
FASSI 2015

The First International Conference on Fundamentals and Advances in Software

Systems Integration

ISBN: 978-1-61208-448-0

August 23 - 28, 2015

Venice, Italy

FASSI 2015 Editors

Chris Ireland, Open University, UK

Petre Dini, Concordia University, Canada / China Space Agency, China

 1 / 48

FASSI 2015

Foreword

The First International Conference on Fundamentals and Advances in Software Systems
Integration (FASSI 2015), held between August 23-28, 2015 in Venice, Italy, dealt with software
system integration.

Despite a legacy of projects over decades and the likelihood of continued if not
increased connectivity between software systems in the future, there is little by way of a sound
theory as to the cause of the problems of software integration and how we might address
them.

On the surface the question of how to integrate two software systems appears to be a
technical concern, one that involves addressing issues, such as how to exchange data (Hohpe
2012), and which software systems are responsible for which part of a business process.
Furthermore, because we can build interfaces between software systems we might therefore
believe that the problems of software integration have been solved. But those responsible for
the design of a software system face a number of trade-offs. For example the decoupling of
software components is one way to reduce assumptions, such as those about where code is
executed and when it is executed (Hohpe 2012). However, decoupling introduces other
problems because it leads to an increase in the number of connections and introduces issues of
availability, responsiveness and synchronicity of changes (Hohpe 2012).

The objective of this conference was to work towards understanding of these issues, the
trade-offs and the problems of software integration and to explore strategies for dealing with
them.

We take here the opportunity to warmly thank all the members of the FASSI 2015
Technical Program Committee, as well as the numerous reviewers. The creation of such a high
quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to FASSI
2015. We truly believe that, thanks to all these efforts, the final conference program consisted
of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the FASSI 2015 organizing
committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that FASSI 2015 was a successful international forum for the exchange of ideas
and results between academia and industry and for the promotion of progress in the field of
software system integration.

We are convinced that the participants found the event useful and communications very
open. We hope Venice provided a pleasant environment during the conference and everyone
saved some time for exploring this beautiful city.

 2 / 48

FASSI 2015 Chairs:
Chris Ireland, Open University, UK

 3 / 48

FASSI 2015

Committee

FASSI 2015 Chair

Chris Ireland, Open University, UK

FASSI 2015 Technical Program Committee

Hany Ammar, West Virginia University, USA
Marco Autili, University of L’Aquila, Italy
Christian Bird, Microsoft Research, USA
Bara Buhnova, Masaryk University, Czech Republic
Graeme Burnett, Xcordis Fintech, UK
Haipeng Cai, University of Notre Dame, USA
Danilo Caivano, University of Bari, Italy
Ip-Shing Fan, Cranfield University, UK
Fabio Fioravanti, University of Chieti-Pescara, Italy
Matthias Galster, University of Canterbury, New Zealand
Anup Gupta, Cognizant Technology Solutions (CTS), UK
Ibrahim Habli, University of York, UK
Alan Hayes, University of Bath, UK
Vladimir Itsykson, St. Petersburg State Polytechnic University, Russia
Foutse Khomh, Ecole Polytechnique de Montréal, Canada
Chris Lokan, UNSW Canberra, Australia
Carol Long, Advanced Computer Software Plc, UK
Fergal McCaffery, Lero - Irish Software Research Centre | Dundalk Institute of Technology, Ireland
Richard Mordinyi, Vienna University of Technology, Austria
Henry Muccini, University of L'Aquila, Italy
Marc Novakouski, Software Engineering Institute, USA
Ipek Ozkaya, Carnegie Mellon SEI, USA
Tarmo Ploom, Credit Suisse - Zurich, Switzerland
Dewayne E. Perry, University of Texas at Austin, USA
Patricia Roberts, University of Brighton, UK
Philip Ross, Endava Ltd, London, UK
Richard Selby, Northrop Grumman, USA
Massimo Tivoli, Università di L'Aquila, Italy
Tayssir Touili, Paris Diderot University - Paris 7, France
Gunter Saake, Otto-von-Guericke University Magdeburg, Germany
Mauro Santoro, University of Milano - Bicocca, Italy
Corrado Aaron Visaggio, University of Sannio, Italy

