
CENICS 2019

The Twelfth International Conference on Advances in Circuits, Electronics and

Micro-electronics

ISBN: 978-1-61208-748-1

October 27 - 31, 2019

Nice, France

CENICS 2019 Editors

Sandra Sendra, Universidad de Granada, Spain

Pascal Lorenz, University of Haute Alsace, France

 1 / 38

CENICS 2019

Forward

The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics
(CENICS 2019), held between October 27, 2019 and October 31, 2019 in Nice, France, continued a series
of events initiated in 2008, capturing the advances on special circuits, electronics, and micro-electronics
on both theory and practice, from fabrication to applications using these special circuits and systems.
The topics covered fundamentals of design and implementation, techniques for deployment in various
applications, and advances in signal processing.

Innovations in special circuits, electronics and micro-electronics are the key support for a large
spectrum of applications. The conference is focusing on several complementary aspects and targets the
advances in each on it: signal processing and electronics for high speed processing, micro- and nano-
electronics, special electronics for implantable and wearable devices, sensor related electronics focusing
on low energy consumption, and special applications domains of telemedicine and ehealth, bio-systems,
navigation systems, automotive systems, home-oriented electronics, bio-systems, etc. These
applications led to special design and implementation techniques, reconfigurable and self-
reconfigurable devices, and require particular methodologies to be integrated on already existing
Internet-based communications and applications. Special care is required for particular devices intended
to work directly with human body (implantable, wearable, ehealth), or in a human-close environment
(telemedicine, house-oriented, navigation, automotive). The mini-size required by such devices
confronted the scientists with special signal processing requirements.

We take here the opportunity to warmly thank all the members of the CENICS 2019 technical
program committee, as well as all the reviewers. The creation of such a high quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to CENICS 2019. We truly believe that, thanks to
all these efforts, the final conference program consisted of top quality contributions.

We also thank the members of the CENICS 2019 organizing committee for their help in handling the
logistics and for their work that made this professional meeting a success.

We hope that CENICS 2019 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the field of circuits,
electronics and micro-electronics. We also hope that Nice, France provided a pleasant environment
during the conference and everyone saved some time to enjoy the charm of the city.

CENICS 2019 Chairs

CENICS Steering Committee
Falk Salewski, Muenster University of Applied Sciences, Germany
Chun-Hsi Huang, University of Connecticut, USA
Diego Ettore Liberati, National Research Council of Italy, Italy
Julio Sahuquillo, Universitat Politècnica de València, Spain
Sergei Sawitzki, FH Wedel (University of Applied Sciences), Germany
Manuel José Cabral dos Santos Reis, University of Trás-os-Montes e Alto Douro, Portugal
Bartolomeo Montrucchio, Politecnico di Torino, Italy
Petr Hanáček, Brno University of Technology, Czech Republic

 2 / 38

CENICS Research/Industry Committee
John Vardakas, Iquadrat Informatica, Barcelona, Spain
Laurent Fesquet, TIMA laboratory | Grenoble Institute of Technology, France
Christian Wögerer, PROFACTOR GmbH, Austria
Miroslav Velev, Aries Design Automation, USA
Ivo Stachiv, Institute of Physics | Czech Academy of Sciences, Prague, Czech Republic / Harbin Institute
of Technology | Shenzhen Graduate School, Shenzhen, China
Amir Shah Abdul Aziz, TM Research & Development, Malaysia

 3 / 38

CENICS 2019
Committee

CENICS Steering Committee

Falk Salewski, Muenster University of Applied Sciences, Germany
Chun-Hsi Huang, University of Connecticut, USA
Diego Ettore Liberati, National Research Council of Italy, Italy
Julio Sahuquillo, Universitat Politècnica de València, Spain
Sergei Sawitzki, FH Wedel (University of Applied Sciences), Germany
Manuel José Cabral dos Santos Reis, University of Trás-os-Montes e Alto Douro, Portugal
Bartolomeo Montrucchio, Politecnico di Torino, Italy
Petr Hanáček, Brno University of Technology, Czech Republic

CENICS Research/Industry Committee

John Vardakas, Iquadrat Informatica, Barcelona, Spain
Laurent Fesquet, TIMA laboratory | Grenoble Institute of Technology, France
Christian Wögerer, PROFACTOR GmbH, Austria
Miroslav Velev, Aries Design Automation, USA
Ivo Stachiv, Institute of Physics | Czech Academy of Sciences, Prague, Czech Republic / Harbin Institute
of Technology | Shenzhen Graduate School, Shenzhen, China
Amir Shah Abdul Aziz, TM Research & Development, Malaysia

CENICS 2019 Technical Program Committee

Francesco Aggogeri, University of Brescia, Italy
Adel Al-Jumaily, University of Technology, Sydney, Australia
Mohammad Amin Amiri, Malek Ashtar University of Technology, Islamic Republic of Iran
Patroklos Anagnostou, Leclanché SA, Switzerland
Nihar Athreyas, Spero Devices, Inc., USA
Amir Shah Abdul Aziz, TM Research & Development, Malaysia
Payman Behnam, University of Utah, USA
Fayçal Bensaali, Qatar University, Qatar
Vincent Beroulle, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), France
Timm Bostelmann, FH Wedel (University of Applied Sciences), Germany
Hamza Bouzeria, Constantine - 1- University, Algeria
Khalid Bouziane, Université Internationale de Rabat, Morocco
Luca Calderoni, University of Bologna, Italy
David Cordeau, XLIM UMR CNRS 7252, France
Nicola D'Ambrosio, Laboratori Nazionali del Gran Sasso (LNGS) – INFN, Italy
Jamal Deen, Academy of Science - Royal Society of Canada / McMaster University, Canada
Javier Diaz-Carmona, Technoligical Institute of Celaya, Mexico
Alie El-Din Mady, United Technologies Research Center, Cork, Ireland
Diego Ettore Liberati, National Research Council of Italy, Italy
Maher Fakih, OFFIS e.V. Institut für Informatik, Oldenburg, Germany
Francisco Falcone, ISC-UPNA, Spain

 4 / 38

Paulo Felisberto, LARSyS | University of Algarve, Portugal
Laurent Fesquet, Grenoble Institute of Technology, France
Kelum Gamage, Glasgow University, UK
Alexander Gelbukh, Instituto Politécnico Nacional, Mexico
Patrick Girard, LIRMM, France
Alfonso Gómez-Espinosa, Tecnologico de Monterrey, Mexico
Amir M. Hajisadeghi, Amirkabir University of Technology (Tehran Polytechnic), Iran
Petr Hanáček, Brno University of Technology, Czech Republic
Cong Hao, University of Illinois, Urbana-Champaign, USA
Abdus Sami Hassan, Chosun University, Korea
Houcine Hassan, Universitat Politècnica de València, Spain
Chun-Hsi Huang, University of Connecticut, USA
Jose Hugo Barron-Zambrano, Universidad Autonoma de Tamaulipas, Mexico
Wen-Jyi Hwang, National Taiwan Normal University, Taiwan
Manuel José Cabral dos Santos Reis, University of Trás-os-Montes e Alto Douro, Portugal
Eric Kerherve, IMS Laboratory, France
Oliver Knodel, Technische Universität Dresden, Germany
Ulrich Kühne, Télécom ParisTech, France
Yazhu Lan, Duke University, USA
Junghee Lee, Korea University, Korea
Kevin Lee, Nottingham Trent University, UK
Yo-Sheng Lin, National Chi Nan University, Taiwan
David Lizcano, Madrid Open University (UDIMA), Spain
Rabi N. Mahapatra, Texas A&M University, USA
Sachin Maheshwari, University of Westminster, London, UK
Cristina Meinhardt, Federal University of Rio Grande (FURG), Brazil
Harris Michail, Cyprus University of Technology (CUT), Cyprus
Amalia Miliou, Aristotle University of Thessaloniki, Greece
Georgi Mladenov, Bulgarian Academy of Sciences | Institute of electronics, Bulgaria
Jose Manuel Molina Lopez, Universidad Carlos III de Madrid, Spain
Bartolomeo Montrucchio, Politecnico di Torino, Italy
Rafael Morales Herrera, University of Castilla-La Mancha, Spain
Ioannis Moscholios, University of Peloponnese, Greece
Shinobu Nagayama, Hiroshima City University, Japan
Arnaldo Oliveira, UA-DETI/IT-Aveiro, Portugal
Vittorio M.N. Passaro, Politecnico di Bari, Italy
Nikos Petrellis, TEI of Thessaly, Greece
Marc Porti, Universitat Autònoma de Barcelona, Spain
Himadri Singh Raghav, University of Westminster, London, UK
Ahmad Razavi, University of California, Irvine, USA
Càndid Reig, University of Valencia, Spain
Piotr Remlein, Poznan University of Technology, Poland
Brian M. Sadler, Army Research Laboratory, Adelphi, USA
Djohra Saheb, Centre de Développement des Energies Renouvelables (CDER), Algeria
Julio Sahuquillo, Universitat Politècnica de València, Spain
Amgad A. Salama, ADRC, Egypt
Falk Salewski, Muenster University of Applied Sciences, Germany
Sergei Sawitzki, FH Wedel (University of Applied Sciences), Germany

 5 / 38

Sandra Sendra, Universidad de Granada, Spain
Emilio Serrano, Universidad Politécnica de Madrid, Spain
Rishad Shafik, Newcastle University, UK
Muhammad Shafique, Vienna University of Technology, Austria
Mustafa M. Shihab, The University of Texas at Dallas, USA
Saeideh Shirinzadeh, University of Bremen, Germany
Ashif Sikder, Ohio University, USA
Sharad Sinha, Indian Institute of Technology (IIT), Goa, India
Kenneth Skovhede, University of Copenhagen, Denmark
Ivo Stachiv, Institute of Physics | Czech Academy of Sciences, Prague, Czech Republic / Harbin Institute
of Technology | Shenzhen Graduate School, Shenzhen, China
Francisco Torrens, Universitat de Valencia, Spain
Carlos M. Travieso-González, Universidad de Las Palmas de Gran Canaria, Spain
John Vardakas, Iquadrat Informatica, Barcelona, Spain
Miroslav Velev, Aries Design Automation, USA
Manuela Vieira, ISEL-CTS-UNINOVA, Portugal
Jin Wei, University of Akron, USA
Robert Wille, Institute for Integrated Circuits | Johannes Kepler University, Linz, Austria
Christian Wögerer, PROFACTOR GmbH, Austria
Pengcheng Xu, UCLouvain, Belgium
Ravi M Yadahalli, SG Balekundri Institute of Technology, India
Lei Yang, Chongqing University, China / University of Pittsburgh USA
Dan Zhang, York University, Toronto, Canada
Piotr Zwierzykowski, Poznan University of Technology, Poland

 6 / 38

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 38

Table of Contents

VHDL Design Tool Flow for Portable FPGA Implementation
Vijaykumar Guddad, Alexandra Kourfali, and Dirk Stroobandt

1

Implementation of an FPGA - Raspberry Pi SPI Connection
Haissam Hajjar and Hussein Mourad

7

Accelerating FPGA-Placement With a Gradient Descent Based Algorithm
Timm Bostelmann, Tobias Thiemann, and Sergei Sawitzki

13

60 GHz Low-Noise Amplifier in a 70 nm GaAs m-HEMT Technology for Multi-band Impulse Detection System
Pape Sanoussy Diao, Thierry Alves, Benoit Poussot, and Martine Villegas

19

A Convolutional Neural Network Accelerator for Power-Efficient Real-Time Vision Processing
Junghee Lee and Chrysostomos Nicopoulos

25

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 38

VHDL Design Tool Flow for Portable FPGA Implementation

Vijaykumar Guddad, Alexandra Kourfali and Dirk Stroobandt
ELIS department, Computer Systems Lab, Ghent University

iGent, Technologiepark Zwijnaarde 126, B-9052 Ghent - Belgium
Email: {Vijaykumar.Guddad, Alexandra.Kourfali, Dirk.Stroobandt}@UGent.be

Abstract—In Field-Programmable Gate Array (FPGA) design, the
coding style has a considerable impact on how an application
is implemented and how it performs. Many popular Very-
High-Speed Integrated Circuits Hardware Description Language
(VHDL) logic synthesis tools like Vivado by Xilinx, Quartus II by
Altera, and IspLever by Lattice Semiconductor, have significantly
improved the optimization algorithm for FPGA synthesis. How-
ever, the designer still has to generate synthesizable VHDL code
that leads the synthesis tools and achieves the required result for a
given hardware architecture. To meet the required performance,
VHDL based hardware designers follow their own rules of thumb,
and there are many research papers which suggest best practices
for VHDL hardware designers. However, as many trade-offs have
to be made and results depend on the combination of optimized
implementations and optimized hardware architectures, final
implementation decisions may have to change over time. In this
paper, we present a VHDL design tool flow that makes portability
of the design to new design requirements easier. It helps to
generate automated portable VHDL design implementations and
customized portable VHDL design implementations. This tool
flow helps the VHDL hardware designers to generate a single
VHDL design file, with multiple design parameters. It also
helps the end-users of VHDL hardware designs in choosing the
right parameter settings for a given hardware architecture and
generating the right bit file corresponding to these parameter
settings, according to their requirements.

Keywords–FPGA; VHDL; Toolflow; VIVADO.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are attractive
platforms for custom hardware implementation. They have
been used in accelerating high-performance applications in
which the complexity is significantly reduced by employing
custom hardware to parts of the problem. They have been
attractive for many new applications in which their flexibility
and configurability are in high demand. The FPGA’s strength
comes from the fact that hardware developers can program it
to deliver exactly what they need for their design, and massive
spatial parallelism at low energy gives FPGAs the potential to
be core components in large scale High-Performance Comput-
ing (HPC).

Very-High-Speed Integrated Circuits Hardware Descrip-
tion Language (VHDL) is a Hardware Description Language
(HDL) that is used to program FPGAs. It describes the
behaviour of an electronic circuit or system, from which the
physical circuit or system can then be implemented. FPGAs
work on configuration bits that define the functionality. To
generate configuration bits from HDL, an FPGA tool flow is
used. An FPGA tool flow aims to produce a configuration for
the target FPGA that implements the functionality described in
the HDL design. The current FPGA tool flow consists of syn-
thesis, technology mapping, packing placement and routing. In

the synthesis step, the HDL code is translated from a human-
readable form to a gate-level logic circuit. The synthesis tool
is also responsible for optimising the circuits depending on the
needs of the designer. During technology mapping, the gate-
level circuit generated by the synthesis step is mapped onto the
resource primitives (ex. Lookup tables (LUTs), Flipflops (FFs),
DSP blocks (DSPs), BlockRAMs) available in the target FPGA
architecture. In packing, LUT primitives and FFs from the
mapped netlist are clustered into Configuration Logic Blocks
(CLBs) according to their interconnectivity. During placement
and routing, CLBs are assigned to physical logic blocks on
the FPGA, and these CLBs are connected using switch blocks
and wires. Finally, the configuration bitstream is generated.
Recently, increasing research has been performed in the field
of placement and routing, and also commercial FPGA tools
(Vivado by Xilinx, Quartus II by Altera, IspLever by Lattice
Semiconductor, Encounter RTL compiler by Cadence Design
Systems, LeonardoSpectrum, Precision by Mentor Graphics,
and Synplify by Synopsys) optimised their algorithm for better
results [1]–[3].

The tool flow proposed in this paper is mainly related to
targetting the synthesis step. The coding style can have a severe
impact on the resource utilisation of an FPGA architecture,
and how it performs on the target board. The designer can
write HDL code that forces the synthesis step to make use of
available FPGA resources or not to use the specific resources.
The designer can also write HDL code that has higher or lower
throughput or a different design operating frequency. There
are many research papers and books [4]–[6] which suggest
best practices and techniques; also, each commercial FPGA
vendor has their own coding guidelines [7] [8]. Apart from
all these guidelines, each designer and company follows their
own rules of thumb in order to achieve the required results
according to the design requirements.These techniques and
guidelines are specific to the particular FPGA architecture
and model. As we can see in the current market, FPGA
architectures and models keep changing to fulfill a new market
need (e.g., currently, most FPGA vendors are designing their
boards to target machine learning, deep neural networks, and
data server requirements). From the above discussion, we can
categorize these coding techniques and methods into three
main categories: i) technology independent coding styles, ii)
performance driven coding, iii) technolonology specific coding
techniques.

In this paper, we present a method to combine all possible
coding techniques, methods, and rules of thumb in a single
VHDL design file. The tool flow processes the VHDL design
file with all possible techniques, methods, and rules of thumb,
which is independent of the FPGA vendor and the architecture.
In Section II and Section III, we present different types of
VHDL coding techniques and methods and describe a method

1Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 9 / 38

to combine all possible techniques in a single VHDL design
file. In Section IV, we present the portable tool flow integrated
with a synthesis tool to process input VHDL design files. In
Section V, we give results and a conclusion.

II. VHDL CODING TECHNIQUES AND METHODS

In this section, we will discuss three main coding tech-
niques and methods with an example. In the end, we describe
a method to combine these techniques and methods in a single
VHDL design file.

