
DEPEND 2016

The Ninth International Conference on Dependability

ISBN: 978-1-61208-492-3

July 24 - 28, 2016

Nice, France

DEPEND 2016 Editors

Elena Troubitsyna, Abo Akademi University, Finland

Pascal Lorenz, University of Haute Alsace, France

 1 / 37

DEPEND 2016

Forward

The Ninth International Conference on Dependability (DEPEND 2016), held between July
24-28, 2016 in Nice, France, provided a forum for detailed exchange of ideas, techniques, and
experiences with the goal of understanding the academia and the industry trends related to the
new challenges in dependability on critical and complex information systems.

With large scale and complex systems, their parts expose different static and dynamic
features that interact with each others; some systems are more stabile than others, some are
more scalable, while others exhibit accurate feedback loops, or are more reliable or fault-
tolerant.

Inter-system dependability and intra-system feature dependability require more
attention from both theoretical and practical aspects, such as a more formal specification of
operational and non-operational requirements, specification of synchronization mechanisms, or
dependency exception handing.

We take here the opportunity to warmly thank all the members of the DEPEND 2016
technical program committee, as well as the reviewers. We also kindly thank all the authors
that dedicated much of their time and effort to contribute to DEPEND 2016.

We also gratefully thank the members of the DEPEND 2016 organizing committee for their
help in handling the logistics and for their work that made this professional meeting a success.

We hope DEPEND 2016 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the area of
dependability. We also hope that Nice, France provided a pleasant environment during the
conference and everyone saved some time enjoy the beautiful French Riviera.

DEPEND 2016 Advisory Committee

Sergio Pozo Hidalgo, University of Seville, Spain
Manuel Gil Perez, University of Murcia, Spain
Vincenzo De Florio, MOSAIC/Universiteit Antwerpen & MOSAIC/iMinds, Belgium

DEPEND 2016 Industry Liaison Chairs

Piyi Yang, Wonders Information Co., Ltd., China
Timothy Tsai, Hitachi Global Storage Technologies, USA

DEPEND 2016 Research/Industry Chair

Michiaki Tatsubori, IBM Research Tokyo, Japan

DEPEND 2016 Special Area Chairs

 2 / 37

Cross-layers dependability
Szu-Chi Wang, National Ilan University, Taiwan
Big Data and dependability
Cesario Di Sarno, University of Naples Parthenope, Italy
Empirical assessments
Marcello Cinque, University of Naples Federico II, Italy
Security and Trust
Syed Naqvi, Birmingham City University, United Kingdom

 3 / 37

DEPEND 2016

Committee

DEPEND Advisory Committee

Sergio Pozo Hidalgo, University of Seville, Spain
Manuel Gil Perez, University of Murcia, Spain
Vincenzo De Florio, MOSAIC/Universiteit Antwerpen & MOSAIC/iMinds, Belgium

DEPEND 2016 Industry Liaison Chairs

Piyi Yang, Wonders Information Co., Ltd., China
Timothy Tsai, Hitachi Global Storage Technologies, USA

DEPEND 2016 Research/Industry Chair

Michiaki Tatsubori, IBM Research Tokyo, Japan

DEPEND 2016 Special Area Chairs

Cross-layers dependability
Szu-Chi Wang, National Ilan University, Taiwan

Big Data and dependability
Cesario Di Sarno, University of Naples Parthenope, Italy

Empirical assessments
Marcello Cinque, University of Naples Federico II, Italy

Security and Trust
Syed Naqvi, Birmingham City University, United Kingdom

DEPEND 2016 Technical Program Committee

Habtamu Abie, Norwegian Computing Centre, Norway
Don Adjeroh, West Virginia University, USA
Muhammad Afzaal, Lahore Leads University, Pakistan
Joxe Inaxio Aizpurua Unanue, University of Strathclyde, UK
Eduardo Alchieri, University of Brasília, Brazil
Murali Annavaram, University of Southern California, USA
Luciana Arantes, Université Pierre et Marie Curie (Paris 6), France
Afonso Araújo Neto, University of Coimbra, Portugal
José Enrique Armendáriz-Iñigo, Universidad Pública de Navarra, Spain
Radu F. Babiceanu, Embry-Riddle Aeronautical University, USA

 4 / 37

Ian Bayley, Oxford Brookes University, U.K.
Siegfried Benkner, University of Vienna, Austria
Jorge Bernal Bernabé, University of Murcia, Spain
James Brandt, Sandia National Laboratories, U.S.A.
Andrey Brito, Universidade Federal de Campina Grande, Brazil
Lasaro Camargos, Federal University of Uberlândia, Brazil
Juan Carlos Ruiz, Universidad Politécnica de Valencia, Spain
Antonio Casimiro Costa, University of Lisbon, Portugal
Andrea Ceccarelli, University of Firenze, Italy
Sudip Chakraborty, Valdosta State University, USA
Binbin Chen, Advanced Digital Sciences Center, Singapore
Albert M. K. Cheng, University of Houston, USA
Marcello Cinque, University of Naples Federico II, Italy
Peter Clarke, Florida International University, U.S.A.
Luigi Coppolino, Università degli Studi di Napoli "Parthenope", Italy
Domenico Cotroneo, Università di Napoli Federico II, Italy
David de Andrés Martínez, Universitat Politècnica de València, Spain
Rubén de Juan-Marín, Instituto Tecnológico de Informática, Spain
Vincenzo De Florio, University of Antwerp, Belgium & IBBT, Belgium
Raffaele Della Corte, "Federico II" University of Naples, Italy
Ewen Denney, SGT/NASA Ames, U.S.A.
Catello Di Martino, University of Illinois at Urbana-Champaign, U.S.A.
Cesario Di Sarno, University of Naples Parthenope, Italy
Tadashi Dohi, Hiroshima University, Japan
Nicola Dragoni, Technical University of Denmark - Lyngby, Denmark
Diana El Rabih, Université Paris 12, France
Cain Evans, Birmingham City University, UK
Camille Fayollas, Université Toulouse, France
Francesco Flammini, Ansaldo STS, Italy
Franco Frattolillo, University of Sannio, Italy
Gregory Frazier, Apogee Research, U.S.A.
Jicheng Fu, University of Central Oklahoma, U.S.A.
Cristina Gacek, City University London, United Kingdom
Joaquin Gracia Moran, Institute ITACA - Universitat Politecnica de Valencia, Spain
Marisol García Valls, University Carlos III de Madrid, Spain
Alessia Garofalo, COSIRE Group, Aversa, Italy
Ann Gentile, Sandia National Laboratories, U.S.A.
Manuel Gil Perez, University of Murcia, Spain
Michael Goldsmith, University of Oxford, UK
Patrick John Graydon, NASA, USA
Michael Grottke, University of Erlangen-Nuremberg, Germany
Nils Gruschka, University of Applied Science - Kiel, Germany
Ibrahim Habli, University of York, U.K.
Houcine Hassan, Universitat Politecnica de Valencia, Spain
Bjarne E. Helvik, The Norwegian University of Science and Technology (NTNU) - Trondheim, Norway
Luke Herbert, Technical University of Denmark, Denmark
Pao-Ann Hsiung, National Chung Cheng University, Taiwan
Jiankun Hu, Australian Defence Force Academy - Canberra, Australia

 5 / 37

Neminath Hubballi, Infosys Lab Bangalore, India
Bukhary Ikhwan Ismail, MIMOS Berhad, Malaysia
Ravishankar K. Iyer, University of Illinois at Urbana-Champaign, U.S.A.
Arshad Jhumka, University of Warwick - Coventry, UK
Shouling Ji, Georgia Institute of Technology, USA
Zhanpeng Jin, State University of New York at Binghamton, U.S.A.
Yoshiaki Kakuda, Hiroshima City University, Japan
Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, U.S.A.
Hui Kang, Stony Brook University, USA
Aleksandra Karimaa, Turku University/TUCS and Teleste Corporation, Finland
Sokratis K. Katsikas, Center for Cyber and Information Security - Gjøvik University College, Norway
Dong-Seong Kim, University of Canterbury, New Zealand
Ezzat Kirmani, St. Cloud State University, USA
Seah Boon Keong, MIMOS Berhad, Malaysia
Kenji Kono, Keio University, Japan
Israel Koren, University of Massachusetts - Amherst, USA
Mani Krishna, University of Massachusetts - Amherst, USA
Mikel Larrea, University of the Basque Country UPV/EHU, Spain
Inhwan Lee, Hanyang University - Seoul, Korea
Matthew Leeke, University of Warwick, UK
Jane W. S. Liu, Academia Sinica, Taiwan
Yun Liu, Boeing Company, USA
Xuanwen Luo, Sandvik Mining, USA
Miroslaw Malek, Humboldt-Universitaet zu Berlin, Germany
Amel Mammar, Mines Telecom/ Telecom SudParis, France
Antonio Mana Gomez, University of Malaga, Spain
Mohammad Mannan, Concordia University, Canada
Gregorio Martinez, University of Murcia, Spain
Célia Martinie, Université Toulouse 3, France
Rivalino Matias Jr., Federal University of Uberlandia, Brazil
Yutaka Matsuno, Nagoya University, Japan
Manuel Mazzara, Innopolis University, Russia
Per Håkon Meland, SINTEF ICT, Norway
Carlos Julian Menezes Araujo, Federal University of Pernambuco, Brazil
Hugo Miranda, University of Lisbon, Portugal
Shivakant Mishra, University of Colorado at Boulder, USA
Costas Mourlas, National and Kapodistrian University of Athens, Greece
Francesc D. Muñoz-Escoí, Universitat Politècnica de València, Spain
Jogesh K. Muppala, The Hong Kong University of Science and Technology, Hong Kong
Jun Na, Northeastern University, China
Syed Naqvi, Birmingham City University, United Kingdom
Sarmistha Neogy, Jadavpur University, India
Mats Neovius, Åbo Akademi University - Turku, Finland
Dimitris Nikolos, University of Patras, Greece
Satoru Ohta, Toyama Prefectural University, Japan
Hong Ong, MIMOS Bhd, Malaysia
Frank Ortmeier, Otto-von-Guericke-Universität Magdeburg, Germany
Roberto Palmieri, Virginia Tech, USA

 6 / 37

Andreas Pashalidis, Katholieke Universiteit Leuven - iMinds, Belgium
Antonio Pecchia, Federico II University of Naples, Italy
Giancarlo Pellegrino, Saarland University, Germany
Ronald Petrlic, Saarland University, Germany
Alfredo Pironti, INRIA Paris Rocquencourt, France
Peter T. Popov, City University London, UK
Wolfgang Pree, University of Salzburg, Austria
Chi-Man Pun, University of Macau, Macau S.A.R., China
Feng Qin, Ohio State University, USA
Ruben Rios, University of Málaga, Spain
Luigi Romano, University of Naples Parthenope, Italy
Francesca Saglietti, University of Erlangen-Nuremberg, Germany
Dimitri Scheftelowitsch, TU Dortmund University, Germany
Hans-Peter Schwefel, FTW Forschungszentrum Telekommunikation Wien GmbH, Austria / Aalborg
University, Denmark
Sahra Sedighsarvestani, Missouri University of Science and Technology, U.S.A.
Jean-Pierre Seifert, Technische Universität Berlin & Telekom Innovation Laboratories, Germany
Bruno Sericola, INRIA, France
Dimitrios Serpanos, University of Patras & ISI, Greece
Muhammad Shafique, Karlsruhe Institute of Technology (KIT), Germany
Kuei-Ping Shih, Tamkang University, Taiwan
Francois Siewe, De Montfort University, UK
Navjot Singh, Avaya Labs Research, USA
Sean Smith, Dartmouth College, USA
Arun Somani, Iowa State University, USA
Alessandro Sorniotti, IBM research - Zurich, Switzerland
George Spanoudakis, City University London, U.K.
Avinash Srinivasan, George Mason University, USA
Kuo-Feng Ssu, National Cheng Kung University, Taiwan
Manolis Stamatogiannakis, VU University Amsterdam, Netherlands
Vladimir Stantchev, Berlin Institute of Technology, Germany
Dimitrios Stratogiannis, National Technical University of Athens, Greece
Jingtao Sun, National Institute of Informatics, Japan
Neeraj Suri, TU-Darmstadt, Germany
Kenji Taguchi, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Oliver Theel, University Oldenburg, Germany
Sergio Pozo Hidalgo, University of Seville, Spain
Kishor Trivedi, Duke University - Durham, USA
Elena Troubitsyna, Åbo Akademi University, Finland
Timothy Tsai, Hitachi Global Storage Technologies, USA
Sara Tucci-Piergiovanni, CEA List, France
Marco Vallini, Politecnico di Torino, Italy
Ángel Jesús Varela Vaca, University of Sevilla, Spain
Bruno Vavala, Carnegie Mellon University, USA | University of Lisbon, Portugal
Phan Cong Vinh, Nguyen Tat Thanh University, Vietnam
Lucian Vintan, Lucian Blaga University of Sibiu, Romania
Hironori Washizaki, Waseda University, Japan
Eduard Weber, University of Duisburg-Essen, Germany

 7 / 37

Charles B. Weinstock, Software Engineering Institute - Carnegie Mellon University, USA
Byron J. Williams, Mississippi State University, USA
Victor Winter, University of Nebraska at Omaha, USA
Dong Xiang, Tsinghua University, China
Chun Jason Xue, City University of Hong Kong, Hong Kong
Hiroshi Yamada, Keio University, Japan
Toshihiro Yamauchi, Okayama University, Japan
Chao-Tung Yang, Tunghai University, Taiwan
Liu Yang, Nanyang Technological University, Singapore
Piyi Yang, University of Shanghai for Science and Technology, China
Il Yen, University of Texas at Dallas, U.S.A
Hee Yong Youn, Sungkyunkwan University, Korea

 8 / 37

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 9 / 37

Table of Contents

Integrating Security Consideration Into a Safety Case Construction
Elena Troubitsyna

1

Static Worst-Case Execution Time Analysis Tool Development for Embedded Systems Software
Thomas Jerabek and Martin Horauer

7

Expurgated Codes for Detecting Jamming in Multi-level Memories
Yaara Neumeier and Osnat Keren

15

Safe Transitions of Responsibility in Highly Automated Driving
Rolf Johansson, Jonas Nilsson, and Martin Kaalhus

21

Powered by TCPDF (www.tcpdf.org)

 1 / 1 10 / 37

Integrating Security Considerations Into a Safety Case Construction

Elena Troubitsyna
Åbo Akademi University

Tuomionkirkontori 3, 20500 Turku, Finland
e-mail: Elena.Troubitsyna@abo.fi

Abstract— Wide-spread reliance on networking in modern
safety-critical control systems makes security increasingly
interwoven with safety. Hence, we need novel methodologies
integrating security consideration into the process of system
development and safety case construction. Safety case is a
structured argument justifying system safety. In this paper, we
propose an approach that relies on the systems-theoretic
analysis to construct security-aware safety cases. We define a
number of generic patterns facilitating definition of security-
aware safety cases. Our approach allows the developers to
analyse the mutual interdependencies between safety and
security in the design of networked control systems. It
provides the engineers with a systematic top-down method for
deriving constraints that should be imposed on the system and
software behavior to guarantee safety in the presence of
accidental and malicious faults.

Keywords-safety case; systems-theoretical approach; controlling
software; security; integrated analysis

I. INTRODUCTION

Traditionally safety-critical systems have been
considered as closed systems that should ensure safety
despite (accidental) components faults [1]. However,
increasing openness and reliance on networking has
introduced security attacks, i.e., malicious faults, as an
important factor to be analyzed in the process of system
development and verification [2].

Since safety and security are often considered as
separate fields, there is a lack of integrated approaches that
support the holistic analysis of software-intensive systems
that can guarantee safety in presence of both malicious and
accidental faults [1]. However, recent research experiments
have demonstrated, e.g., that cars security vulnerabilities
allow to remotely override safety functions and take control
over break and steering [3]. Therefore, there is a clear need
for the approaches that provide the developers with an
integrated view on system safety and security.

In this paper, we propose an approach to integrating the
security consideration into the process of safety case
construction for networked safety-critical control systems.

Safety case is a structured argument about system safety
[4]-[8]. Often, it is defined using Goal Structuring Notation
[9]. While constructing a safety case, we explicitly define
the links between top-level goal of achieving system safety

and the satisfaction of constraints that should be imposed on
the system design to achieve it.

To derive safety and security constraints required for
achieving safety, we propose to employ the systems-
theoretic analysis [10]. Systems theory considers the
problem of ensuring safety as a control problem and as such,
provides us with a more inclusive model of accident
causality. Therefore, the systems-theoretic perspective
supports an integrated consideration of safety and security
constraints that are essential in designing networked control
systems.