 4 / 48

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 48

Table of Contents

Towards a Metrics Model for DevOps
Jos Trienekens

1

A Novel Three-layer Architecture for Information System Integration
Kamrul Ahsan and Juha-Miikka Nurmilaakso

7

Medical Device Software as a Subsystem of an Overall Medical Device: The MDevSPICE® Experience
Fergal McCaffery, Marion Lepmets, and Paul Clarke

17

Enterprise Integration Modeling - A Practical Enterprise Data Integration and Synchronization Solution
Mihaela Iridon

23

Development of the MedITNet Assessment Method Enabling Healthcare Delivery Organisation Self Assessment
against IEC 80001-1
Silvana Togneri MacMahon, Fergal McCaffery, and Frank Keenan

31

XML Schema for Implementing Safety Management System in Shipbuilding
Youhee Choi and Byungtae Jang

38

Powered by TCPDF (www.tcpdf.org)

 1 / 1 6 / 48

Towards a Metrics Model for DevOps,
Results of a Case Study in an Industrial Company

Jos Trienekens
University of Technology,

Faculty of Industrial Engineering and Innovation Sciences
Eindhoven, The Netherlands

email: j.j.m.trienekens@tue.nl

Abstract—Recently in the software industry, a methodology
called DevOps has emerged, which aims at the integration of
software development and deployment (i.e.,
operations/maintenance) to improve the performance of the
overall software process. DevOps contributes to the multi-
dimensional problem of software integration, approaching this
problem from an organizational point of view. DevOps
originates from lean and agile methodologies and stresses the
improvement of the entire process flow, overall product quality
improvement based on customer feedback. This paper
presents a case study at Philips IT The Netherlands on the
implementation of DevOps, in particular on the iterative
identification and specification of a metrics model to monitor
the effectiveness of DevOps.

Keywords-DevOps, agile; organizational integration; metrics;
case study.

I. INTRODUCTION
Philips IT is a centralized IT organization servicing three

business domains, respectively Healthcare, Lighting and
Consumer Lifestyle. Within IT, there exist two large parties:
IT Delivery, where development projects are planned and
executed, and IT Infrastructure & Operations (I&O), which
is responsible for the implementation and the daily
operations. The latter includes maintenance and control of
the IT systems, e.g., providing (helpdesk) support. Delivery
has been adopting SCRUM methods over the last three years
and their software development methods and techniques
become increasingly agile [2], [3]. Currently, there are over
100 SCRUM teams. These teams are multidisciplinary and
collaborate with relevant partners on both a business and a
technical level. Partners are located across the world, thus
collaboration in the SCRUM teams takes place virtually.
While Delivery has adopted agile methodologies, I&O has
been working in accordance with the Information
Technology Infrastructure Library framework, ITIL [4].
Over the years, the two parties have had different objectives
and strategies. On the one hand Delivery is pressing for
faster software releases (e.g., SCRUM cycles are currently
two weeks long), and on the other hand I&O, which
considers system stability of the highest importance and
plans releases monthly. Recently, the management has
decided that Delivery and I&O should integrate and should
align their processes to improve the overall efficiency, e.g.,
to release deliverables in a balanced way and more often

without compromising on the quality of the releases. To
establish this closer collaboration between Delivery and
I&O, DevOps has been introduced. This methodology
originates from lean methodologies and stresses the
improvement of respectively work flow, final product
quality, team communication and customer feedback [1].
The methodology is process flow oriented, which means that
it focuses at deliverables moving through the processes, on
increasing development speed and decreasing waiting times.
The implementation of DevOps has been started with a
limited number of teams within Delivery. Because agile
software development methods are currently in use at
Delivery and also I&O is looking at ways to implement agile
methods, it was decided to make explicit use of agile and
lean principles in the implementation of DevOps [6], [7], [9].
To monitor and control the DevOps implementation, an
initial metrics model had to be developed. In Section II, we
will address the background of agile methods and techniques
and the key principles of DevOps. Section III will present the
methodology used in the research to develop the initial
DevOps metrics model. In Section IV, a case study on the
development of the metrics model will be presented,
following an iterative approach within the company Philips
IT. In this case study, researchers in close collaboration with
Delivery and I&O practitioners have developed in three
cycles an initial metrics model. Section V presents a
discussion and Section VI finalizes the paper with
conclusions.