A. Technology independent coding styles
As the name suggests, technology independent coding

techniques are independent of the FPGA architecture, vendor,
and technology. Here, we will discuss a few techniques [9]–
[12].

1) Sequential devices design techniques: In sequential de-
vices, we have two main types of memory devices: a latch and
a flip-flop. A latch is a level-sensitive memory device and a
flip-flop is an edge triggered memory device [3] [13].

Data-Latches: Here we will see different ways, of using
Data-latches (D-latches).

D-Latch with data and enable:

begin
process (enable, data) begin

if (enable= '1') then
y<=data;

D-Latch with gated asynchronous data:

process (enable, gate, data) begin
if (enable = '1') then

q <= data and gate;

D-Latch with gated enable:

process (enable, gate, d) begin
if ((enable and gate) = '1') then

q <= d;

D-Latch with asynchronous reset:

process (enable, data, reset) begin
if (reset = '0') then

q <= '0';
elsif (enable = '1') then

q <= data;

2) Datapath: Datapath logic is a structured repetitive func-
tion. These structures can be modelled in a different imple-
mentation depending upon timing and area constraints. The
following synthesis tools generate optimal implementations for
the target technology depending upon the datapath model used
in the VHDL code [9] [13].

(i) Using if-then-else and case statement: An if-then-else
statement is used to execute sequential statements based on a
condition. Each of the if-then-else statements is checked until
a true condition is found. Statements associated with a true
condition are executed and the rest of the statement is ignored.
Using if-then-else statements in VHDL code forces synthesis
tools to realize the circuit in a way shown in Figure 1.

A case statement implies parallel encoding and a case
statement is used to select one of several alternative statement

Figure 1. Effect on synthesis tool using an if-then-else statement

sequences based on the value of a condition. The condition
is checked against each choice in the case statement until the
match is found. Using case statements in VHDL code forces
synthesis tools to realise the circuit in a way shown in Figure
2.

Figure 2. Effect on synthesis tool using a case statement

While writing VHDL code, it is difficult to predict how
using an if-then-else statement or a case statement will effect
the critical path of the final design or the design throughput or
design requirements. The optimisation level of each statement
varies from one synthesis tool to the other. In such cases,
we can define both statements in a VHDL design file using
the keyword - -# using case and - -#using if else. Later,
we can make choices at the synthesis step depending upon
requirements using the tool flow presented in the next section.

(ii) Designing Multiplexers: While writing VHDL code,
we can force the synthesis tool to make use of 4:1 or 6:1
or 12:1mux. The LUT inputs vary with the architecture, thus
optimizing for different mux types can affect the synthesis to
architecture step [10] [14].

(iii) Counters: Counters count the number of occurrences
of an event that occurs either at regular intervals or randomly.
Counters can be designed in one of the following ways: i)
a counter with count enable and asynchronous reset, ii) a
counter with load and asynchronous reset, and iii) a counter
with load, count enable, and asynchronous reset. However,
most synthesis tools cannot find the optimal implementation of
counters higher than 8- bits. If the counter is in the critical path
of a speed and area critical design, it is better to redesign using
one of the ways mentioned above or to use a pre-instantiated
counter provided by the vendor [9] [10].

3) Input-output buffers: We can infer or instantiate an
Input/Output buffer in the VHDL design depending upon
design requirements. The usage of inference and instantiation

2Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 10 / 38

Figure 3. Example circuit designs

has its own advantages and disadvantages. For example, in
the inference method, we define a tri-state buffer using an
entity port in the design, whereas in the instantiation method,
we make use of the tristate component design provided by
synthesis tools [4] [9].

B. Performance driven coding
In the FPGA, each logic level used in the design path can

add a delay. As a result, meeting timing and area constraints
on a critical path with many logic levels becomes difficult.
Using an efficient coding style is important because it dictates
the synthesis logic implementation. In this section, we will
discuss a few essential techniques [9] [15].

1) Reducing logic levels on critical paths: Consider a small
circuit design, as shown in Figure 3. Here, we have two circuit
designs with the same functionality but designed differently.

In circuit 1 of Figure 3, the signal ”critical” goes through
two logic gates.

if (clk'event and clk ='1') then
if (non_critical and critical) then

out1 <= A
else

out1 <= B
end if;

end if;

To reduce the logic gate usage on “critical” signals, multi-
plex inputs “A” and “B” based on “non critical” and call this
output “out temp”. Then multiplex “out temp” and “B” based
on “critical”. As a result, the signal “critical” goes through one
logic gate as shown in circuit 2 of Figure 3.

if (clk'event and clk ='1') then
if (non_critical and critical) then

out1 <= A
else

out1 <= B
end if;

end if;

2) Resource sharing: The resource sharing technique is
used to reduce the number of logic modules needed to imple-
ment VHDL operations. Here, we have two pieces of VHDL
code: one makes use of four adders and another uses two
adders.

--Example implementation with 4 Adders
if (...(siz == 1)...)

count = count + 1;
else if (...((siz ==2)...)

count = count + 2;
else if (...(siz == 3)...)

count = count + 3;
else if (...(siz == 0)...)

count = count + 4;
--Example implementation with 2 Adders
if (...(siz == 0)...)

count = count + 4;
else

count = count + siz

C. Technology specific coding techniques
These coding techniques are used to take advantage of

the specific FPGA architecture, to improve speed and area
utilization of the design. These techniques have their own
coding guidelines to take advantage of their FPGA architec-
tures [8] [16].

III. METHOD TO COMBINE ALL POSSIBLE DESIGN
TECHNIQUES IN A SINGLE VHDL DESIGN FILE

From the above discussions, we observe that the VHDL
coding style has a considerable impact on how an FPGA
design is implemented, and ultimately, how it performs. Here,
we present a method to combine all possible VHDL design
methods and techniques in a single design file. Let us consider
a VHDL design file where we have two processes in a
behavioral architecture and each process has to be described
with different pipeline stages. Later, before the synthesis step,
we plan to select the pipeline stages between each process,
and a method to combine this would be as follows:

architecture behavioral of <identifier> is
begin
process(<signal>) -- Process 1
begin
--#pipelined=0
-- < code>

--#pipelined=0
--#pipelined=1

< code >
--#pipelined=1
process(<signal>) --Process 2
begin
--#pipelined=0

< code>

3Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 11 / 38

Figure 4. VHDL design tool flow for portable FPGA implementation

--#pipelined=0
--#pipelined=1
-- < code >
--#pipelined=1

Here, we make use of the keyword “- -#” followed by
a design parameter instance. We can use this keyword to
define any part of the code like input-output ports, signals,
or the architecture part of the code. We can use any possible
name to define the design parameter instance and there is
no syntax rule for the names. The only condition we put
forward for different parameter design parts is that they should
start and end with the same design parameter name (from
the above code design, a parameter means –#pipelined=1,
–#pipelined=2). From the above code, we can observe in
process 1 we commented the pipelined=0 and kept the
pipelined=1 as default. In process 2, we kept pipelined=0 as
default. It will help in processing the design files without our
tool flow.

IV. VHDL DESIGN TOOL FLOW FOR PORTABLE DESIGN
GENERATION

As seen in Section III, now we have a way to combine
multiple design techniques and methods in a single VHDL
design file. However, this type of VHDL design file cannot be
synthesised by regular synthesis tools. Therefore, we need a
tool flow which can guide the synthesis tool in implementing

combined VHDL design files, and which can allow the user
to decide and generate portable VHDL designs.

In Figure 4, we present our proposed tool flow. As it
can be observed, the tool flow is designed in two stages:
the portable stage and the generic stage. The portable stage
processes the input design files and allows the user to make
the selection between different design parameters. The generic
stage processes the new design files generated by the portable
stage and generates a synthesis report and a bit-file.

In the portable stage, the tool flow receives the input design
files. The tool flow scans for the design parameters available
in the design files and prints them to the user. Then, the
tool flow allows the user to select either automated design
or customised design. In the automated design, the user can
apply a selected set of design parameters or techniques to
all available design files. In the customised design selection,
the user can choose between different design files, for using
selected design parameters. After successful selection of the
design parameters available from the input design files, the
tool flow searches for the user selected design parameters in
each design file and extracts the design parameter content from
each design file. If the user selected design parameter does
not match with parameters in the design file, the tool flow
will keep the default design parameter. After this the tool flow
generates the new design files. The newly generated design
files are processed further with the generic stage to generate
a synthesis report. Next, the synthesis report is extracted and
displayed to the user, and finally, the bit-file is generated. The
portable tool flow proposed in this paper is independent of

4Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 12 / 38

the used FPGA architecture. This can be integrated with any
FPGA architecture, just by changing the invoking statement
in the code. For example, to invoke the Xilinx Vivado design
suite, the following code is used:

vivado-mode batch -source design.tcl

One can think it is a lot of manual work to define all
possible design parameters in a design file, but as we discussed
in the introduction, our idea is to combine all possible coding
techniques, methods, and rules of thumb in a single design file.
It is easier for a designer to propose different smaller design
options in sub-parts of the design than to provide different
complete designs full of different choices. So the designer does
not have to worry about how different choices are combined
(as this is done automatically) but can focus on the individual
different options. This is a huge difference.

V. RESULTS AND DISCUSSION

In this section, we will evaluate the portable VHDL design
tool flow and present the results [17]. In our experiments,
we used an 8 core CPU system. We integrated our portable
VHDL design tool flow with the Xilinx synthesis tool (Vivado
2018.3) [18], to generate the synthesis report and the bit-file.

A. Evaluating the portable VHDL design tool flow for a single
design file (using technology independent coding styles)

Here, we considered the data flip-flop VHDL design file
with seven design parameters (techniques) in a single VHDL
design file. We compared our results with the standard VHDL
design with a single design parameter. These results are
tabulated in Table I.

TABLE I. RESULTS USING PORTABLE VHDL DESIGN TOOL FLOW
AND GRAPHICAL USER INTERFACE OF SYNTHESIS TOOL

From Table I, we can observe that we have two different
implementation results: one using our portable VHDL design
tool flow, and another one using the Graphical User Interface
(GUI) of Vivado design suite. In this experiment, we con-
sidered the seven design techniques (parameters) to design
a data flip-flop. These are i) rising edge flip-flop, ii) rising
edge flip-flop with asynchronous reset, iii) rising edge flip-
flop with asynchronous preset, iv) rising edge flip-flop with
asynchronous reset and preset, v) rising edge flip-flop with
synchronous reset, vi) rising edge flip-flop with synchronous
preset, vii) rising edge flip-flop with asynchronous reset and
clock enable. While using the GUI, we designed the data
flip-flop considering one design technique at a time and

subsequently edited the design for other parameters to get
the corresponding synthesis report and the bit-file. In the
second instance, we used the portable VHDL design tool flow,
combining all techniques in a single design file and generating
the synthesis report and the bit-file.

From the results in Table I, we can observe that writing a
combination of required VHDL design techniques in a single
file takes more time, but if we want to edit for other parameters
or design techniques, it will take an extra 15 minutes at later
stages without the use of our tool flow. Using our portable tool
flow, we can generate the synthesis results and the bit-file for
all seven design parameters at the same time, so we can easily
compare the results and choose the right implementation.
Otherwise, we need to edit the design file each time and run
the synthesis tool.

B. Evaluating the portable VHDL design tool flow for multiple
design files (H264 Video encoder design)

In this section, we evaluate our tool flow for the complete
hardware H264 video encoder design, which consists of 15
different design blocks, as shown in Table II. Here, we added
six design parameters in the design blocks. Using 6 different
design parameters in the H264 encoder design, we are able
to generate 8 different combinations, by selecting one design
parameter each time or multiple design parameters in various
combinations, which leads to different implementations and
results. Using our tool flow here, we have the option of
customisation by making parameter selections to a few design
blocks.

Apart from portability options, we provide the automation
option in running the complete synthesis steps. Using our tool
flow, we can check the resource utilization for each design
block. Our tool flow runs the synthesis step in parallel. A few
more comparisons are tabulated in Table III.

TABLE II. EVALUATION OF HARDWARE VIDEO ENCODER H264
USING PORTABLE VHDL DESIGN TOOL FLOW

VI. CONCLUSION

In this paper, we proposed a way to combine the dif-
ferent possible VHDL design techniques and methods in a
single VHDL design file. This can be evaluated into multiple
(functionally equivalent) design files, that can be compared to
allow the designer to choose between different implementation
techniques, based on the achieved trade-off between FPGA
resource utilisation and performance. In that way, by evaluating
the same VHDL design file, the designer can estimate which
design option is the better choice.

Additionally, we proposed a tool flow that allows the user
to generate the design bit-files of all possible combinations
automatically. This tool flow can be integrated into any other
synthesis tool. Hence, it forms a pre-synthesis step, that
provides the user with the flexibility of having multiple design

5Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 13 / 38

TABLE III. COMPARISON OF PORTABLE VHDL DESIGN TOOL FLOW OVER USUAL TOOL COMMAND LANGUAGE (TCL) AUTOMATION

options, but without having to redesign them, only to generate
the new file, based on a set of parameters.

Using our tool flow, designers can easily redo the design
exploration when the underlying FPGA architecture for the
design changes. They do not have to delve into the VHDL
source code for this. For the final design parameter choice,
the tool can automatically generate the bitstream. Hence, this
tool flow significantly enhances the portability of designs to
new FPGA devices.

ACKNOWLEDGMENT

This work was supported by the Help Video! imec.icon
research Project, funded by imec and the Flemish government
(Agentschap innoveren and ondernemen).

REFERENCES

[1] J. de Fine Licht, M. Blott, and T. Hoefler, “Designing scalable
FPGA architectures using high-level synthesis,” Proceedings of
the 23rd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, 2018, pp. 403–404. [Online]. Available:
http://doi.acm.org/10.1145/3178487.3178527

[2] K.Kuusilinna, Timo.Hmlinen, and Jukka.Saarinen, “Practical VHDL
optimization for timing critical FPGA applications,” Microprocessors
and Microsystems, vol. 23, no. 8, pp. 459–469.

[3] P. I. Necsulescu and V. Groza, “Automatic generation of VHDL
hardware code from data flow graphs,” 2011 6th IEEE International
Symposium on Applied Computational Intelligence and Informatics
(SACI), May 2011, pp. 523–528.

[4] P. P. Chu, “Coding for efficiency, portability, and scalability,” hardware
design using VHDL, 2006, pp 50-100, ISSN:13: 978-0-471-72092-8.

[5] Xilinx corporation ”Xilinx product guide”, 1.1, 2006, URL:
https://bit.ly/2Gz2RO9/ [accessed: 2019-09-17].

[6] T. Davidson, K. Bruneel, and D. Stroobandt, “Identifying
opportunities for dynamic circuit specialization,” 2012, workshop
on Self-Awareness in Reconfigurable Computing Systems
Proceedings, Oslo Norway, p-p 18-21. [Online]. Available:
http://srcs12.doc.ic.ac.uk/docs/srcs proceedings.pdf

[7] M. Arora, “The art of hardware architecture, design methods and
techniques for digital circuits,” Design Methods and Techniques for
Digital Circuits, springer-Verlag New York, 2011, DOI:10.1007/978-1-
4614-0397-5.

[8] R. Jasinski, Effective Coding with VHDL: Principles and Best Practice.
The MIT Press, 2016.

[9] J. C. Baraza, J. Gracia, D. Gil, and P. J. Gil, “Improvement of fault
injection techniques based on VHDL code modification,” Tenth IEEE
International High-Level Design Validation and Test Workshop, 2005.,
Nov 2005, pp. 19–26.

[10] R. P. P. Singh, P. Kumar, and B. Singh, “Performance analysis of fast
adders using VHDL,” 2009 International Conference on Advances in
Recent Technologies in Communication and Computing, Oct 2009, pp.
189–193.

[11] Z. Zhang, Q. Yu, L. Njilla, and C. Kamhoua, “FPGA-oriented moving
target defense against security threats from malicious FPGA tools,”
2018 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), April 2018, pp. 163–166.

[12] Z. Jia, B. Qi, L. Chen, H. Chen, and L. Ma, “Relative radiometric
correction for remote sensing images based on VIVADO HLS,” IET
International Radar Conference 2015, Oct 2015, pp. 1–4.

[13] V. S. Rosa, F. F. Daitx, E. Costa, and S. Bampi, “Design flow for the
generation of optimized FIR filters,” Dec 2009, pp. 1000–1003.

[14] G. Donzellini and D. Ponta, “From gates to FPGA learning digital
design with deeds,” March 2013, pp. 41–48.

[15] M. S. Sutaone and S. C. Badwaik, “Performance evaluation of VHDL
coding techniques for optimized implementation of ieee 802.3 transmit-
ter,” Jan 2008, pp. 287–293.

[16] Altera corporation, Altera product guide, 9.1, 2009, URL:
http://bit.do/eJsnK/ [accessed: 2019-09-17].

[17] Github link, URL: https://bit.ly/2Sh1kgU/.
[18] Xilinx vivado URL: https://bit.ly/2AVvccx.

6Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 14 / 38

Implementation of an FPGA - Raspberry Pi SPI Connection

Haissam Hajjar
Department of Applied Business Computer,
Faculty of Technology, Lebanese University

Saîda, Lebanon
haissamh@ul.edu.lb

Hussein Mourad
Department of Applied Business Computer,
Faculty of Technology, Lebanese University

Saîda, Lebanon
mourad_hussein@hotmail.com

Abstract— The use of Field Programmable Gate Arrays
(FPGAs) requires low level programming. This makes it
difficult to have a friendly user interface. The presented work
explains FPGA techniques in detail. There are few works
demonstrating an application integrating FPGA and
ergonomic user-interface techniques. This article describes the
connection of an FPGA to a Raspberry PI using a Serial
Peripheral Interface (SPI) link. A Python SPI driver is
developed on the Raspberry side. A Very High-Speed
Integrated Circuit Hardware Description Language (VHDL)
driver is developed on the FPGA side. A Web client-server
application is developed to demonstrate the usage of SPI link
and its integration with a standard Web application to control
the FPGA inputs and outputs.

Keywords—SPI VHDL driver; VHDL; Raspberry PI; Altera
Cyclone II; Python VHDL communication; Python-PHP socket
communication.

I. INTRODUCTION

FPGAs are typically used in electronic circuits. Usually,
they are programed in VHDL or Verilog [1]. This is well
suited to stay at the hardware level but remains very poor
and complex when developing a user-friendly human-
machine interface.

The VHDL implementation of SPI protocol is developed
in some previous works [2][3]. However, these works focus
their efforts on the electronic aspect by neglecting the
application aspect.

The objective of this paper is to connect an FPGA to a
Raspberry PI so that one side can use the FPGA for the
electronic part, while the Raspberry PI can be used to
develop a friendly user interface using common well-known
techniques. The utilization of a Raspberry PI is taken to
demonstrate a low-cost solution for this implementation.

As the Raspberry runs under Linux operating system and
the FPGA is programmed at an electronic level, we elected
to use the SPI standard that does not need to use a common
clock (see Figure 1). The communication is synchronized by
a clock signal delivered by the SPI Master, independently of
the internal clock frequency of each side.

On the programming language level, we choose to use
Python for the Linux side (Raspberry) and VHDL for the
FPGA side. So, the SPI driver can be integrated with the
commonly used frameworks on the Linux side.

MISO

SPI Master

Clock

SPI SlaveMOSI

CS

Figure 1. SPI Single Master – Single Slave signals - Chip Select (CS),
Master Out Slave In (MOSI), Master In Slave Out (MISO)

This paper covers the following topics: Section I has
provided an introduction. In Section II, we give a functional
description of the implemented system. In Section III, we
describe the hardware implementation and the materials
used. In Section IV, we develop the SPI implementation on
the Master level and the Slave level. In Section V, we
present testing results of the SPI. In Section VI, we describe
a high-level user interface developed to illustrate the SPI
utilization. Finally, a conclusion is included in Section VII.

II. FUNCTIONAL DESCRIPTION

Figure 2 illustrates a functional representation of the
whole system:

A. Raspberry PI

A Raspberry PI 3 [4] functions as Master of the SPI link.
The Raspberry PI is equipped with a General Purpose
Input/Output (GPIO). The SPI was implemented using 4
lines of this GPIO. A Python implementation of SPI Master
is utilized. An Apache Web server is implemented inside the
Raspberry to allow implementation of ergonomic and easy
to use interface for testing and demonstration purposes. A
SPI Master driver is developed using Python language and
libraries. As the system must work efficiently with regards
to real time response time, two independent processes were
implemented within the Raspberry PI system:
 To handle the user requests: an Apache Web server is

implemented using PHP scripting for the Web server
side.

 To handle the SPI link during the communication with
the FPGA. This driver is written using Python.

7Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 15 / 38

 The communication between these two processes is
executed using TCP/IP socket communication.

Raspberry PI

FPGA

WEB Server

Python SPI Master Driver

SPI

VHDL SPI Slave Driver

I/O Process

Physical Inputs / Outputs

TCP/IP Network

Interprocess
communication

Figure 2. Functional representation

B. FPGA

An ‘Altera DE2’ Development and Education Board’ [5]
is used to implement the FPGA part. This board is built on a
Cyclone II EP2C35F672C6 FPGA working up to 50 MHz
clock frequency. This board has a 2 lines/16-character LCD
display, a set of 18 toggle switches for digital inputs, a set of
4 pushbuttons, a set of 18 red led for digital outputs and 2
forty lines extension headers for external connection. The
SPI is implemented using one of these extension headers.

To illustrate the successful operation of the SPI link, we
devise three functional usages:

 Send order, starting from the user interface, to drive the
18 FPGA board digital outputs

 Receive the status of the 18 lines of digital input to
display on the user screen.

 Send 32 bytes, entered on the user screen, in order to be
displayed on the FPGA LCD 2 lines display.

Compared to OSI communication layer, we can consider
the SPI drivers as the physical layer and these functional
usages as a link layer. So, this can be extended to implement
other functional types of messages exchanged between the
FPGA and the Raspberry.

TCP/IP network: The Raspberry PI has an 802.11 Wi-Fi
2.4 GHz interface. This interface is used to allow the
connection of a Web-based client using a standard browser.
A Web-based user interface is developed to allow the usage
of the previously mentioned illustration function for the use
of the SPI connection.

III. PHYSICAL IMPLEMENTATION

Figure 3 represents the physical implementation:

Figure 3. Physical implementation

1. DE2 Development and Education Board: we use this
board for the FPGA implementation part. For detailed
documentation, refer to the Intel official documentation
[5]

2. Raspberry Pi 3 board [3]: this board is equipped with 1
GB Ram, processor Cortex-A53 (ARMv8) 64-bit SoC
@ 1.4GHz.

3. Cyclone® II 2C35 FPGA in a 672-pin package,
working at 50 MHz

4. 18 switches used as digital inputs

5. 18 LEDs used as digital outputs

6. 40 pins flat cable used as connector between the
Raspberry GPIO and the extension header of the DE2
board. This cable is used to implements the SPI
connection between the Raspberry PI and the Altera
DE2 FPGA evaluation board.

7. 2x16 LCD and eight 7 segment digital display

8. HDMI connector for Raspberry PI

9. Power supply for Raspberry PI

10. Mouse and keyboard USB connectors

11. Power Supply and Programmer connection

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 16 / 38

IV. SPI IMPLEMENTATION

The implemented system is represented in Figure 4. A
single Master with single Slave scenario is shown in the
following paragraphs.

A. Physical interface

Figure 4 presents the SPI signals. The Raspberry PI is
the master and the FPGA is the slave. A configuration of
one Master/one Slave is implemented:

MISO

Raspberry PI

Clock

FPGAMOSI

CS

MISO

Raspberry PI

Clock

FPGAMOSI

CS

Figure 4. SPI implementation

 Clock: the clock is generated by the Master. This
signal drives the communication in both directions.

 CS (Chip Select) high when the FPGA is not
selected: No communication; low when selected.

 MOSI: Master Out Slave In: data transferred from
the Master to the Slave.

 MISO: Master In Slave Out: data transmitted from
the Slave to the Master.

B. Implementation principle

The communication is driven by the Master. The first
byte determines the type of communication. To illustrate the
usage of the drivers, three types of messages were
implemented:

 Send Memory: The Master sends to the Slave 32
bytes of data for displaying on the LCD.

 Send Outputs: The Master sends to the Slave the
order to set its digital outputs ON or OFF

 Receive Inputs: The Slave sends to the Master the
status of its digital inputs.

C. Master Driver

This driver is based on the RPI.GPIO Python library [9].
After initialization, two functions are available for an upper
level usage:

Sendbyte: send a byte from Master to Slave.

Receivebyte: receive a byte from Slave to Master.

To send a bit, MOSI is set, and then a Clock is generated
(SCLK from Low to High).

To receive a bit, a Clock rising is generated, and then the
MISO line level is read.

SPI Initialization (Figure 5): the GPIO of the Raspberry
includes 2 SPI lines. We had trouble driving these lines with
the standard Raspberry library. We opted to drive the SPI
signals directly through our program. This allowed us to
control the CS and Clock lines easily and to reach the
maximum possible communication speed with a Python
driver.

import RPi.GPIO as GPIO
Line definition

MOSI = 5
MISO = 10
SCLK = 15
CE0 = 7

#
SPI line initialization
def initspi():

GPIO.setmode(GPIO.BOARD)
GPIO.setwarnings(False)
GPIO.setup(MOSI, GPIO.OUT)
GPIO.setup(MISO, GPIO.IN)
GPIO.setup(SCLK, GPIO.OUT)
GPIO.setup(CE0, GPIO.OUT)

Figure 5. Master driver - SPI initialization

Send byte (Figure 6): The transmission of a byte starts
with the change of the signal CS (CS low). This will initiate
the reception process on the VHDL side. The MOSI level is
set according to the bits to be sent and a clock signal is
generated. After transmission of the 8 bits, this CS signal
returns to the high level.

def sendbyte(cc):
c=ord(cc)
select slave
GPIO.output(CE0, GPIO.LOW)
bitsx = [0,0,0,0,0,0,0,0]
determine bits 0/1
for x in range(8):

bitsx[7-x] = int(c % 2)
c = int((c - bitsx[7-x])/2)

set Mosi signal level
for x in range(8):

if (bitsx[x]>0):
GPIO.output(MOSI,

GPIO.HIGH)
else:

GPIO.output(MOSI, GPIO.LOW)
clock

GPIO.output(SCLK, GPIO.LOW)
GPIO.output(SCLK, GPIO.HIGH)

end of byte transmission
GPIO.output(CE0, GPIO.HIGH)
GPIO.output(SCLK, GPIO.LOW)
GPIO.output(SCLK, GPIO.HIGH)

Figure 6. Master driver – Send byte

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 17 / 38

Receive byte (Figure 7): The reception of a byte starts
with the change of the signal CS (CS low). This will initiate
the transmission process on the VHDL side. The MISO
level is read according to the bits received each clock signal
generated. After reception of the 8 bits, this CS signal
returns to the high level.

def receivebyte():
GPIO.output(SCLK, GPIO.LOW)
select slave
GPIO.output(CE0, GPIO.LOW)
out = 0b0
read 8 bits on MISO
for x in range(8):

GPIO.output(SCLK, GPIO.LOW)
GPIO.output(SCLK, GPIO.HIGH)
out = out*2
if GPIO.input(MISO):

out = out + 1
GPIO.output(CE0, GPIO.HIGH)
return out

Figure 7. Master driver - Receivebyte

D. Slave Driver

Figure 8 presents the process handling the
communication on the FPGA.

No

Waiting for the

first bytec

Memory

Receive byte

ETX ?

0 <- countchar

Store byte

countchar +1

Inputs

Send input

status

countchar +1

Last byte?

0 <- countchar

Outputs

Receive byte

ETX ?

0 <- countchar

Set outputs

countchar +1

Yes

Yes

Yes

No

No

Yes
Yes

Yes

No

Waiting for the

first bytec

Memory

Receive byte

ETX ?

0 <- countchar

Store byte

countchar +1

Inputs

Send input

status

countchar +1

Last byte?

0 <- countchar

Outputs

Receive byte

ETX ?

0 <- countchar

Set outputs

countchar +1

Yes

Yes

Yes

No

No

Yes
Yes

Yes

Figure 8. Master driver - Receivebyte

The process is normally in a waiting state. It is activated
by the CS signal. When the CS is down, the FPGA reads the
bits set on MOSI signal on rising edge of Clock signal.

process (SCK,CS,reset)
begin

if (CS = '1' and octet=MasterToSlaveMemory) then
countbit <= 0; countchar <= 0;
direction <= RECEIVE_MEMORY;

elsif (CS = '1' and octet=MasterToSlaveOutput) then
countbit <= 0; countchar <= 0;
direction <= RECEIVE_OUTPUTS;

elsif (CS = '1' and octet=SlaveToMaster) then
countbit <= 0; countchar <= 0;
direction <= SEND_INPUTS;

elsif …..

Figure 9. Slave driver - Message type detection

When the first byte is received, it is tested. Three cases
are considered:

 ‘Send Memory’: the FPGA continues the reception
of the following bytes. The received bytes are stored in an
internal memory indexed by a reception counter. This will
end when an EOT is received.

-- Receive memory
if (rising_edge(SCK) and CS='0'

and direction=RECEIVE_MEMORY) then
octet <= octet(size-2 downto 0) & mosi;
countbit <= countbit+1;
if (countbit=7) then

memory(countchar) <= octet(size-2 downto 0) &
mosi;

if memory(countchar) = EOT then
countchar <= 0;

else
countchar <= countchar+1;

end if;
countbit <= 0;

end if;
end if;

Figure 10. Slave driver - Receive memory

 ‘Send outputs’: the FPGA continues the reception
of data. The outputs are set/unset according to the received
data.

-- Receive Outputs
if (rising_edge(SCK) and CS='0' and

direction=RECEIVE_OUTPUTS) then
-- Receive 3 bytes [18 bits only valid] for digital outputs

outputs(countchar)(7-countbit) <= mosi;
countbit <= countbit+1;
if (countbit=7) then

if memory(countchar) = EOT then
countchar <= 0;

else
countchar <= countchar+1;

end if;
countbit <= 0;

end if; end if;

Figure 11. Slave driver - Receive outputs

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 18 / 38

 ‘Receive inputs’: the FPGA sends the status of its
digital inputs [3 bytes for 18 inputs] using the MISO line.
An EOT is sent to inform the Master that the end of
sending is reached.

if (rising_edge(SCK) and CS='0'
and direction=RECEIVE_OUTPUTS) then

-- Receive 3 bytes [18 bits only valid] for digital outputs
outputs(countchar)(7-countbit) <= mosi;
countbit <= countbit+1;
if (countbit=7) then

if memory(countchar) = EOT then
countchar <= 0;

else
countchar <= countchar+1;

end if;
countchar <= countchar+1;
countbit <= 0;

end if;
end if;

Figure 12. Slave driver - Request to send inputs

V. TESTING AND RESULTS

We present three tests executed to validate
communication using this implementation of SPI.

A. Setting outputs

Send order from the Master (Raspberry PI) to the Slave
(Altera FPGA DE2 board) to set/unset its digital outputs:
‘Oxxx’: Message of 4 bytes. The first byte represents the
type of message; the following bytes represent the required
outputs status.

Figure 13 shows the signals observed on the SPI lines.
The message sent from the Master: the first byte represents
the ASCII representation of the character O (01101111)
used as identifier for this message. As described in Section
IV, the following 3 bytes represent the value to be set on the
digital outputs. The following 3 bytes represent the
requested status of FPGA 18 lines output.

Each byte starts when the CS comes down and is sent
when the CS goes up again. Figure 14 shows the LEDs
corresponding to the signal shown in Figure 13. The LED is
on when ‘1’ is received and is off when ‘0’ is received.

Figure 14: Led status on the FPGA board

B. Read inputs

Send order from the Master (Raspberry PI) to the Slave
(Altera FPGA DE2 board) ‘r’: This message asks the FPGA
to send back to the Raspberry the status of its digital inputs.
The Raspberry (Master) must continue to generate the clock.
The next bytes are sent by the FPGA (Slave) to the master
over the MISO line. As we have 18 inputs, three bytes are
used for this function.

Figure 15 shows the SPI signals: the clock is always
given by the Master. The Master sends the first ‘r’ byte
(01110100) over the MOSI signal. Then, the Slave sends
back three bytes.

Figure 16 shows the input switches generating the signals
shown in Figure 15.

Figure 16. Input switch corresponding to Schema 6 signals

C. Performance

The performance of this link depends on the SPI Master.
For the Raspberry III utilized, the speed of 100kb/s was
reached.

VI. APPLICATION TESTING

An application is developed to show a concreate
utilization of this work. Figure 17 shows a functional
representation of this realization.

The implementation inside the Raspberry PI is performed
using two processes: an Apache server and the SPI link
driver. This is done for real time constraints. The
communication between these two processes is executed
using client/server socket communication. The Apache side
is developed in PHP and the SPI link driver side is developed
in Python. Figure 18 presents the principle of this
communication.

Figure 15: Signals on the SPI lines for read inputs outputs

Figure 13. Signals on the SPI lines for sending outputs

Schema 2

Mobile
phone

Outputs

Inputs

FPGA

Interface
register

Raspberry PI

Socket
communication

APACHE

Server
Link

Driver 40 pins
flat cable

Link

Driver
process

I/O

Process
WIFI

Network

2 3 41

Figure 17. Signals on the SPI lines for sending outputs

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 19 / 38

Figure 19 shows the user-interface on a smartphone
screen using a standard Web browser.

Raspberry Sever processApache php script

Query status

Initialisation

Send response

Send response

Receive response

Query FPGA

Receive query

Receive response

make HTML page

New query

Mobi le
phone

Figure 18. Client/server communication in Raspberry PI

The number of inputs and outputs are reduced to 8 to
have an ergonomic user-interface on smartphones. The status
of the digital inputs of the FPGA is reported on the user
screen. The digital outputs of the FPGA are set according to
the radio-button.