In this paper, we demonstrate how an application of the
systems-theoretic analysis allows us to define the main
classes of causes that might lead to unsafe behavior and
define the corresponding safety goals. By top-down
decomposition of such goals, we define safety and security
constraints that should be imposed on the system design to
guarantee safety. We define the patterns of safety case
fragments that allow us to justify safety in presence of both
accidental and malicious faults.

We believe that an application of the proposed approach
enables holistic analysis of safety and security
interdependencies and facilitates construction of safe
networked control systems.

The paper is structured as follows: in Section II, we
introduce the notion of the safety case and the Goal
Structuring Notation. In Section III, we describe the
principles of systems-theoretical analysis. In Section IV, we
present our approach to constructing security-aware safety
cases using systems theory. In Section V, we overview the
related work. Finally, in Section VI, we discuss the
proposed approach.

II. SAFETY CASES
A safety case is “a structured argument, supported by a

body of evidence that provides a convincing and valid case
that a system is safe for a given application in a given
operating environment” [4] [5].

The construction, review and acceptance of safety cases
are the important steps in safety assurance process of safety-
critical systems. Several standards, e.g., ISO 26262 [6] for
the automotive domain, EN 50128 [7] for the railway
domain, and the UK Defense Standard 00-56 [8], prescribe
production and evaluation of safety (or more generally
assurance) cases for certification of such systems.

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 11 / 37

Figure 1. Basic elements of GSN.

A safety case can be defined textually or graphically.
Currently, Goal Structuring Notation (GSN) – a graphical
notation proposed by Kelly [9] – is getting increasingly
popular for describing safety case. GSN aims at a graphical
representation of safety case elements as well as the
relationships that exist between these elements. The main
building blocks of GSN are shown in Figure 1.

Essentially, a safety case constructed using GSN consists
of goals, strategies and solutions. Here goals are propositions
in an argument that can be said to be true or false (e.g.,
claims of requirements to be met by a system). Solutions
contain the information extracted from analysis, testing or
simulation of a system (i.e., evidence) to show that the goals
have been met. Finally, strategies are reasoning steps
describing how goals are decomposed and addressed by sub-
goals. Thus, a safety case constructed in GSN presents a
decomposition of the given safety case goals into the sub-
goals until they can be supported by the direct evidence (a
solution). It also explicitly defines the argument strategies,
relied assumptions, the context in which goals are declared,
as well as justification for the use of a particular goal or
strategy.

The elements of a safety case can be in two types of
relationships: ‘‘Is solved by’’ and ‘‘In context of’’. The
former is used between goals, strategies and solutions, while
the latter links a goal to a context, a goal to an assumption, a
goal to a justification, a strategy to a context, a strategy to an
assumption, a strategy to a justification.

A typical high-level structure of the safety case is shown
in Figure 2. The high-level goal G1 contains the proposition
that the system is safe. The strategy S1 is to decompose top-
level goal into lower level subgoals G2-GN+1 aiming at
demonstrating that each individual hazard has been
mitigated. The safety case is valid under the assumption C1
that all hazards have been identified.

Usually, to achieve completeness of hazard identification
the developers rely on safety analysis, e.g., fault trees,
Failure Modes and Effect Analysis, etc. However, Leveson
[10] points out that such techniques rely on linear causality
models and lack the power to exhaustively analyse

Figure 2. High-level safety case.

hazardous behaviour in complex software-intensive systems.
She argues that we need to rely on systems-theoretic
approaches to guarantee safety of such complex systems.

In complex software-intensive systems, hazards might be
caused not only by accidental (i.e., non-malicious)
component failures but also security failures caused by
attacks on system network infrastructure, design errors,
unforeseen component interactions, etc. Therefore, we need
the integrated systems-theoretic approaches that allow us to
identify the strategy for protecting the services and functions
that are essential for ensuring system safety in presence of
disruptions of various natures.

Next, we present a systems-theoretic approach to
integrated reasoning about safety of complex networked
systems that are subjects of accidental and malicious faults.

III. SYSTEMS-THEORETIC APPROACH
Systems theory establishes foundations for engineering

complex systems [11]. It provides a more inclusive model of
accident causality called STAMP – System-Theoretic
Accident Model and Processes [10]. STAMP envisions
losses as resulting from interactions among humans, physical
system components and the environment that lead to the
violation of safety constraints. The main difference between
STAMP and the traditional approaches to safety is that it
shifts the focus from preventing failures to enforcing safety
constraints on system behavior.

To illustrate the main principles of a systems-theoretic
approach, let us consider let us consider a generic control
system. A control system is a reactive system with two main
entities: an environment and a controller. The environment
behaviour evolves according to the involved physical
processes and the control signals provided by the controller.
The controller monitors the behaviour of the plant and
adjusts it to provide intended functionality and maintain
safety. The control systems are usually cyclic, i.e., at
periodic intervals they get input from sensors, process it and
output the new values to the actuators. The general structure
of a control system is shown in Figure 3.

The controller is a hierarchical control structure that
constraints the system behavior. Each layer of it enforces the
required constraints on the behavior of the components at

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 12 / 37

Figure 3. A general structure of a control system.

Figure 4. Systems-theoretic view on control system.

the next lower level. The control loops operate between the
layers. To achieve safety, we should guarantee
that, under the hostile environmental conditions and in
presence of accidental and malicious faults, the control
actions prevent hazard occurrence.

In systems and control theory, the controller contains a
model of the process that it controls. Such a model serves as
a basis for defining the necessary control actions, as shown
in Figure 4. Hazards often occur as a result of
inconsistencies between the controller’s model of the
controlled process and the actual process state.

By applying systems-theoretic analysis and analyzing the
general structure of a control system, we can observe that
safety can be violated due to three types of causes

• Controller cannot built a correct model of the
process because the measurements provided by
the sensors are invalid

• Controller has the correct model of the process
but there is a logical error in implementing
correct control actions

• The actuator fails to correctly implement the
control actions.

This observation allows us to refactor our generic safety
case pattern presented in Figure 1 as shown in Figure 5. It
reflects the systems-theoretic approach to ensuring safety
and establishes a systematic way for construct the safety case
by further decomposition of subgoals G2 –G4.

In the next section, we propose a systematic approach to
analyzing how the accidental and malicious faults introduce
inconsistencies into the controller’s model of the process,
distort the logic of the controller or prevent correct
implementation of the controller actions.

IV. SECURITY-INFORMED SAFETY CASES

Let us again consider the generic control cycle presented
in Figure 3. For many control systems, safety can be
formulated as the following proposition:

The value of critical parameter p always remains within
safe boundaries.

To achieve this safety goal, we need to systematically
analyse the causes that can introduce hazardous deviations in
the controller’s model of the process controlling p and the
actual state of p.

To build the corresponding model of the process, the
controller relies on the measurement of p provided by the
corresponding sensor. Therefore, the first condition for
ensuring accuracy of the controller’s model is validity of
sensor’s reading.

The sensor’s readings can be distorted due to accidental
faults of the sensor or security attacks. If the sensor fails and
the controller does not detect it, then it starts to rely on
wrong data. Hence, to guarantee safety, we should ensure
that the sensor health is monitored and upon detection of
failure the controller starts to rely on alternative reliable
sources of measurement of p.

Figure 5. Systems-theoretic approach to safety case.

Typically, safety-critical control systems contain some form
of redundancy. For instance, there might be hot or cold spare
sensors. In the first case, the controller simply switches to
obtaining readings from the spare sensor without any
disruption in measurement provisioning. In the second case,
a certain time interval is required to activate the cold spare.
The system design should ensure that the time period
required for the reconfiguration is sufficiently short, i.e., it
would not introduce dangerous deviations in the controller’s
model of the process while the measurements are not
available.

The controller might also obtain the invalid
measurements of p due to security attacks. In the context of
our control loop, it is relevant to consider the following
security failures:

• spoofing the identity of sensor and
• tampering sensor data by attacking the

communication channel between the sensor and
the controller.

By spoofing the sensor identity the attacker can supply
the controller with the deliberately wrong measurements of
p. They can “trick” the controller into thinking that the value

Control Algorithm
Process model

Controlled Process

Control
actions Feedback

Controller

Sensors

Actuators

 Envi-
ron-
ment

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 13 / 37

Figure 6. Pattern for G2 decomposition.

of the controlled parameter is well within safety limits. This
is a dangerous deviation of the controller’s model of the
process. Hence, it is very likely to result in hazard
occurrence due to controller inability to issue the correct
control commands required to maintain safe value of p.
Tampering with sensor data has the same effect.

The analysis above demonstrates the direct impact of
security on safety. The systems-theoretic approach allows us
to identify the strategy for protecting the systems. Namely,
we should guarantee that the source of measurement of p is
authenticated and the communication link between the
sensor and the controller is encrypted, i.e. does not allow for
unauthorized data alternations. In the similar way, to ensure
that the sensor failures are reliably detected, we need to
guarantee that the health monitoring data is not tampered

with.

We can also demonstrate that safety-security
interdependencies are sometimes conflicting and require
trade-offs.

To ensure security, the design of software-intensive
systems typically follows multi-level secure systems
principle introduced by La Padula and Bell [12]. Often the
designers consider two security levels: high, meaning highly
sensitive or highly trusted, and low, meaning less sensitive or
less trusted. When the trusted components of the system
interact with the untrusted parts, one has to ensure that there
is no indirect leakage of sensitive information from the
trusted to untrusted part. Usually it is defined as no “down-
flow” policy. Such a security requirement is commonly

Sn2.1.1
Sensor is
calibrated

Sn2.1.2
Sensor is

health
monitored

G2
Controller has correct model of

controlled process

S2
Argument over precision and

variability of the source of
measurement of critical parameter

G2.1
Precision of sensor reading is

guaranteed

G2.2
Sensor data are
protected against
malicious faults

S3
Apply secure data flow

principle to sensor-
controller path

G2.4
Reconfiguration results in
correct data provisioning

to controller

S4
Demonstrate G2.1 and

G2.4 for the spare
sensor; ensure that

reconfiguration delay is
within limits

Sensor data unaltered

Sn2.3.1
Sensor is

authenticated

Sn2.3.2
Sensor-

controlled
channel

encrypted

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 14 / 37

Figure 7. Pattern for G3 decomposition.

called secure information flow.

Let us consider how this principle is implemented in our
case. As a result of the analysis above, we have derived the
requirements that ensure no down flow policy for the sensor
providing the measurements of p. Now, let us consider the
case when the sensor providing the measurements of p has
failed and the controller has to use the alternative sources of
measuring p.

For the spare sensor, the system might not have the
authentication and encryption procedure implemented and
hence switching to the use of the alternative sensor would
break the secure information flow policy. By preventing the
use of measurements provided by the spare sensor, we leave
the controller without the feedback required to build the
adequate model of the controlled process. On the other hand,
the use of unauthenticated sensor and unencrypted channel
introduces security vulnerability. It is clear that we should
resolve this conflict. For instance, we might run spare sensor
authentication upon reconfiguration and require to use the
encryption once the spare sensor becomes the primary source
of measurements of p.

The system-theoretic analysis allows us to construct the
corresponding part of the safety case, as shown in Figure 6.

Now, let us discuss the constraints that should be
imposed on the system to ensure that the goal G3 is
achieved. Essentially, we have to verify that the controller
actions maintain the safety invariant “p is within safety
boundaries”. To verify this we have to introduce a number
of assumptions.

The first class of assumptions explicitly states the impact
of the actuator state on the value of the controlled parameter.
Let us explain it by an example. Assume that the controlled
parameter is a temperature t. The actual temperature should
be kept within safety boundaries t_min_crit and t_max_crit.

The temperature is controlled by switching on and off the
heater. The assumptions that we make is that when the heater
is switched on the temperature is increasing.
Correspondingly, when the heater is switched off the
temperature is decreasing.

Another class of assumptions that we need to introduce
deals with the inertia of the controlled physical process and
relies on the cyclic behavior of the system. Since the
controller receives the measurements of the controlled

parameter once per control cycle, it needs to issue the control
actions changing the state of the actuator before the critical
boundaries are reached.

To demonstrate that the actual value of the parameter
always remains within safety limits, we need to constrain -
the maximum possible imprecision of the parameter in the
process model as well as max_cycle – the maximum possible
change of the parameter per cycle.

The state of the actuator should be changed to the one
that leads to the increase of the parameter at P_min, which is
greater than p_min_crit at least for the sum of and

max_cycle. The similar condition is imposed on Pmax. Under
these assumptions, we can verify that the controlling
software maintains safety invariant, i.e., we can argue for
achieving the goal G3. The corresponding fragment of the
safety argument is shown in Figure 7.

Next, we investigate the constraints that should be
imposed on the system to justify achieving goal G4. It is
obvious that if the actuator fails and its failure remains
undetected then it directly leads to failure to implement the
commands of the controller in the correct way. Therefore, we
should guarantee that the failures of the actuator are reliably
detected and the system is put in a safe non-operational state
upon it.

Now, let us consider the security-related constraints that
should be satisfied to guarantee achieving goal G4. Even
though the controller could have issued the correct control
commands, due to spoofing controller identity or tampering
commands the actuator might receive the incorrect settings
that might breach safety. Therefore, we have to enforce
secure data flow policy on the communication between the
controller and the actuator as well. The corresponding
fragment of the safety case is shown in Figure 8.

Figure 8. Pattern for G4 decomposition.

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 15 / 37

We can summarize the proposed methodology as follows:
1. Apply systems-theoretic approach to analyse how

the controller builds the process model.
2. Define the top-level safety goal and identify critical

parameters that should be monitored and controlled.
Define safety conditions over these parameters.

3. Create an architectural model of the system and
identify

a. the components involved into providing
input to the controller allowing it to build
the process model (sensors)

b. the components responsible for
implementing controller actions (actuators)

4. For the identified components analyse the impact of
failures and define the mitigation actions required to
achieve safety goals. Construct the corresponding
fragments of the safety case

5. Analyse data flow and define security constraints
guaranteeing secure data flow policy for monitoring
the critical parameters and implementing controller
actions. Construct the corresponding fragments of
the safety case

6. Derive the constraints required to verify correctness
of the controller logic. Construct the corresponding
fragment of the safety case.

V. RELATED WORK
Currently, the problem of integrated analysis of safety and

security is receiving significant research attention.
Schmittner at al. propose an approach that adapts Failure
Mode and Effect and Criticality Analysis to address safety
failures [13]. The work demonstrates how to take into
account the motives of the intruder as well as costs and
complexity of exploiting vulnerabilities. The approach
proposed by Schmittner et al. can be used as an input for the
safety case construction technique presented in this paper.

The approach relying of the integration of safety
consideration into fault tree analysis has been proposed by
Steiner and Liggesmeyer. The approach provides the
engineering with a structured way to discover and analyse
security vulnerabilities that have safety implications. This
work complements the systems-theoretical approach to
construction of the safety cases proposed in this paper.

Formal approaches proposed to study security and safety
interactions typically focus on finding conflicts between
safety and security requirements [15]. The majority of the
approaches demonstrate how access control rules contradict
safety requirements. In our approach, we do not contrapose
safety and security but rather derive the security and safety
constraints in top-down manner based on the safety cases.
The advantage of our approach lies in its ability to capture
the dynamic nature of safety and security, e.g., resulting
from the reconfiguration required to achieve fault tolerance.

VI. CONCLUSIONS
In this paper, we have proposed a systematic approach to

construction of security-aware safety cases. In our approach,
derivation of safety and security constraints proceed hand-in-
hand with safety case construction. The use of systems-
theoretic reasoning allows us to derive the constraints
required for providing arguments for safety case in a
disciplined top-down way. Such an approach supports an
integrated reasoning about safety and security that facilitates
analysis of requirements interdependencies and explicit
identification of trade-offs required to achieve safety in
presence of both malicious and accidental failures.

In our future work, we are planning to validate the
proposed approach in a number of industrial case studies as
well as provide an automated tool support linking systems-
theoretic analysis and safety case construction.

REFERENCES
[1] R. Bloomfield, K. Netkachova, and R. Stroud, “Security-Informed

Safety: If It's Not Secure, It's Not Safe”. Workshop on Software
Engineering for Resilient Systems, LNCS 8166, Springer, Sept. 2013,
pp. 17-32. DOI 10.1007/978-3-642-40894-6_2.

[2] W. Young and N.G. Leveson, “An integrated approach to safety and
security based on systems theory”. Communication of ACM 57(2),
31-35, 2014, DOI 10.1145/2556938.

[3] Online http://www.bbc.com/news/technology-35841571. Accesed
02.04.2016.