II. BACKGROUND AND REFERENCE FRAMEWORK
Agile software development originated from the ‘The

Agile Manifesto’ [5] and consists of several values and
principles for faster and better software development. Four
values are respectively: individuals and interactions over
processes and tools, working software over comprehensive
documentation, customer collaboration over contract
negotiation and responding to change over following a plan.
While there is not a single definition of agility, most
approaches incorporate the idea of adaptability to the
environment and quick value creation [6]: “agility means to
strip away as much of the heaviness, commonly associated
with the traditional software-development methodologies, as
possible to promote quick response to changing
environments, changes in user requirements, accelerated
project deadlines and the like.” While this definition is

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 7 / 48

focused on software development, similar trends have been
previously seen in other disciplines. In [7] for example,
agility is related to “flexibility” and “leanness”. However,
several differences exist between the terms. According to
[8], agility consists of two components: flexibility and
speed, hereby stating that flexibility alone is not enough to
be agile. In [9], particularly flexibility is addressed, with
respect to decision making, and speed with respect to short
iterations in development. Comparing agility to leanness,
these both complement each other with regard to simplicity
and quality, but the economy perspective of the approaches
is different [10]. While leanness attempts to remove ‘waste’
entirely, agility removes waste only to the extent that it does
not hinder the ability to change [11]. Next to these
definitions on agile a multitude of methods have been
developed. Table I reflects the characteristics of a selected
set of them.

TABLE I. AGILE METHODS.
Agile method Description

Scrum [9] The development is organized in sprints (short
iterations of about 2 to 3 weeks) by self-
organizing teams. Each sprint, i.e., restricted
time, goes through planning, design, testing and
review. Features that need to be developed are
stored in a ‘Backlog’ where the product owner
decides, which work items will be worked on in
the following sprint.

Extreme
Programming

(XP) [5]

Focuses on best practice and consists of twelve
practices: the planning game, small releases,
metaphor, simple design, testing, refactoring,
pair programming, collective ownership,
continuous integration, 40h week, on-site
customer collaboration, and coding standards.

Lean software
development [11]

Based on seven principles: remove waste,
amplify learning and knowledge management,
decide as late as possible, deliver as fast as
possible, empowered teams, build integrity, and
see the whole picture.

Kanban [20] Kanban is based on the theory of constraints and
comes with six core practices; visualize, limit
work in progress (WIP), manage flow, make
policies explicit, implement feedback loops,
improve collaboratively & evolve
experimentally.

The agile methods show quite some similarities regarding
speed (e.g., fast delivery), small releases (e.g., limit work in
progress), remove waste (e.g., manage flow), implement
feedback loops (e.g., customer collaboration) and learning
and experimentation, and knowledge management. Scrum
stresses additionally the self-organization of teams and
other team-work characteristics. Since 2009, DevOps has
been introduced, which focuses on the way development
and deployment (i.e., operations/maintenance) can be
integrated [1]. While development teams and deployment
teams have often different goals or key performance
indicators, DevOps attempts to align the work to be done,
and to satisfy the different goals. For example, as
development teams want to deploy more and more often,
deployment teams strive often towards the exact opposite,

i.e., to keep all systems running and stable. However, and
in accordance with DevOps, an entire organization should
be aligned and/or integrated. To reach this, DevOps
proposes to follow three subapproaches [12], see Table II.

