fulfilled within an
IoT platform. This security policy is enforced within the IoT
platform by orchestrating its resources (devices, services, etc.).
The control of the fulfillment of the security policy is carried
out by the ANASTACIA framework at the Autonomic plane by
monitoring the IoT platform and detecting threats and ongoing
attacks. Additionally, the ANASTACIA framework is able to
create and trigger reactions that mitigate the effects of attacks,
prevent against threats and guarantee the fulfillment of the
security policy.

One of the most novel features of ANASTACIA is car-
ried out at the Seal Management plane, built on top of the
ANASTACIA framework. At this plane, a dynamic seal is
created, representing the current level of security of the IoT
platform.

III. CYBER-SECURITY FRAMEWORK ARCHITECTURE

The ANASTACIA system model (as presented in Figure
1) is structured as a set of layers that provide a broad view
of the framework and stand out its integration within IoT
infrastructures. ANASTACIA is envisioned as a framework
built on top of an IoT infrastructure where network elements,
physical and virtual network elements interact in the Data
Plane. The interaction with these elements is done by using
virtual interfaces with cloud computing networks for the usage
of external resources (such as computing or storage). On top of
that, the Control Plane manages the Data Plane by using APIs
and by orchestrating Network Function Virtualization (NFV).

Figure 2 represents ANASTACIA framework, which ex-
tends the ANASTACIA system model by expanding the func-
tions of the ANASTACIA core. The Autonomic Plane includes
the components that provide the ANASTACIA framework
with its intelligence and dynamic behavior. This plane can

Figure 2. ANASTACIA Cyber-Security Framework Architecture

be divided into three sub-planes, which carry out specific
activities within the framework as follows:

• Security Orchestrator Plane organizes the resources
that support the Enforcement Plane, carrying out ac-
tivities such as the transformation of security prop-
erties to configuration rules and aligning the security
policies defined by the security interpreter with the
provisioning of relevant security mechanisms. It has
the whole vision of the underlying infrastructure and
the resources and interfaces available at the Security
Enforcement Plane.

• Security Enforcement Plane connects the ANASTA-
CIA core with the IoT Platform, managing the interac-
tions among objects and components for the enforce-
ment of the security policy defined at the User Plane.
This plane supports the enforcement of configurations
and reactions triggered by the Security Orchestrator
Plane, in order to preserve the expected security level.
At this plane the agents that support the monitoring
of IoT devices or the enforcement of reactions are
instantiated, either if they are operating on remote or
directly attached to the device.

• Monitoring and Reaction Plane connects to the IoT
Platform through the Security Enforcement Plane in
order to collect security-focused information related
to the system behavior. At this plane, intelligent
data-driven automated and contextual monitoring of
activities at embedded devices, legacy systems and
IoT devices by retrieving signals, event logs, traces,
heartbeats signals, status reports or operational infor-
mation. This plane also evaluates the fulfilment of
the security policy by checking security models or
threats signatures, detecting anomalies and creating
reactions to mitigate such anomalies, in terms or
reconfigurations and alerts to system administrators
[1] [7].

Additionally, on top of the architecture the User Plane and
the Seal Management Plane interact with the Autonomic plane:
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• The User Plane includes interfaces, applications and
tools that help system administrators to manage the
IoT platform through the ANASTACIA framework.
For example, at this plane system admins are able to
edit the security policies that govern the underlying
IoT platform.

• The Seal Manager is in charge of providing users with
a real-time indicator of the overall security level.

The high level architecture can be used to identify the main
activities to be carried out by the ANASTACIA framework,
which is used to identify the specific components that are part
of every identified plane. By analyzing several use-cases for
EMS application, we can identify five main activities to be
supported by the platform:

• Security policy set-up This is the initial process
triggered once a security policy has been defined by
the user. In this process the policy has to be configured
in the platform in order to be enforced. The interpre-
tation of the security policy claims, the configurations
required to monitor the security controls associated
to a policy or the definition of thresholds to identify
policy violations, are some activities carried out by
this process.

• Security policy orchestration Once the policy has
been set-up, it is necessary to enforce the controls
specified at the policy. The interfaces and IoT con-
trollers must be orchestrated according to the security
policy.

• Security monitoring In this process, the monitoring
information is extracted from the devices through
monitoring agents and according to the security con-
trols interpreted from the security policy. In this ac-
tivity, the monitoring data is filtered and aggregated
in order to carry out its analysis and the detection of
anomalies.

• Security reaction In this process, the detected anoma-
lies are evaluated to design counter measures in order
to mitigate the effects of attacks and potential threats.

• Dynamic security and privacy seal In this process,
relevant information about detected threats, monitored
information is evaluated to create a seal that deter-
mines the level of security guaranteed/offered by an
IoT platform.

IV. ANASTACIA FRAMEWORK VALIDATION

In order to perform quick, scalable and automated testing
over the architecture several interconnected virtual machines
have been deployed covering the functionality for policy
enforcement over IoT and SDN integration, specifically, the
test has been realized for the isolation sensor use-case. As
shown in Figure 3, the deployment includes the next seven
virtual machines or isolated containers like docker:

1) IoT Application.
2) Micro Orchestrator.
3) SECURED Policy Interpreter.
4) ONOS SDN Controller [8].
5) OpenDayLight SDN Controller [9].
6) Open Virtual Switch.
7) Contiki emulator [10].