Figure 19. User interface print screen

VII. CONCLUSION

In this work, FPGA-Raspberry Pi communication is
developed using the SPI protocol. A high level application is
developed using this link. This demonstrates a solution that
works by using a low level technique (VHDL) on the FPGA
side and using a high level technique on the user interface
side.

We have limited the application to digital inputs /
outputs. The work can be extended to other functions of the
FPGA. This opens the possibility of modifying the behavior
of an FPGA dynamically. The job can also be completed in
the sense of increasing the transmission speed, which is
somehow proportional to the Master's clock frequency.

REFERENCES

[1] https://circuitdigest.com/tutorial/what-is-fpga-
introduction-and-programming-tools (9/2019)

[2] N.Q.B.M. Noor and A. Saparon, "FPGA
implementation of high speed serial peripheral interface
for motion controller," in Proc. 2012 IEEE Symposium
on Industrial Electronics and Applications (ISIEA),
pp.78-83, Sept. 2012.

[3] Raspberi Pi official site: https://www.raspberrypi.org/
documentation/hardware/raspberrypi/spi/ (1/2019)

[4] Rapberry Pi 3 board - Official documentation
https://www.raspberrypi.org/products/raspberry-pi-3-
model-b-plus/ (1/2019)

[5] Altera DE2-115 Development and Education Board -
https://www.intel.com/content/www/us/en/programmab
le/solutions/partners/partner-profile/terasic-inc-
/board/altera-de2-115-development-and-education-
board.html

[6] Python documentation, https://www.python.org/
(1/2019)

[7] https://www.php.net/manual/fr/ (1/2019)

[8] Quartus II Handbook:
http://www.altera.com/literature/hb/qts/quartusii_handb
ook.pdf (4/2019)

[9] GPIO Raspberry installation and usage :
https://www.raspberrypi-spy.co.uk/2012/05/install-rpi-
gpio-python-library/ (6/2019)

[10] SPI Tutorial – COREIS https://www.corelis.com/
education/tutorials/spi-tutorial/ (5/2019)

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 20 / 38

Accelerating FPGA-Placement
With a Gradient Descent Based Algorithm

Timm Bostelmann, Tobias Thiemann and Sergei Sawitzki

FH Wedel (University of Applied Sciences)
Wedel, Germany

Email: {bos,inf103917,saw}@fh-wedel.de

Abstract—Programmable circuits and, nowadays, especially Field-
Programmable Gate Arrays (FPGAs) are widely applied in
computationally demanding signal processing applications. Con-
sidering modern, agile hardware / software codesign approaches,
an Electronic Design Automation (EDA) process not only needs
to deliver high quality results, but also has to be swift because
software compilation is already distinctly faster. Slow EDA tools
can in fact act as a kind of show-stopper for an agile development
process. One of the major problems in EDA is the placement of
the technology-mapped netlist to the target architecture. In this
work, a method to reduce the runtime of the netlist placement
for FPGAs is evaluated. The approach is a variation of analytical
placement, with the distinction that a gradient descent is used for
the optimization of the placement. This work is based on previous
publications of the authors, in which a placement algorithm using
self-organizing maps is introduced and optimized. In comparison,
the gradient placement approach is shown to be up to 3.8
times faster than the simulated annealing based reference with
about the same quality regarding the bounding-box and routing-
resource costs.

Keywords–EDA; FPGA; placement; gradient descent.

I. INTRODUCTION
The ever-growing complexity of Field-Programmable Gate

Arrays (FPGAs) has a high impact on the performance of
Electronic Design Automation (EDA) tools. A complete com-
pilation from a hardware description language to a bitstream
can take several hours. One step highly affected by the vast size
of netlists is the NP-equivalent placement process. It consists
of selecting a resource cell (position) on the FPGA for every
cell of the applications netlist. In previous publications of
the authors, a placement algorithm for FPGAs based on a
self-organizing map [1] was presented [2] and optimized [3].
With that approach, placements of high quality were produced.
However, it was relatively slow for large netlists, even when
accelerated using a Graphics Processing Unit (GPU) [4].
Therefore, in this work, a faster approach for netlist placement
based on a gradient descent is presented as an updated version
of the authors’ previous work [4].

Due to the complexity of the netlist placement problem,
many current algorithms work in an iterative manner. A well
known example is simulated annealing [5], which starts with
a random initial placement and swaps blocks stepwise. The
result of every step is evaluated by a cost function. A step
is always accepted, if it reduces the cost. If it increases the
cost, it is accepted with a probability that declines with time
(cooling down). An annealing schedule determines the gradual

decrease of the temperature, where a low temperature means
a low acceptance rate and a high temperature means a high
acceptance rate. Generally, the temperature is described by an
exponentially falling function like

Tn = α
n · T0 , (1)

where typically 0.7 ≤ α ≤ 0.95. However, there has been a lot
of research on the optimization of the annealing schedule like
in [6][7]. As a result, there are many variations available for
any related problem.

Analytical placement is a different approach, where the
problem is described as a system of equations. By solving this
system of equations, the optimal position for every element can
be derived. However, solving such large equation systems takes
much time. Therefore, Vansteenkiste et al. [8] have introduced
a method to approximate the solution of the equation system
by the steepest gradient descent. This approach is shown to be
two times faster than a conventional analytical placement on
average, without any penalties in quality.

In this work, a simplified implementation of the steepest
gradient descent placement is described and benchmarked
extensively. It is not compared to other analytical placement
methods. Instead, the established implementation of the sim-
ulated annealing approach of the Versatile Place and Route
(VPR) tool [9] for FPGAs is used as reference.

In Section II, the problem of netlist placement for FPGAs
is introduced and the principle of netlist placement with a
gradient descent is described. In Section III, the proposed
algorithm is described including some details of its implemen-
tation. In Section IV, the results of the proposed algorithm are
presented. As representation for real world applications, a set
of twenty Microelectronics Center of North Carolina (MCNC)
benchmarks [10] is used. Finally, in Section V, the results of
this work are summarized and a prospect to further work is
given.

II. BACKGROUND
This section is separated into two parts. First, the problem

of netlist placement for FPGAs is introduced. Second, the
general idea of using a gradient descent for the placement of
netlists for FPGAs is described.

A. Netlist Placement for FPGAs
The problem of netlist placement for FPGAs can be

roughly described as selecting a resource cell (a position) on
the target FPGA for every cell of the given netlist. In Figure 1,
an exemplary graph of a netlist is defined. An exemplary

13Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 21 / 38

In0 C0

C1

C3 C4

In1

In2

In3

C2In4

In5

O0

O1

O2

I/O-Cell

Logic-Cell

Figure 1. An exemplary graph of a netlist consisting of input-, output-, and
logic-cells.

In2

C0 C1In1 C2 In5

C3 C4 O2

O0

In3 In4

O1

In0

Figure 2. A valid placement for the graph in Figure 1 on a simple
island-style FPGA architecture.

placement for this netlist is presented in Figure 2. The positions
must be chosen in a way that:

1) Every cell of the netlist is assigned to a resource cell
of the fitting type (e.g., Input / Output or Logic).

2) No resource cell is occupied by more than one cell
of the netlist.

3) The cells are arranged in a way that allows the best
possible routing.

The first two rules are necessary constraints. A placement
that is failing at least one of these two constraints is illegal
and, therefore, unusable. The third rule is a quality constraint,
which is typically described by a cost function. The goal of
a placement algorithm is to optimize the placement regarding
this function without violating one of the necessary constraints.
Usually, the length of the critical path and the routability are
covered by the cost function.

B. Netlist Placement With a Gradient Descent
The netlist placement with a gradient descent is done by

iteratively optimizing the positions of all elements of the netlist
in the direction of the steepest gradient descent. During this
process, the nodes are not bound to the grid of the FPGA

architecture. Instead, they are positioned in a continuous space.
To generate a valid placement – without overlapping and under
consideration of the FPGA’s architecture – in this approach, a
cycle of optimization and legalization is used. This procedure
is customary for analytical placement methods for FPGAs,
like Gort and Anderson have introduced in [11]. A different
approach would be to generate only valid placements by
exclusively moving the nodes on the architectural grid of the
FPGA.

III. IMPLEMENTATION
A. Gradient Calculation

At the beginning of every optimization step, the bounding-
box size of every net in the netlist is determined. This is a
necessary preparation for the cost-function, which is described
later in this section. To determine the size of a net, all nodes
with a connection to the net are determined. For all these
nodes, the minimum and maximum of the horizontal positions
(Xi) and the vertical positions (Yi) are determined and stored
for the calculation of the gradient. Additionally, the sum of all
sizes in X and Y direction is calculated, as a metric for the
global quality of the current placement.

The goal of every optimization step is to move the nodes in
a direction that leads to a reduction of the bounding-box size
of the containing net. A cost-function is necessary to determine
the influence of every node on the size of the corresponding
net. The gradient of this cost-function can then be used to
determine the direction of the movement of each node. All
nodes of the netlist are moved towards the steepest gradient
descent to reduce the global cost.

An intuitive approach would be to use the sum of the
bounding-box sizes of all nets as cost-function. However, with
this metric, only the outermost nodes would be moved and
even nodes that are very near to the bounding-box would be
ignored. Furthermore, the min and max functions contained in
the metric can not be derived to calculate the gradient.

To solve these issues, an exponential function over the
distance between the position of the node and the bounding-
box of the net is chosen as basis of the cost-function. The
cost-function for a node with the index k is

Ck = α2 ·
∑
n∈Nk

(
eα1 ·(xk−maxx (n)) + eα1 ·(minx (n)−xk)+

eα1 ·(yk−maxy (n)) + eα1 ·(miny (n)−yk)
)
,

(2)

where xk and yk describe the X and Y coordinates of the
current node, Nk describes the set of all nets that contain the
node and minx , maxx , miny and maxy are the minimal and
maximal coordinates of the current net (i.e., the bounding-
box). α1 and α2 are parameters for the cost-function, which
allow to influence the behavior of the function. With α1, it
can be determined how large the distance between the node
and the bounding-box must be to reduce its influence in the
cost-function. The influence of α1 on the gradient is shown in
Figure 3 for the X coordinate of a node, assuming a net with
the boundaries minx = 1 and maxx = 7. With α2, the cost
can be increased or reduced to influence the steepness of the
gradient.

Based on (2), the gradients for the X and Y coordinates

14Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 22 / 38

1 2 3 4 5 6 7

X Coordinate

−1

0

1

C
os
t-
G
ra
d
ie
n
t

α1 = 1
α1 = 2
α1 = 3
α1 = 4

Figure 3. Exemplary plot of possible gradients for the X coordinate of a node, assuming a net with the boundaries minx = 1 and maxx = 7.

Figure 4. Exemplary placement before the legalization step.

can be calculated as

∂Ck

∂xk
= α2 ·

∑
n∈Nk

(
eα1 ·(xk−maxx (n)) − eα1 ·(minx (n)−xk)

)
, (3)

∂Ck

∂yk
= α2 ·

∑
n∈Nk

(
eα1 ·(yk−maxy (n)) − eα1 ·(miny (n)−yk)

)
. (4)

As a result, the coordinates of nodes that are near the
bounding-box of their containing net have a gradient of ±α2,
where the coordinates of nodes with a larger distance to
the bounding-box have a much lower gradient, as shown in
Figure 3. Consequentially, nodes with a larger gradient value
must be moved further to improve the placement optimally.

B. Legalization
During the optimization step, the nodes can take any

position. Thereby, illegal placements are produced, due to
overlapping of nodes, as well as violation of the architectural
grid of the FPGA. Therefore, the optimized placement must
be legalized in a separate step. This is done by finding the

Figure 5. Exemplary placement after the legalization step.

nearest valid position for every node, as depicted in Figure 4
(before the legalization) and Figure 5 (after the legalization).

The algorithm for the legalization is inspired by the work
of Gort and Anderson [11]. The basic idea of that approach is
to find regions that contain more nodes than the corresponding
region of the FPGA provides. Then, those regions are gradually
expanded. When two regions overlap, they are merged. This is
done until the regions are large enough to place all contained
nodes to a proper resource cell of the FPGA. In the next step,
the regions are split recursively and the nodes are assigned
to the new sections by their position. This is repeated until a
region contains no more nodes, or only one node. In the latter
case, the position of the single remaining node is set to the
position of its containing region.

In this work, the search for regions that contain more
nodes than the corresponding region of the FPGA provides
and the following expansion and merge phases are skipped.
Instead, all nodes are assigned to one large region from the
start and the phase of recursive splitting starts directly. By
this measure, the computational effort for the legalization is

15Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 23 / 38

reduced significantly without a dramatic impact on the global
quality. This is because – especially when a large amount of
the available resources is used – the result of the expansion
phase is containing usually very few large regions or often
only one large region anyway.

C. Optimization
For the optimization, the algorithm Adam – which was

introduced by Kingma and Ba in [12] – is used. The used
update rules are:

gt = ∆φt Gradient of the variable
mt = β1 · mt−1 + (1 − β1) · gt Running average force one

vt = β2 · vt−1 + (1 − β2) · g
2
t Running average force two

m̂t = mt/
(
1 − βt1

)
Bias corrected force one

v̂t = vt/
(
1 − βt2

)
Bias corrected force two

φt = φt−1 − Sa · m̂t/

(√
v̂t + ε

)
Update of the variable

The constants β1 and β2 define how fast the averages of the
first and second forces change. In this work, the constants were
defined as β1 = 0.96 and β2 = 0.998. The variable Sa defines
the learning rate or, more specifically, the step-width. It starts
at Sa = 1.5, but changes over time (i.e., in the different phases
of the placement).

D. Placement Phases
The previously described steps are executed for every

iteration. The placement process is separated into five phases,
with different parameters. Each phase consists of a given
number of iterations. The number of iterations per phase was
determined empirically and is fixed (i.e., independent of the
size of the design). The phases are:

1) Presorting (5000 iterations)
In this phase, all nodes are moved with a high step
width in the general direction of their final position.

2) Grid placement (1000 iterations)
In this phase, the force of the legalization is increased.
Thereby, the nodes are pulled harder towards legal
positions (i.e., to fitting cells of the architecture).
This is necessary – for example – to prevent input
and output cells from getting stuck in the logic block
section of the architecture.

3) Initial detailed placement (1000 iterations)
In this phase, the global step-width is reduced to
one tenth of the initial value. This influences the
legalization and the optimization equally, so that the
balance between those two steps is not changed.
However, the changes are much smaller, resulting in
a more precise outcome.

4) Detailed placement (5000 iterations)
In this phase, the step-width of the optimization is
reduced linearly to 20 percent of its original value.
Thereby, the nodes are pulled relatively harder to-
wards their final positions in the grid.

5) Final placement (100 iterations)
In this phase the influence of the optimization is re-
duced to zero, so that effectively only the legalization
is active. Hence, the nodes are moved to their final
position in the grid.

TABLE I. A LIST OF THE USED BENCHMARKS AND THEIR
CHARACTERISTICS, THE NUMBER OF CLBS, INPUT BLOCKS, OUTPUT

BLOCKS AND THE GLOBAL BLOCK COUNT

Name Inputs Outputs CLBs Blocks

ex5p 8 63 1064 1135

tseng 52 122 1047 1221

apex4 9 19 1262 1290

misex3 14 14 1397 1425

alu4 14 8 1522 1544

diffeq 64 39 1497 1600

dsip 229 197 1370 1796

seq 41 35 1750 1826

apex2 38 3 1878 1919

s298 4 6 1931 1941

des 256 245 1591 2092

bigkey 229 197 1707 2133

frisc 20 116 3556 3692

spla 16 46 3690 3752

elliptic 131 114 3604 3849

ex1010 10 10 4598 4618

pdc 16 40 4575 4631

s38417 29 106 6406 6541

s38584.1 38 304 6447 6789

clma 62 82 8383 8527

IV. RESULTS
In this section, the benchmark results of the previously

described placement algorithm are presented. VPR is used as
reference for the comparison of the placement results, as well
as for the routing and timing analysis.

All used MCNC benchmarks [10] and their characteristics,
namely, the number of Configurable Logic Blocks (CLBs),
input blocks, output blocks and the sum of all blocks are listed
in Table I, sorted by ascending complexity (i.e., the global
block count). The netlists are placed on a homogeneous island-
style architecture with four input lookup tables.

A. Bounding-Box Costs
The standard metric used for the approximation of the

quality of a placement in VPR is the bounding-box cost. It is
basically the sum of the half perimeter of the bounding-boxes
(i.e., length plus width) of all nets. As introduced by Betz and
Rose in [9], the bounding-box metric can be described as

Cost =
Nnets∑
n=1

q(n)
[

bbx(n)
Cav,x(n)

+
bby(n)

Cav,y(n)

]
, (5)

where bbx(n) and bby(n) describe the horizontal and vertical
size of the net n. Cav,x(n) and Cav,y(n) describe the average
capacity of horizontal and vertical channels in the region of
the net (in the considered case, the capacity is homogeneous
over the whole architecture, so these values are constant. q(n)
corrects the effort for nets with more than three nodes, because
it would otherwise be approximated to low.