[4] T. Kelly and J. McDermid, “Safety case construction and reuse using
patterns”. 16th International Conference on Computer Safety,
Reliability and Security (SAFECOMP’97), Springer-Verlag, Sept.
1997, pp. 55–96, doi: 10.1007/978-1-4471-0997-6_5.

[5] P. Bishop and R. Bloomfield, “A methodology for safety case
development”, in: Safety-Critical Systems Symposium, Springer-
Verlag, Feb.1998, pp.10-16, , doi: 10.1008/243-1-3382-06577-5_6.

[6] International Organization for Standardization, ISO 26262 Road
Vehicles Functional Safety, 2011.

[7] European Committee for Electrotechnical Standardization
(CENELEC), EN 50128 Railway Applications – Communication,
Signalling and Processing Systems – Software for Railway Control
and Protection Systems, 2011.

[8] Defence Standard 00-56, UK Ministry of Defence. 00-56 Safety
Management Requirements for Defence Systems, 2007.

[9] T.P. Kelly, “Arguing safety -- a systematic approach to managing
safety cases”, PhD Thesis York University, UK, 1998.

[10] N. Leveson, “Engineering a safer world: Systems thinking applied to
safety”. In MIT Press. 2011.

[11] P.Checkland, Systems Thinking, Systems Practice. Wiley, 1981.
[12] D.E.Bell and L.J LaPadula.. "Secure Computer Systems:

Mathematical Foundations", Journal of computer Security, 1996,
4:239-263.

[13] C. Schmittner, T. Gruber, P.P. Puschner, and E. Schoitsch, “Security
application of failure mode and effect analysis (FMEA)”. In:
SAFECOMP 2014. LNCS 8666, Springer, Sept. 2014, pp. 310-325.

[14] M. Steiner and P. Liggesmeyer, “Combination of Safety and Security
Analysis - Finding Security Problems That Threaten The Safety of a
System”. Workshop on Dependable, Embedded and Cyber-physical
Systems, Toulouse, France, 2013, pp.7-14.

[15] P. Bieber and J. Brunel, “From Safety Models to Security Models:
Preliminary Lessons Learnt”, Workshops at SAFECOMP 2014,
pp.269—281, DOI 10.1007/978-3-319-10557-4_

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 16 / 37

Static Worst-Case Execution Time Analysis Tool Development

for Embedded Systems Software

Thomas Jerabek, Martin Horauer

University of Applied Sciences Technikum Wien
Höchstädtplatz 6, A-1200 Vienna, Austria

Email: {thomas.jerabek, martin.horauer}@technikum-wien.at

Abstract—Analyzing the worst-case execution time of embed-
ded systems software is useful for assessing parameters like
schedulability, performance (especially with regard to deadlines),
etc. A commonly accepted approach to obtain these values is
by way of static analysis that uses the software along with a
model of the target processors architecture. This paper describes
the required steps to construct a tool to assess the worst-case
execution time of a given application with the help of an open-
source framework. The ensuing evaluation provides a comparison
of the results with other approaches. In addition, this paper can
be used as guide to implement an instruction set architecture of
a target processor in order to enable various static analyses with
the aim to estimate the worst-case execution time.

Keywords—architecture description language; instruction set
simulator; worst-case execution time analysis.

I. INTRODUCTION

Embedded systems nowadays are ubiquitous in our daily
life. One kind of embedded systems are real-time systems
where the correct operation of the system depends on the logi-
cal correctness of the computations and upon the time at which
the result is produced. Hence, knowledge about execution
times – and here in particular the worst-case execution time
(WCET) – is of relevance, e.g., to assess whether deadlines
imposed by application requirements will be met, or to assess
the schedulability of an implementation.

The WCET defines the longest time it takes to execute
a program on a specific target processor. There are different
ways to determine this value.

(1) One method uses static code analysis [1], [2] by way
of a model of the processor’s architecture. In fact, various
analyses are in use therefore, e.g.:

• Control-flow analysis
• Value analysis
• Cache analysis
• Pipeline analysis
• Path analysis
• WCET estimation

Each of these analyses must be implemented and adapted
for every new target architecture.

(2) Another WCET analysis method is measurement-based
where the execution time of an application, function or task
is recorded during runtime. To that end, the source code
must be instrumented to provide suitable triggers for the

measurement and appropriate stimuli are required to stress
worst-case behavior. In practice, the latter requires elaborated
test-setups [3], [4].

(3) The third approach combines both the static analysis
method to evaluate input data and the measurement-based
method to estimate the WCET [3].

Independent of the chosen approach, it is essential that the
real WCET is never longer than the evaluated value and the
result is as close as possible to the reality. These two aspects
describe a safe and tight WCET evaluation.

Dependable systems have the ability to avoid service
failures, which are unacceptable in terms of frequency and
severity. Many aspects need to be considered in order to ensure
such a behavior; however, this paper focuses on a specific
detail: predictable execution times of dependable software
(e.g., a hard real-time system) via WCET analysis. Such an
analysis is an inherent part of the safety process during the
design and development of automotive and avionics systems
to avoid timing issues [5], [6]. For example, unmanned aerial
vehicle (UAV) software contains various tasks (e.g., engine
control or position sensing) where the knowledge about their
WCET is mandatory for safe operation.

The contribution of this paper presents a generic approach
of how to enable WCET analysis for a modern processor
architecture following approach (1) using static analysis of exe-
cutable binaries. Besides the architecture module, two analysis
tools were implemented using the OTAWA framework’s API.
The result is a useful guide to implement WCET analysis for
a certain processor architecture. It can be utilized for WCET-
aware development to prevent systematic failures in order to
increase the reliability of a dependable system.

The structure of the paper is as follows. First, we detail
typical design patterns and their effect on WCET using some
examples. Next, we present related work in Section III, fol-
lowed by a description of the implementation in Section IV.
Section V provides some benchmarks, and finally, a use case
is presented in Section VI before we conclude the paper in
Section VII.

II. WCET ESTIMATION OF EMBEDDED SYSTEMS
SOFTWARE

Software for embedded systems typically follow either
a bare-bone approach or employ some kind of (real-time)
operating system. Bare-bone applications in turn either follow
a super-loop architecture or a fore-/background approach [7].

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 17 / 37

When using a preemptive operating system task and/or thread
models are in place. Below, we will use these patterns and
show how WCET can be estimated by way of examples.
This not only gives an insight on the analysis itself, but also
encourages the technical background for the further chapters.

In general, static WCET evaluation is based on one of the
three present calculation techniques: (1) path-based [8], (2)
tree-based [9], and (3) implicit path enumeration technique
(IPET) [10]. Since these approaches are usually applied on
instructions or basic blocks, they need to be abstracted in
order to use them for a higher program representation. The
aim of this chapter is to describe the WCET of a program
with a formalism using its most basic elements. This high-
level formalism is inspired by the path-based approach where
the WCET will be determined by first calculating times for
different paths within a program and then looking for the path
with the longest execution time. It consists of a header TH
and a content/path TP that is multiplied with its loop-bound
LB, as shown in (1). Depending on the programs structure,
this basic equation needs to be adapted. All subsequent T
variables are already defining the maximum execution time
of the corresponding program part as processor clock cycles.
This means, that the result is independent of the processors
frequency; however, one can convert it into a time via dividing
it by the processors clock rate.

WCET = TH + TP ∗ LB (1)

Bare-bone program structures consist of an initialization
part TIN and an endless loop TL. The execution time of the
latter equals a cycle time, which is especially relevant for
super-loop architectures because they are not using interrupts
at all and only detect events via requests (polling). It can be
used as maximum response time for a certain event and can
be evaluated as shown in (2).

WCETP = TP = TL (2)

The other kind of bare-bone applications is using an
interrupt driven fore-/background architecture. Here, interrupts
and the execution of their associated service routines (ISR)
need to be considered for WCET evaluation. With its WCET
and the execution rate, one can calculate an expected rate
(periodicity) relative to the program under analysis. Depending
on the referenced program section TPS , the interrupt rate,
as estimated by (4), contains only the loop section or the
entire application (see (3)). For the latter, interrupts need to
be enabled before the program part under analysis. The sum
of all interrupt service routines TSI is estimated by adding
up the expected timing of every interrupt as shown in (5).
The equation assumes that all involved interrupts are activated
permanently.

TPS = TL Y (TIN + TL) (3)

RI =
TPS

expected ISR Rate
(4)

TSI =
∑
i∈SI

[TIi ∗RIi] (5)

The WCET of one loop cycle of interrupt driven applica-
tions takes the interrupts into account and can be estimated
by (6). The overall WCET is the result for termination after

a certain number of cycles specified by the loop-bound (see
(7)).

WCETP = TP = TL + TSI (6)
WCET = TIN + TP ∗ LB (7)

An example is given for a fore-/background structure with 3
interrupt service routines. The WCET of one loop cycle should
be estimated. Worst-case time behaviors of each individual part
were already evaluated as listed below.

TIN = 600 clock cycles

TP = 9000 clock cycles

TI1 = 250 clock cycles

TI2 = 890 clock cycles

TI3 = 60 clock cycles

We assume three ISRs with the following shortest possible
periodicity:

ISR1 : executed every 5000 clock cycles

ISR2 : executed every 20000 clock cycles

ISR3 : executed every 1400 clock cycles

Thus we get:

RI1 =
9000

5000
= 1.8 ≈ 2

RI2 =
9000

20000
= 0.45 ≈ 1

RI3 =
9000

1400
= 6.43 ≈ 7

TSI = 250 ∗ 2 + 890 ∗ 1 + 60 ∗ 7 = 1810 clock cycles

WCETP = 9000 + 1810 = 10810 clock cycles

The result shows that an increasing number of interrupts
significantly affects the WCET.

RTOS: There are major differences between bare-bone
and real-time operating system (RTOS) structures, such as the
administrative overhead and the interruption of execution by a
higher priority task in real-time operating systems.

When assuming a priority based scheduler, it is a challenge
to evaluate a task’s WCET because each task, except the
highest priority one, can be interrupted by a higher priority
task. As a result, evaluation needs to be done by a top-down
approach starting with the highest priority one. Equation (8)
describes the maximum interruption time of a task by summing
up both, all Tasks with a higher priority THPT and their
administrative overhead TAO (e.g., context switch, scheduling).
The subsequent calculation is identical to bare-bone programs,
as shown in (9) and (10).

TINT =

n∑
i=1

TAOi +

n∑
i=1

THPTi (8)

WCETP = TP = TL + TINT (9)
WCET = TIN + TP ∗ LB (10)

For tasks using an endless-loop pattern, the worst-case
cycle time WCETP is typically the most relevant. The overall
WCET is the result for termination after a specified number
of cycles (loop-bound). For tasks using a run-to-completion

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 18 / 37

pattern there are typically no cycles and, therefore, the loop-
bound equals 1 for the overall WCET.

An example calculation follows for a run-to-completion
task, which is implemented into a real-time operating system
where 2 tasks with a higher priority are existing. The task’s
entire WCET should be determined with the assumption that
the administrative overhead is task independent. Worst-case
time behaviors of each individual part were already evaluated
as listed below.

TIN = 200 clock cycles

TL = 3900 clock cycles

THPT1 = 2320 clock cycles

THPT2 = 1100 clock cycles

TAO = 590 clock cycles

This results in:

TINT = 590 + 590 + 2320 + 1100 = 4600 clock cycles

TP = 3900 + 4600 = 8500 clock cycles

WCET = 200 + 8500 = 8700 clock cycles

The outcome of 8700 cycles shows that the RTOS as well
as tasks with a higher priority have a major impact on the tasks
WCET.

III. RELATED WORK

In the following, we provide a short comparison of (1)
existing WCET analysis tools (cf. Table I) and further on (2)
describe related architecture description languages (ADLs).

TABLE I. WCET ANALYSIS TOOL COMPARISON.
(*ECLIPSE PLUGIN, **PARTLY, ***NOT REQUIRED)

Name ai
T

Bo
un

d-
T

Ra
pi

Ti
m

e

SW
EE

T

OT
AW

A

open source X X X X X

static analysis approach X X X X X

measurement-based approach X X X X X
annotations X X X X X

GUI X X X X X*
specify architectures X X X X X

specify µC characteristics X** X** X*** X X

binary file input X X X X X

ISO 26262 X X X X X
DO-178B X X X X X

The aiT WCET Analyzer [1] from AbsInt features an
easy to use GUI with a straightforward configuration. It is
able to compute tight bounds of a programs WCET using
static analysis. One can choose between different integer linear
programming (ILP) solvers (e.g., CPLEX), analysis options
and output reports (e.g., HTML and XML). User defined
annotations can be provided using the AIS/AIS2 language in
order to define loop bounds and other program information.
It fulfills the ISO 26262 as well as the DO-178B level A
qualifications.

Bound-T [11] (originally developed by Tidorum Ltd. and
now released as open-source) is a command-line tool that
uses static analysis for the WCET estimation. Annotations
can be provided by the user, although, loop bounds can be

derived automatically. Unfortunately, cached memory or the
parallelism of functional units cannot be specified making it
hardly unsuitable for many modern processors.

RapiTime [12] uses a measurement-based approach for the
WCET evaluation. It derives a structural model of the program
and instruments the source code during the build process of a
program. Afterwards, it performs all given tests and extracts
the timing data via execution traces. To finish up, a prediction
of the worst-case path and WCET is carried out by combining
the obtained timing information and the structural model of
the code. It fulfills both the DO-178B/C and ISO 26262
qualification. Since RapiTime does not rely on a processor
model, it is usable for a lot of targets as long as they support
a mechanism to extract execution traces.

The SWEdish Execution Time analysis tool (SWEET) [13]
is a research prototype that offers best-case execution time
(BCET), WCET and flow analysis. It uses a program represen-
tation called ALF (Artist Flow Analysis Language) in which
either a binary or source code has to be converted for further
processing. It implements a flow analysis of a given program
to detect infeasible paths and loop bounds. The latter can be
exported to aiT or RapiTime flow facts format enabling further
analyses. A low-level analysis tool called low-sweet allows
evaluating the WCET by its own.

The Open Tool for Adaptive WCET Analysis
(OTAWA) [14] is a static analysis framework that allows
modifying, extending, or implementing analysis tools by using
the OTAWA API. One of the existing tools, called OWCET,
evaluates the WCET of a given program by providing the
executable binary file, program flow information (flow facts)
as well as a processor description (OTAWA script). With
this information, it automatically links the corresponding
architecture loader module and performs the analyses.

Besides RapiTime with its measurement-based approach,
all of the mentioned tools use binary based static program anal-
ysis, which requires knowledge of the processor architecture
in order to perform a timing analysis for WCET estimation.
In fact, implementing support for a new target system requires
the implementation/adaption of elaborate analyses to this new
architecture.

At the core therefore, are usually architecture description
languages (ADLs) that describe the processor model. They
have a wide range of application; a majority is the generation
of target specific tools (e.g., compiler or simulator). They
are also used for the development and rapid prototyping of
application-specific instruction-set processors (ASIPs).

There are different ADLs available to create an instruc-
tion set simulator (e.g., EXPRESSION [18], LISA [19] and
nML [20]), however each of them describe the instruction set
architecture of a specific processor family without detailed
information of the microcontroller. This makes it possible
to use the simulator for every microcontroller with the cho-
sen processor architecture. For timing analyses, there are
some details like cache or pipeline behavior missing at this
point; therefore, this information is provided via additional
description by the developer or end user. Hardware ADLs are
likewise known as processor or machine description language
and are not only used for simulators but also for processor
development [21, p. 2].

These architecture description languages are classified in

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 19 / 37

three content-based (structural, behavioral and mixed) as well
as four objective-based categories (compilation, simulation,
synthesis and validation). This classification allows developers
to choose an ADL by either content (e.g., instruction-set
description) or purpose (e.g., generation of an instruction-set
simulator). Due to the fact that not all ADLs can describe the
instruction-set behavior with a detailed timing model, only a
few are usable for WCET analysis.

Modeling a processor based on the ARMv5 architecture
using the ArchC ADL is described in [15]. They divided
the implementation into three phases, starting with the choice
of a suitable ADL, followed by constructing of a toolchain
(e.g., compiler and simulator) for the architecture; and phase
three, analyzing the executed instructions by the simulator
using program patterns. Their aim was to evaluate often used
instruction patterns that can be merged to a new complex
instruction in order to increase the performance.

A retargetable software timing analyzer for WCET estima-
tion using the EXPRESSION ADL for processor models is
described in the work of [16]. For their case study, a MIPS
processor including its instruction set architecture was modeled
and evaluated.

An approach for generating instruction set simulators from
an enhanced nML architecture description is presented in [17].
The tool generates a simulator usable for static analysis. For
demonstration purposes, their tool was applied to an ARMv5
architecture implementation.