Figure 3. ANASTACIA Virtual TESTBED Deployment

The idea of the scenario is that the IoT Application can
establish communication with a mote using a global IPv6
address and the communication can be interrupted through
the enforcement of security policies applied by the SDN
controller. To this purpose we have develop a little python
script for the IoT Application, a python micro orchestrator
and basic SDN plugins on the interpreter (for each of the
mainstream controllers, this is OpenDayLight and ONOS).
For the IoT application, the script sends sporadically CoAP
request messages to the motes using global IPv6 addresses
as source and destination. The CoAP message is received
by the SDN Network (the OVS instance in this case) and
forwarded to the virtual machine that contains the Contiki
emulator. The Contiki emulator provides the capability to
deploy a gateway between the 6LoWPAN network and the host
virtual machine network, so the CoAP message is received
by the Gateway and forwarded to the mote. During the
communication, we decide to isolate the sensor, so we start
in the micro orchestrator the policy enforcement. The micro
orchestrator sends a refinement request to the interpreter and
after the high to medium refinement process, the interpreter
transforms the policy on a SDN configuration. At this point,
we can to use ODL-SDN plugin or ONOS-SDN plugin in order
to get the appropriate configuration for the selected platform.
Once the policy refinement process has been finished, the
micro orchestrator receives the SDN configuration file and
invokes a specific call for the SDN controller’s Northbound
API according to the controller election. Specifically, for the
sensor isolation use case we are installing a flow rule on the
OVS indicating that all traffic containing the sensor’s IPv6
address must be dropped.

We are currently working on the integration of the virtual
IoT environment with the physical one; this means, allowing
the connectivity from/to the emulator to leave the machine
and be connected to a real SDN deployment. Therefore, the
emulator could speak with real IoT devices or mimic them so
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that the SDN could redirect an attacker to a cloned scenario
like a honeynet.

V. CONCLUSION AND FUTURE WORK

The paper has presented a preliminary design of secure
framework for cyber-physical system based on IoT. The design
of the framework was derived by energy management system,
which can be a critical CPS application considering safety
critical infrastructure, such as hospitals, airports, etc. The
novelty of the framework is based on the integrating and the
coordination of serval security stages, leading to (semi) auto-
matic security platform for CPS based IoT system. The future
work under ANASTACIA project will focus on developing
each component of the framework and validate it with different
applications of CPS.
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Abstract—Embedded devices connected to the Internet rang-
ing from garage door openers, home thermostats, home au-
tomation systems to automobiles, are continuously exploited
by remote attack vectors. According to OWASP Internet of
Things project, these vulnerabilities are due to insecure web
interfaces, insufficient authentication and authorization, insuffi-
cient transport layer protection, broken cryptography, insecure
software/firmware updates, or poor physical security. As opposed
to PowerPC systems, embedded devices lack resources to run
advanced attack detection or anti-virus softwares. Moreover,
embedded devices are often mass produced (thousand to millions)
and share a static security footprint. Hence, a successful attack
on a single device can be replicated across other devices with
minimal effort. There exists a significant need towards developing
a resilient cyber security methodology that provides scalable and
efficient intrusion detection and resilient architecture. In this paper,
we present an efficient hierarchical anomaly-based intrusion
detection method and resilient policy framework that enables the
system to detect suspicious activity and continue the operation
with minimum functionality.

Keywords–Cyber Security; Embedded devices; Internet of
Things; Intrusion Detection; Resilient policy;

I. INTRODUCTION

The continued rise of cyber attacks together with the evolv-
ing skills of the attackers, and inefficiency of the traditional
security algorithms employed by the embedded devices to
defend against advanced and sophisticated attacks, necessitate
the development of novel defense and resilient techniques.
Targeted aggressive attacks use well-researched and well-
funded multi-vector tactics to introduce stealthy and persistent
malware in connected embedded systems (i.e., Internet of
Things) infrastructure systems. Examples include ThingBot,
Ransomware [3]-[5], etc. The insecure composition of legacy
devices with web interfaces (such as HTTP, PHP, etc.) [3]
further enlarges the attack surfaces of these systems. Fur-
thermore, vulnerabilities for embedded devices are discovered
daily, which can be easily replicated to many other devices
connected to the Internet. These factors highlight the impor-
tance of designing a scalable detection scheme that not only
detect attacks but also minimize the attack impact and prevent
spreading of attack over other similar embedded devices.

A handful of approaches exist along the tangents of attack
detection for large scale systems and resilient algorithms for
enabling minimal system services even under attack [6], [7],
[8], [9], [10]. However, these approaches require high com-
putational resources, which make it infeasible for embedded

devices with limited resources. In addition, these approaches
rely on operational data of the system, which in turn limits the
ability to detect a wide variety of attacks.

This paper proposes an Intrusion Detection and Resilient
Policy methodology for embedded devices connected to the
Internet. In order to assist the development of the proposed
approach, we have summarized various attack models for
Internet connected embedded systems. This work aims to
extend our preliminary proposal [1]. The paper is organized as
follows: In Section II we first describe the overall methodology
of hierarchical based intrusion detection and resilient policy for
detection. In Section III we describe the details of our approach
for anomaly-based intrusion detection system for embedded
devices on internet. In Section IV we evaluate the developed
methodology. Finally, in Section V we present conclusions and
future work.

II. CYBER-PHYSICAL ATTACKS, DETECTION AND
MITIGATION

A. Adversary models
We consider several different broad strategies an attacker

may employ against Internet facing embedded devices [11]: a)
circumvention attack finds exploits that does not depend on the
security properties of the embedded device; b) deputy attack
finds a way to exploit the vulnerabilities of a benign program
in a malicious way; c) brute force attack attempts all possible
cyber security keys until an exploit is found that succeeds;
d) dictionary attack tries only some key space possibilities
which are deemed most likely to succeed; e) probing attack
uses probe packets to learn properties of the security method
execution needed to construct an attack; f) denial of service
attempts to make the IoT device unavailable; g) backdoor
attack uses hardcoded credentials or passwords to gain access
to the system; h) code injection or reuse attack uses vulnerable
programs or coding errors to inject malicious code into the
device.