In Table II, the bounding-box costs for the previously
introduced benchmark netlists are presented. The results of
VPR and the gradient placer are shown as absolute values and
in relation to each other:

CostRelative =
CostVPR

CostGradient
· 100 % (6)

16Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 24 / 38

TABLE II. COMPARISON OF THE BOUNDING-BOX COSTS BETWEEN THE
GRADIENT PLACEMENT AND THE SIMULATED ANNEALING OF VPR

Netlist VPR Gradient Relative / %

ex5p 180.599 173.701 96.18
tseng 102.398 101.112 98.74
apex4 195.338 190.657 97.60
misex3 200.456 199.160 99.35
alu4 204.692 200.965 98.18
diffeq 155.531 156.375 100.54
dsip 199.845 179.254 89.70
seq 260.789 267.686 102.64
apex2 280.120 293.168 104.66
s298 225.344 217.479 96.51
des 257.643 268.889 104.36
bigkey 209.470 201.344 96.12
frisc 587.227 593.630 101.09
spla 628.155 672.990 107.14
elliptic 497.645 503.854 101.25
ex1010 684.798 720.589 105.23
pdc 939.813 976.890 103.95
s38417 687.198 784.862 114.21
s38584.1 684.220 774.451 113.19
clma 1502.330 1598.670 106.41

Average 101.85

It can be seen that especially the smaller netlists profit from the
gradient placement. Remarkably, for all netlists with less than
1600 nodes, the bounding-box costs are less with the gradient
placer than with VPR. If the larger netlists are included, the
costs for the gradient placer are only 1.85 percent higher on
average, which is almost equal.

B. Channel Width
After their generation, the placements were routed with

the VPR router and the Channel Width (CW), as well as the
amount of necessary wire elements as a measure for the total
Wire Length (WL) were determined. The results are shown in
Table III. The differences in the channel width are given as a
simple delta between the results:

∆CW = CWVPR − CWGradient (7)

The differences in the wire length are given as ratio between
the results in percent:

WLRelative =
WLVPR

WLGradient
· 100 % (8)

The needed channel width of the gradient method is on average
0.5 channels smaller than the reference, whereas its total wire
length is 0.09 percent longer. Both values are considered to be
almost equal to the reference.

C. Runtime
In the previous sections, it was shown that the gradient

placer produces a similar placement quality as VPR in regard
of the bounding-box cost and the required routing resources.
In this section, the runtime of both algorithms is measured and
evaluated. The configuration of the system that has been used
for the benchmarking is provided in Table IV.

The results are shown in Table V. The presented numbers
are each an average of ten measurements. All single mea-
surements varied less than two percent of the average of the
measurement series.

TABLE III. COMPARISON OF THE MINIMAL CHANNEL WIDTH (CW) AND
THE TOTAL WIRE LENGTH (WL) BETWEEN THE GRADIENT BASED

PLACEMENT ALGORITHM AND THE SIMULATED ANNEALING OF VPR

Netlist VPR Gradient Relative
CW WL CW WL ∆CW WL / %

ex5p 15 20034 14 19541 -1 97.54
tseng 8 10200 7 9463 -1 92.77
apex4 15 22215 13 22116 -2 99.55
misex3 13 21884 12 21820 -1 99.71
alu4 12 22319 11 21261 -1 95.26
diffeq 9 15369 8 15292 -1 99.50
dsip 7 18065 7 15260 0 84.47
seq 12 28469 13 28977 1 101.78
apex2 12 30826 12 31905 0 103.50
s298 8 22335 9 21801 1 97.61
des 9 28084 9 28764 0 102.42
bigkey 8 21424 7 20315 -1 94.82
frisc 17 63146 14 64220 -3 101.70
spla 16 68364 16 72288 0 105.74
elliptic 11 44742 12 51127 1 114.27
ex1010 13 71891 12 73653 -1 102.45
pdc 19 104065 19 106057 0 101.91
s38417 8 64626 9 68999 1 106.77
s38584.1 10 64626 9 64180 -1 99.31
clma 14 141660 14 142695 0 100.73

Average -0.5 100.09

TABLE IV. CONFIGURATION OF THE SYSTEM THAT HAS BEEN USED FOR
THE BENCHMARKING OF THE GRADIENT ALGORITHM AND VPR

Property Value
Processor Intel® Core™ i7-4510U

Cores 2
Threads 4

Base Frequency 2.00 GHz
Turbo Frequency 3.10 GHz

Cache 4 MB
RAM 16 GB

On average, the gradient based placement algorithm needs
less than half of the time of the simulated annealing placer of
VPR. Furthermore, the ratio is even better for large netlists,
as can be seen clearly in Figure 6. For example, the largest
netlist in this benchmark series – the clma netlist – is placed
3.8 times faster with the gradient based approach.

V. CONCLUSION AND FUTURE WORK
In this work, a fast approach for netlist placement based

on a gradient descent was presented. The gradient placer was
compared to the simulated annealing based placer of VPR. It
has been shown that the quality of the placement in regard of
the bounding-box cost and the occupation of routing resources
(i.e., channel width and total wire length) is equal to the
reference within a reasonable margin of error, as proven by
placing twenty prominent benchmarking netlists of different
complexity. Notably, the presented approach is shown to be
up to 3.8 times faster than the reference. On average, it needs
less than half of the time to compute the result. However,
preliminary results show that the resulting length of the critical
path is worse with the gradient placer (about twenty percent
for the largest netlist in this work). This would need to be
addressed in future work.

17Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 25 / 38

ex5p
tseng
apex4
m
isex3

alu4
diff

eq
dsip

seq
apex2
s298
des
bigkey
frisc
spla
elliptic
ex1010
pdc
s38417
s38584.1
clm

a

Netlist

0

100

200

300

R
u
n
ti
m
e
/
s

VPR
Gradient

Figure 6. Diagram of the runtime as average of ten measurements between the gradient based placement algorithm and the simulated annealing of VPR.

TABLE V. COMPARISON OF THE RUNTIME AS AVERAGE OF TEN
MEASUREMENTS BETWEEN THE GRADIENT BASED PLACEMENT

ALGORITHM AND THE SIMULATED ANNEALING OF VPR

Netlist VPR / s Gradient / s Relative / %

ex5p 14.69 7.23 49.23
tseng 13.86 7.34 53.00
apex4 17.34 8.53 49.16
misex3 18.27 9.54 52.20
alu4 20.81 10.48 50.36
diffeq 21.05 10.63 50.47
dsip 20.62 11.45 55.54
seq 27.12 12.53 46.21
apex2 29.60 13.41 45.31
s298 25.35 12.90 50.90
des 27.01 13.48 49.92
bigkey 28.36 13.72 48.36
frisc 75.10 27.83 37.05
spla 78.67 28.21 35.85
elliptic 76.02 27.79 36.56
ex1010 104.21 36.11 34.65
pdc 111.76 37.30 33.37
s38417 165.32 53.89 32.60
s38584.1 167.96 54.72 32.58
clma 282.60 75.04 26.55

Average 43.49

As the current implementation of the gradient placer is
executed only single-threaded, the next logic step would be to
parallelize its execution to make it even faster. The calculation
of the gradients could be executed in parallel on node level,
and even large parts of the legalization (e.g., the assignment
of nodes to the regions) could be parallelized. Hence, a multi-
threaded implementation would be beneficial and even a GPU-
computing approach seems to be promising.

Even though the gradient placement approach was shown
to be comparably fast for large netlists, a more recent set of
benchmarks like the one included in [13] – containing much

larger netlists – could be used to underline the scalability of
the approach.

REFERENCES
[1] T. Kohonen, Self-Organizing Maps. Springer, 1995.
[2] T. Bostelmann and S. Sawitzki, “Improving FPGA placement with a

self-organizing map,” in International Conference on Reconfigurable
Computing and FPGAs (ReConFig), December 2013, pp. 1–6.

[3] T. Bostelmann and S. Sawitzki, “Improving the performance of a
SOM-based FPGA-placement-algorithm using SIMD-hardware,” in The
Ninth International Conference on Advances in Circuits, Electronics and
Micro-electronics (CENICS), July 2016, pp. 13–15.

[4] T. Bostelmann, P. Kewisch, L. Bublies, and S. Sawitzki, “Improving
FPGA-placement with a self-organizing map accelerated by GPU-
computing,” International Journal On Advances in Systems and Mea-
surements, vol. 10, no. 1 & 2, 2017, pp. 45–55.

[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, May 1983, pp. 671–680.

[6] L. Ingber, “Adaptive simulated annealing (ASA): Lessons learned,”
Control and Cybernetics, vol. 25, 1996, pp. 33–54.

[7] M. M. Atiqullah, “An efficient simple cooling schedule for simulated
annealing,” in International Conference on Computational Science and
Its Applications (ICCSA). Springer, 2004, pp. 396–404.

[8] E. Vansteenkiste, S. Lenders, and D. Stroobandt, “Liquid: Fast place-
ment prototyping through steepest gradient descent movement,” in
2016 26th International Conference on Field Programmable Logic and
Applications (FPL), August 2016, pp. 1–4.

[9] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in International Conference on Field Programmable
Logic and Applications (FPL). Springer, 1997, pp. 213–222.

[10] S. Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0,” Microelectronics Center of North Carolina, Tech. Rep.,
1991.

[11] M. Gort and J. H. Anderson, “Analytical placement for heterogeneous
FPGAs,” in 22nd International Conference on Field Programmable
Logic and Applications (FPL), August 2012, pp. 143–150.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings, 2015, pp. 1–15.

[13] J. Luu et al., “VTR 7.0: Next generation architecture and CAD system
for FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 2,
June 2014, pp. 6:1–6:30.

18Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 26 / 38

60 GHz Low-Noise Amplifier in a 70 nm GaAs m-HEMT Technology

for Multi-band Impulse Detection System

Pape Sanoussy Diao, Thierry Alves, Benoı̂t Poussot and Martine Villegas

Université Paris-Est, ESYCOM (FRE2028), CNAM, CNRS, ESIEE Paris, Université Paris-Est Marne-la-Vallée
F-77454 Marne-la-Vallée, France

Email: pape-sanoussy.diao@esiee.fr, thierry.alves@esiee.fr

Abstract—In this paper, we present a 60 GHz Low-Noise Ampli-
fier (LNA) to improve the performance of multi-band detection
systems. The LNA is designed in 70 nm GaAs metamorphic High
Electron Mobility Transistor (m-HEMT) technology and occupies
an area of 1.47 x 1.0 mm2. The inductive degeneration technique
is used for a suitable trade-off between gain and noise. The three-
stage LNA achieves a gain of 14.3 dB and a noise factor of 2.1 dB
at 60.2 GHz, while consuming 13.5 mW. The simulated non-linear
characteristics show an IP1dB (Input 1 dB compression Point)
of -9.6 dBm and an IIP3 (Input third-order Intercept Point) of
-4.8 dBm.

Keywords–LNA; 60 GHz; GaAs m-HEMT; Millimeter wave
technology; Multi-band detection system.

I. INTRODUCTION

Advances in integrated circuit technologies are generating
great interest in the evolution of standards in millimeter-
wave bands. The availability of unlicensed bandwidth around
60 GHz in several regions of the world (57-66 GHz in
Europe) is a real opportunity for new systems development
and frequency harmonisation. Advances in SiGe [1] [2] and
III-V [3]- [5] technologies nowadays allow the production of
devices and systems for a variety of applications in millimeter-
wave bands. These opportunities create a need for increasingly
high-performance devices. In this way, this work adresses the
design of a wideband amplifier, wich has low-noise, low power
consumption and is small in size in order to improve the
performance of detection systems.

This study is part of the development of an Ultra-WideBand
(UWB) millimeter-wave detection system for short-range ap-
plications. We consider the monostatic radar context, Figure 1,
with a cylindrical metallic target of radius r and height h (r;h).
The detection system is schematized by a transceiver (TX-RX)
using the same antenna. The incidence angle θ is determined
by the orientation of the target with respect to the antenna
boresight.

TX - RX

A
n
te
n
n
a

hd

θ

Figure 1. Context of the detection

This paper proposes the design of a low-noise amplifier
with the 70 nm GaAs m-HEMT technology from OMMIC. It

is structured as follows: Section II presents the principle of
detection. Section III presents the sizing of the system and
LNA specifications. Choice and technology description are
presented in Section IV. Then, the design of the circuit is
detailed in Section V. In Section VI, we present the results
of the post-layout electromagnetic simulations in comparison
with those in the literature before concluding in Section VII.

II. PRINCIPLE OF DETECTION

The angular dependence of the Radar Cross Section (RCS)
of objects often results in a limitation of the detection range
when moving away from the normal incidence. To overcome
this limitation, we use frequency diversity [6]. The proposed
detection principle is then based on the impulse technique,
using a multi-band approach [7] [8], to improve detection
coverage, particularly the continuity of detection according to
the target orientation angle θ. Frequencies around 60 GHz
were chosen for spectrum availability, but also for short
wavelengths (5 mm at 60 GHz) to detect small objects (< 10
cm). The architecture associated with the detection principle
is shown in Figure 2 for a dual-band system at 57.8 GHz
and 62.8 GHz. In the transmitter, Differential Structure Power
Amplifiers (DSPAs) whose operation is based on the even
mode rejection are used. DSPA1 provides both signal division

Pulse

generator

[57-63,6] GHz

DSPA1

[57-58,6] GHz

[62-63,6] GHz

DSPA2

[57-63,6] GHz

T
X

A
n
te
n
n
a

R
X

A
n
te
n
n
aLNA1

[57-58,6] GHz

LNA2

[62-63,6] GHz

Detection

&

Decision

Figure 2. Dual-band detection architecture

and pre-amplification. The signals selected by the filter bank
are then amplified by DSPA2 and transmitted by the same
antenna. In reception, simple LNAs are used for better noise

19Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 27 / 38

performance. The received signals are selected by a filter bank
identical to the one in transmission before being subjected
to the detection and decision process. More details of the
architecture operation are given in [8]. This architecture can be
applied in a more general case with N bands. The processing
of the received signals can be done by different techniques,
such as: selection combining, cumulative detection [8], or non-
coherent integration [9].

III. SYSTEM SIZING AND LNA SPECIFICATIONS

The sizing of the system is based on the monostatic radar
equation expressing the maximum detection range (Rmax) as
a function of the minimum detectable power Smin [10]:

R4
max =

PtG
2λ2σ

(4π)
3
Smin

(1)

where Pt is the transmitted power, G is the antenna gain, λ
the operating wavelength and σ the RCS of the target.

Since Smin is related to the thermal noise power of
the receiver and the minimum Signal-to-Noise Ratio (SNR)
required to detect a target, the radar equation (1) can be written
in the form:

R4
max =

PtG
2λ2σ

(4π)
3 · kT∆f · F · SNRr

(2)

where k is the Boltzmann constant, T the temperature, ∆f the
receiver bandwidth, F its noise factor and SNRr the required
SNR at the output of the receiver to ensure detection.

In the equation (2), the transmitted power and the antenna
gain are determined by standardization. The wavelength λ is
chosen according to the application and the dimensions of the
targets to be detected. The receiver bandwidth ∆f is defined
by the bandwidth of the front-end filter which will set the range
resolution ∆R of the system (∆R = c/2∆f). The SNRr is
defined by the desired performance in terms of detection and
false alarm probabilities. The proposed detection principle is
based on the frequency and angle variations of the RCS. Thus,
the receiver noise factor F is the only adjustable parameter to
maximize system performance. Due to the position of the LNA
in the receiver architecture, shown in Figure 2, the impact of
its noise factor is more significant over that of the total RF
chain according to the Friis equation:

F = F1 +
F2 − 1

G1
+
F3 − 1

G1G2
+ ...+

Fn − 1

G1G2...Gn−1
(3)

where Fi and Gi are the noise factor and the power gain,
respectively, of the i-th stage, and n is the number of stages.
By setting the objective of detecting a cylindrical target (r =
0.6 cm; h = 5.4 cm), up to 2 m at normal incidence, we
will determine the characteristics of the receiver stage and in
particular those of the LNA. For this purpose, we consider a
system with four bands in 57-66 GHz, distributed around the
frequencies 57.8 GHz, 60.2 GHz, 62.8 GHz and 65.2 GHz.
The output power of each channel of the DSPA2 is set at
15 dBm (taking into account frequency bands standardization)
and the gain of the antennas at 12 dBi (which can be achieved
with 4 patches of 6 dBi each). The bandwidth of each band is
1.6 GHz and the SNRr depends on the detection technique
used. Filter losses are set at 3.5 dB [11]. For a conventional
single-band configuration, the SNRr to ensure the detection

of a nonfluctuating target with a detection probability of 90%
and a false alarm probability of 10−6 is 13.2 dB [10]. In the
case of a non-coherent integration of 4 pulses in 4 sufficiently
spaced frequency bands, the SNRr is only 8.3 dB for the
same detection and false alarm probabilities. Based on this
case of non-coherent integration, using (2), we established the
technical specifications of the LNA given in Table I, to ensure
the targeted detection.