For the approach described here, we choose the Sim-
nML/nMP formalism in order to create an ARMv7E-M in-
struction set simulator. Sim-nML is an extension of the nML
formalism with the purpose to perform efficient simulations;
and the Macro Preprocessor (nMP) extends the Sim-nML
syntax (e.g., recursive macros or macro calls within macros)
in order to simplify the implementation. OTAWA is the chosen
platform for the WCET evaluation because it is expendable,
allowing to integrate new architectures and analysis tools. The
decision to use a static code analysis approach was based
on the requirements of the R&D project, which is intended
to extend the analysis environment with other static analyses
(e.g., stack usage, control-flow graph) at a later stage. A more
detailed description of this choice is given in Section IV.

IV. IMPLEMENTATION

The OTAWA framework features an architecture abstrac-
tion layer, enabling to use the analysis framework indepen-
dently of the actual target platform. This layer applies an archi-
tecture plug-in as an interface to the corresponding architecture
loader, which contains all relevant details for the instruction
set simulation.

Figure 1 shows the structure of the OTAWA framework
and highlights the mentioned concept of hardware abstraction
by binding modules for the TriCore, PowerPC or ARMv5
architecture towards this layer. The OTAWA core links all
modules including a set of analyses (e.g., data flow analy-
sis), graph generation (e.g., control-flow graph), providing an
abstract representation of the program as well as accessing
an external ILP solver (e.g., lp solve). From a programmer’s
perspective, the architecture loader together with a processor
description in the form of an OTAWA script are necessary to
support WCET analyses for a certain processor. These two

Figure 1. OTAWA Structure

components are highlighted on the right side in Figure 1. One
can use the OTAWA framework to perform WCET analyses
by providing the binary executable and the flow facts of a
program, as shown on the figure’s left side. An overview of
the necessary implementation steps is given below:

1) Description of the instruction set architecture as
loader module.

2) Implementation of an interface for the architecture
abstraction layer in order to link the loader module
to the OTAWA framework.

3) Creation of a script for the target processor.
4) Adaption and extension of the analysis tool if addi-

tional features are desired.
5) Verification of the implementation.

The next sub-sections describe our implementation of the
mentioned steps in a generic manner. Starting with step one
and two in Section IV-A, followed by the processor script in
Section IV-B as well as two tools (MKFFX and OSWA) in
Section IV-C and Section IV-D that are using the OTAWA
framework for evaluating a programs WCET, flow facts and
basic block statistics. Details of our concrete implementation
are given in Section IV-E, and finally, the verification is
explained in Section IV-F.

A. Architecture Loader
This module is the core part of the work presented in this

paper and includes a description of the processor architecture
in form of the instruction set. Most of the code was written
in the Sim-nML/nMP language including information of the
syntax, the binary representation and the semantics of each
instruction from the architecture. The syntax is important for
the disassembler output and control-flow graph because it is the
representation of the assembler syntax. The image is used for
linking the bits of a decoded instruction to the corresponding
parameter (e.g., register or immediate value). Within the action
part, the parameters from the image are used for describing the
instruction’s function. This means that calculations (e.g., shift
or add), writing and reading registers, as well as updating flags
is part of the action.

Beside the instructions themselves, there are registers,
conditions, modes and exceptions within the Sim-nML/nMP
part. Additionally, macros were defined to decrease the imple-
mentation effort and at the same time increase the readability.
The rest of the implementation, containing auxiliary functions
and algorithms, was written in the C-language. Afterwards, the

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 20 / 37

Generator of Libraries for Instruction Set Simulators (GLISS)
was used to generate a C-library out of both implementation
parts. This library along with the ARM module from OTAWA
serve as input for the generation of the instruction set simu-
lator, a so-called “architecture loader”. In a final step, it was
necessary to define the instructions kind (e.g., ALU or branch),
target, semantic and used registers within the OTAWA ARM
module in order to interpret each instruction correctly. All
relevant architecture information for the work can be found
in the corresponding architecture reference manual.

B. Processor Script

This section describes the implementation of processor
characteristics as OTAWA script, so that applications targeting
a specific microcontroller can be analyzed with the OTAWA
framework. The script is written in XML format and consists
of several files, each for one component of the processor. The
separation is described by the following listing:

• Main: This file is usually named after the microcon-
troller and includes information about the used archi-
tecture. It links all parts of the platform description
(e.g., memory) and allows to configure items to fine-
tune the analysis. In addition, necessary analysis steps
can be included, which are accessible through the
OTAWA API (e.g., BB TIME FEATURE ensures that
the execution time computation of each basic block
has been performed).

• Memory: The processor’s different memory banks
with their properties are described in this file. A
typical description of a memory bank includes a name,
the start address and its size, followed by the type
(e.g., FLASH or SRAM). Read/write latencies can be
defined in order to set a number of cycles for accessing
or writing the memory. This is especially relevant for
external memories with high access times. Finally, one
can specify if a memory is writable or cachable.

• Pipeline: This file describes the processor’s pipeline as
big picture because its complexity is in many cases not
describable. Each stage is described by an ID, a name,
a width defining the number of parallel processed
instructions, a latency for multi-cycle operations and
a type. The type is typical fetch for the very first stage
(e.g., instruction fetch from memory) and commit for
the very last stage to declare the exit. In between,
there are either lazy stages (e.g., decode) waiting for a
defined time as well as execution stages. It is possible
to define functional units for the execution stages (e.g.,
arithmetic logic or floating-point unit), allowing to link
certain types of instructions to them.

• Cache: The processor’s caches are described in this
part. It is possible to state data, instruction or unified
caches, whereby the elements are all the same. Each
configuration consists of a replacement policy (e.g.,
LRU or FIFO), the size of a cache block, the number
of blocks in each set and the number of sets in the
cache. Additionally, different levels of cache can be
defined.

It is essential to create a script for any used microcontroller
as already small differences can result in a WCET deviation.

C. Flow Facts Evaluation Tool
Since the exact control flow of a program depends on

input data, it is impossible to make an estimation without
program execution. So-called flow facts, include program flow
information like maximum loop iteration counts (loop bounds)
or recursion depths and are provided by the user. These details
improve the precision of the analysis result; often they are
necessary to evaluate a program’s WCET at all. In cases where
no explicit limitations (e.g., loop bound depends on input
parameter) are given, either the user defines high but safe
bounds (e.g., maximum value of the parameter’s data type),
which makes the WCET result inaccurate, or the estimation
is infeasible. Defining the flow facts by hand is exhausting
and imply a risk of incompleteness. Therefore, some analysis
tools can automatically detect flow facts and save them into a
respective file. The task of filling in missing information (e.g.,
boundary for a found loop) remains to be done prior to the
evaluation of the WCET.

The introduced tool, called mkffx, generates flow facts
in XML format by combining various input methods. First,
it reads possibly existing flow facts from a given file and
saves them in an internal representation, followed by analyzing
the binary file to detect and record loops and other control
information. Next, it will invoke the oRange tool [22], which
analyzes loop bounds and extracts flow facts from the source
code. This is an optional feature, since the source code is
not available in every use case. Afterwards, the mkffx tool
merges all results and outputs the flow facts. In this way,
it reduces the necessary effort of describing them by hand
because the combination of several inputs increases the rate of
automatically detected loop bounds. Our mkffx tool extends
the features of the mkff tool, which already comes with the
OTAWA framework.

D. WCET Analysis Tool
Evaluating a programs WCET takes several analysis steps

which can vary depending on the processors architecture.
Figure 2 shows a typical scenario of a WCET estimation using
OTAWA.

Figure 2. OTAWA Scenario

The very first step is to load the program under analysis
in the form of the binary executable as well as its flow facts
information and the corresponding processor script (platform
description). Next, the program from the binary file is trans-
formed into an internal representation using the architecture

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 21 / 37

loader and the CFG builder constructs its control-flow graph.
Afterwards, analyses are applied starting with the loop analyzer
which uses the loop boundaries from the provided flow facts.
The platform description is taken into account to analyze
the instruction caches behavior. With this information, the
execution time of each basic block can be calculated. Sets
of graph flow constraints (e.g., program flow and basic-block
execution time bounds) are built for the implicit path enu-
meration technique (IPET) based calculation approach. These
constraints are transformed into an integer linear programming
problem with a goal function (WCET) and then solved using an
external solver (e.g., lp solve). In the end, the analysis tool can
output the resulting WCET. The OTAWA framework includes
all of the mentioned modules as shown in Figure 1.

The OTAWA Stack and Worst-case execution time Analysis
(OSWA) tool combines several features into one application.
Beside the two main functions derived from its name: stack
usage evaluation and WCET analysis, it can generate a control-
flow graph with various output kinds and creates a basic
block timing statistic. The latter allows identifying the most
time consuming basic blocks within a given function or
code snippet. An additional feature is the calculation of a
ratio between the time spent inside and outside the function,
which can be used to find out how much time is spent in
sub-functions. For this paper, the WCET analysis feature is
the most important one. OSWA performs the analysis of a
specified function from a given binary file by involving flow
facts and a processor description (OTAWA script). Our OSWA
tool extends the features of the owcet tool, which already
comes with the OTAWA framework.

E. Specific Implementation for the Use Case

The goal of our work is to enable WCET analysis for soft-
ware targeting ARM Cortex-M4 processors. For this reason,
the implementation in Section IV-A was accomplished for the
ARMv7E-M architecture. It features the Thumb-2 technology
with both, 16 and 32 bit operations. This architecture loader is
based on an existing ARMv5 loader because its 16 bit Thumb
instructions are mostly equivalent with the ARMv7 technology.

The Infineon XMC4500-F100K1024 microcontroller fea-
tures an ARM Cortex-M4 processor core and was chosen for
further evaluation (see Section VI). Its characteristics were
described in the form of an OTAWA script as presented in
Section IV-B.

F. Verification

As described in Section IV-A, the architecture implementa-
tion is split in a Sim-nML/nMP description and code written in
the C language. As a result of the build process, a C-library that
contains both parts is generated. This entire implementation as
well as Sim-nML/nMP parts were verified using simulation,
code reviews, and disassembler output comparison. The verifi-
cation of the C parts is completed with the following methods:
model checking, static code analysis, and test drivers based
on boundary value analysis and equivalence class partitioning.
In addition, a plausibility check of the implementation was
performed by comparing WCET results of selected test cases
with measurements and results from another tool, as shown in
the subsequent section.

V. BENCHMARKS

A comparison of WCET results was made between
(1) OTAWA with the implemented ARMv7E-M architecture
loader as well as the OSWA tool, (2) the Advanced Analyzer
for ARM (A3) version 14.04 from AbsInt GmbH, and (3)
a measurement-based approach. Although A3 only supports
the ARM Cortex-M3 and not the ARM Cortex-M4 processor
family, a comparison is possible because both are using the
ARMv7 architecture with the Thumb2 instruction set. This
behavior is valid as long as no ARM Cortex-M4 specific
instructions (e.g., DSP extension) are used, otherwise, the
executable would be different from the ARM Cortex-M3
version and not compatible with A3. The measurement-based
WCET analysis uses a manually written test driver with input
parameters that cause a worst-case scenario. One can identify
the worst-case behavior by hand for the chosen benchmarks
because of their rather simple program flow; however, it would
be a challenge to cause the worst-case behavior for more
complex applications. By toggling an I/O pin before and after
a certain program code, one can record its execution time using
an oscilloscope or logic analyzer. The Infineon XMC4500 is
the microcontroller of choice for the measurements, which
operates at a frequency of 120 MHz. For the purpose of
comparing the measured WCET with the analysis tools, all
results are converted into a time unit (based on the processors
clock rate) and are recorded in µs rather than in cycles.
Table II shows the WCET evaluation results of 4 test cases.
The first test case (For-If-Add) is a very basic example, only
containing a loop with an if-else construct and some additions.
The functions Factorial and Fibonacci are clearly assigned to
a known algorithm by their names; however, their results are
only valid for the given input scenario (e.g., Fibonacci number
and factorial of 50). The fourth and last test case contains a
preliminary implementation of the resolution advisory (RA)
component from the Traffic Alert and Collision Avoidance
System (TCAS). Its purpose is to issue climb or decent
directives in case of conflicting aircrafts [23].

TABLE II. WCET RESULTS COMPARISON FOR THE TEST CASES.

Test Case OTAWA AbsInt A3 Measurement
For-If-Add 18.16 µs 18.07 µs 17.98 µs
Factorial 23.33 µs 23.72 µs 22.82 µs
Fibonacci 14.35 µs 8.09 µs 8.07 µs
TCAS 8.71 µs 7.82 µs 6.49 µs

Overall, the results show that the measurement-based ap-
proach leads in every case to a lower WCET. This circumstance
is very important because otherwise the WCET analysis tools
would evaluate a wrong or underestimated result which cannot
be used for safety-critical real-time applications or generally
for verifying timing constraints as it can lead to software
misbehavior that might have a catastrophic impact. In all
four test cases, the WCET evaluations by OTAWA and A3

deliver a safe upper bound, meaning it is above the real value
and therefore trustworthy. Additionally, the gap between the
real WCET and the estimated ones are especially in the first
two test cases minor. Since the goal is to get as close as
possible to the reality, this tight output is desirable. The For-
If-Add test case shows, that A3 delivers a value 0.09 µs above
the measured one but also 0.09 µs tighter than OTAWA. At
the second function, factorial, OTAWA estimates a 0.39 µs

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 22 / 37

tighter result than A3 and 0.51 µs above the measured WCET.
Next, the Fibonacci algorithm shows that OTAWA calculates
a weaker WCET bound, whereas A3 estimates a extremely
tight value. Finally, the TCAS test case challenges the analysis
tools, as there are many sub-routine calls and thereby, initiating
several pipeline refills with a variable duration depending on
things like the width of the target instruction. In general, the
different results between both tools can be caused by deviating
analysis techniques or the usage of other integer linear problem
solver.

In summary, it can be stated that the OTAWA Framework
with both, the ARMv7E-M loader and OSWA can compete
with a commercial tool by delivering safe and mostly tight
results.

VI. USE CASE

The use case shows a software part of an unmanned aerial
vehicle (UAV), more specific, a quad-copter. Since UAV soft-
ware contains plenty of software components, it is important
to ensure that all of them have enough resources to do their
tasks in order to satisfy any deadline, hence, to guarantee safe
operation. This section discusses one functionality exemplary,
though the entire UAV software needs to be analyzed. The goal
is that the quad-copter can remain static in the air at given
height between 20 and 150 centimeters. This task consists of
a measurement unit to detect the current height and pass on
the distance information to the engine task which uses control
algorithms for adapting the current height to a given value.
Stabilization is performed by the engine control using a triple-
axis gyroscope.

This use case describes timing analysis of the distance
measuring and evaluation software. An infrared proximity
sensor is used to measure the distance between the quad-
copter and ground. It delivers an analog output with a nonlinear
distance measuring characteristics. The sensors characteristic
is approximated and expressed as mathematical equation. As
a result, it is necessary to use an analog-digital converter to
read in the latest sensor value and calculate the current distance
according to its characteristic.

Listing 3 shows the source code of the sensor read function
and is described in this paragraph. One can pass the number of
measurements as argument to the function. If the parameter is
zero or one, only a single value will be measured (see GetAD-
CValues function). Otherwise, the given size equals the number
of measurements from which the mean value will be generated
(see mean function). In both cases, the distance is calculated
using the evaluateDistance function that implements the sensor
characteristics as formula. The functions GetADCValues and
mean each contain a loop, which bound depends on the given
size. In Addition, the analog-digital conversion executed within
the GetADCValues function takes several cycles, depending on
the ADC configuration (e.g., conversion width of 12 bits or the
divider factor for the analog internal clock). For the WCET
analysis, this delay is considered and implemented as busy-
waiting loop.

Although this software component is a relatively small one,
its importance is beyond debate because it delivers information
about the current height and wrong or no up-to-date data could
lead to an accident. Therefore, it is necessary to estimate the
timing behavior of this software component by evaluating its
worst-case execution time.

uint16_t readSensor(uint16_t size)
{

uint16_t distance;

if(size < 2)
{

uint16_t adc_value;
GetADCValues(&adc_value, 1);
distance = evaluateDistance(adc_value);

}
else
{

uint16_t adc_values[size];
uint16_t temp;
GetADCValues(adc_values, size);
temp = mean(adc_values, size);
distance = evaluateDistance(temp);

}
return distance;

}

Figure 3. Distance measuring source code

The process of analyzing its worst-case timing behavior
start with the binary file of the program, shown in Listing 3,
by identifying and evaluating all loop bounds using the mkffx
tool. In the use case, a mean value from 32 analog-digital
conversions is used for the height estimation. Therefore, the
loop bounds within the GetADCValues and mean function need
to be 32. After the generated flow facts are checked, the OSWA
tool can be executed to estimate the functions WCET.