B. Hierarchical based Intrusion Detection
This approach considers two level of Intrusion Detection

System (IDS), as shown in Figure 1: local IDS and supervisory
IDS. The local IDS is deployed on every embedded device,
which uses various information, such as power consumption,
memory usage and environmental data to learn and build a
time series based statistical model. The resulting statistical
model is used to detect any anomalous behaviors at the device
layer and the anomalous findings are further reported to the
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supervisory IDS for decision making. The supervisory IDS,
deployed at the gateway, learns and builds a data correlation
model that captures the dependencies between all connected
devices during the deployment phase (we assume normal
operational behavior during the period of installation). When
an anomaly is reported from the local IDS, the supervisory
IDS uses the data correlation model to confirm the intrusion
based on other devices behavior (e.g., the behavior of other
correlated devices will not change when the device is attacked,
which is used as an evidence). In order to prevent supervisory
IDS from detecting attacks, an attacker has to learn the group
of correlated devices and tamper them accordingly, which is
a complex task. In the event of an attack, supervisory IDS
will apply a resilient policy to: a) thwart attacks on other
similar devices by trigerring a change in the configuration of
the devices; b) isolates the attacked devices and continues to
provide the same services via use of virtual sensors. In this
paper we will focus on supervisory intrusion detection.

Figure 1. Hierarchical based Intrusion Detection

C. Resilient Policy
The supervisory IDS applies a resilient policy to initially

isolate the attacked device from other devices. The supervisory
IDS uses a combination of the data correlation model and
the local statistical model to build a virtual sensor [10]. This
virtual sensor uses prediction algorithms, such as Kalman
Filtering to predict the actuation values supplied by the at-
tacked device, and deliver the same services (e.g., actuation
values) without the help of the attacked device. Moreover, the
supervisory IDS also triggers a change in system configuration
(e.g., a defense depending on the attack detected) to the
correlated devices to prevent spreading of attack to other
devices.

III. SUPERVISORY INTRUSION DETECTION

The core function of any IDS is to gather and analyse in-
formation in order to identify any intrusion. When the context
is cyber-physical system or Internet of Things, IDS should not
only monitor cyber-related metrics (e.g., network activity, CPU
speed, log files) but also physical processes/measurements
that govern behaviour of physical devices. IoT or sensor data
consists of a continuous stream of data (aka time-series) where
the time interval between successive updates could vary from
milliseconds to minutes. The data produced, usually pertains

to the information about the physical state of a system, i.e.,
temperature, pressure, voltage, power consumption, flow rate,
speed, acceleration, etc. The goal is to detect intrusion not
only in cyber space but also in physical space. For example,
the data reported by an IoT sensor could be far from its normal
behaviour or an actuator could behaves in a highly erratic
manner.

The existing intrusion detection techniques can be broadly
classified into two categories: knowledge-based and anomaly-
based [12].

• A knowledge-based IDS uses a database of pat-
terns/signatures (a footprint specified in terms of data
packets, number of failed attempts, upper and lower
bounds physical measurements etc.) of previously
known attacks and system vulnerabilities. Periodically,
the current signature is checked with the database to
identify and prevent the same attacks in the future.
The advantages of knowledge-based intrusion detec-
tion system is that it is highly affective towards well
known attacks and has low false positive rate. The
disadvantages are that it cannot identify new attacks
and the database would need frequent updates.

• The anomaly-based [13] intrusion detection system
builds a profile (or a data-model) of the normal
behaviour using either statistical or unsupervised ma-
chine learning methods. It then uses the normal profile
to flag any deviations from that profile as alerts.
The advantages of anomaly-based IDS is that it can
identify new attacks, but the disadvantage is that it is
prone to high false positive rate.

Both approaches have been extensively studied. A reader is
referred to [12] for more details.

In the following sections, we shall describe a novel ap-
proach for supervisory intrusion detection. More precisely, we
will exploit the relationship between a set of given time-series
for detecting anomalies. This could either be used on its own
or and it could be used as an additional feature of another
algorithm to improve its efficiency.

A. Correlation-based Anomaly Detection

Problem Setting. We are given a database of unlabelled n
time series T = {t1, t2, . . . , tn} containing both normal and
anomalous sub-sequences. The assumption is that the majority
of them are normal. The problem is to detect anomalous
subsequence within a given time-series by exploiting a set
of corresponding sub-sequences of other time-series when
possible.

The overall methodology of the proposed anomaly-based
intrusion detection is shown in Figure 2. It first transforms the
input data by aggregation and discretization prior to learning
the model that represents the normal behaviour of the signals.
The parameters of the model are then tuned to improve the
overall performance of the method. We shall now describe
each step in detail.
Transformation: Aggregation and Discretization

The aggregation step transforms a sequence of k consec-
utive values of one (or more) time-series by a representative
value using a chosen aggregation function.
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Figure 2. Overall Methodology for Anomaly-based Intrusion Detection

Given a training database of n series, Ttrain =
{t1, . . . , tn}, we transform it into n × (n − 1) time-series
denoted by S = {spq|p ≤ n ∧ q ≤ n}. Each time-series
spq is a sequence of values, i.e., 〈spq1 , . . . , s

pq
m−k+1〉, where

each spqi is an aggregation of sub-sequences 〈tpi , . . . , t
p
i+k〉

and 〈tqi , . . . , t
q
i+k〉 with a representative value when sliding

a window of size k by one step at a time. The two sub-
sequences are aggregated using normalised cross-correlation
function (NCC). The cross-correlation function (aka. cross-
covariance function) provides a measure of similarity of two
sub-sequences, which is computed as follows:

spqi = NCC (〈tpi , . . . , t
p
i+k〉, 〈t

q
i , . . . , t

q
i+k〉

=

∑i+k

i
tp
i
×tq

i√∑i+k

i
(tp

i
)2×

∑i+k

i
(tq

i
)2

(1)