TABLE I. TECHNICAL SPECIFICATIONS OF THE LNA

Parameters Values
Bandwidth BW ≥ 1.6 GHz
Power gain G ≥ 12.5 dB
Noise factor NF < 3 dB
S11 & S22 < −10 dB

IV. CHOICE AND DESCRIPTION OF THE TECHNOLOGY

To realize the LNA, we have two design technologies:
SG13S from IHP (Innovations for High Performance) Micro-
electronics [12] and D007IH from OMMIC [13]. The choice
of technology was first based on a study of passive elements.
This revealed that SG13S is better suited for highly integrable
components (small capacitors and resistors). On the other
hand, it has very high losses (≈ 0.7 dB/mm @ 60 GHz)
for low-noise applications. Unlike SG13S, the D007IH has
the advantage of lower losses (≈ 0.22 dB/mm @ 60 GHz)
and more integrable inductors in terms of shape. For example,
Figure 3 shows simulation results of grounded transmission
lines of the same characteristic impedance of 75 Ω. It can be
seen that the D007IH has a quality factor (Q-factor) more than
5 times higher than that of the SG13S at 60 GHz for the same
inductance of 268 pH.

0 10 20 30 40 50 60 70 80 90 100 110 120
-4

-3

-2

-1

0

1

2

3

4

-80

-60

-40

-20

0

20

40

60

80

Figure 3. Comparison of grounded transmission lines

At high frequencies and especially at 60 GHz, the use of
transmission lines is often preferred, so the D007IH seems
more suitable for low noise applications. However, in mi-
crowaves, the overall performance of a circuit depends not
only on the passive elements, but also on the characteristics of
the transistors. Thus, the choice of technology must be based
on an analysis of the global circuit. For this purpose, we com-
pared single-stage amplifiers designed with both technologies,
Table II. This comparison clearly shows that the m-HEMT is

20Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 28 / 38

TABLE II. SINGLE STAGE AMPLIFIERS COMPARISON

Technology Transistor Gain (dB) NF (dB) PDC (mW)
SG13S Bipolar 4.0 2.6 2.0
SG13S MOS 3.1 2.6 9.2
D007IH m-HEMT 3.9 1.2 4.1

the only one of the three transistor models that can meet the
technical specifications of the LNA, particularly in terms of
noise. To satisfy the gain performance, the use of a multi-
stage structure will be necessary. In addition, with regard to
sizing, it appeared that the noise factor is more significant over
the gain because its influence is much greater in the range of
the system. So, D007IH technology is chosen for the design
of the LNA.

D007IH is a 70 nm gate length GaAs technology providing
fT /fmax of 300 GHz/450 GHz. It offers a depletion transistor
m-HEMT with very high transconductance of gmmax = 1600
mS/mm, that can support a voltage VDSmax of 3 V and a max-
imum current IDSSmax of 400 mA/µm. This type of transistor
offers good performance in terms of noise, with a noise factor
of only 0.5 dB at 30 GHz, giving it a privilege for security
applications (millimeter-band imaging), telecommunications or
radars. The process of the technology consists of a 3.5 µm
metal in its underside, a 100 µm thick GaAs substrate above
which different metallization levels can be distinguished. The
most used metal layer for transmission lines realization is the
IN metal with a thickness of 1.25 µm. It is also possible to
associate this layer with a gold layer of the same thickness for
less losses.

V. CIRCUIT DESIGN

The circuit is designed with Keysight Advanced Design
System (ADS). The LNA consists of a three-stage structure
using identical transistors. The size of the transistor is chosen
so as to ensure a better trade-off between gain and noise. A
parametric study allowed us to choose a transistor of 2 x 25
µm grid development. The optimal bias point then corresponds
to a voltage VDS = 1 V for an IDS current of about 4.1 mA.

Unconditional stability has been ensured both by inductive
degeneration of the source, but also by the use of a resistance
in the bias circuit. This resistance allows stability at low
frequency; its value must be chosen meticulously because
it influences the gain and noise [14]. The degeneration also
brings the circles of gain and noise closer together and thus
facilitates the input matching [15].

The first two stages are almost identical and are matched
with a good trade-off between gain and noise. Matching of the
third stage is optimized in gain because its influence is less on
the noise factor of the whole structure (3). The LNA’s first
stage schematic is presented in Figure 4.

The bias circuits are made with quarter-wave transmission
lines. They include GaAs implanted resistors (RD and RG) for
improving low frequency stability and by-pass capacitors (CD)
to short RF (Radio Frequency) leakage to the ground. The
degeneration of the transistor source is ensured by the shorted
transmission line TLS . The capacitor C1 and the transmission
lines TL1 and TL2 form the input matching network. TL1 is
an open line smaller than λ/4 and therefore acts as a parallel
capacitor. C2, TL3 and C3 form the inter-stage matching and
DC (Direct Current) isolation between stages 1 and 2. The

same topology is used between stages 2 and 3. The output
matching of the LNA is performed by a simple L-C series
topology. The output inductor is achieved by a transmission
line whose dimensions are optimized for a better gain, without
degrading the noise factor, while respecting the design rules.

TL2C1

IN

TL1

λ/4

RG

VG

CD

TLS

C2 C3

TL3λ/4

RD

VD

CD

stage 2

Figure 4. Schematic of the first stage of the LNA

VI. POST-LAYOUT SIMULATIONS RESULTS

The layout of the LNA is shown in Figure 5 and it includes
RF and DC pads. All transmission lines are made with the
same IN metal layer. Ground connections are made using vias
holes. The size of the circuit is 1.47 x 1.0 mm2.

Figure 5. Layout of the LNA

For layout realization, small transmission lines have been
added to transistor accesses (gate and drain) to reduce the
coupling between components. The resistor in the drain bias
drops the voltage at the DC pad from 1.1 V to 1 V at the
transistor drain for each stage. Thus, the overall consumption
of the circuit is approximately 13.5 mW. Layout simulations
are done with Momentum Microwave. The layout was done
in two main steps. Initially, electromagnetic simulations were

21Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 29 / 38

carried out in a partial way, i.e., by considering each element
separately (p index). Then, in a second step, we simulated the
whole structure of the LNA (g index). The results obtained then
present differences related to the coupling phenomena between
the different elements of the LNA, which are not taken into
account in the partial simulations of these elements. These
couplings result in a more or less pronounced degradation
of the circuit’s performance. In our case, we were able to
distinguish the degradation of reflection coefficients both at the
input S11 and output S22. Since then, we have re-optimized
the layout in order to minimize these degradations, but also
to improve its gain and noise performance, see Figure 6 and
Figure 7.

52 54 56 58 60 62 64 66 68
-40

-35

-30

-25

-20

-15

-10

-5

0

Figure 6. S11 and S22 with partial and global layout simulations

54 56 58 60 62 64 66
-40

-30

-20

-10

0

10

20

0.5

1

1.5

2

2.5

3

3.5

Figure 7. S21, S12 and NF with partial and global layout simulations

A final optimization of the layout was done to reduce
the size of the circuit which was initially 1.29 x 1.56 mm2.
This allowed us to obtain the layout seen in Figure 5. The
optimized LNA thus offers unconditional stability over a wide
frequency range, see Figure 8. Post-layout simulations results
are presented in Figure 9. There is a gain of 14.3 dB and
a noise factor of 2.1 dB at 60.2 GHz. The reverse isolation
is about -34 dB at 60.2 GHz and the reflection coefficients

S11 and S22 are less than -15 dB at 60.2 GHz. The 3 dB
bandwidth (for S11 < − 10 dB and S22 < − 10 dB) ranges
from 54 to 62.5 GHz with a fluctuation of about 0.17 dB
in noise factor. The non-linear characteristics of the LNA are
shown in Figure 10 and Figure 11. The simulated input 1 dB
compression point of the LNA is IP1dB = −9.6 dBm, while
the input third order intercept point is IIP3 = −4.8 dBm.

0 10 20 30 40 50 60 70 80 90 100
0

4

8

12

16

20

Figure 8. Stability parameters K and B

54 56 58 60 62 64 66
-40

-30

-20

-10

0

10

20

0.5

1

1.5

2

2.5

3

3.5

Figure 9. S-parameters and noise factor

The performance parameters of the designed LNA com-
pared with other LNAs in the state-of-the-art are given in
Table III. Our LNA shows good performance, especially in
terms of noise factor, even if some of the results in the
Table III are based on measurements. With a moderate power
consumption compared to same type of technologies [4] [14]
or even the 40 nm CMOS (Complementary Metal Oxide
Semiconductor) [16], it presents a good gain to meet the
targeted detection objectives. More gain can be achieved by
increasing the drain voltage of the output stage or adding a
fourth transistor. This would increase the power consumption
and a little more the noise factor. The non-linear characteristics
of the designed LNA are much better than those of the m-
HEMT and CMOS technologies presented in Table III. For

22Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 30 / 38

TABLE III. PERFORMANCE COMPARISON

Ref. Technology Freq. (GHz) Gain (dB) NF (dB) IP1dB (dBm) IIP3 (dBm) PDC (mW) Area (mm2)

[2] 130 nm SiGe
BiCMOS* 57-66 20.5 4.3 -17,8 -11,1 9.8 0.41 x 0.32

[4]
50 nm GaAs
m-HEMT+ 60-90 27 2.6 -26 - 45 1.6 x 2.3

[14]
100 nm GaAs

m-HEMT+ 60-90 19 2.5 - - 56 3.5 x 1.0

[16] 40 nm CMOS+ 60 12.5 3.8 - -15 20.4 0.63 x 0.31
[17] 65 nm CMOS+ 60 23 4 -26 - 8 0.35 x 0.14
[18] 90 nm CMOS+ 58-77 11.2 4.8 -18.7 -7,4 10 0.72 x 0.76
[19] 65 nm CMOS+ 60 20.2 5.2 -25 - 28 0.54 x 0.80
[20] 65 nm LP CMOS* 61 22 5.5 - -10,7 26 0.71 x 0.46

This work 70 nm GaAs
m-HEMT* 60 14.3 2.1 -9.6 -4.8 13.5 1.47 x 1.0

+ Measures
∗ Simulations

-60 -50 -40 -30 -20 -10 0 10 20
-50

-40

-30

-20

-10

0

10

20

-15

-10

-5

0

5

10

15

20

Figure 10. Gain and 1 dB compression point

-60 -50 -40 -30 -20 -10 0 10
-80

-60

-40

-20

0

20

Figure 11. Three order intercept point (IP3)

example, its IP1dB is -9.6 dBm, while it is less than -18 dBm
for [4] [17]- [19]. It is the same for input three order intercept
point (IIP3). The LNA occupies less space (1.47 x 1.0 mm2)
compared to the 50 and 100 nm GaAs m-HEMT technologies
which occupy 2.3 x 1.6 mm2 and 3.5 x 1.0 mm2, respectively.

The performances thus obtained satisfy the specifications
established in Table I, and allow, with the multi-band system,
to detect up to 2.3 m the considered target (metallic cylinder

of radius r = 0.6 cm and height h = 5.4 cm) at normal
incidence, with a non-coherent integration. This represents an
improvement of 30% in range compared to the conventional
single-band detection system. In addition, by referring to [8],
the overall detection coverage is also improved.

VII. CONCLUSION

A 60 GHz LNA designed in 70 nm GaAs m-HEMT
technology was presented. The design was done with ADS
Keysight in D007IH technology from OMMIC. Inductive
degeneration of the source and inserting resistance in the bias
circuit was used to better scale the transistor with a good trade-
off between gain and noise, while ensuring unconditionnal
stability. Our design was compared to other recently published
milimeter-wave LNAs. Post-layout electromagnetic simulation
results with momentum microwave show good performance,
especially in terms of noise. With a noise factor of 2.1 dB at
60.2 GHz, our LNA is much better that those commonly found
in the state-of-the-art. For a moderate power consumption of
13.5 mW, which is relativeley low for III-V’s technologies,
it presents 14.3 dB of gain at 60.2 GHz. The reflection
coefficients of the designed LNA are less than -10 dB in
54-68 GHz. The input power at 1 dB compression point is
IP1dB = −9.6 dBm and the input third order intercept point
is IIP3 = −4.8 dBm. The results of the designed LNA show
the potential of III-V’s technologies, especially the 70 nm
GaAs m-HEMT for very low noise applications, particularly
to improve the performance of detection systems.

REFERENCES

[1] A. C. Ulusoy et al., “A SiGe D-Band Low-Noise Amplifier Utilizing
Gain-Boosting Technique,” IEEE Microwave and Wireless Components
Letters, vol. 25, no. 1, 2015, pp. 61–63.

[2] M. Pallesen, “Design of a 60 GHz Low Noise Amplifier in a 0.13 µm
SiGe BiCMOS Process,” Master’s thesis, The University of Bergen,
2016, URL: http://bora.uib.no/handle/1956/12595 [accessed: 2017-10-
24].

[3] A. Dyskin, D. Ritter, and I. Kallfass, “Ultra wideband cascaded low
noise amplifier implemented in 100-nm GaAs metamorphic-HEMT
technology,” in Proceedings of the International Symposium on Signals,
Systems, and Electronics (ISSSE) Oct. 3–5, 2012, Potsdam, Germany.
IEEE, Dec. 2012, pp. 1–4.

[4] P. M. Smith et al., “A 50 nm MHEMT millimeter-wave MMIC LNA
with wideband noise and gain performance,” in Proceedings of the
IEEE MTT-S International Microwave Symposium (IMS2014) June 1–
6, 2014, Tampa, FL, USA. IEEE, Jul. 2014, pp. 1–4.

23Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 31 / 38

[5] Y. Chen et al., “OMMIC 70 nm mHEMT LNA design,” in Proceedings
of the IEEE Asia Pacific Microwave Conference (APMC) Nov. 13–16,
2014, Kuala Lumpar, Malaysia. IEEE, Jan. 2018, pp. 1192–1195.

[6] D. K. Barton, Frequency Diversity Theory. Artech House Inc., 1977,
vol. 6 of Radars, section 2, pp. 35–114, in Frequency Agility and
Diversity, ISBN: 0-89006-067-3.

[7] P. S. Diao, T. Alves, B. Poussot, and M. Villegas, “A new method
and transceiver architecture dedicated to continuous detection of very
small metallic object,” in Proceedings of the 10th Global Symposium
on Millimeter-Waves (GSMM) May 24–26, 2017, Hong Kong, China.
IEEE, Jul. 2017, pp. 169–171.

[8] P. S. Diao, T. Alves, M. Villegas, and B. Poussot, “Compact millimeter
wave architecture dedicated to object detection using dual band-dual po-
larization and impulse method,” in Proceedings of the 13th Conference
on Ph.D. Research in Microelectronics and Electronics (PRIME) June
12–15, 2017, Giardini Naxos, Italy. IEEE, Jul. 2017, pp. 161–164.

[9] P. Surendran, J.-H. Lee, and S. J. Ko, Performance of Non-coherent
Detectors for Ultra Wide Band Short Range Radar in Automobile
Applications. Springer-Verlag Berlin Heidelberg, 2012, vol. 377,
pp. 185–195 in Software Engineering Research, Management and
Applications 2011, ISBN: 978-3-642-23201-5.

[10] M. I. Skolnik, The Radar Equation, 2nd ed. McGraw Hill, Inc., 1980,
chapter 2, pp. 15–67, in Introduction to Radar Systems, ISBN: 0-07-
057909-1.

[11] R. Abdaoui, M. Villegas, G. Baudoin, and A. Diet, “Microstrip band
pass filter bank for 60 GHz UWB impulse radio multi band archi-
tectures,” in Proceedings of the IEEE MTT-S International Microwave
Workshop Series on Millimeter Wave Integration Technologies Sept.
15–16, 2011, Sitges, Spain. IEEE, Oct. 2011, pp. 192–195.

[12] “SG13S Process Specification Rev. 1.06,” July 2016,
URL: https://www.ihp-microelectronics.com/en/services/mpw-
prototyping/sigec-bicmos-technologies.html [accessed: 2017-10-18].

[13] “D007IH Design Manual - OM-CI/008/MG,” Oct. 2017, URL:
http://www.ommic.fr/site/mpw-4r [accessed: 2018-07-20].

[14] A. Bessemoulin, J. Grunenputt, P. Felton, A. Tessmann, and E. Kohn,
“Coplanar W-band low noise amplifier MMIC using 100-nm gate-length
GaAs PHEMTs,” in Proceedings of the 34th European Microwave
Conference Oct. 12–14, 2004, Amsterdam, The Netherlands, vol. 1.
IEEE, 2005, pp. 25–28.

[15] S. P. Voinigescu et al., “A scalable high-frequency noise model for
bipolar transistors with application to optimal transistor sizing for low-
noise amplifier design,” IEEE Journal of Solid-State Circuits, vol. 32,
no. 9, 1997, pp. 1430–1439.

[16] H. Gao et al., “A 4861 GHz LNA in 40-nm CMOS with 3.6 dB
minimum NF employing a metal slotting method,” in Proceedings of
the IEEE Radio Frequency Integrated Circuits Symposium (RFIC) May
22–24, 2016, San Francisco, CA, USA. IEEE, Jul. 2016, pp. 154–157.