TABLE II. THREE APPROACHES OF DEVOPS.
 Systems
thinking

Stresses that it is more beneficial to
look at the performance of an
entire system, than at the
performance of specific parts of
that system.

 Amplify
feedback loops

Allows understanding of the
customer by the teams and
availability of knowledge where it
is needed.

 Culture of
continuous
experimentation
and learning

Experimentation and learning helps
to more quickly adapt and respond
to changes or problems.

To use these three subapproaches of DevOps as a reference
framework, the three approaches can be elaborated on the
basis of agile principles. Systems thinking refers to looking
at problems in relation to the performance of an entire
system, also addressed as ‘overall quality of work’. This
approach ensures that the performance of a system as a
whole is more important than the performance of separate
parts of the system (e.g., a development and a deployment
part). This approach can make use of agile principles (see
Table I) such as remove waste, decrease incidents and
continuously focus on (process) flow to increase
performance. Amplifying feedback loops leads to early
knowledge of issues and problems, so that a system can
quickly be adjusted where needed. Implementing this
second subapproach should lead to, with reference to agile
issues in Table I, in particular an understanding of, and
responding to customers. To deliver finally value, the
feedback should come from the people (i.e., customers) who
will use the product or service and from those who maintain
it. The third subapproach, i.e., a culture of continuous
experimentation and learning, supports the other two, to
ensure that improvement should be a continuous process
and should lead to, with reference to the agile principles in
Table I, respectively: facilitating knowledge storage and
retrieval, and reflection on deliverables and on the way of
working. Regarding ‘culture of learning and
experimentation’ references can be made to specific
constructs or organizational learning [13], such as the
acquisition of knowledge, either through external sources or
internal development, the distribution of knowledge, and the
interpretation of knowledge (i.e., the way that people within
an organization share and use the knowledge).

To implement DevOps on the basis of the three foregoing
subapproaches, with the references to agile principles, and to
monitor the effectiveness of it, performance indicators or
metrics have to be defined. Regarding the development of
metrics the Goal-Question-Metric (GQM) approach will be

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 8 / 48

used [14]. Based on well-defined goals of a particular object
under study, here the DevOps process, asking questions and
getting answers regarding the achievement of the goals, will
lead to a well-founded set of metrics. To support the
definition of goals, the development of questions /answers,
and the derivation of metrics, particular templates will be
used [15].

III. METHODOLOGY OF THE CASE STUDY
The first step in the case study was defining the goals,

making use of structured templates [14]. This has been done
in collaboration with 'those working in the environment
itself' to ensure the understandability and the applicability
of the metrics [16]. In this step, we made use of the
background as explored in Section II, in particular regarding
the three subapproaches of DevOps and the agile pinciples
identified. In step 2, a set of metrics has been derived from
the defined goals. In this step, in meetings with experts from
practice, questions have been developed regarding the
defined goal(s) [17]. Subsequently, metrics have been
derived to measure the performance. The metrics have
formed together an initial metrics model. In step 3, iterations
have been executed to elaborate and validate iteratively the
set of metrics [18]. These iterations have been stopped in
case the set of metrics didn’t change significantly from its
previous iterations. The first iteration has been executed with
respectively the Manager I&O and the Global Demand
Manager (management level above Delivery and I&O).
These representatives were selected because the assignment,
of the case study at hand, originated from them. A second
iteration has been executed with the Delivery Manager. Its
position was close to the teams in that the metrics had to be
applied.

IV. TOWARDS AN INITIAL METRICS MODEL FOR DEVOPS,
THE CASE STUDY

A. Goal definition for the measurement of DevOps
To support the goal definition, the following template has

been applied [15].