The normalized cross-correlation scoring is straightforward to
interpret. It returns a value between +1 and -1 inclusive, where
1 means the two sub-sequences are exactly the same, 0 means
they are very different from each other, and -1 they are exactly
opposite. An example of positive correlation and no correlation
between different pairs of sensors reporting temperatures is
shown in Figure 3. The aggregation function is not restricted

Figure 3. Example: Positive correlation (left) and No correlation (right)
between temperatures readings of sensors

to NCC. Any reasonable function can be used instead.
The next step is the discretization of a given time-series,

where the goal is to transform the time-series from a sequence
of continuous values to a sequence of discrete intervals by
dividing the amplitude range of the input time-series. There are
several ways in which the intervals can be chosen. The simplest
way is to create equal bin size and a more sophisticated ap-
proach is to use clustering. In this paper we have implemented
the former approach. Each interval could be represented by a
unique number or by an alphabet. We introduce a parameter
d to denote the number of discrete intervals. Furthermore,

let αpqi denotes the ith discrete-interval associated with the
transformed time-series spq . Discretization can decrease the
dimensionality of the data and it can increase the efficiency
of the algorithm for anomaly detection. A good overview on
discretization is provided in [14].
Learning Model and Tuning. The goal of this step is to learn
a data-model that captures the normal behaviour and tune the
parameters of the model in order to maximise the detection of
the anomalies while minimising the false positive rate. In the
following, we describe how we generate a model for a given
signal.

Let fpqi denotes the frequency of the discrete-interval αpqi
observed in the time-series spq . We also introduce a param-
eter λ to denote the minimum percentage of non-anomalous
sub-sequences within any time-series. Recall that the initial
assumption was that most of the sub-sequences are normal but
very few might be anomalous. The general idea is to select
a set of discrete intervals that combined together represent
normal portion of the time-series, which should be at least λ
percentage of the m subs-sequences of window-size k within
a time-series.

Let Npq be the set of discrete intervals that are normally
observed within time series spq with respect to the parameter
λ. The subset of the discrete intervals classified as normal, i.e.,
Npq ⊆ {αpq1 , . . . , α

pq
d , is computed as follows:

• The sum of the frequencies of discrete intervals cov-
ered by Npq must be greater than a given threshold,
i.e.,

∑
αpq

j
∈Npq(fpq

j
/m) ≥ λ.

• If the ith discrete interval is classified as normal
(αpqi ⊆ Npq) then any jth interval occurring more
than the ith interval (fpqj ≥ fpqi ) must also be
classified as normal (αpqj ⊆ Npq).

• Minimise the number of discrete intervals classified as
normal subject to the above two constraints.

For a given time-series (signal or sensor), the above step is
repeated with respect to each other signal. The data-model that
captures the normal behaviour of a time-series is encoded as
a Boolean matrix where each row correspond to another time-
series and each column corresponds to a discrete interval. An
example of a Boolean matrix model for a time-series t5 is
shown in Table I. The last 4 columns denote the number of
discrete intervals, i.e., d = 4. Each row corresponds to the set
of discrete intervals that are classified as normal (when the
value is 1) with respect to the qth time-series which belongs
to the set {t1, t2, t3, t4}.

The anomaly score of a given window of a time-series is
computed by first checking whether the correlation associated
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TABLE I. AN EXAMPLE OF A BOOLEAN MATRIX MODEL.

(p = 5) q 1 2 3 4
N51 1 1 0 0 1
N52 2 1 0 0 1
N53 3 0 0 1 1
N54 4 0 1 0 0

with the sub-sequence of another time-series falls in a discrete
interval classified as normal. This is done with respect to
each corresponding sub-sequence of other time-series. The
anomaly score of the window is the number of discrete-
intervals associated with other time-series falling in the normal
category. We also introduce anomaly threshold, denoted as φ,
as another parameter. The anomaly score is compared with
the threshold, and if it is greater than the threshold than
the window is classified as anomalous. In the final step, the
following parameters are tuned:

1) The aggregation step introduced the parameter k to
denote the length of the window.

2) The discretization step introduced the parameter d to
denote the number of discrete intervals.

3) The modelling step introduced the parameter λ to
denote the percentage of the number of sub-sequences
assumed to be normal within a time-series.

4) The final parameter is the attack-threshold denoted as
φ.

IV. EVALUATION.
In this section we present preliminary results. For the

evaluation purpose we experimented with two sets of data:

1) The historical data for thermostat temperatures, where
12 sensor data have been used. This data is collected
at the demo-site at Cork Institute of Technology
(CIT), where the demo-site has an energy manage-
ment system controls a small size smart-grid covering
several buildings [2].

2) Real-CPU, memory, and temperature data obtained
from three TI CC3200-LAUNCHXL IoT devices,
considering CPU usage, memory stack size and tem-
perature value. This data was collected from a simple
demo for internet connected thermostat demonstra-
tion. the devices was using WiFi to communicate with
a centralized server to send the temperature values
and receive any actuation instructions.