TABLE III. WCET RESULTS OF THE USE CASE.

Function OTAWA
readSensor 68.58 µs
GetADCValues 62.22 µs
mean 5.20 µs
evaluateDistance 0.425 µs

Table III shows the worst-case execution time evaluation
results of the functions from the use case. All results are
estimated for the Infineon XMC4500 microcontroller operating
with a clock rate of 120 MHz. The distance calculation,
including all sub-routine calls, takes 68.58 µs in the worst-
case. A measurement was performed where an execution time
of 67.37 µs was recorded, giving the information that the
WCET analysis is safe and tight. The results of the sub-
routines are revealing where most of the time is spent. In
this case, recording the ADC values takes the majority and
evaluating the distance the least of the time. This ratio depends
on the number of analog-digital conversions taken into account
for one distance calculation. Finally, the main statement of the
results is emphasizing the necessary time budget of 68.58 µs
for the entire task.

VII. CONCLUSION

This paper elaborates on the implementation of a processor
model for worst-case execution time analysis. The presented
approach integrates with the open-source framework OTAWA
and, hence, can serve as guide for similar efforts.

It starts with the architecture implementation, which is split
into a Sim-nML/nMP model and an OTAWA script, resulting in
a behavioral architecture description with timing information
of operations in order to generate a cycle-accurate instruction
set simulator. In particular, we choose the ARMv7E-M archi-
tecture that is used by ARM Cortex-M4 devices.

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 23 / 37

The resulting toolset was evaluated by way of a benchmark
in order to underline its save and tight WCET calculation.

Our lesson learned is that the seamless and correct de-
scription of a processor model is exhaustive; further, the
implementation quality depends on the correctness of the archi-
tectures datasheet. We experienced that the OTAWA framework
is capable of much more than WCET analysis, because the
existing analyses can be adapted to fulfill own requirements
or purposes.

In summary, the presented approach enables static binary
analysis of a program targeting an implemented architecture.
This allows to evaluate information of the application like the
WCET, which can be used for creating a statement regarding
possible violations of deadlines or task scheduling in real-time
systems.

ACKNOWLEDGMENT

This work has been conducted in the context of the public
funded R&D project Software Analysis Toolbox managed by
the Vienna City Council MA23.

REFERENCES

[1] C. Ferdinand, “Worst case execution time prediction by static program
analysis,” In 18th International Parallel and Distributed Processing
Symposium, IPDPS’04, 2004, pp. 125a.

[2] H. Cass, H. Ozaktas, and C. Rochange, “A Framework to Quantify
the Overestimations of Static WCET Analysis,” In 15th International
Workshop on Worst-Case Execution Time Analysis, WCET’15, 2015,
pp. 1–10.

[3] R. Kirner, P. Puschner, and I. Wenzel, “Measurement-based worst-case
execution time analysis,” In IEEE Workshop on Software Technologies
for Future Embedded and Ubiquitous Systems, SEUS’05, 2005, pp. 7–
10.

[4] F. Guet, L. Santinelli, and J. Morio, “On the Reliability of the
Probabilistic Worst-Case Execution Time Estimates,” In Proceedings
of the Embedded Real-time Software and Systems, ERTS’16, 2016,
pp. 758–767.

[5] X. Jean, S. Girbal, A Roger, T. Megel, and V. Brindejonc, “Safety
considerations for WCET evaluation methods in avionic equipment,”
In IEEE/AIAA 34th Digital Avionics Systems Conference, DASC’15,
2015, pp. 7A4–1 to 7A4–15.

[6] M. Paolieri and R. Mariani, “Towards functional-safe timing-
dependable real-time architectures,” In IEEE 17th International On-Line
Testing Symposium, IOLTS’11, 2011, pp. 31–36.

[7] S. Fischmeister and I. Lee, “Temporal Control in Real-Time Systems:
Languages and Systems,” In Handbook of Real-Time and Embedded
Systems, 2007, pp. 10–1 to 10–18. CRC Press.

[8] F. Stappert, A. Ermedahl, and J. Engblom, “Efficient longest executable
path search for programs with complex flows and pipeline effects,”
In Proceedings of the 2001 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, CASES ’01, 2001,
pp. 132–140.

[9] A. Colin and G. Bernat, “Scope-tree: a program representation for
symbolic worst-case execution time analysis,” In 14th Euromicro
Conference on Real-Time Systems, ECRTS ’02, 2002, pp. 50–59.

[10] Y. T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” In Design Automation, DAC ’95,
1995, pp. 456–461.

[11] N. Holsti and S. Saarinen, “Status of the Bound-T WCET tool,” In
2nd Int. Workshop on Worst-Case Execution Time Analysis, WCET02,
2002, pp. 36–41.

[12] G. Bernat et al., “Identifying Opportunities for Worst-case Execution
Time Reduction in an Avionics System,” Ada User Journal, Volume
28, Number 3, 2007, pp. 189–194.

[13] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper, “Automatic
Derivation of Loop Bounds and Infeasible Paths for WCET Analysis
Using Abstract Execution,” In 27th IEEE International Real-Time
Systems Symposium, RTSS’06, 2006, pp. 57–66.

[14] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “Otawa: An
open toolbox for adaptive wcet analysis,” In Software Technologies for
Embedded and Ubiquitous Systems, SEUS’10, 2010, pp. 35–46.

[15] H. Arora, A. Gupta, R. Singhai, and D. Purwar, “Design space
exploration of risc architectures using retargetability,” In VLSI Systems,
Architecture, Technology and Applications, VLSI-SATA’15, 2015, pp.
1–3.

[16] X. Li, A. Roychoudhury, T. Mitra, P. Mishra, and X. Cheng, “A
retargetable software timing analyzer using architecture description
language,” In Design Automation Conference, ASP-DAC’07, 2007,
pp. 396–401.

[17] T. Ratsiambahotra, H. Cassé, and P. Sainrat, “A versatile generator
of instruction set simulators and disassemblers,” In Symposium on
Performance Evaluation of Computer & Telecommunication Systems,
SPECTS’09, 2009, pp. 65–72.

[18] P. Grun et al., “Expression: An ADL for System Level Design
Exploration,” Technical Report TR 98-29, University of California,
Irvine, USA, 1998.

[19] V. Zivojnovic, S. Pees, and H. Meyr, “Lisa-machine description
language and generic machine model for hw/sw co-design,” In VLSI
Signal Processing, IX, 1996, pp. 127–136.

[20] A. Fauth, J. Van Praet, and M. Freericks, “Describing instruction set
processors using nml,” In European Design and Test Conference, ED
TC’95, 1995, pp. 503–507.

[21] P. Mishra and N. Dutt, “Processor Description Languages: Applications
and Methodologies,” vol. 1, chapter 1, Morgan Kaufmann, 2008, ISBN:
978-0-12-374287-2.

[22] M. Michiel, A. Bonenfant, C. Ballabriga, and H. Cassé, “Partial Flow
Analysis with oRange,” In International Symposium on Leveraging
Applications, ISoLA’10, Part II, Springer, 2010, pp. 479–482.

[23] U.S. Department of Transportation, Federal Aviation Administration,
“Introduction to TCAS II Version 7.1,” 2011.

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 24 / 37

Expurgated Codes for Detecting Jamming in Multi-level Memories

Yaara Neumeier

Faculty of Engineering
Bar-Ilan University

Email: yaara.neumeier@biu.ac.il

Osnat Keren

Faculty of Engineering
Bar-Ilan University

Email: osnat.keren@biu.ac.il

Abstract—Robust q-ary codes can efficiently detect jamming
in multilevel memories when q is a power of two. When q
is not a power of two, a binary information word has to be
converted and encoded into a q-ary codeword. This conversion
expurgates the code; some of the q-ary codewords are never
used. Unless properly designed, expurgation can significantly
degrade the efficiency of the code in terms of its error detection
capability. This work presents a q-ary robust Quadratic-Sum
code for arbitrary q’s and analyzes the error masking probability
of the expurgated code when applied to multilevel memories. It
is shown that by wisely designing the converter, this degradation
can be minimized, and in some cases, the expurgated code’s
efficiency can be superior to the one of the original code. This
work suggests how to construct a converter to optimize code
properties.

Index Terms—Robust codes; Multi-level Memories; Jamming
attacks; Hardware security.

I. INTRODUCTION

Memory arrays are prone to jamming attacks [1], where
an adversary injects faults into the memory to alter a stored
value. The injected fault manifests itself as an additive error
of an arbitrary multiplicity; i.e., any number of bits may be
flipped or distorted. [2]. Fault injection can be executed, for
example, using variations on voltage, temperature, white light,
laser, ion beams, etc. An attacker can inject faults into the
memory to change its content and then acquire information
about the system by analyzing its behavior [2].

Several countermeasures to jamming attacks on memories
have been proposed [2][3]. For example, one approach to
protect memories is to implement intrusion detection mech-
anisms based on active protection using tamper-proof box
and sensors to make the device physically inaccessible. Since
different sensors are used against different injection methods,
this method becomes expensive and inappropriate for simple,
small devices. Moreover, it is powerless against new types of
attacks that were not considered by the designers. Furthermore,
internal information about the design may help the attacker
bypass this protection. An alternative approach is to detect
the manifestation of the fault as an error using error detecting
codes.

Classic coding theory addresses the problem of the reliabil-
ity of information transmitted over a noisy channel or stored in
storage media. In classic coding theory, the errors are assumed

to be random with a relatively small probability. Consequently,
a reliability oriented code should protect the system from a
small number of random errors (small multiplicity). Many
known codes designed for reliability (such as the parity bit
code, Hamming code, BCH codes, etc) are linear [4], however;
in linear codes, all the errors that are codewords are never
detected. As a result, reliability oriented codes cannot be used
to provide security against an attacker that can inject any error.

Jamming can be detected by nonlinear robust codes capable
of detecting any non-zero error. The efficiency of these codes
is measured in terms of their error masking probability QM =
maxe ̸=0Q(e) where Q(e) is the probability that an error e is
masked by codewords in C. This probability depends on the
probability mass function of the codewords; that is,

Q(e) =
∑

c,c+e∈C
p(c),

where p(c) is the probability that c ∈ C is used.
The Quadratic-Sum (QS) code [5] is a nonlinear q-ary high-

rate robust code of length n and dimension k defined over a
finite field, i.e., for a q that is a power of a prime. When all the
codewords are equally likely to occur, the code is an optimum
code, and its error masking probability equals QC = q−(n−k)

[5]. If these conditions are not fulfilled, the performance of
the code may significantly degrade [6].

The encoding complexity of a binary QS code is relatively
low with respect to other robust codes (e.g., the codes in
[7][8] which involve computations over finite fields of high
order); its k information symbols are treated as 2s symbols
from Fr2 and its single redundant symbol x2s+1 is the sum∑s
i=1 x2i−1x2i over Fr2. This simple structure makes the code

an attractive countermeasure to jamming in binary and q-ary
multilevel memories, where q is a power of two.

However, in some cases, the code’s alphabet size is not a
power of two. Note that the number of levels in a multilevel
memory, l, may be a power of two. Nevertheless, the code’s
alphabet size q may be smaller than l. For example, in Write-
Once-Memory codes and rank-modulation codes the alphabet
size is smaller than the number of levels to enable several
write cycles to the same address before block-erasure. As far
as we know, all known robust codes ([5][7][8][9]) are defined
over a finite field, i.e., where q is a power of a prime, and

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 25 / 37

cannot be used in the case where the number of states is not
a power of a prime.

Another problem that arises when the code’s alphabet size is
not a power of two is that each binary information word has to
be converted to a q-ary word by a dedicated conversion circuit
[10]. A conversion circuit maps a binary vector of length k2 to
a q-ary vector of length kq . A conversion circuit is constructed
from sub-blocks, denoted DCCi. The input of each sub-block
is a binary w2-bit vector, and its output is a q-ary vector of
length wq . The values w2 and wq are chosen such that wq =
⌈w2 logq 2⌉. A schematic illustration of a multilevel memory
with a conversion circuit is shown in Figure 1. Since qwq <
2w2 , some of the codewords of the (original) q-ary code C are
never used. When these unused words are chosen arbitrarily,
the error masking probability of the expurgated code, denoted
by M, can become higher than the error masking probability
of the original code.

Robust codes over finite fields for a non-uniform distribution
of codewords were discussed in [6][11][12]. In [6], the authors
showed that when most of the codewords appear with low
probability, which is the case for some Final State Machines
(FSMs), it is possible to avoid the worst case scenario by pre-
mapping the information word before the encoding. In [12], a
general approach for mapping the most probable codewords to
a predefined set was suggested. In [11] the authors dealt with
the non-uniform characteristics of FSMs using randomized
masking. Another way to cope with a non-uniform distribution
of codewords is by embedding randomness [13][14]; these
codes are also defined over finite fields. However, since the
random symbols are an integral part of the codeword, their rate
is lower than the rate of (deterministic-encoding) robust codes
such as the QS and the Punctured-Cubic/Square in [7][8].
These solutions are appropriate for applications where a small
portion of the states appear with high probability; they are less
suitable for applications such as multilevel memories where
some words never occur and other words appear with uniform
probability.

This paper expands the QS construction to codes over
integer rings, proves its robustness, and examines the security
related implications of applying expurgated codes on q-ary
memory systems with data conversion circuits in cases where
q is not a power of a prime. It is shown that by choosing M
properly, the practical error masking probability QM may be
even better than QC . The main ideas and results presented in
this paper are the following:

• A QS-based code C is robust over rings.
• The maximal error masking probability QM of code M

is bounded by

(2|M| − |C|)
p1|M|

≤ QM ≤ |C|
p1|M|

< 2QC , (1)

where p1 is the smallest divisor of q. Since p1 ≥ 2, an
expurgated code is robust; it can detect any nonzero error
with a probability greater than zero.

• If p1 = 2 there exists an expurgated code M, which

Figure 1. Multilevel memory system with data conversion circuit, protected
by encoder and a checker.

provides a smaller error masking probability, i.e., QM <
QC . If p1 ̸= 2 and

(p1 − 1)kq + 1 ≤ |C| − |M| (2)

there exists an M with QM < |C|
p1|M| .

• A code construction for M which minimizes QM in
cases where p1 = 2 for a given set of parameters, and
has

(2|M| − |C|)
p1|M|

≤ QM ≤ QC ,

is presented.

The rest of this paper is organized as follows. Section II
defines and analyzes the Quadratic-Sum code for a general
q. Section III presents the expurgated code and the security
problem that arises when applying the codes to q-ary memories
where q is not a power of two. Then, lower and upper bounds
on the error masking probability are presented. Section IV
suggests how to choose M in cases where p1 = 2 to minimize
its error masking probability and Section V concludes the
paper.

II. THE EXTENDED QS CODE

Notations: Regular lowercase letters are used to represent
scalars. Boldface lowercase letters are used to denote row
vectors, e.g., x = (x1, . . . , xn) is a vector of length n, where
wH(x) denotes the Hamming weight of x. Double stroke
capital letters are used to denote algebraic structures, e.g., Fq
is a finite field with q elements. Regular uppercase letters are
used to represent sets, e.g., S, where |S| is the number of
elements in S. Calligraphic capital letters are used to denote
codebooks, e.g., C.

Consider a multilevel memory whose levels are mapped into
symbols in an alphabet of size q. In this paper, we refer to
such a memory as a q-ary memory. The set of q symbols
with addition and multiplication form an algebraic structure.
If q = pt and p is prime, the algebraic structure is a finite
field Fq; otherwise, it is a ring Rq in which operations are
computed modulo q. To simplify the text, when it is clear
from the context, we denote the algebraic structure by Zq ,
and denote addition and subtraction by the symbols ⊕ and ⊖,
respectively.

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 26 / 37

Known robust codes are defined over a finite field, i.e., the
size of the alphabet, q, is a power of a prime. If the number
of different states (voltage levels) that a memory cell can have
in each write cycle is not a power of a prime, a robust code
over a ring is required. Note that the computation of all these
known robust codes over finite fields involves multiplication.
However, in the case of a ring, there are elements in the ring
with no multiplicative inverse, which may affect the analysis
and the resulting error masking probability. In this section we
introduce an extension of the QS code. The resulting code
is a robust code over a ring. The maximal error masking
probability of the extended code is different (higher) than the
maximal error masking probability of the original QS code
over a finite field.

The QS code is defined in [5] for the case where q is a
power of a prime (PoP). The number of redundancy symbols
in [5] is r ≤ k. The code can be extended for q’s which are
not necessarily PoPs as follows:

Construction 1. Let q =
∏v
i=1 pi

ti where pi < pi+1. Let k =
2sr, where r = 1 if q is not a PoP. Let x = (x1, x2, . . . , x2s)
where xi ∈ Zrq for 1 ≤ i ≤ 2s. The code QS code is

C = {(x,u) : x ∈ Z2s
q ,u =

s∑
i=1

x2i−1x2i ∈ Zrq}.