TABLE III. GQM GOAL DEFINITION TEMPLATE.
Analyze The object under measurement

For the purpose
of

Understanding, controlling or improving the
object

With respect to The quality focus of the object that the
measurement focuses on

From the
viewpoint of

The people who have a stake in measuring the
object

In the context
of

The environment in which measurement takes
place

The object under measurement, see Table III, is in this

case study the integrated development and deployment
process, i.e., the DevOps process within the company. The
purpose for the measurement is to further understand this
process and if possible to improve it. The focus will be on
the three subapproaches within DevOps, respectively
systems thinking, feedback loops and a culture of learning
and experimentation. The people who have a stake in

measuring the object, i.e., reflecting the three viewpoints are
respectively the Global Demand Manager, the Delivery
manager and the I&O manager. Table IV shows the goals as
defined on the basis of the template.

TABLE IV. THE DEFINED GOALS FOR DEVOPS MEASUREMENT.

Goal
1

Analyze the development and deployment process within
Philips IT to further understand and improve with respect to
systems thinking from the viewpoint of the IT management.

Goal
2

Analyze the development and deployment process within
Philips IT to further understand and improve with respect to
feedback loops from the viewpoint of the IT management.

Goal
3

Analyze the development and deployment process within
Philips IT to further understand and improve with respect to
culture of learning and experimentation from the viewpoint
of the IT management.

B. Formulating questions to derive metrics for DevOps.
Regarding the goal of ‘systems thinking’, it was decided

to look at the performance of the process as a whole (i.e.,
also addressed as the ‘overall quality of work’) opposed to
its separate parts. This has lead to the following two
questions: what is the current performance of the entire
process, and do changes in the process improve the
performance of the entire process? Regarding the goal of
‘feedback loops within the system’, the following questions
are formulated: what is the current state of feedback loops
within the process? Is the customer satisfied with the
feedback that can be given? How well can the process
respond to feedback? Do changes in the process improve the
state of feedback loops within the process? Regarding the
the goal of ‘culture of learning and experimentation’,
questions are formulated about the current state of the
culture, and the improvement of learning and
experimentation [13].

C. Deriving an initial metrics model for DevOps
Deriving initial metrics for DevOps systems thinking
Following GQM, i.e., answering the questions, metrics

have been derived. To describe the performance of the entire
process, the average cycle time of a user story has been
discussed. While this metric only takes into account the
speed of development, it was decided to choose a second
metric regarding the ‘overall quality of the work’. The
rationale is that higher quality leads to less rework, which
should lead to a better lead time [19].

TABLE V. METRICS FOR SYSTEM THINKING.

Questions to goals Metrics
What is the current
performance of the
process?

Average cycle time of a user story
Number of incidents after deployment
Costs of a feature

Do changes in the
process improve the
performance (average
lead time: avglt;
average number of
incidents: avgni) of the
entire process?

Avglt of a user story after change
-- *
100%
Avglt of a user story before change

Avgni after deployment after change
--- *
100%
Avgni after deployment before change

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 9 / 48

In the case study company, in particular I&O teams are

already measuring the amount of incidents that occur
following an implementation. Regarding changes in the
process, two metrics have been derived (based on the
foregoing metrics) to reflect the differences between the
performance before and after a change. Table V presents the
derived metrics.

Deriving initial metrics for DevOps feedback loops
Initially, the amount of feedback loops has been defined

as metric. However, this metric appeared to be depended on
the length of the process. To take the length of the process
out of the metric, the average time between feedback
moments (i.e., the contact points with customers) has been
chosen. A problem with this would however be that if the
only feedback moment is located at the end of the process,
the average time would be same as if the feedback moment
would be right in the middle of the process. To cover this, an
additional metric has been defined to keep track of the
maximum time within a process without feedback. When this
time is very close to the average time between feedback
moments, the feedback moments will be evenly spread out
over the process. Regarding customer satisfaction, a
qualitative metric has been defined by asking the customer
whether he would like to have the next feedback moment
quicker than the time since the last feedback moment.
Regarding how well the system can respond to given
feedback, a first suggestion was to look at the amount of
work, which has to be redone within the process. This can be
quantified by the amount of time spent from the moment of
feedback until the process reaches the same point again.
While this could be difficult to measure in practice, also an
easier metric has been defined, i.e., the total time spent on
rework during the process. An overview of the second set of
metrics relating to feedback loops is shown in Table VI.