We divided the data into training data and test data.
Training Parameters. For training purpose we restricted the
values of the parameters as defined before. The size of the
window was restricted to the set {10, 20, 40}. The number
of discrete intervals was chosen from the set {10, 20}. The
maximum percentage of the sequences assumed to be nor-
mal was chosen from the set 80%, 85%, 90%, 95%, 100%.
The attack score threshold was chosen from the set
0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.5. During the training phase,
the parameters of the model for representing the normal
behaviour was tuned from the above combination of parameter
space.
Attack Model. To test the performance of our approach
we injected the attack by perturbing the test data, which

relied on three parameters: (1) disturbance magnitude re-
flects the percentage of the amplitude changed in the orig-
inal value. The set of percentage values that were used are
{25%, 20%, 15%, 10%, 5%}. Both increase and decrease was
allowed. (2) attack window size denotes the size of the window
chosen for injecting perturbation. (3) disturbance behaviour
defines whether the changed introduced over a window was
fixed or variable.

The results for the two sets are summarised in the following
confusion matrices:

TABLE II. CONFUSION MATRIX FOR THERMOSTAT SENSORS

detected not detected
intrusion 94.5% 6.5%

no intrusion 7.6% 92.4%

TABLE III. CONFUSION MATRIX FOR TI IOT DEVICES

detected not detected
intrusion 99.8% 0.2%

no intrusion 4.6% 95.4%

The results clearly show that the good performance of the
proposed approach. Most of the attacks that were not detected
were those where the amplitude changes was very close to the
original values. The data for the TI IoT devices had hardly
any noise so any deviation from the normal behaviour was
detected as intrusion, which explains the good performance of
the approach.

V. CONCLUSION

In this paper, we have proposed an Intrusion detection
methodology for IoT embedded devices. The methodology
is based on a hierarchical design in order to distribute the
computational resources over the IoT devices and increase the
methodology scalability. Our approach is based on observing
the devices performance and its correlation to similar devices.
Experimental results shows that the efficiency of the proposed
approach for detecting suspicious activities.

In future we plan to investigate the application of this
technique with more rich dataset in particular related to the
manufacturing domain. Currently we have assumed that the
data is consisting of continuous domains. Therefore, in future
we would like to extend this technique to consider events and
categorical data. Also, There are many variants of our approach
that also deserve future investigation.
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Abstract—Cyber-physical systems (CPSs) are a key
framework for analysing a range of systems, from power
plants to automobiles. One recent trend has been using
this framework for security analysis. This article uses
physics-based methods for distinguishing attacks from
faults. We frame a CPS as a discrete-time linear system
that can switch between various modes. By encoding
faults and attacks each as specific modes, we build CPS
models that incorporate the impact of a range of types
of fault and attack. We then use this CPS model to
isolate (and distinguish between) a fault and an attack.
We illustrate our approach on a hydraulic benchmark
system.

Keywords–model-based security; model-based diagno-
sis; state identification.

I. Introduction

The study of Cyber-Physical Systems (CPSs) [1] is
attracting great interest, due to the significance of the
applications that a CPS can model. For example, CPSs
can model nuclear power plants, air-traffic control systems,
smart cities, etc.

Recently, researchers have been focusing on identifying
and defending against attacks on a CPS, e.g., [2], [3],
[4], [5]. A broad range of approaches have been used for
attack modeling and detection, none of which is fully
comprehensive in terms of the range of attacks that can
be identified [2], [3].

This article focuses on using physics-based models to
isolate attacks on a system. We assume that a CPS is an
instance of a hybrid system, in that the system can operate
in a variety of distinct behaviours, which we call modes.
For example, an aircraft can be in take-off or cruise mode,
or it can operate in one of several faulty modes. We use
system mode identification approaches [6], together with
appropriate attack models, to compute an attack on a
system.

In our approach, we create a first-principles physics-
based model of the CPS and its control system. We
explicitly create modes depicting the impact of faults on
the CPS. We assume that an attacker may inject data
into the CPS to mimic faults that occur naturally. As a
consequence, we also include physics-based attack models.

Our objective is to analyze which faults can be dis-
tinguished from attacks using limited sensors in the CPS
(most real-world systems have limited sensors available).
This analysis enables us to understand the strengths and
limitations of physics-based CPS attack analysis.

Our contributions are as follows:

• We describe an observer-based framework for iso-
lating faults and attacks, and a method for distin-
guishing between them;

• We show that physics-based methods can distin-
guish attacks on sensors from sensor faults, but
that actuator attacks cannot be distinguished from
actuator faults;

• We illustrate our approach on a well-known hy-
draulic benchmark.

We organize the paper as follows. We introduce a
running example in Section II. Next, Sections III and IV
present the formal framework for our work. We present our
empirical studies in Section V, and summarize our results
in Section VII.

II. Running Example

We illustrate our concepts using a three-tank system,
as shown in figure 1.

A. Nominal Model

We denote the tanks as T1, T2, and T3. They all have
the same area A1 = A2 = A3 = 3 [m2]. We assume that
g = 10 and the liquid is “pure” water with density ρ = 1.

q0

p1
* p2

* p3
*

V1 V2 V3

Figure 1. Diagram of the three-tank system.

Tank T1 is filled from a pipe q0 with a constant flow of
0.75 [m3/s]. It drains into T2 via a pipe q1. The liquid level
is denoted as h1. There is a pressure sensor p1 connected to
T1 that measures the pressure in Pascals [Pa]. The system
has valves V1, V2, V3 as shown in figure 1.

For this system we control the inflow q0 and valve
positions, i.e., our input vector u = {q0, V1, V2, V3}. We can
measure the tank pressure values, i.e., the measurement
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vector is y = {p1, p2, p3}. Our control task is to maintain
set-point heights in each of the tanks. The diagnostic task
is to compute the true value of Vi, given pi, for i = 1, 2, 3.