Note that when q is not a PoP, we take r = 1 since a
larger r cannot improve the code’s efficiency. To simplify the
notation, from here on, unless otherwise stated, q is not a PoP.
The case where q is a PoP can be viewed as subcase of the
general case with p1 = q.

Let e = (ex, eu) be an error vector, where ex =
(ex1 , . . . ex2s) ∈ R2s

q and eu ∈ Rq . The error is masked by
a codeword c if (x ⊕ ex, u ⊕ eu) ∈ C. In other words, the
error masking equation of the code is
s∑
i=1

(x2i−1 ⊕ ex2i−1)(x2i ⊕ ex2i) =
s∑
i=1

x2i−1x2i ⊕ eu. (3)

Equivalently,

axT = b (4)

where a ∈ R2s
q and b ∈ Rq are

ai =

{
exi+1 if i is odd
exi−1 if i is even , and b = eu ⊖

s∑
i=1

ex2i−1ex2i .

Let B(a) be the set

B(a) = {b|∃x : axT = b}.

Clearly, B(a) = B(ex). To analyze which elements are in
B(a), it is convenient to use the greatest common divisor (gcd)
over a set of nonzero integers; define g(a) ∈ Rq as

g(a) = gcd({ai|ai ̸= 0} ∪ {q}).

The set B(a) contains all the multiples of g(a) modulo q.
Therefore |B(a)| = q

g(a) . In addition, for all 1 ≤ i ≤ 2s, ai

is also in B(a). For example, if q = 6, r = 1, k = 2 and
a = (0, 4), then g(a) = 2, B(a) = {0, 2, 4} and |B(a)| = 3.

Property 1. Let a ∈ R2s
q \ {0}. Then, (4) has qk|B(a)|−1

solutions if b ∈ B(a) and 0 solutions otherwise.

For uniformly distributed codewords, the number of solu-
tions of (4) for a given e defines the error masking probability;

Theorem 1. Let q not be a PoP. Let C be a QS code where the
codewords in C are uniformly distributed. The error masking
probability of C for any nonzero error e is Q(e) = 1

|B(a)| if
b ∈ B(a), and Q(e) = 0 otherwise. In particular, the maximal
error masking probability of the QS code is QC = 1/p1.

The set of all ex’s can be divided into subsets according to
their error masking probability. Let Ex be the set of ex’s that
have the maximal error masking probability. Any ex ∈ Ex
can be written as ex = q

p1
ẽx where ẽx ∈ Zkp1 . Since B(ex) =

B(e′x) for all ex, e
′
x ∈ Ex, there are (p1

k − 1)p1 distinct
error vectors e that maximize the error masking probability.

Example 1. Consider the case where q = 6, k = 2, and
r = 1. In this case, the set Ex = {03, 30, 33} and B(Ex) =
{0, 3}. Each one of the errors 030, 033, 300, 303, 330, 333 has
an error masking probability Q(e) = 0.5 = Q.

III. THE EXPURGATED CODE

Consider a k2-bit binary word to be stored in a q-ary
memory array where q is not a power of two. For converting
the binary word into a q-ary word of length kq , the k2 bits
are divided into blocks of w2 bits which are then mapped into
blocks of wq q-ary symbols; whereas,

⌊ k2
w2

⌋wq + ⌈(k2 mod w2) logq 2⌉ ≤ kq ≤ ⌈ k2
w2

⌉wq.

For simplicity, we assume that k2
w2

is an integer (however, our
results equally apply to non integers). Since q is not a power
of two, some of the q-ary vectors are never used; denote by
Dw the set of the combinations over in Fwq

q that are never
used,

|Dw| = qwq − 2w2 < 2w2 .

Denote by D ⊆ Zkqq the set of q-ary vectors of length kq that
never occur at the output of the converter, and by M = Zkqq \D
the set of vectors that can appear at the output of the converter.
Each vector in D corresponds to a codeword in C that is never
used; denote by D ∈ C the set of unused codewords, and by
M = C \ D the expurgated code,

|M| = |M | = 2k2 > |C|/2,
|D| = |D| = (qkq − 2k2) < |C|/2. (5)

It is assumed that the codewords in M are uniformly dis-
tributed.

Clearly the error masking probability of M may be different
from the error masking probability of C. Denote by R(e) the

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 27 / 37

C C e⊕

n
qΖ

�����������

	
����	���������	����

��������������

������������

������
���	���

����	�	���	��

��	
	���

���	����������

������
���	�������	�	���

������
	�	
	���

⊕� �

�

⊕� �

⊕� �

�

� ⊕� �

⊕� �

� �

�

⊕� �

Figure 2. Three types of errors in expurgated codes.

number of codewords that mask the error vector e,

RC(e) = |{c|c ∈ C and c⊕ e ∈ C}|.

For uniformly distributed codewords we have, Q(e) =
RC(e)/|C|. Denote by ΛC1,C2(e) the cross-correlation from a
code C1 to a code C2; i.e,

ΛC1,C2(e) = |{c|c ∈ C1 and c⊕ e ∈ C2}|.

Since C = M∪D and M∩D = ∅ the autocorrelation of the
code C can be rewritten as

RC(e) = RM(e) + ΛM,D(e) + ΛD,M(e) +RD(e). (6)

Figure 2 illustrates the contribution of each component in
(6) to RC(e) for three types of errors. The codewords of
expurgated code M and its shifted set (e+M) are shown in
red, and the codewords that correspond to D appear in light
gray. RM(e) is the number of codewords in the intersection of
the two red areas. The best case is shown on the left hand side
of the figure. Since RM(e) is the autocorrelation of code M,
the best case is where RM(e) = 0, however, it is impossible
to achieve this for all errors, since for each two codewords
c1, c2 ∈ M there is an error vector e such that c1 ⊕ e = c2.
The worst case is where RM(e) is maximized. The desired
case is where the maximal value of RM(e) is minimized.

A standard checker of a separable code uses the kq infor-
mation symbols that are read from the memory to compute the
expected redundant symbols. If the computed value matches
the value of the rq symbols stored in memory, the checker
declares that no error has occurred, otherwise, it raises a flag.
Such a checker masks an error e with a probability

RM(e) + ΛM,D(e)

|M|
. (7)

which may be higher than QM. This problem can be avoided
if the checker also verifies that the received codeword belongs
to M (i.e., it verifies that the information vector is a legal
output of the converter). Now the error masking probability is
reduced to the true error masking probability of M, i,e,

QM(e) =
RM(e)

|M|
.

In what follows we assume that the latter checker is used.

A. An upper bound on the error masking probability

Theorem 2. The expurgated code M is robust. Its error
masking probability is upper bounded by

QM ≤ |C|
p1|M|

<
2

p1
= 2QC . (8)

The error masking probability of the expurgated code de-
pends on the choice of the set M; in particular, QM(e) may
be larger, smaller, or identical to the error masking probability
of the original code. The following example demonstrates how
sensitive the error masking probability is to the choice of M.

Example 2. Consider the case where k2 = w2 = 6 bits of
information are converted to kq = wq = 2 symbols over alpha-
bet q = 10, and are protected by a single redundant symbol. In
this case, |C| = 102, |M| = 26 and |D| = |C|−|M| = 36. The
maximal error masking probability of the original QS code C
is QC = 0.5.

Let D = {10− 19, 30− 39, 50, 51− 59, 70− 75}. Consider
the error vector e = 050; the corresponding parameters
are a = 50 and b = 0. Note that for each x ∈ D,
axT = 5x1 ⊕ 0x2 ̸= 0; namely, all the vectors in D are
not in XC(050). Therefore, RM(050) = RC(050) = 50, and
the error masking probability is QM(050) = QM ∼ 0.78.
In the following section we introduce a method to choose a
D which provides a QM of 0.3125; this D consists of the
following vectors:

{02− 09, 12− 19, 20, 21, 24, 25, 30, 31, 34, 35, 40, 41

, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91}.

B. A lower bound on the error masking probability

Denote by XC(e) the set of the information words that mask
an error e,

XC(e) = {x|(x,u(x)) ∈ C and (x,u(x))⊕ e ∈ C}.

Note that |XC(e)| = RC(e).
The choice of Dw determines D, and hence D. Denote by

△(e) the difference between the number of codewords that
mask e in C and the number of codewords that mask it in M,

△(e) = RC(e)−RM(e).

If △(e) equals zero, RC(e) = RM(e) and QM(e) is max-
imized. If △(e) > 0 then RM(e) < RC(e) and QM(e) is
smaller than its upper bound. From (6) it follows that

△(e) = ΛM,D(e) + ΛD,M(e) +RD(e).

The sum ΛD,M(e) + RD(e) is the number of codewords
that mask e in C and are in D and therefore are not in M. In
fact, it equals the size of the intersection between the set of
codewords that mask e and the set of deleted codewords, that
is,

ΛD,M(e) +RD(e) = |D ∩XC(e)|.

18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 28 / 37

Similarly, denote by (D − ex) = {x⊖ ex|x ∈ D}, then

ΛM,D(e) +RD(e) = |(D − ex) ∩XC(e)|.

Therefore,

△(e) ≤ |D ∩XC(e)|+ |(D − ex) ∩XC(e)|. (9)

Thus,
△(e) ≤ 2|D|.

The rationale behind the choice of M (and hence, the choice
of D), is to decrease QM by decreasing the error masking
probability of the errors that maximize it in C; these errors
form the set Ex. In other words, denote by

△ = min
e∈Ex,b∈B(ex)

△(e),

the minimal difference of the error masking probabilities over
all the errors that maximize QC(e). The goal is to maximize
△ so as to minimize QM.

Theorem 3. The error masking probability of M is

QM ≥ (|M| − |D|)
p1|M|

. (10)

Proof. Let ex ∈ Ex. For all bi ̸= bj ∈ B(ex), we have,

{x|axT = bi} ∩ {x|axT = bj} = ∅.

Recall that the size of B(ex) is p1. Therefore, for each ex ∈
Ex there are p1 distinct non-empty and disjoint sets XC(e).

Consider the intersection of an arbitrary set S ⊆ Zkqqr with
all the sets XC(e) where ex ∈ Ex. The minimal size of the
intersection is smaller or equal to the average; that is,

min
e,ex∈Ex and b∈B(ex)

|S ∩XC(e)| ≤
|S|
p1
.

By applying this upper bound to the sets D and (D−ex), we
get,

△ ≤ min
e∈Ex

|D ∩XC(e)|+ |(D − ex) ∩XC(e)| ≤
2|D|
p1

.

Therefore, the minimal difference of the errors in Ex is upper
bounded by △ ≤ 2|D|/p1 for any D, and

QM =
maxe̸=0RC(e)−∆

|M|
≥ (|M| − |D|)

p1|M|
.

C. The impact of the size of M on its error masking proba-
bility

Before we address the question of how to choose Dw (and
hence, D), we need to relate to cases where the choice of D
has no impact. In such cases, regardless of the choice of D,
the error masking probability coincides with the worst case
given in Th. 2; that is, △ = 0.

Theorem 4. If p1 = 2, it is always possible to choose D such
that △ > 0. If p1 ̸= 2 and

|D| ≥ (p1 − 1)kq + 1,

it is possible to choose D such that △ > 0; and similarly, if

|Dw| ≥ (p1 − 1)wq + 1

then it is possible to choose Dw such that ∆ > 0.

Proof ommitted.

IV. CONVERTER STRUCTURE

Usually, a converter is built from identical sub-blocks.
Hence, it is sufficient to determine the set Dw of unused
vectors for a single sub-block. In this section, it is assumed
that p1 = 2; however, with a small modification the results
can be applied to other cases. Recall that we assume that k2

w2

is an integer, and that kq =2s. The case where k2
w2

is not an
integer can be viewed as a subcase of this case. The output of
the converter is a q-ary vector of length wq , x = (x1, . . . xwq).

We define a Hamming ball of dimension wq and radius p1
as the set

Hwq,p1 =
{
zj =

wq∑
i=1

hjivi | hji ∈ {0, . . . , p1 − 1}
}
,

where vi = 0i−110wq−i−1 is a unite vector of Hamming
weight one.

The size of a Hamming ball is pwq

1 . If p1 = 2 then |Hwq,p1 |
divides |Dw|. Hence, Dw can be a union of shifted disjoint
Hamming balls.

The following construction is designed to maximize ∆,
hence to minimize the error masking probability.

We start by defining a set of offset vectors Γwq ,

Γwq = {θ ∈ Zwq
q | θ =

kq∑
i=1

vip1ti, ti ∈ {0, . . . , q
p1

− 1}}.

Notice that the symbols of θ are multiples of p1. Therefore,
for any two vectors θ1 ̸= θ2, the intersection (θ1 ⊕Hwq,p1)∩
(θ2 ⊕Hwq,p1) is empty.

Construction 2 (Disjoint Hamming Balls). Define the set Dw

as

Dw =
∪
θi∈Θ

θi ⊕Hwq,p1 . (11)

where Θ ⊆ Γwq is an arbitrary subset of offsets vectors, |Θ| =
|Dw|/p1wq .

Recall that each information word is a concatenation of
kq/wq vectors of length wq . If one of these vectors is in Dw,
the resulting information word is in D; if none of them is in
Dw, the resulting information word is in M . In other words,
the set of unused information words is

D =
∪
ψ∈Ψ

ψ ⊕Hkq,p1 ,

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 29 / 37

where a vector ψ is in Ψ if at least one of its kq/wq portions
is a vector in Θ and the others are in Γwq .

Theorem 5. If D is chosen according to Const. 2 and p1 = 2
then

(|M| − |D|)
p1|M |

≤ QM(e) ≤ 1

p1
= QC .

Proof ommitted.

Is it possible to reach the lower bound on QM? Recall the
proof of Theorem 3; in the proof, an upper bound on ∆ was
obtained by adding the sizes of two sets. If these two sets are
disjoint, an equality holds. In other words, it is possible to
reach the lower bound on QM if for all x ∈ D, x /∈ D − ex.
The following example shows that in some cases this situation
cannot be avoided.

Example 3. Consider the case where q = 6, kq = wq = 3
and k2 = w2 = 7. In this case D is a union of 11 shifted
Hamming balls |D| = 11 · |H3,2| = 88, here |Ψ| = 11. In
fact, there are (q/2)3 = 27 possible vectors out of which
Ψ is chosen. Therefore, there must be at least two linearly
dependent vectors in Ψ. Without loss of generality, assume
that ψ1 = 002 and ψ2 = 004 are in Ψ. In this case, for
ex = 003 ∈ Ex and x = 005 we have,

x = (ψ2 ⊕ 001) ∈ D

x = (ψ1 ⊕ 000)⊖ 003 ∈ D − ex

That is, x is both in D and D − ex.

V. CONCLUSION

This work analyzed the efficiency of robust codes when
used to protect multilevel memories. When the code’s alphabet
size, q, is not a power of two, the binary information must be
converted into a q-ary word. It was shown that this conversion
can significantly degrade the error masking probability of
the codes. However, by wisely designing the converter, the
degradation of the code properties can be minimized. Bounds
on the practical error masking probability were given. A
construction for the converter in cases where the QS code
is applied to the multilevel memory was provided. It was
shown that this construction indeed reduces the error masking
probability of the resulting code.

ACKNOWLEDGMENT

This research was supported by the ISRAEL SCIENCE
FOUNDATION (grant No. 1200/12).

REFERENCES

[1] S. Skorobogatov and R. Anderson, “Optical fault induc-
tion attacks,” in Cryptographic Hardware and Embedded
Systems-CHES 2002. Springer, 2003, pp. 2–12.

[2] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache,
“Fault injection attacks on cryptographic devices: Theory,

practice, and countermeasures,” Proceedings of the IEEE,
vol. 100, no. 11, pp. 3056–3076, 2012.

[3] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and
C. Whelan, “The sorcerer’s apprentice guide to fault
attacks,” Proceedings of the IEEE, vol. 94, no. 2, pp.
370–382, 2006.

[4] R. E. Blahut, “Theory and practice of error control
codes,” Reading, 1985.

[5] M. Karpovsky, K. Kulikowski, and Z. Wang, “Robust er-
ror detection in communication and computational chan-
nels,” Spectral Methods and Multirate Signal Processing.
SMMSP’2007. International Workshop on.

[6] I. Shumsky, O. Keren, and M. Karpovsky, “Robustness
of security-oriented binary codes under non-uniform dis-
tribution of codewords,” in DEPEND 2013, The Sixth
International Conference on Dependability, 2013, pp.
25–30.