TABLE VI. METRICS FOR FEEDBACK LOOPS.

Questions to goals Metrics
What is the current state
of feedback loops within
the system?

Average time and mMaximum time
between feedback moments

Is the customer satisfied
with the feedback that
can be given?

Need of the customer to have the next
feedback moment quicker or later than
the time since the last feedback moment

How well can the system
respond to feedback?

Time spent from feedback moment
untill reaching the same point, total time
spent on rework (after feedback)

Deriving initial metrics for DevOps culture of learning

and experimentation.
Regarding the current state of learning, two metrics have

been defined, respectively with respect to the fact whether
new knowledge is actively being stored and whether stored
knowledge can be actively retrieved. To determine if
knowledge is being shared, as well as whether a mechanism
is in place to make sure that knowledge is actually being
stored, a metric has been defined on the reflection of a team
on its work and learnings points being defined after a project
(or a ‘sprint’). Finally, a metric has been on the reflection of

a team on their way of working (and thus takes time to
improve). The metrics are shown in Table VII.

TABLE VII. METRICS FOR LEARNING AND EXPERIMENTATION.

Questions to
goals

Metrics

What is the
current state of
learning and
experimentation
within the
system?

Amount of new knowledge stored during the
process
Extent to that previously acquired knowledge can
be retrieved
Extent to that teams reflect on their work and
learning points after a project or sprint

D. Iterative refinement of the initial metrics model
First iteration.
The designed metrics model has been refined in the first

iteration in two separate sessions. In these two sessions, the
initial metrics model was briefly explained, in particular
regarding the understandability of the logic of the
interrelations between goals, questions and metrics.
Subsequently, the participants were asked to come up with
alternatives or changes to or extensions of the metrics.
Regarding the metrics for ‘systems thinking’, there were
three (summarised from the two sessions) main points of
feedback. First, regarding the ‘user story’, it was decided that
a different unit of measurement had to be used, namely a
‘feature’. The reason was that in the process, a collection of
user stories moves through the process simultaneously,
except for the part of the process where they are developed.
Consequently, measurement of user stories would not
provide information about the entire process. Secondly, it
was decided that the specification of cost within the process
should be further defined. Considering the fact that this
process contains quite some knowledge work, and no
tangible products, the cost of a feature should be calculated
on the basis of the hours spent, the amount of people
working on it, and the number of features being worked on.
Thirdly, it was decided that by using the metric on the first
question periodically or continuously, the second question on
change, see Table V, would be irrelevant, and could be
removed, see Table VIII.

TABLE VIII. METRICS FOR SYSTEM THINKING, BASED ON FIRST

FEEDBACK.
Questions to goals Metrics

What is the current
performance of the
process?

Average cycle time of a feature
Average waiting time of a feature
Number of incidents as a result of the
feature after deployment
The cost of a feature through a process:

Hours spent
Number of people
Number of features being
worked on

Regarding the metrics for ‘feedback loops’, in one

session the participants mainly agreed on the proposed
metrics and suggested some small changes in terminology. In
the second session a different understanding of what should
happen in feedback loops lead to discussions. On the one
hand, it was understood that feedback would internally lead
to more insight in how fast changes in the system were

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 10 / 48

executed, while on the other hand the importance of
feedback to customers was stressed. It was also suggested
that feedback moments with customers had to be changed to
so-called ‘touch points’ for a better understanding within the
company. These discussions lead finally to Table IX.

TABLE IX. METRICS FOR FEEDBACK LOOPS, BASED ON FIRST

FEEDBACK
Questions to goals Metrics

What is the current
state of feedback loops
within the system?

Average time between customer touch
points
Maximum time between customer touch
points

How well can the
system respond to
feedback?

Time spent on feedback untill reaching the
same process step
Time spent on rework

How fast can the
system respond to
changes in a process?