We define our nominal model as follows. Starting from
Newton’s (and Bernoulli’s) equations and manipulating
them (the actual derivation is irrelevant in this paper) we
derive the following Ordinary Differential Equation (ODE)
that gives the level of the liquid in T1:

dh1

dt
= q0 − q1 =

q0 − k1s(h1, h2)
√
|h1 − h2|

A1
, (1)

where s(h1, h2) denotes sign(h1 − h2). In eq. 1, the coeffi-
cient k1 is given by k1 = ν1κ1, which is the product of the
valve V1 setting, ν1 ∈ [0, 1], where 0 denotes a closed valve
and 1 an open valve, and the outflow parameters κ1, which
include the cross-sectional area of the tank A1, the area of
the drainage hole,

√
2g, and the friction/contraction factor

of the hole. We emphasize the use of k1 because, later,
we will be “diagnosing” our system in term of changes in
k1. Consider a physical valve V1 between T1 and T2 that
constrains the flow between the two tanks. We can say
that the valve changes proportionally to the cross-sectional
drainage area of q1 and hence k1.

We define the water levels of T2 and T3, denoted as h2

and h3 respectively, as:

dhi
dt

=
ki−1s(hi−1, hi)

√
|hi−1 − hi| − ki

√
hi

Ai
, (2)

where i is the tank index (i ∈ {2, 3}).
We assume that κ1 = κ2 = κ3 = 0.75.

Finally, we can compute from the water level a pressure
given by

pi =
g hiA

A
= g hi (3)

where i is the tank index (i ∈ {1, 2, 3}).
We assume that the initial water level in the three tanks

is zero.

B. Fault Model

In the following we define valve (actuator) faults; other
faults, e.g., leaks or sensor faults, can be defined analo-
gously.

We assume an additive valve fault, where the actual
valve position for valve i, given commanded position νi
and fault ∆νi , is

νi =

{
max{0, νi + ∆νi} if ∆νi ≤ 0
min{1, νi + ∆νi} if ∆νi > 0

(4)

where ∆νi ∈ [−1, 1].

C. Attack Model

For our attack model, we assume that an attacker
cannot monitor the system, but can inject false data.

We first consider injecting a fake sensor reading. Hence,
for pressure sensor pi (i = 1, 2, 3), which can output
nominal values in the range [0, pmaxi ], an attacker can inject
a fixed value of pai ∈ [0, pmaxi ].

If an attacker injects a fake actuator value νi ∈ [0, 1]
(i = 1, 2, 3), then valve i will be commanded to this “fake”
position.

There is a difference in the physical behaviours of these
two attacks. Whereas the actuator attack alters the system
itself, the sensor attack has no impact on the physical
behaviour unless the control system changes in response
to the fake sensor value.

III. Cyber-Physical Systems with Faults and
Attacks

This section provides the theoretical basis for our
models and attack detection procedures. We first define
a discrete-time state-space model for a Cyber-Physical
System (CPS) that is subject to faults and attacks.

A. Cyber-Physical Systems

The nominal (or ideal) system model is given by

xk+1 = Aγxk +Bγuk + wk; (5)

yk = Cγxk + vk;

where xk ∈ Rn is the state of the system, x0 ∈ Rn the
initial state of the system, uk ∈ Rl the control input, and
yk ∈ Rp the measurement at time instance k. We assume
that a system can operate in a mode γi ∈ Γ. Each mode
determines the physical behaviours of CPS. We capture
the mode using a matrix with subscript γ, e.g., Aγ . The
unknown process and measurement noise are wk ∈ Rn and
vk ∈ Rp, respectively. We define our matrices as follows:
Aγ ∈ Rn×n is the system matrix, Bγ ∈ Rn×l is the control
input matrix and Cγ ∈ Rp×n the measurement matrix.1

For example, for the tank system our state vector is
x = {h1, h2, h3}, our input u = {q0, V1, V2, V3}, and y =
{p1, p2, p3}, our output. The output equation is given by

yk =

[
g 0 0
0 g 0
0 0 g

]
xk (6)

We assume that we control the system using a state
(Luenberger) observer based on a set of equations with
observer matrix L. Using the observed system with ob-
served state and measurement, x̂k ∈ Rn and ŷk ∈ Rp,
respectively:

x̂k+1 = Aγ x̂k +Bγuk + wk; (7)

ŷk = Cγ x̂k + vk;

we obtain the observer equations:

x̂k+1 = Aγ x̂k +Bγuk + Lγ(yk − Cγ x̂k); (8)

rk = yk − Cγ x̂k;

uk = −Kγ x̂k,

where rk ∈ Rp is the residual yk− ŷk. We assume the con-
trol matrix Kγ ∈ Rl×p and observer matrix Lγ ∈ Rn×p are
chosen so that the closed-loop system and error dynamics
are stable.

1We assume that the initial conditions for all systems (e.g., x0, x̃0

are known.
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In the following, we assume that the actual input and
measurement values, ũk and ỹk respectively, can differ from
the values of uk and yk due to data loss, noise in the
network, faults, or due to a malicious attack ak ∈ Rm on
the system.

B. Fault Model

In this article we consider (a) sensor faults, where the
sensor will either generate erroneous output or no output,
and (b) plant/actuator faults. In the following we will
specify additive fault models for these two fault classes.
We define an additive fault vector f , which we incorporate
in a fault model as follows:

xfk+1 = Aγx
f
k +Bγuk +Bffk + wk; (9)

yk = Cγx
f
k + Cffk + vk;

where xfk is the faulty state vector at time k, Bf represents
the influence the fault has on the state and Cf the influence
of the fault on the measurement (sensor) data.

x̃k+1 = Ax̃k +Buk + L(ỹk − Cx̃k); (10)

rk = ỹk − Cx̃k;

uk = −Kx̃k,

where we have: x̃k ∈ Rn is the state of the observer, uk ∈
Rl the calculated control input, ỹk ∈ Rp the measurements
received over the network and rk ∈ Rp is the residual. We
assume the control matrix K ∈ Rl×p and observer matrix
L ∈ Rn×p are chosen so that the closed-loop system and
error dynamics are stable.