[7] Y. Neumeier and O. Keren, “Robust generalized punc-
tured cubic codes,” IEEE Transactions on Information
Theory, vol. 60, pp. 2813–2822, 2014.

[8] N. Admaty, S. Litsyn, and O. Keren, “Puncturing, expur-
gating and expanding the q-ary bch based robust codes,”
in Electrical Electronics Engineers in Israel (IEEEI),
2012 IEEE 27th Convention of, Nov 2012, pp. 1–5.

[9] M. Karpovsky and A. Taubin, “New class of nonlinear
systematic error detecting codes,” Information Theory,
IEEE Transactions on, vol. 50, no. 8, pp. 1818–1819,
2004.

[10] M. Bauer, “Data path for multi-level cell
memory, methods for storing and methods for
utilizing a memory array,” Mar. 24 2011,
uS Patent App. 12/956,977. [Online]. Avail-
able: http://www.google.com/patents/US20110069548
[accessed: 2016-5-22]

[11] K. D. Akdemir, G. Hammouri, and B. Sunar, “Non-linear
error detection for finite state machines,” in Information
Security Applications. Springer, 2009, pp. 226–238.

[12] A. Levina and S. Taranov, “Spline-wavelet robust code
under non-uniform codeword distribution,” in Computer,
Communication, Control and Information Technology
(C3IT), 2015 Third International Conference on. IEEE,
2015, pp. 1–5.

[13] R. Cramer, Y. Dodis, S. Fehr, C. Padró, and D. Wichs,
“Detection of algebraic manipulation with applications to
robust secret sharing and fuzzy extractors,” in Advances
in Cryptology–EUROCRYPT 2008. Springer, 2008, pp.
471–488.

[14] Z. Wang and M. Karpovsky, “Robust fsms for crypto-
graphic devices resilient to strong fault injection attacks,”
in On-Line Testing Symposium (IOLTS), 2010 IEEE 16th
International. IEEE, 2010, pp. 240–245.

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 30 / 37

Safe Transitions of Responsibility in Highly Automated Driving

Rolf Johansson

SP, Technical Research Institute of

Sweden

Borås, Sweden

e-mail: rolf.johansson@sp.se

Jonas Nilsson

Volvo Car Corporation

Göteborg, Sweden

e-mail: jonas.nilsson@volvocars.com

Martin Kaalhus

Semcon Sweden

Göteborg, Sweden

e-mail: martin.kaalhus@semcon.com

Abstract—This paper presents a method for achieving

functional safety for an automated vehicle system with respect

to safe transitions between a manual and an automated driver,

where any single mistake of the human driver is tolerated.

Safety analysis and assessment of an implementation example

show how to allocate safety requirements on Human-Machine

Interface (HMI) components to handle the risks of unfair

transitions and mode confusion. Results from this example

show that it is sufficient to allocate safety requirements on the

sensor of, and the lock of, a single lever to ensure safe

transitions. No safety requirements are needed on visual

feedback to the driver, e.g., displays.

Keywords-functional safety; highly automated driving; safety

assessment.

I. INTRODUCTION

Presently, the most critical factor for road vehicle safety
is the behavior of the driver. There are different estimates,
but a common understanding is that humans directly cause
significantly more than 90% of serious accidents. More
advanced functionality and intelligence implemented in the
vehicle means that more of the responsibility to drive safely
may be shifted from the skill of the driver to the capability of
the functionality implemented in the vehicle.

The potential safety benefit of increased vehicle
automation is undoubtedly huge but it is important that the
extra risks coming from potential failures of automation are
limited to a minimum. In the discipline of functional safety,
there are methods to assess risks of malfunctioning E/E
implemented functionality, and to reduce these sufficiently.
For road vehicles, ISO 26262, [1], is the functional safety
standard.

This paper focuses on systems where the vehicle in some
specific situations takes full responsibility for the driving
task, i.e., level 3 (L3) automation according to the scale
defined by the National Highway Traffic Safety
Administration (NHTSA). Regarding the responsibility of
the manual driver (MD), the precise L3 definition says: “The
driver is expected to be available for occasional control, but
with sufficiently comfortable transition time”, and
furthermore: “the driver is not expected to constantly
monitor the roadway”, [2].

In order to prove that a L3 vehicle is functionally safe,
there are two general strategies how to consider the

interaction between the manual driver and the vehicle, what
in the ISO 26262 terminology is denoted controllability.

In the less conservative strategy, controllability is
investigated in detail for all possible scenarios where the
manual driver is “expected to be available for occasional
control”. In the traditional research field of human factors,
this is a research question that is currently very much
investigated [3], [4], [5]. A rather recent overview of what
controllability assumptions that are reasonable on NHTSA
L2 and L3 is found in [6].

In the more conservative strategy, there are no
assumptions that the manual driver can take back control
within a bounded time. One could say that we do not require
the driver to be comfortable with any short transition time.
This strategy is the one chosen by Volvo Cars in the
DriveMe project [7], where the vehicle takes full
responsibility to safely handle any critical situation during
automated driving. We can call this an autopilot with full
responsibility for safety, as it does not need to rely on any
responsiveness from the manual driver to stay safe.

An unsolved question so far, is if the more conservative
assumption about the human capability still can enable the
design of a functionally safe car. The introduction of an
autopilot with full responsibility leads to two new challenges
within functional safety. We need to ensure safety when the
autopilot is in charge, but also ensure safe transitions
between the manual driver and the automated driver (AD).
This paper investigates the latter.

The contribution of this paper is a method for achieving
functional safety for an automated vehicle system with
respect to safe transitions between a manual driver and an
autopilot with full responsibility for safety. We assume that
both the human driver and the autopilot are capable of safe
driving, as well as judging its own ability to drive safely.
Thus, neither the driver nor the autopilot are required to take
control and thus the vehicle will be in a safe state if either the
driver or the autopilot accept to take control of the vehicle.

There are simulator studies suggesting that human drivers
may change their driving behaviour when taking back
control from an autopilot, [8]. This is not considered in this
paper as we focus on functional safety rather than design of
the HMI or autopilot driving behaviour.

This paper is organized as follows. Section II describes
the new hazards related to the driving mode transitions
introduced by NHTSA L3. In Section III, we discuss how to

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 31 / 37

define a safe transition and the acceptable level of fault
tolerance. Section IV elaborates on possible implementations
using a system example and corresponding functional safety
analysis and assessment. Finally, Section V presents
concluding remarks.

II. WHAT CAN CAUSE THE ROAD VEHICLE TO BE UNSAFE

One interpretation of a hazard analysis & risk assessment
(HA&RA) today according to ISO26262 is that the vehicle
itself is considered safe, if it only puts the driver in situations
that are possible to manage safely. The driver is ultimately
responsible for safe driving, and the malfunctions of the
vehicle should be restricted in such a way that the driver can
keep the vehicle in a safe state. The explicit method for
determining the requested Automotive Safety Integrity Level
(ASIL), restricting a certain hypothetical vehicle failure, is to
measure three factors: exposure, severity and controllability.
The two first factors are the traditional ones that are part of
the definition of risk, i.e., a combination of probability and
severity. The third factor is the one that takes into account
that the driver may sometimes have a possibility to keep the
vehicle safe, even though the ordinary (safety-related)
functionality is failing.

When we shift from a situation where a manual driver
has the ultimate responsibility, to highly automated driving
where the manual driver and an autopilot are alternating, this
will have an impact on the HA&RA. So, what will become
different when going from NHTSA L2 to L3? This new
challenge has partly been addressed in [9].

We require the same from an autopilot as from a manual
driver. This means focusing on a safe style of driving,
making the driver capable to handle also unexpected events.
When programming an autopilot, this is what we cover on
the tactical level [10], [11]. The autopilot should always
choose to perform the maneuvers in such a way that
reasonable, but still unexpected, situations could be handled
safely. For example, the decision whether or not to initiate an
overtaking maneuver is on the tactical level. An optimistic
decision to overtake may cause the vehicle in a situation
where avoiding one accident may cause another. The
solution to this dilemma is of course to initiate an overtaking
maneuver only when the entire operation is foreseen to be
possible to fulfil in a safe manner.

Note the contrast to Advanced Driver Assistance Systems
(ADAS), where the vehicle takes over only on the
operational time scale, and then assumes the manual driver to
continue according to the (maybe revised) tactical plan. The
ADAS functionality today, does not take the ultimate
responsibility to drive the vehicle safely. Firstly, it only
operates on the operational time scale. Secondly, it only
assists the manual driver. When the responsibility is
transferred from the manual driver to the autopilot, there is
no longer an assistance relation. The transfer means that
from then on, the automated driver is fully responsible for
driving the vehicle safely.

Given that the autopilot can drive safely once in
command, the HA&RA must also cover the transitions
between the driver and the autopilot. In NHTSA L3, these
transitions introduce two new types of hazards, namely

unfair transitions and mode confusion. These are described
in detail in the following sections.

A. Unfair transitions

As we noted in the above section, it may be complicated
for the driver to make a proper override of a failing tactical
decision of the automated driver. This is because drivers may
find different tactical solutions to a certain driving situation,
and each of these may be correct. It may be hard for a driver
to distinguish a faulty tactical decision from a one that is just
different from his or her own favorite pattern. Even more, it
may be very hard to continue to fulfill a tactical plan of
another driver if the responsibility is transferred in the
middle of the intended sequence. This difficulty is both for a
manual driver to continue a plan of the automated driver, and
for the automated driver to continue what has been initiated
by the manual driver.

If the manual driver realizes that the automated driver has
handed over responsibility, without the manual driver
agreeing to this, this is a new risk to consider when entering
NHTSA L3. We can say that the manual driver is put in a
situation of unfair transition. For a driver with the same
understanding of the planned tactics, the situation may be
easy to handle, but an unfair transition may put the driver in
a situation where driving safely will be very difficult.

The problem of unfair transitions may appear in both
directions. It is reasonable to assume that the automated
driver can drive safely as long as it can choose its own
tactics. This is a far easier task than being able to understand
and solve arbitrary situations.

To summarize, if the responsibility is transferred from
one driver to the other, this must include a confirmation from
the receiving driver. Otherwise, the transition may be
regarded as unfair, and it is a non-negligible risk that the
second driver is incapable of handling the situation, on both
operational and tactical time scales.

B. Mode confusion

In order to make the entire trip from start to stop safe, it
is critical that the two drivers always agree on which of them
that currently is in charge. If they misunderstand each other,
there is a risk that either there are two drivers trying to
control the vehicle, or there is no one taking care of the ride.
Both these potential mode confusions need to be addressed.

If we allow both the manual driver and the automated
driver to override each other, there is an obvious risk that the
resulting non-harmonized commanding of the vehicle may
result in dangerous situations. This is especially probable
because the two drivers most likely make different tactical
decisions now and then, and as consequence regard the
operative command of the other as faulty. For safe driving in
NHTSA L3, it is important to reduce the risk of this
reciprocal override.

It is perhaps even more obvious that it will become
dangerous if neither the manual driver nor the automated
driver regard herself as the ultimately responsible. Such
reciprocal underride is therefore obviously important to
reduce properly when performing the risk assessment for
driving on NHTSA L3.

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 32 / 37

C. State-of-the-art comparison with other industries

This section describes technology, systems and concepts
from other industries where similar problems arise caused by
mode confusion and unsafe transitions. The focus has been
on nuclear, rail, avionics and space since these industries
deal with complex systems, is in a regulated environment
and all demand active users for proper operations.
Experiences from other industries give valuable insight into
how to design interfaces and processes that ensure safe
transitions in the context of autonomous driving. However,
these inspiration sources material and solutions need to be
adapted to fit into the automotive context in order to be a
viable tool.

As the existing autonomous systems within the
automotive industry are still in their infant stages and the
majority of them still are semi-autonomous (i.e. NHTSA L1-
L2) at time of writing, these systems are excluded. The
interested reader may study results from several research
efforts on this topic; PReVENT, HAVE IT, ADAPTIVE and
INTERACTIVE to mention a few.

When reviewing earlier experiences from nuclear,
avionics, rail and space industries we make one important
observation. Within these industries, the technical solutions
are operated by educated users, certified to use the specific
equipment, often in controlled environments and in
cooperation with colleagues supporting them.

In avionics, there is a system called Auto Ground
Collision Avoidance System (AGCAS) that monitors the
pilot’s response in certain situations and if the pilot does not
respond to an alarm, the system takes over and performs the
necessary manoeuvre. After avoiding the threat, control is
returned to the pilot. Inagaki describes this as situation-
adaptive autonomy where authority over a system is
transferred between human and machine agents, [12].
However, the main point of reference within avionics is that
an educated pilot is responsible for operation of the airplane
at all times, differing from the automotive situation.

Two major players in the avionics industry, Boeing and
Airbus, apply different philosophies regarding automation.
Boeing implements a strict assisting role for technology and
automation, where the pilot always acts as the final authority.
Airbus rather sees automation as a way of enhancing flight
performance by assisting the responsible pilot. This subtle
difference in philosophy causes different problems, where
the Boeing strategy allows the pilot to perform errors that
may cause accidents and the Airbus strategy may interfere
and prevent the pilot from performing necessary
maneuverers needed for safety in extreme situations [13]
[14].

Within nuclear there are numerous processes to monitor.
This is handled with different interfaces displaying process
information. In Sweden there are different systems ensuring
correct decisions regarding the operation of the nuclear plant.
There are regulations stating that the plants are to be
designed in such a way that operators always have a 30
minute window to perform an action. In other words, the
plant is fully autonomous for 30 minutes at a time. There are
also mechanisms that require several users to acknowledge

an action independently in order to perform it, which can be
compared to the needed protocol in automotive. However,
the time constants at play are significantly different when
compared to the automotive setting.

In the nuclear industry, one main control board always
represents the true state of the processes. It is assured to a
higher safety integrity and acts as the primary source of
information should different sources provide inconsistent
information. The inconsistent information does pose less of a
problem since nuclear operators are well educated with the
system and knows what information to depend on. However,
translating this into the automotive setting is problematic,
where most of the information sources primary purpose is to
enhance and ease the experience rather than to provide
safety-assured information on the system state.

Within the space industry, interfaces and systems are
often complex and users need to understand how to use
many different systems at the same time for proper
operation. Because of this, a lot of effort is put into mental
models of the systems; the users do not need to understand
how and why the systems work only have a basic
understanding of what situations the system can be used in
and what the outcome would be. This could be translated
into the automotive setting where the situation is similar,
although on a smaller scale and users need to quickly gain a
basic understanding about the autonomous systems
capabilities and limitations.

Studies from the rail industry have analysed operator
workload and the possibilities of it causing human errors.
Two main ways of managing human performance have been
formulated, through either technology or human resource
management. Assessment of individual possibilities to
manage the required workload has been performed through
psychometric testing, as well as limiting workdays and
issuing regular breaks [15].

As the automotive setting makes it difficult to limit usage
periods, the technology and interfaces must be designed to
ensure safe usage under these circumstances. Adaptive
interface features linked to specific task requirements with
consistency in interface design across different modes of
system operation is recommended in order for the users to
effectively apply mental models [16].

III. WHAT MAKES A TRANSITION SAFE

In the previous section, we have listed new categories of
risks to handle related to the dual driving modes when going
up in automation degree to NHTSA L3. In the following
sections we summarize our current understanding on how to
handle these.

A. General Strategy

A main strategy to eliminate unfair transitions is to
introduce a fair procedure for handover. This means that the
current responsible driver (manual or automated) stays
responsible until there is an agreement for a handover. If we
can find out how to design safe handover of responsibility,
this will then solve the problem of unfair transitions. For a
handover to be regarded as safe, we need to address both
what is reasonable to assume of a driver, and what safety

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 33 / 37

requirements we need to allocate on the elements
implementing the vehicle part of the handover protocol.

The problem of Mode confusion can be solved by
combining safe handover mechanisms with requirements on
each of the two candidate drivers to remember who is
currently in charge. When the automated driver is
responsible, the manual driver should then try to avoid
interfering with the AD. This can be solved by not allowing
the MD to have any impact on the vehicle, if not first going
through a handover procedure. If we want, we can transfer
part of that manual responsibility to the vehicle by putting
safety requirements on ignoring any try from the manual
driver to control the motion of the vehicle. Furthermore, we
require of the manual driver to stay responsible once
becoming in charge. In a similar way, we put safety
requirements on the vehicle to remember who the agreed
responsible driver is.

B. Fault Tolerance

As stated in the previous section, we require from a safe
transition that the two candidate responsible drivers (MD and
AD) regard the transitions fair and have a common
understanding who has received the responsibility. This
implies that both drivers need to explicitly confirm that a
transition is possible and fair to perform. Furthermore, it
implies that both drivers really are aware of what has been
agreed.