The average time a change is seen at the
end of the entire process

Regarding the metrics for ‘culture for learning and

experimentation’, it was initially more difficult to find useful
metrics. Some feedback included the addition of metrics
related to the capabilities of the team members, and to how
well people could perform the activities of other team
members. However, by just measuring the capabilities, it
would mean that you can get a culture of learning by simply
hiring the people with excellent capabilities. Also
suggestions were made that the number of value propositions
should be counted. Here, a value proposition would mean a
member making a suggestion for a change in the process, or
a team, with an estimated value that is estimated by
implementing the change. However, this suggestion was
rejected because of the time that it would require. It was
decided then that the focus for learning should be put on the
time spent on improving the teams that perform their daily
work. Thus measuring their time spent on storing and
retrieving knowledge, and on learning (i.e., reflecting) and
improving. Experimentation was considered as very relevant
and some discussions lead to a metric on the introduction
and subsequent discovery of faults by different teams, see
Table X.

TABLE X. METRICS FOR LEARNING AND EXPERIMENTATION,

BASED ON FIRST FEEDBACK
Questions to goals Metrics

What is the current
state of learning and
experimentation
within the system?

The amount of time spent to store new
knowledge during the process
The amount of time spent to retrieve
previously acquired knowledge
Amount of time spent on reflection of a
team on their work and on learning points
after a project or sprint?
Amount of time spent on reflection of a
team on the way of working after a
project or sprint?
Percentage of discovered faults by a team
with respect to introduced faults by
another team (experimentation).

Second iteration
The second iteration consisted of one session and has

been carried out with only the Delivery Manager. The
feedback in this session mainly consisted of small updates
and clarifications. This feedback was more on the
confirmation (and validation) of the changes in the foregoing
session then in actually changing the metrics. Regarding the
first and the second subgoal, two particular terms had to be
clarified. Firstly, cycle time was changed to lead time and
secondly the cost of a feature was further elaborated by
adding service costs. Although the feedback consisted of
serious doubts regarding the time that the extra work of
experimentation would cost, i.e., introducing and discovering
faults, experimentation was kept in the metrics model.

V. DISCUSSION
Metrics development to measure the performance of

DevOps requires a structured aproach and a clear reference
framework. The implementation of DevOps could be based
on three subapproaches, with an explicit reference to agile
and lean principles. The application of GQM to determine
metrics could profit from this reference framework. The
reference framework facilitated the development of
questions, the interpretation of the answers and the initial
determination of metrics. However, the reference
framework is still qualitative and should be investigated
furter. Although GQM is an approach that has received
positive response in literature, criticism states that the
outcome is rather unpredictable as it is still possible to
derive many different metrics that describe a particular
defined goal. However, our experience in the case study has
shown that by carrying out feedback loops, it is possible to
discuss and (re)define metrics and to reach consensus on
metrics in close collaboration with responsible experts from
practice. Although not all derived metrics have clear
references to literature, interesting similarities could be
found. Regarding the first DevOps subapproach of ‘systems
thinking’, parallels have been found in lean manufacturing
and agile literature with respect to average lead time of ‘user
stories’ and the amount of ‘features being worked’ on
simultaneously [19]. However, we couldn’t find Scrum-
specific similarities, e.g., regarding our metrics addressing
costs and quality (e.g., number of incidents). Regarding the
second DevOps subapproach of ‘amplifying feedback
loops’, the parallels between our metrics model and
literature are more hidden, but are most certainly present.
For instance, the time spent on rework (after feedback) is
mentioned in agile and lean literature as the percentage of
‘units sent for rework’ [19]. The other metrics found, such
as number of approvals, are more closely related to software
development in general and are less present in literature on
Scrum. Regarding the third DevOps subapproach ‘a culture
or learning and experimentation’, the derived metrics turned
out to be quite different than what was previously found in
literature [13]. Metrics (areas) in literature addressed
appeared to be too abstract. Therefore, we have chosen

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 11 / 48

simpler and more direct metrics in terms of ‘time spent
on…’.