The values of ũk and ỹk can differ from the values of
uk and yk due to data loss, noise in the network, faults, or
due to a malicious attack ak ∈ Rm on the system.

C. Attack Model

We propose an attack model that specifies two types
of attack: attacks on the system’s actuators (or state),
axk, and attacks on the system output, ayk. Introducing the
attack vector ak = [(axk)T (ayk)T ]T to the plant and observer
leads to

xk+1 = Aγxk +Bγuk +Baak + wk; (11)

yk = Cγxk +Daak + vk;

where Ba represents the influence the attack has on the
state by either a physical or an actuator attack and Da the
influence of the attack on the measurements by falsifying
sensor data.

xk+1 = Aγxk +Buk +Baak + wk; (12)

yk = Cγxk + vk;

x̃k+1 = Aγ x̃k +Bγuk + Lγ(yk +Daak − Cγ x̃k);

rk = yk +Daak − Cγ x̃k;

uk = −Kγ x̃k;

Due to the separation of the attacks into attacks on
the states and the measurements, the attack matrices often
take the structure

Ba = [Bxa ,0] and Da = [0, Dy
a]; (13)

where 0 is the zero matrix with dimensions appropriate to
the attack vector.

D. Extended System Model

We combine the plant and the observer to get an
extended system. We define Xk = [xTk x̃

T
k ]T as the extended

system state, the attack ak as the input and the residual
rk as the system output

mk+1 = Aemk +Beak +

[
wk
Lvk

]
; (14)

rk = Cemk +Deak + vk (15)

with

Ae =

[
A −BK
LC A−BK − LC

]
, Be =

[
Ba
LDa

]
;(16)

Ce = [C − C] and De = Da. (17)

The initial state is given by X0 = [xT0 x̃
T
0 ]T . Since K and L

stabilize the plant and the error dynamics, Ae is stable as
well. The residual rk is used to determine how much the
real system state deviates from the estimated state given
by the observer, so we can use rk to detect faults or attacks
on the system.

IV. Distinguishing Faults from Security
Breaches

This section focuses on methods for distinguishing
faults from security breaches. We assume that a stealthy
attacker will attempt to mask attacks as natural events,
e.g., faults. In that case, we use the physics of the fault
evolution and/or onset to isolate true faults.

A. Model-Based Isolation

We address this problem using a model-based frame-
work. We assume that our system can be in one of q
possible modes, where a mode characterizes a system
behaviour. We can define modes corresponding to nominal,
fault, and attack conditions.

We assume that we can specify the behaviour of each
mode using a physical model of that mode. We denote
model i using ψi. Our family of models Ψ = {ψ1, ..., ψq}
consists of subsets of models denoting nominal, fault, and
attack modes, {ΨN ,Ψf ,Ψa} respectively. Model i gener-
ates a behaviour ξi (with measurement ŷi) given initial
conditions x0. A behaviour over interval [0, ..., T ] is a state
sequence {x0, ..., xT }.

Definition 1 (Mode Estimation): Our mode estimation
task, given an anomalous observation ỹ, is to compute
the model whose behaviour most closely matches the
observation ỹ, i.e.,

ψ∗ = arg min
ψi∈Ψ

‖ ỹi − ŷi ‖, (18)

where ‖ ỹi − ŷi ‖ is a difference norm at instant i
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We assume that we compute a residual vector r =
{r1, ..., rq}, with residual i associated with mode i. Resid-
ual ri is “activated”, i.e., ri > δi for some tunable threshold
δi, iff the system is in mode λi.

Definition 2 (Mode Identifiability): Given a model Ψ
with a set of modes Λ = {λ1, ..., λq}, mode i is identifiable
(i.e., can be distinguished from mode j, for i 6= j) if (a)
λi generates a behaviour ξi that is distinguishable from ξj
for all i 6= j, and (b) there exists a residual r such that
ri > δi iff the system is in mode λi.

This notion of mode identifiability enables us to detect
attacks, since an identifiable system guarantees that at-
tacks can always be isolated. The ability to distinguish
fault- and attack-modes depends on the fidelity of the
models and the availability of appropriate sensor data.

B. Example: Sensor/Actuator Attack Detection

We assume a system in which we have the correct
measurement y, the simulated measurement ŷ, and an
attacker who injects a false measurement ỹ for a subset
of the sensors. We can compute residuals for the “true”
system as ri =‖ yi − ŷi ‖, and the system under attack as
rai =‖ ỹi − ŷi ‖.

We compare r with ra to distinguish faults from at-
tacks. If ri = rai , ∀i > 0 then the fault and attack are in-
distinguishable via physics-based analysis. Distinguishing
faults from attacks also depends on the models assumed for
faults from attacks. In this article we restrict our attention
to attacks that fix the sensor/actuator at an anomalous
value at some k > 0 and remains at that value.

Sensor Attack: We assume that, given a physical fault
(e.g., stuck actuator or tank leak) a sensor will report the
physical deviations from nominal conditions. For example,
a tank leak in tank T2 will lead to lower-than-expected
tank height for T2, such that the deviation will increase
over time. In this article we look at residuals, but also
rates of change of outputs yk and residuals rk, i.e., ẏk, ṙk,
respectively.

Actuator Attack: If we restrict our fault model to
“stuck” actuators, e.g., a valve that gets stuck open, then
our attack model can exactly mimic a“stuck”actuator, and
hence this class of attack cannot be distinguished from a
“stuck” actuator fault.