[17] E. Cohen, O. Degani, and D. Ritter, “A wideband gain-boosting 8 mW
LNA with 23 dB gain and 4 dB NF in 65 nm CMOS process for 60 GHz
applications,” in Proceedings of the IEEE Radio Frequency Integrated
Circuits Symposium June 17–19, 2012, Montreal, QC, Canada. IEEE,
Jul. 2012, pp. 207–210.

[18] Y.-S. Lin, C.-Y. Lee, and C.-C. Chen, “A 9.99 mW low-noise amplifier
for 60 GHz WPAN system and 77 GHz automobile radar system
in 90 nm CMOS,” in Proceedings of the IEEE Radio and Wireless
Symposium (RWS) Jan. 25–28, 2015, San Diego, CA, USA. IEEE,
2015, pp. 65–67.

[19] C. So and S. Hong, “60 GHz variable gain LNA with small NF
variation,” in Proceedings of the IEEE International Symposium on
Radio-Frequency Integration Technology (RFIT) 30 Aug.–1 Sept., 2017,
Seoul, South Korea. IEEE, Sep. 2017, pp. 171–173.

[20] A. Wang, L. Li, and T. Cui, “A transformer neutralization based 60
GHz LNA in 65 nm LP CMOS with 22 dB gain and 5.5 dB NF,”
in Proceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS2013) May 19–23, 2013, Beijing, China. IEEE, Aug.
2012, pp. 1111–1114.

24Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 32 / 38

A Convolutional Neural Network Accelerator for Power-Efficient Real-Time Vision Processing

Junghee Lee
School of Cybersecurity

Korea University, Seoul, Korea
Email: j_lee@korea.ac.kr

Chrysostomos Nicopoulos
Department of Electrical and Computer Engineering

University of Cyprus, Nicosia, Cyprus
Email: nicopoulos@ucy.ac.cy

Abstract—Deep Convolutional Neural Networks (CNN) constitute
a promising framework for many applications. Such networks
are often employed for vision processing algorithms, because
CNNs offer better accuracy than traditional signal processing
algorithms. However, it is challenging to apply high-accuracy deep
CNNs for real-time vision processing, because they require high
computational power and large data movement. Since general-
purpose processors do not efficiently support CNNs, various
hardware accelerators have been proposed. While it is required to
support all the layers of the CNN for real-time vision processing,
the large amount of weights (more than 100s of MB) limit the
speedup of hardware acceleration, because the performance is
largely bounded by memory access times. Recent CNN architec-
tures, such as SqueezeNet and GoogLeNet, address this problem
by employing narrow layers. However, their irregular architecture
necessitates a re-design of hardware accelerators. In this paper,
we propose a novel hardware accelerator for advanced CNNs
aimed at realizing real-time vision processing with high accuracy.

Keywords–Convolutional Neural Network; Hardware Accelera-
tor; Scheduling.

I. INTRODUCTION
As unmanned vehicles and robotics keep evolving, there

is a growing demand for power-efficient real-time vision
processing. While deep Convolutional Neural Networks (CNN)
offer high accuracy and are applicable to various vision
processing algorithms, they are very challenging to employ
for real-time vision processing, because of their high de-
mand on computation and data movement. Various types of
accelerators have been proposed based on Graphics Process-
ing Units (GPU) [1], Multiprocessor Systems-on-Chip (MP-
SoC) [2], reconfigurable architectures [3], Field-Programmable
Gate Arrays (FPGA) [4]–[6], in-memory computation [7], and
dedicated hardware acceleration through Application Specific
Integrated Circuits (ASIC) [8] [9].

A typical CNN architecture consists of a stack of con-
volutional and pooling layers, followed by classifier layers, as
shown in Figure 1(a). To realize real-time vision processing, all
layers of the CNN should run on an accelerator. Otherwise, the
data transfer time between the host and the accelerator cancels
out the acceleration in the computation itself. The challenge is
in the processing of the classifier layer, where all neurons are
fully connected. Award-winning high-accuracy CNNs (such as
AlexNet [10], which won the 2012 ImageNet contest) usually
require a huge number of weights (up to 100s of MB [7]) and
weights are not reused.

This challenge is being addressed by recent CNN architec-
tures. Two representative examples are SqueezeNet [11] and
GoogLeNet [12]. SqueezeNet offers comparable accuracy to
AlexNet, but it uses 510 times fewer weights. GoogLeNet
took the first place in the 2014 ILSVRC Classification contest.
GoogLeNet employs narrow layers to minimize the number
of weights, while offering high accuracy by using a large
number of such narrow layers (more than 100). As shown in
Figures 1(b) and (c), the SqueezeNet [11] and GoogLeNet [12]

architectures are not as regular as the traditional CNN archi-
tecture of Figure 1(a).

To realize real-time vision processing, all layers of the
CNN should run on the accelerator seamlessly. For example,
Eyeriss [13] [8] requires reconfiguration of the accelerator
for each layer. It takes 0.1 ms to configure one layer. If
there are 100 layers, it takes 10 ms only for reconfiguration.
ShiDianNao [9] addresses this by using hierarchical finite
state machines. However, it is not proven with large-scale
CNNs, such as SqueezeNet and GoogLeNet. Approaches using
GPUs and FPGAs can execute all layers of the CNN quickly,
but they consume an order of magnitude more power than
ASIC designs. DaDianNao [14] offers low latency for all
the layers of large-scale CNNs, but it consumes as much
power as an FPGA, which may not be suitable for power-
efficient vision processing. In general, an FPGA-based design
cannot simply be implemented in an ASIC to boost power
efficiency, due to the fundamental differences in the underlying
design principles. Since the FPGA is programmable, the design
can typically be customized to suit a particular CNN. This
customization is not feasible in an ASIC. To support advanced
CNNs like SqueezeNet and GoogLeNet in ASIC for real-time
vision processing, we need a flexible – yet power-efficient –
design that does not require run-time reconfiguration.

The proposed accelerator aims to achieve this goal by
employing data-driven scheduling and modular design. These
two key features constitute the novel contributions of this work,
since they enable the handling of advanced CNNs without the
need for reconfiguration. The operation and destination of a
Processing Element (PE) is determined at run-time upon re-
ceipt of data. The data is accompanied by metadata indicating
the meaning of the data. By interpreting the metadata, a PE
determines its schedule at run-time, which makes it easier to
handle irregular CNN architectures. To achieve scalability, a
modular design concept is employed with no shared resources
and global synchronization being assumed. Each PE can only
access its own local memory, and communicates only with its
neighbors. Modular design facilitates deep pipelining, which
enables further latency improvements by increasing the clock
frequency. As a result, it is demonstrated by experiments that
the proposed accelerator executes all layers of SqueezeNet
and GoogLeNet in 14.30 and 27.12 million cycles with 64
processing elements. Assuming a 1 GHz clock speed, these
latencies correspond to 14.30 ms and 27.12 ms, respectively,
which is comparable to high-performance FPGA-based ap-
proaches (range of 1.06 ms to 262.9 ms [5] [6]). It is
estimated that the proposed accelerator consumes 2.47 W and
2.51 W for SqueezeNet and GoogLeNet, respectively, which
may be higher than power-efficient ASIC-based approaches
(consuming 0.278 to 0.320 W [13] [9]), but it is significantly
lower than FPGA-based approaches (that consume 8 to 18.61
W [4]) and DaDianNao [14] (that consumes 15.97 W).

After discussing related works in Section II, we present

25Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 33 / 38

Conv

Max Pooling

Conv

Max Pooling

Conv

Max Pooling

Classifier

Classifier

Classifier

Input

Fire

Input

Conv

Max Pooling

Conv

Conv Conv

Concat

Fire

Conv

Conv Conv

Concat

Inception

Input

ConvConv ConvConv

Conv Max PoolingConv

Concat

Inception

ConvConv ConvConv

Conv Max PoolingConv

Concat

Max Pooling

(a) Traditional (b) SqueezeNet [11] (c) GoogLeNet [12]

Figure 1. Three different types of CNN architectures. The left one represents the traditional (generic) approach, while the other two represent two existing
state-of-the-art approaches.

the proposed accelerator in Section III, and the details of the
employed data-driven scheduling in Section IV. Section V
provides experimental results, and Section VI concludes the
paper.

II. BACKGROUND AND RELATED WORK
Research in neural networks has a long history. Over

the last several years, various types of approaches for the
acceleration of CNNs have been studied. There is a trade-
off between latency and power consumption among these
accelerators. The GPU approach achieves 0.19 ms latency at
227 W [1], while FPGAs offer a range of 1.06 ms to 262.9 ms
at 8 W to 18.61 W [4]–[6]. These values are measured under
AlexNet [10] or VGG-16 (Visual Geometry Group 16) [15].
On the contrary, dedicated hardware accelerators implemented
in ASIC target power-efficient implementations of small-scale
CNNs, or the convolutional layers of large-scale CNNs [9].
For example Eyeriss [8] executes the convolutional layers of
AlexNet [10] in 115.3 ms at 0.278 W [13].

Compared to two state-of-the-art CNN accelerators, the
proposed accelerator offers lower latency and better scalability
with the number of processing elements and clock frequency.
Compared to Eyeriss [8], the proposed accelerator offers sig-
nificantly lower latency through its modular design (that allows
for higher clock frequencies), weight prefetching (optimized
memory access patterns to Dynamic Random Access Memory
(DRAM)), and by using larger on-chip memory. Additionally,
the data-driven scheduling enables seamless execution of all
layers without reconfiguration. ShiDianNao [9] also supports
seamless execution of all layers, by storing all weights and
feature maps in on-chip memory. However, the ShiDianNao [9]
architecture was evaluated only with small-scale CNNs whose
weights and feature map sizes fit into on-chip memory. Fur-
thermore, both Eyeriss [8] and ShiDianNao [9] employ global
shared memory, which renders their scalability questionable.
In contrast, the modular design concept of the architecture
proposed in this work enables high clock frequencies through
pipelining. Even though the proposed accelerator requires more
hardware and memory space to accommodate its data-driven
scheduling and modular design, it is still significantly more
power-efficient than FPGA-based approaches.

III. OVERVIEW OF THE PROPOSED ACCELERATOR
A. Functional Requirements

The current implementation of the proposed accelerator
supports three types of layers, and four types of layer con-

Output
feature
maps

Input feature
maps of the
next layer

(a) Direct (b) Split (c) Fork (d) Concantenate

Figure 2. The 4 different types of layer connections supported by the
proposed CNN accelerator that can be used to implement various CNN

architectures.

nections. The four layers are: (1) convolutional layer, (2) max
pooling layer, and (3) average pooling layer. The classifier
layer can be implemented as a special case of the convolutional
layer. SqeezeNet and GoogLeNet still use the classifier layer,
even though it is not as big as those in traditional CNNs.

To support a traditional/generic CNN, only one type of
layer connection is enough, which is shown in Figure 2(a).
To support more advanced CNN architectures, the proposed
accelerator supports three other types of connections. The
feature maps of a layer can be split and sent to different layers,
as shown in Figure 2(b), and all feature maps can be sent to
multiple layers, as shown in Figure 2(c). Finally, output feature
maps of different layers can be concatenated as input feature
maps of a layer, as shown in Figure 2(d).

The data-driven scheduling and modular design make it
easy to support various types of layers and connections. Since
the abovementioned three layers and four connections are
enough to support SqueezeNet and GoogLeNet, the proposed
accelerator only implements these for now, but it can be easily
extended to cover other types of layers and connections. It
is also possible to use heterogeneous PEs. These extension
possibilities – and more – of the accelerator will be explored
in our future work.

B. Architecture
For real-time vision processing, the speed of the feed-

forward process is more important than that of the backward
process, because the backward process is usually performed
off-line during training. Thus, the proposed accelerator is
focused on accelerating the feed-forward process.

Figure 3 illustrates the architecture of the proposed acceler-
ator and presents the high-level details of one PE module. We
assume that the accelerator is implemented as a separate chip.
It receives inputs from and sends outputs to the host through

26Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 34 / 38

TABLE I. CONFIGURATION OF A LAYER TO BE STORED IN
CONFIGURATION MEMORY.

Parameter Description
R Number of rows of an output feature map
C Number of columns of an output feature map
M Number of output feature maps
N Number of input feature maps
K Filter size
S Stride
O Number of next layers connected with this layer
Tn The layer number of n− th connected layer

F start
n Start feature map number of the n− th connected layer
F end

n End feature map number of the n− th connected layer
F shift

n Feature map number shift of the n− th connected layer

a standard bus interface. It has its own main memory (e.g.,
DRAM), which is used to store weights.

The proposed accelerator consists of a number of PEs. All
PEs are the same, but one of them is designated as an interface
PE, which interacts with the host and memory. The PEs are
connected by 1D rings. Two rings are used for data (activation)
transfer, and the third ring is used for weight prefetching.

A PE consists of a communication interface, matching
logic, functional units (multiplier and adder), an output Finite
State Machine (FSM), and local memories for weights and
feature maps. The matching logic determines whether the
incoming activation is assigned to the PE or not. The matching
logic makes a decision based on the mapping information,
which is presented in the next section (subsection IV-A). If
the incoming activation is accepted, it is pushed to a queue
and processed by the functional unit. If the queue is full,
the incoming activation cannot be accepted, even though it is
destined to this PE. By interpreting the metadata accompanied
by the activation, the corresponding functional unit is triggered.
The result is stored in the local feature map memory, and
transferred to other PEs when the computation is done.

IV. DATA-DRIVEN SCHEDULING
The heart of the proposed accelerator and its key nov-

elty is data-driven scheduling. It enables the execution of
advanced CNN architectures without reconfiguration. Each PE
determines whether to accept an activation and the subsequent
schedule of operations, based on metadata and the CNN’s
configuration. The metadata is accompanied by the activation
coming from the interconnection network. The CNN config-
uration is transferred from the host through the interface PE,
and stored in the local configuration memory.

Figure 4 shows examples of the metadata. The format of
the metadata depends on the type of data. For example, for
activations, the metadata includes the layer, feature map, and
the position (row and column) of the activation. The position
of an activation in the input feature map is denoted as y and
x, that of a neuron in the output feature map is denoted as
row and col, and that of a weight in a filter is denoted as i
and j throughout this paper.

The configuration of layers is broadcasted to all PEs at
initialization time, and it is stored in the local configuration
memory of each PE. The configuration of one layer is shown
in Table I.

The parameters R,C,M,N,K, and S are basic parameters
of the CNN. Specifically, O and F are used to specify the
connection, while F start and F end are used to support splits,
and F shift is used to support concatenation. For example, if
a layer has 64 output feature maps, and 32 of them are sent

to layer 1, and the remaining 32 are sent to layer 2, then
O=2, T0=1, F start

0 =0, F end
0 =31, F shift

0 =0, T1=2, F start
1 =32,

F end
1 =63, and F shift

1 =-32. In this case, F shift
1 is used to

convert the feature map numbers 32–63 of the current layer to
the feature map numbers 0–31 of the next layer. In a similar
way, when feature maps of multiple layers are concatenated,
the feature map numbers can be adjusted to become linear, by
using the F shift parameter.

A. Mapping
In the proposed accelerator architecture, the granularity of

mapping is a feature map. A PE processes all neurons in its
assigned feature maps. In this way, we can avoid the sharing
of weights among PEs, which facilitates modular design. In
other words, if a PE processes all the neurons of its assigned
feature maps, it can store their weights in its local memory
and other PEs do not need to access them.

Feature maps are assigned as a combination of input and
output feature maps. As a toy example, let us suppose a layer
has 2 input feature maps (ifm0 and ifm1), and 2 output
feature maps (ofm0 and ofm1). If there are 2 PEs, one
PE is assigned to ifm0-ofm0 and ifm1-ofm0, and the
other PE is assigned to ifm0-ofm1 and ifm1-ofm1. In
other words, each PE processes all input feature maps of its
assigned output feature map. If there are 4 PEs, feature maps
are spread out as PE0 to ifm0-ofm0, PE1 to ifm1-ofm0,
PE2 to ifm0-ofm1, and PE3 to ifm1-ofm1. PE0 and PE1
produce partial sums of neurons for ofm0, and one of them
must accumulate them. In the proposed accelerator, the PE
processing the last input feature map of an output feature map
is responsible to collect the partial sums from other PEs that are
assigned to the same output feature map. In our toy example,
PE0 should send its partial sums to PE1, so that PE1 can
collect them and generate the final ofm0, while PE2 should
send its partial sums to PE3, so that PE3 can generate the final
ofm1.

To generalize this concept, we compute a feature map
index for each combination of input and output feature maps,
and a range of indices is assigned to PEs. The feature map
index is computed as index = ifm + ofm × M, where
ifm denotes the input feature map number, ofm is the output
feature map number, and M is the total number of input feature
maps. In the above toy example, the index of ifm0-ofm0 is
0, ifm1-ofm0 is 1, ifm0-ofm1 is 2, and ifm1-ofm1 is
3. If there are 2 PEs, PE0 is assigned to the range of indices
from 0 to 1, and PE1 to indices from 2 to 3. If there are 3
PEs, PE0 is assigned to 0 and 1, PE1 to 2, and PE2 to 3.
Thus, feature maps are not evenly distributed. If there are 4
PEs, each PE is assigned to each index.