Already today, we have a substantial amount of serious
traffic accidents caused by driver lapses. There is no reason
why not to regard the manual driver of a highly automated
vehicle as prone to mistakes in any HMI, including the one
for transition of responsibility. Because of this, we need to
have a procedure where the manual driver has to perform
several and coordinated actions, in order to allow a
transition. Every single action can be assumed as performed
by mistake, but the more of coordinated multiple actions that
are required the less probable it is that the driver is not aware
of what she or he is doing.

For the vehicle, we assume that safety requirements are
allocated to all elements critical for achieving a transition in
such a way that it can be considered as fair and consistently
understood by both drivers. We make a conservative
assumption that the ASIL attribute to use is the one that is
representing the highest ASIL among the possible induced
hazards. In practice, this means that we need ASIL D on
guaranteeing freedom from mode confusion and from unfair
transitions. Of course, redundancy patterns may be applied
allowing the ASIL D to be decomposed onto different
elements of the implementation.

A way to argue that a transition is safe is to check what
happens if there is either a manual mistake or an E/E failure,
or combination of these. This must be checked for any state
in the transition protocol. For any hazardous consequence, it
must be shown that the corresponding E/E failure is
prevented with an appropriate safety requirement. If a
manual failure may lead to a hazardous consequence even in
a fault free case, the protocol implementation is obviously
not robust enough.

IV. GENERAL IMPLEMENTATION SUGGESTION

In order to make a transition tolerant to any single
manual mistake, there are a few different general ways to
design the protocol. The redundant action from the manual
driver can in general be either in time or in space, or a
combination of these. By time redundancy, we mean here to
request a sequence of actions where the second must follow
in a certain time interval after the first one. Space
redundancy is on the other hand when the manual driver is
requested to apply several actions simultaneously. In both
cases, the idea is that it can be argued that the set of actions
is extremely unlikely to be performed by mistake.

A. Example HMI Protocol and Implementatios

As an example in this paper, we chose to describe a
protocol based on manual time redundancy. This means that
we always require two actions from the driver for any
transition from MD to AD or from AD to MD. Furthermore,
we say that the second action of the manual driver defines
the transition, which means that there is no requirement on
the manual driver to observe the resulting outcome correctly,
more than knowing what she is doing herself. As long as the
second action is fulfilled, the transition is deemed to have
occurred.

In Figure 1, a general protocol is illustrated, where two
coordinated actions are required from the manual driver.
When implementing this it is important not to allow the
driver to perform the second action, without having
acknowledged the first one.

In this example, we chose the first action to be a press of
a button and the second to be a change of lever position. This
lever has exactly two possible positions: AD and MD. The
vehicle is always started in MD, and the driver may change
the mode after reaching the proper state in the transition
protocol. We consider the lever to be locked at any other
time. Furthermore, if the lever is not moved fast enough after
getting acknowledge by the autopilot, it will be locked again
requiring the protocol to start over again in order to perform
a transition.

Figure 1. Example of a simple transition protocol.

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 34 / 37

This protocol is based on the assumption that it is always
safe to keep the mode if nothing else is agreed. The current
driver should always be able to continue to take care of the
vehicle in a safe manner.

We can extend the protocol to cover the cases where the
AD can suggest a transition, either by declaring that the AD
is ready to take over from the MD, or by telling the MD that
the AD performance is limited. Such a protocol is depicted in
Figure 2.

To implement this protocol we suggest the following
HMI components:

 Telltale light showing the AD view of preferred
mode

 Pushbutton to for the MD to ask for mode change
(first action)

 Telltale light showing whether the AD is prepared
for a change as requested by the MD

 Lever for the MD to select mode (second action)

Any failure mode of these four HMI components then
needs to be included in the safety analysis, and this in
combination by any single mistake by the manual driver.

To summarize, a fault-free uninterrupted transition from
the MD to the AD in this example follow the steps:

 The MD drives the vehicle (MD mode)

 The AD declares it is ready to take over by changing
the preference telltale to AD available

 The MD asks to take over by pressing the
pushbutton

 The AD acknowledges that it is prepared by
indicating the readiness telltale and unlocking the
lever

 The MD changes the lever to AD position

 The AD locks the lever, and continues to drive in
AD mode

The transition from AD to MD is performed in a similar
way, i.e., the MD may either independently, or suggested by
the AD, start by asking for a mode change. The AD then
acknowledges by indicating on the readiness telltale and
unlocking the lever. Finally, the MD changes the lever to the
MD position and starts to drive manually.

Figure 2. Example of an elaborated transition protocol.

B. Safety Analysis

In the following section, the above protocol and
implementation is analyzed with respect to its sensitivity to
any human mistake, vehicle component failure, or a
combination of these. Hence, we walk through the detailed
state diagram and investigate the possible failure
consequences at any state.

When doing the safety analysis, we document the result
in Table 1. The columns are:

 Protocol state

 HMI failure to investigate

 Possible driver mistake

 Consequence in words

 Consequence in terms of safe/unsafe

Each row in this table marked as unsafe in the last

column needs to be protected by a corresponding safety
requirement allocated to restrict this HMI failure. If all
occurrences of an unsafe consequence are protected by
appropriate safety requirements, the protocol implementation
is deemed safe. In order for the safety argumentation to be
valid, it is important that the table is shown to be complete.
This includes an argumentation that all possible human
mistakes are considered.

C. Safety Assessments

As concluded from the safety analysis in Table 1, there
are three ways for the example protocol to fail in an unsafe
way, caused by either of a manual mistake, a vehicle
component failure, or a combination of these. The three
failures that we need to avoid to maintain safety are:

 The AD cannot correctly sense the mode lever
position, which may cause mode confusion.

 The AD cannot guarantee lock of the mode lever
according to the protocol. This in combination with
the MD moving the mode lever to AD mode,
without noticing it, may cause mode confusion (or
unfair transition if discovered by the MD).

 The AD cannot guarantee locking of the mode lever
according to the protocol. This in combination with
the MD changing lever position from MD to AD,
without getting acknowledgment of a prepared AD,
may cause unfair transition.

As we assume that the MD may make any single failure
at any time, the way to argue for avoiding the above failures
is to put the entire responsibility on the vehicle. This implies
that we put two safety requirements on the HMI.

 ASIL D on restricting faulty lever sensor, i.e., the
lever sensor needs to be always correct.

 ASIL D on restricting lever lock faulty unlocked
(faulty locked consider as safe).

If we can guarantee that the HMI is implemented
according to these two safety requirements we can claim that
we make a safe transition even in the presence of an arbitrary
single manual mistake. This handles both the mode
confusion and the unfair transition aspects of a safe
transition.

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 35 / 37

TABLE I. SAFETY ANALYSIS OF TRANSITION PROTOCOL

Protocol
state

HMI failure Driver mistake Consequence Safe/
Unsafe

MD -
normal
drive

Fault in lever
lock

No MD driver not trying
to touch lever.
Stay in MD.

Safe

MD -
normal
drive

Fault in lever
lock

Driver changes
lever position
without asking for
change first.

Unfair transition. Unsafe

MD -
normal
drive

Fault in
preference
telltale

Any mistake or
correct behaviour

MD cannot change
locked lever. Stay in
MD- normal drive.

Safe

MD -
AD
available

Fault in lever
lock

No MD driver not trying
to touch lever.
Stay in MD.

Safe

MD -
AD
available

Fault in lever
lock

Driver changes
lever position
without asking for
change first.

Unfair transition. Unsafe

MD -
AD
available

Fault in
preference
telltale

No Stay in MD Safe

MD -
AD
available

Fault
preference
telltale

Driver ignores lack
of availability

Transition sequence
fulfilled. Change to
AD.

Safe

MD -
requested
AD

Fault in
pushbutton

Any mistake or
correct behavior

No Acknowledge by
AD. Lever still
locked.
Stay in MD.

Safe

MD -
prepared
AD

Fault in
prepared
telltale

Driver correct:
Driver stops
transition sequence

Time-out in
protocol. Stay in
MD.

Safe

MD -
prepared
AD

Fault in
prepared
telltale

Driver incorrect:
Driver ignores lack
of ack.

Transition sequence
fulfilled. Change to
AD

Safe

MD -
prepared
AD

Fault in lever
lock

Driver correct:
Driver tries but
cannot fulfil
transition
sequence.

Time-out in
protocol. Stay in
MD.

Safe

MD -
prepared
AD

Fault in lever
lock

Driver
incorrect:Driver
doesn’t continue
transition
sequence.

Time-out in
protocol. Stay in
MD.

Safe

AD –
taking
control

Fault in lever
sensor

Any mistake or
correct behavior

Mode confusion Unsafe

AD –
normal
drive

Fault in lever
lock

No MD driver not trying
to touch lever.
Stay in MD.

Safe

AD –
normal
drive

Fault in lever
lock

Driver changes
lever position to
MD without asking
for change first,
and without
noticing what is
happening.

Mode confusion.
(Unfair transition, if
realized later).

Unsafe

AD –
normal
drive

Fault in
preference
telltale

No MD acts as in
normal AD mode.
Stay in AD or ask
for transition.

Safe

AD –
normal
drive

Fault in
preference
telltale

Driver tries to
changes lever
position but it is
locked in AD
position.

Stay in AD. Safe

AD –
asking for
MD

Fault in lever
lock

No MD not touching
lever without asking
for change first.
Stay in AD.

Safe

AD –
asking for
MD

Fault in lever
lock

Driver changes
lever position by
mistake without
noticing it in the
first place, and
without asking for
change first.

Mode confusion
(Unfair transition, if
realized later).

Unsafe

AD –
asking for
MD

Fault in
preference
telltale

Any mistake or
correct behavior

MD can request MD
mode or stay in AD
mode.

Safe

AD –
requested
MD

Fault in
pushbutton

Any mistake or
correct behavior

No Acknowledge by
AD. Lever still
locked.
Stay in AD.

Safe

AD –
prepared
MD

Fault in
prepared
telltale

No Driver stops
transition sequence.
Time-out in
protocol. Stay in
AD.

Safe

AD –
prepared
MD

Fault in
prepared
telltale

Driver ignores lack
of ack.

Transition sequence
fulfilled. Change to
MD

Safe

MD –
taking
control

Fault in lever
lock

Any mistake or
correct behavior

Driver tries but
cannot fulfil
transition sequence.
Time-out in
protocol. Stay in
AD.

Safe

MD –
taking
control

Fault in lever
sensor

Any mistake or
correct behavior

Mode confusion Unsafe

If ASIL D sensors and/or ASIL D locks are considered

either unavailable or very expensive, we may consider
redundancy implementation techniques. Instead of one
sensor always telling the correct lever position with ASIL D
attribute, we may consider three (sic!) sensors each with
ASIL B. If at least two of the three are correct, we can stay
safe. This means that we need to restrict that two of the three
are failing. This shall be guaranteed with a total ASIL D,
which we distribute as ASIL B on each sensor. Similarly,
using ASIL A sensors would require seven times
redundancy. If four out of seven are working we consider it
as safe. This means that we need to restrict that four of the
sensors are failing. This shall be guaranteed with a total
ASIL D, which we distribute as ASIL A on each sensor.

Instead of one lever lock always guaranteeing that the
lever is never faulty unlocked, we may consider two locks
each with ASIL B. We consider faulty locked as a safe state.
If at least one of two locks can guarantee freedom from
faulty unlocked, we can stay safe. This means that we need
to restrict that both of the two locks are faulty unlocked. This
shall be guaranteed with a total ASIL D, which we distribute
as ASIL B on each lock. Similarly, using locks guaranteeing
absence of faulty unlocked with ASIL A would require
quadruple redundancy. If only one of the locks is avoiding
faulty unlocked, we consider it as safe. This means that we
need to restrict that all the four locks are faulty unlocked.
This shall be guaranteed with a total ASIL D, which we
distribute as ASIL A on each lock.

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

 36 / 37

V. CONCLUSION

When introducing an autopilot which in some driving
situations takes full responsibility to drive the vehicle, it
becomes crucial to ensure safe transitions between the
manual and the automated driver. The existence of dual
driving modes brings two new sources of risk, namely unfair
transitions and mode confusion.

We propose to define a safe transition as a transition
where either a manual mistake or an E/E failure, or
combination of these, leads to an unfair transition or mode
confusion. Furthermore, we demonstrate on a system
example how to allocate safety requirements on system
elements to ensure safe transitions.

Results from this example show that it is sufficient to
allocate safety requirements on the sensor and lock of a
single lever to ensure safe transitions. No safety
requirements are needed on visual feedback to the driver,
e.g., displays. We remark that the example implementation
by no means is a unique solution to the safe transitions
problem.

ACKNOWLEDGMENT

This research has been supported by the Swedish
government agency for innovation systems (VINNOVA) in
the FUSE project (ref 2013-02650).

REFERENCES

[1] ISO, "International Standard 26262 Road vehicles -- Functional
safety", November 2011.

[2] National Highway Traffic Safety Administration, “Preliminary
Statement of Policy Concerning Automated Vehicles”,
http://www.eenews.net/assets/2016/01/14/document_pm_01.pdf,
retrieved: June 2016.

[3] C. Gold, D. Damböck, K. Bengler, and L. Lorenz, “Partially
Automated Driving as a Fallback Level of High Automation,” 6.
Tagung Fahrerassistenzsysteme. Der Weg zum Autom. Fahren., 2013.

[4] M. H. Martens and A. P. Van Den Beukel, “The road to automated
driving: Dual mode and human factors considerations,” IEEE Conf.
Intell. Transp. Syst. Proceedings (ITSC) , 2013, pp. 2262–2267.

[5] F. Naujoks, C. Mai, and A. Neukum, “The effect of urgency of take-
over requests during highly automated driving under distraction
conditions,” Adv. Hum. Asp. Transp. Part I, vol. 7, July 2014, p. 431.

[6] National Highway Traffic Safety Administration, “Human Factors
Evaluation of Level 2 And Level 3 Automated Driving Concepts Past
Research, State of Automation Technology, and Emerging System
Concepts”,
http://www.nhtsa.gov/DOT/NHTSA/NVS/Crash%20Avoidance/Tech
nical%20Publications/2014/812043_HF-
EvaluationLevel2andLevel3AutomatedDrivingConceptsV2.pdf,
retrieved: June 2016.

[7] Volvo Cars, “THE SELF-DRIVING CAR IN ACTION – DRIVE
ME”, http://www.volvocars.com/intl/about/our-innovation-
brands/intellisafe/intellisafe-autopilot/drive-me, retrieved: June 2016.

[8] S. Brandenburg and E. Skottke, “Switching from manual to
automated driving and reverse: Are drivers behaving more risky after
highly automated driving?,” IEEE 17th Int. Conf. Intell. Transp. Syst.
(ITSC), 2014, pp. 2978–2983.

[9] R. Johansson, C Bergenhem, and H. Sivencrona, “Challenges of
Functional Safety in ADAS and Autonomous Functions”, SAE
World Congress, Detroit, April 2014.

[10] R. Sukthankar, “Situation Awareness for Tactical Driving”, Ph.D.
thesis, Robotics Institute, Carnegie Mellon University, USA, January
1997.

[11] T. X. P. Diem and M. Pasquier, “From Operational to Tactical
Driving: A Hybrid Learning Approach for Autonomous Vehicles”,
2008 10th Intl. Conf. on control, Automation, Robotics and Vision,
Hanoi, Vietnam, December 2008.

[12] T. Inagaki, “Design of human–machine interactions in light of
domain-dependence of human-centered automation”, Cognition,
Technology & Work, Volume 8, Issue 3, 2006, pp 161-167.

[13] A. Marinik, R. Bishop, V. Fitchett, J. F. Morgan, T. E. Trimble, M.
Blanco. “Human factors evaluation of level 2 and level 3 automated
driving concepts: Concepts of operation.” (Report No. DOT HS 812
044). Washington, DC: National Highway Traffic Safety
Administration., July 2014.

[14] H. Orlady, R. Barnes, “A Methodology for Evaluating the
Operational Suitability of Air Transport Flight Deck System
Enhancements”, SAE Technical Paper # 975642, 1997.

[15] J. Cunningham “Break the monotony.” Professional Engineering,
20(20), 33-33. 2007.

[16] D.B. Kaber, L. J. Prinzel, “Adaptive and adaptable automation
design: A critical review of the literature and recommendations for
future research.” (NASA/TM-2006-214504), September 2006.

27Copyright (c) IARIA, 2016. ISBN: 978-1-61208-492-3

DEPEND 2016 : The Ninth International Conference on Dependability

Powered by TCPDF (www.tcpdf.org)

 37 / 37

http://www.tcpdf.org