V. Experimental Results

In the following we will show some tests and results
achieved on the three-tank system, starting from the
data simulation of the system itself in various conditions
through the analysis and fault detection of these data.

A. Simulations

We based our experiments on our own simulated data
of the three-tank system. In order to correctly simulate
faults and attacks we set three different simulation modes
for the system: normal, faulty and attack.

The faulty simulation included a random delta value
for each valve, either positive or negative, in order to
reproduce a positioning problem differing from the normal
value. Each delta value is independent from each other,

plus the final valve position will still respect the [0,1]
interval constraint.

The attack simulation influences either the valve set-
tings, the sensor measurements or both. The principle of
each attack is the same: the attacker sets a fixed value
to one or more of the system’s components, overriding the
correct value. The difference between the two attacks relies
on the fact that a valve attack immediately influences the
system behaviour, forcing more (or less) fluid to go through
the system. On the other hand, attacking a sensor could
not be as effective in the case of a non-feedback system.

We run our simulations on a 50 and 500 seconds period,
extracting data from our sensors every 2 seconds.

B. Analysis procedure

In order to detect faults and attacks on our system,
we used residuals and first derivative studies of the sensor
data. Relative errors and deeper derivative studies were
performed, but we were not able to extract good results
from them.

We were able to identify incongruences in the data
when the residuals were over a predefined tolerance. On
the other hand, the gradients were able to give an idea of
how the data would evolve in time, allowing us to identify
absolute tendencies of data.

This approach has been proven to be a good way to
find injected sensor data. When sensor data are attacked,
we obtain the relation

ẏk = −ṙk, (19)

where ẏk and ṙk denote the first derivative of the sensor
output and the residual, respectively.

The fact that we are limited of having only the sensor
data allows us to detect when a fault or attack occurred but
they are not enough to identify which valve had a problem
and if the problem was an attack or a random fault of the
system.

C. Experiment I - Attacks on sensors

The objective of our first experiment was to identify
whether a sensor has been attacked or not.

Thanks to the first derivative analysis of the normal
behaviour and the residuals we were able to identify in
which cases the data were crafted by an attacker.

Figure 2 shows the data generated by an attacked
sensor. We can clearly see how that equation 19 holds, i.e.,
the residual function is a y-mirrored version of the normal
behaviour.

Each sensor attack is correctly detected by our proce-
dure, either alone or in conjunction with other attacks.

D. Experiment II - Attacks on Actuators (Valves)

This experiment addresses detection and isolation of
actuator attacks, i.e., valves whose control setting are set
to be incorrect.

We started analysing only one attack per simulation. In
each simulation we were able to detect that an attack has
occured, but we could not precisely locate on which valve.
Besides we found that our procedure observed attacks on
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Figure 2. Injected data on the second sensor of our system. The
graph shows the normal and faulty behaviour and their related

residuals and relative errors.

different valves even if the attack was performed only on
one: this is due to the complexity and synergies of the
system itself which we were not be able to capture with
only data from the pressure sensors.

Figure 3 shows the data of an attacked valve, while Ta-
ble I shows which faults were detected for each experiment:

Test Valve 1 Valve 2 Valve 3

155 X X X

355 X X X

755 X X X

955 X X X

515 X X X

535 X X X

575 X X X

595 X X X

551 X

553 X

557 X

559 X

TABLE I. Results of our procedure. The test number shows the
valve settings for each valve (i.e. 155: v1 = 0.1, v2 = 0.5, v3 = 0.5).
The nominal setting is 555. A valve is marked when our procedure
identifies a problem with it. X denotes a correct diagnosis, and X

denotes an incorrect diagnosis.

We also tested combination of attacks: attacks are still
detected, but is even more difficult to identify on which
valves the attack was done. The results of our tests are
shown in Table II.

Figure 3. Data of the third sensor related to test 535.

Test Valve 1 Valve 2 Valve 3

544 X X X

158 X X X

658 X X X

958 X X X

745 X X X

247 X X X

432 X X X

632 X X X

638 X X X

678 X X X

TABLE II. Results of our procedure on multi valve attacks.

E. Experiment III - Attacks on both Sensors and Actuators
(Valves)

The goal of this experiment was to combine the previ-
ous experiments and see how simultaneous attacks impact
the system and if we were still able to identify which parts
of the system have been attacked. We presume to be able to
correctly detect sensor problems and the presence of valve
errors, but cannot identify the faulty valves, as happened
also in experiment II.

As expected and shown in Table III we are able to
identify the attacks on the sensors but not on the valves.

VI. Related Work

This article extends the work of [7], who describe a
framework for detecting security breaches in networked
control systems. [7] make the simplifying assumption that
anomalies due to security breaches and to other sources
are a priori separable, so the task of identifying security
breaches becomes trivial. In real situations, this assump-
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Test Valve 1 Valve 2 Valve 3 Sensor

s1 325 X X 1

s2 553 X X 2

s3 148 X X 3

s12 558 X 1-2

s23 647 X 2-3

s31 348 X 1-3

s123 666 1-2-3

TABLE III. Results of our procedure on multi valve attacks. The
test number, other than showing the valve settings, shows also

which sensors are attacked.

tion does not hold, and we focus on methods for distin-
guishing faults from security breaches.

VII. Conclusion

This article has proposed a physics-based approach for
modeling a CPS and using this model to distinguish faults
from attacks. We have shown on a hydraulic system the
capabilities of this approach. We have also shown that
not all attacks can be identified via this physics-based
approach. To extend this approach, deeper studies on
sensors data synergies are needed in order to extract some
more information about possible valve faults/attacks.
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