The matching logic accepts an incoming activation, if its
feature map falls within the range of the assigned indices.
Recall that an activation is accompanied by metadata that
includes the input feature map number, as shown in Figure 4.
The pseudo code in Figure 5 shows how to determine if an acti-
vation, whose index is ifm, should be accepted or not, given a
range of indices from index_start to index_end. Again,
M indicates the total number of input feature maps.

Even if the activation is accepted, it should be forwarded
to the next PE, because it may be used by the next PE.
In fact, if there is a high enough number of output feature
maps, as compared to the number of PEs, all PEs would
need all input feature maps. Coming back to the toy example,

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 35 / 38

Host

Memory

CNN
Accelerator

Memory Int
PE PE PE PE

PEPE PEPE

PEPE PEPE

Matching
Logic

Scheduler

Queues

Weight
Memory

Feature Map
Memory

CNN Accelerator
PE (Processing Element)

Host

Memory

Config
Memory

*

+

Figure 3. The architecture of the proposed accelerator and a high-level overview of one processing element. Note that the memory connected to the CNN
accelerator on the leftmost diagram is connected only to the interface PE, i.e. it is not a shared memory. The pseudo codes of the ‘Matching Logic’ and the

‘Scheduler’ modules are presented, respectively, in Figure 5 and Figure 7.

data

data

type

type

Weight layer

Activation layer

Metadata

ec

ec

ifm ofm i j

ifm y x count

Figure 4. Examples of message formats, including the pertinent metadata.
[ec: Escape channel; ifm: Input feature map number; ofm: Output feature

map number.]

ofm_start =
index_start % M <= ifm ?
index_start / M : index_start / M + 1;

ofm_end =
ifm <= index_end % M ?
index_end / M : index_end / M - 1;

if(ofm_end >= ofm_start)
activation accepted;

Figure 5. The pseudo code of the matching logic. The code determines if an
activation should be accepted or not.

let us suppose there are 2 PEs. PE0 processes ifm0-ofm0
and ifm1-ofm0, while PE1 processes ifm0-ofm1 and
ifm1-ofm1. Thus, both PE0 and PE1 need all input feature
maps (ifm0 and ifm1). Therefore, we designed the accel-
erator in such a way that activations are broadcast, and PEs
determine if they are to be accepted. This is in contrast to
sending activations to specific target destinations.

Due to resource constraints, an activation may not be
accepted, even if it is destined to the particular PE. Because of
this, we need to maintain two types of counters. One counter
is to determine when the activation should be removed from
the network. When the activation is injected into the network,
the total number of output feature maps is attached to the
metadata. Whenever a PE accepts the activation, it decrements
this counter by the number of assigned output feature maps and
forwards it to the next PE. When this counter reaches zero, it
is no longer forwarded (i.e., it is removed from the network).

The other type of counter is for determining if the activation
has already been accepted, or not. Because a ring is used as
a communication fabric in the proposed accelerator, the same
activation may arrive at the PE more than once, if it is not
removed from the network. To check for this, a PE maintains
a counter for each input feature map of a layer. The activations
of an input feature map are accepted in a pre-determined order.
In our implementation, all columns of a row are accepted in an
increasing order of their column index, and those of the next
rows are accepted in the same way. The counter counts how
many activations of the input feature map have been accepted.
Since activations are accepted in a specific order, if a PE
knows how many have been accepted, the PE can determine

Input FM Output FM

Figure 6. Illustration of how an activation is used for multiple filters.

what should come next. The activation is accepted only if the
incoming activation is what the PE is expecting. In this way,
the PE avoids accepting the same activation more than once.

In case of the max and average pooling layers, the number
of input and output feature maps is always the same. An output
feature map only needs one corresponding input feature map.
Thus, those PEs that generate the final output feature map
of the previous layer (which is the input feature map of the
pooling layer) are assigned to process the corresponding output
feature map of the pooling layer. In this way, we can eliminate
unnecessary activation transfers.

B. Scheduling
Once an activation is accepted, all operations that need

the activation are scheduled. To compute a neuron, its neigh-
boring activations are required. The exact number of required
activations depends on the size of a filter. In other words, an
activation should be used by multiple filters.

Figure 6 shows an example. Let us suppose the filter size
is 2 by 2 and the stride is 1. To compute a neuron at (1,1) of
an output feature map, we need activations (neurons of input
feature map) at (1,1), (1,2), (2,1), and (2,2). Similarly, neurons
at (1,2), (2,1), and (2,2) of the output feature map need the
same activation at (2,2) of the input feature map. If multiple
output feature maps are assigned to the PE, neurons in other
feature maps also need the incoming activation.

The pseudo code in Figure 7 shows how Multiply-And-
Accumulate (MAC) operations are scheduled for an incoming
activation. The ofm_start and ofm_end parameters are
computed as shown in Figure 5. As shown in Figure 4, the
position of the activation is given by y and x. The same mech-
anism is used for pooling layers. Instead of MAC operations,
comparison (max pooling) or accumulation (average pooling)
operations are scheduled.

The pseudo code is implemented as an FSM in the func-
tional units. The FSM pops an activation from the queue lo-
cated in-between the functional units and the matching logic in
Figure 3. Once the FSM finishes all the scheduled operations,
it pops the next activation from the queue. A functional unit

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 36 / 38

for(ofm=ofm_start; ofm<=ofm_end; ofm++)
for(row=MIN(y/S, R-1); row>(y-K)/S && row>=0; row--)
for(col=MIN(x/S, C-1); col>(x-K)/S && col>=0; col--) {
i = y-row*S;
j = x-col*S;
feature_map[layer][ofm][row][col] +=
weights[ofm][ifm][i][j] *
activation

}

Figure 7. The schedule of operations when an activation is accepted. [R:
Number of rows of the output feature map; C: Number of columns of the

output feature map; K: Filter size; S: Stride. All of the R, C, K, and S are of
the current layer.]

TABLE II. THE DEFAULT SIMULATION PARAMETERS USED IN ALL
EXPERIMENTS.

Parameter SqueezeNet GoogLeNet
Number of PEs 64
Average memory access cycle 1
Pipeline stages of communication channel 1
Pipeline stages of functional units 1
Queue depth 16
Number of rings 3
Configuration memory size 0.021 MB 0.092 MB
Weight memory size 1.289 MB 4.119 MB
Feature map memory size 9.132 MB 3.333 MB
Bit width of one activation ring 68 71
Bit width of the weight ring 58 61
Number of escape channels 10 46

accesses the weight memory and the feature map memory to
perform its operation, and the result is stored in the feature
map memory. To determine if accumulation is finished for one
neuron, a counter is maintained for every neuron in the output
feature map. The counter is stored in the feature map memory.
The overhead of the memory will be discussed in Section V.

V. EVALUATION

A. Experimental Setup
We developed a cycle-level in-house simulator using Sys-

temC [16]. The default simulation parameters are shown in
Table II.

The proposed accelerator can take full advantage of the
DRAM bandwidth, because the access pattern is always se-
quential. All feature maps are stored in the on-chip memory by
adopting a sliding window technique, and the external DRAM
is used only for weights. Since weights are prefetched in the
order of layers, there is no need for random accesses to DRAM.
Assuming the proposed accelerator runs at 1 GHz, then a
2 GB/s throughput is required to fetch one weight (16 bits)
per cycle. According to the DDR4 standard, the maximum
throughput can be up to 25.6 GB/s. Therefore, the DRAM
throughput is high enough to easily supply one weight every
cycle.

B. Performance Analysis
Table III shows the number of cycles required to execute all

layers of SqueezeNet and GoogLeNet. Under the assumption
that the proposed accelerator runs at 1 GHz (since ShiDian-
Nao [9] also runs at 1 GHz), these results correspond to 14.30
ms and 27.12 ms for SqueezeNet and GoogLeNet, respectively.

Even though a direct comparison may not be meaningful
due to fundamental differences in the design goals (low power
vs. low latency) and benchmark (different CNNs), Eyeriss [13]
is reported to execute the convolutional layers of AlexNet in
115.3 ms, and the convolutional layers of VGG-16 in 4309.5
ms. While a GPU executes all layers of these CNNs in 0.19

TABLE III. NUMBER OF CYCLES REQUIRED TO EXECUTE ALL LAYERS OF
THE CNN.

CNN Number of cycles Execution time∗

SqeezeNet [11] 14,303,612 14.30 ms
GoogLeNet [12] 27,122,439 27.12 ms

* 1 GHz clock frequency is assumed.

TABLE IV. THE MAXIMUM SUPPORTED VALUES OF THE VARIOUS CNN
CONFIGURATION PARAMETERS.

Parameter Meaning SqueezeNet GoogLeNet
R Rows 224 224
C Columns 224 224
M Input feature maps 1000 1000
N Output feature maps 1000 1000
K Filter size 7 7
S Stride 2 2
O Connections of a layer 2 4
Tn Next layer 33 106

F start
n Start feature map 1000 1000
F end

n End feature map 1000 1000
F shift

n Feature map shift 1000 1000
Total number of layers 33 106

Total number of connections 40 204

ms, FPGAs require 1.06 ms to 262.9 ms [1] [4]–[6]. The
performance of the proposed accelerator is comparable to
FPGA-based techniques. DaDianNao [14] offers even lower
latency, but its power consumption is comparable to FPGA-
based techniques. This is because it targets high-performance
implementations supporting all the layers of large-scale CNNs
and both the forward and backward processing steps.

It should also be noted that the proposed accelerator offers
flexibility in that it can support SqueezeNet and GoogLeNet
without run-time reconfiguration. Since SqueezeNet and
GoogLeNet offer comparable accuracy with AlexNet and
VGG-16, we believe they are good alternatives for power-
efficient real-time vision processing.

On the other hand, ShiDianNao [9] reports 0.047 ms to
execute all layers of ConvNN [17]. However, ConvNN is much
smaller. For example, GoogLeNet requires 1502 million MAC
operations, whereas ConvNN only needs 0.6 million. While it
demonstrates an efficient implementation of small-scale CNNs,
it is not proven with large-scale CNNs for high-accuracy vision
processing algorithms.

C. Cost Analysis
To compute the minimum required memory size and the

minimum required bit-width for the rings, it is essential to
assess the maximum supported values of the parameters of the
CNN configurations under investigation. These parameters are
summarized in Table IV. The total number of layers used for
the proposed accelerator is different from the number assumed
in the original implementations of the CNN architectures.
We slightly changed the architecture – in a mathematically
equivalent manner – to better fit the underlying architecture of
the accelerator. Specifically, instead of introducing an explicit
concatenation layer, the output feature maps are directly con-
nected to the next layer to reduce the memory requirement.
Thus, if a pooling layer is followed by a concatenation layer,
the pooling layer has to be split into the previous layers,
because pooling layers are processed by the same PE where
the output feature map is generated.

In the configuration memory, the basic parameters
(R,C,M,N,K, S, and O) are stored for each layer and the
connection parameters (T , F start, F end, and F shift) are

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

 37 / 38

TABLE V. THE MINIMUM REQUIRED MEMORY SIZES UNDER TWO
DIFFERENT NUMBER REPRESENTATIONS.

Memory SqueezeNet GoogLeNet
16 bits 6 bits 16 bits 6 bits

Weight memory 1.289 MB 0.483 MB 4.119 MB 1.544 MB
Feature-map memory 9.132 MB 5.619 MB 3.333 MB 2.051 MB

stored for each connection. The total number of bits to required
to store all of these is 2,793 and 12,106 for SqueezeNet and
GoogLeNet, respectively. Since all PEs need to store them, the
sum of the configuration memory size of all PEs is 0.021 MB
and 0.092 MB for SqueezeNet and GoogLeNet, respectively,
as shown in Table II.

The minimum size of the weight and feature-map memories
varies for different PEs, depending on the feature map assign-
ment. For regularity, we used the same memory size across all
PEs. The proposed accelerator does not depend on the type
of number representation. All analysis results shown so far is
based on 16-bit fixed-point representation, which is the most
popular setup in previous efforts. If, instead, we adopt 6-bit
representation [18], the memory size can be further reduced.
Table V shows both cases.

Obviously, the memory size required for the proposed
accelerator is significantly larger than that of existing ac-
celerators. This is because the design goal of the proposed
accelerator is to minimize latency as much as possible at a
reasonable hardware cost. Considering the fact that recent Intel
processors employ 8 MB of L3 cache and multiple 256 KB
L2 and 32 KB L1 caches and DaDianNao [14] has a 36 MB
embedded on-chip DRAM, we believe that 10 MB of on-chip
memory is affordable for a stand-alone hardware-based CNN
accelerator.

D. Power Estimation
It is estimated that the power consumption of the proposed

accelerator is similar to ShiDianNao [9], which consumes
320.10 mW (except for the memory power, which will be
discussed shortly), assuming an operating frequency of 1 GHz.
Both designs run at the same clock frequency, employ the same
number of PEs (64), and use the same types of functional units
(multipliers and adders). The overhead of the control logic
would obviously be different, but according to the analysis in
Eyeriss [13], the power consumption of the control logic cor-
responds to only 9.5% to 10.0% of the total power budget. In
general, the biggest consumer of power is the on-chip memory.
Since the proposed accelerator employs a significantly larger
memory, it consumes more power than ShiDianNao, which has
a 288 KB on-chip memory. By using the per-access energy
model of CACTI [19] and the number of memory accesses
obtained through simulation, the power consumption of both
the on-chip memory and DRAM can be estimated. Including
the power consumption of the other components reported by
ShiDianNao, the total power consumption (including DRAM
accesses) of the proposed accelerator is estimated as 2.47 W
and 2.51 W for SqueezeNet and GoogLeNet, respectively.
Despite the fact that these numbers are based solely on esti-
mation, it is clear that the power consumption of the proposed
accelerator is significantly lower than FPGA-based approaches
(that consume 8 to 18.61 W) and DaDianNao’s 15.97 W [14].

VI. CONCLUSIONS
This paper proposes a novel hardware-based accelerator

for deep CNNs used to realize power-efficient real-time vision

processing. This attribute is enabled by modular design, opti-
mized memory access patterns due to weight prefetching, and
larger on-chip memory. More importantly, the new accelerator
can execute all layers of SqueezeNet and GoogLeNet in 14.30
ms and 27.12 ms, respectively, which are comparable to high-
performance FPGA-based approaches, but with significantly
lower power consumption at 2.47 W and 2.51 W, respectively.
The use of data-driven scheduling can seamlessly support
advanced CNN architectures without any reconfiguration.

REFERENCES
[1] nVIDIA, “Tesla m4 gpu accelerator,” 2016.
[2] C. Wang et al., “Cnn-based object detection solutions for embedded

heterogeneous multicore socs,” in 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC), Jan 2017, pp. 105–110.

[3] S. Cadambi, A. Majumdar, M. Becchi, S. Chakradhar, and H. P. Graf,
“A programmable parallel accelerator for learning and classification,”
in 2010 19th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Sept 2010, pp. 273–283.

[4] J. Qiu et al., “Going deeper with embedded fpga platform for con-
volutional neural network,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’16. New York, NY, USA: ACM, 2016, pp. 26–35.

[5] X. Wei et al., “Automated systolic array architecture synthesis for
high throughput cnn inference on fpgas,” in ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2017, pp. 1–6.

[6] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu, “An
opencl™deep learning accelerator on arria 10,” in Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. New York, NY, USA: ACM, 2017, pp. 55–64.

[7] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS:
scalable and efficient neural network acceleration with 3d memory,” in
Proceedings of International Conference on Architectural Support for
Programming Languages and Operating Systems, 2017, pp. 751–764.

[8] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” in
Proceedings of the 43rd International Symposium on Computer Ar-
chitecture, 2016, pp. 367–379.

[9] Z. Du et al., “ShiDianNao: shifting vision processing closer to the
sensor,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), June 2015, pp. 92–104.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, 2012, pp. 1097–1105.

[11] F. N. Iandola et al., “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.

[12] C. Szegedy et al., “Going deeper with convolutions,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2015, pp. 1–9.

[13] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, Jan 2017,
pp. 127–138.

[14] Y. Chen et al., “Dadiannao: A machine-learning supercomputer,” in
2014 47th Annual IEEE/ACM International Symposium on Microar-
chitecture, Dec 2014, pp. 609–622.

[15] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[16] Accellera, “Systemc 2.3.3,” November 2018.
[17] M. Delakis and C. Garcia, “Text detection with convolutional neural

networks,” in International Conference on Computer Vision Theory and
Applications, 2008, pp. 290–294.

[18] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neu-
ral networks using logarithmic data representation,” CoRR, vol.
abs/1603.01025, 2016.

[19] S. J. E. Wilton and N. P. Jouppi, “Cacti: an enhanced cache access and
cycle time model,” IEEE Journal of Solid-State Circuits, vol. 31, no. 5,
May 1996, pp. 677–688.

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-748-1

CENICS 2019 : The Twelfth International Conference on Advances in Circuits, Electronics and Micro-electronics

Powered by TCPDF (www.tcpdf.org)

 38 / 38

http://www.tcpdf.org