Reflection on the metrics model from a literature point of
view showed that the agile principles identified in lean
manufacturing literature turned out to be quite helpful in
particular with respect to the first subapproach. However, the
metrics investigated in literature on Scrum could not be used
in our metrics model. The reason for this is most likely the
focus of Scrum metrics. While agile and lean manufacturing
metrics focus on the entire process, similar to the focus of
our initial metrics model, Scrum metrics focus on teams
working within this process. A preliminar conclusion could
be that Scrum metrics are probably too team-specific to
address the goals of an entire DevOps process. But this
should be investigated further, preferably in case studies in
that the initial metrics model has to be validated and
elaborated further.

VI. CONCLUSIONS
This paper shows that regarding the integration of

software development and deployment activities, on the
basis of Devops, an initial metrics model could be
developed. This metrics model has been developed in a
structured way, in a small number of iterations, with
responsible practitioners. The objective of the metrics model
is the measurement of the effectiveness of the DevOps
implementation. The structured GQM-development of the
initial metrics model was facilitated by a reference
framework, i.e., consisting of the three elaborated DevOps
approaches and the agile and lean principles in Section II.
This reference framework will also provide a basis for
further refinement of the metrics model. Although
interesting, and for the company useful, results have been
obtained, the metrics model is still in an initial state. In
future research and case studies, we will continue the
iterative development of the metrics model, towards a well-
founded and transparent measurement of the effectiveness of
DevOps.

ACKNOWLEDGMENT
The author would like to thank Sander Kruis for his

valuable MSc thesis project at TU/e and Philips IT
Eindhoven, The Netherlands.

REFERENCES

[1] G. Kim, K. Behr and G. Spafford, The phoenix project: A
novel about IT, DevOps, and helping your business win. IT
Revolution Press, 2013.

[2] M. Mamun and J. Hansson, “Review and Challenges of
Assumptions in Software Development”, Chalmers University

and University of Gothenburg, Sweden, (2011),
http://publications.lib.chalmers.se/records/fulltext/local_1544
39.pdf

[3] S. Downey and J. Sutherland, “Scrum metrics for
hyperproductive teams: How they fly like fighter aircraft”,
46th Hawaii International Conference on System Sciences
(HICCS), 2013, pp. 4870-4878. Hawaii.

[4] ITIL 2011 - The Big Picture, Retrieved 7,
2015, http://cfnpeople.com/downloads/itil_poster_the_big_pic
ture_cfn_people.pdf.

[5] K. Beck and C. Andres, Extreme programming explained:
Embrace change, Addison-Wesley, 2000.

[6] J. Erickson, K. Lyytinen and K. Siau. “Agile modeling, agile
software development, and extreme programming: The state
of research”, Journal of database management, 16 (4), 2005,
pp. 13-18.

[7] K. Conboy and B. Fitzgerald, “Towards a conceptual
framework of agile methods: A study of agility in different
disciplines”, ACM workshop on Interdisciplinary software
engineering research, 2004, pp. 37-44, Newport Beach.

[8] Z. Zhang and H. Sharifi, “A methodology for achieving
agility in manufacturing organisations”, International journal
of operations & production management, 20 (4), 2000, 496-
512.

[9] K. Schwaber and M. Beedle, Agile development with Scrum,
Prentice Hall, 2001.

[10] K. W. Young, R. Muchlhaeusser, R. Pigging and P.
Rachitrangsan, “Agile control systems”. Journal of
automobile engineering, 2001.

[11] M. Poppendieck and T. Poppendieck, Lean software
development: An agile toolkit for software development
managers, Boston: Addison-Wesley, 2001.

[12] G. Kim, DevOps distilled, Part 1: The three underlying
principles. Retrieved 7, 2015, IBM Developerworks:
http://www.ibm.com/developerworks/library/se-
devops/part1/index.html

[13] S. López, J. Peón and C. Ordás, “Managing knowledge: the
link between culture and organizational learning”, Journal of
knowledge management, 8 (6), 2004, pp. 93-104.

[14] R. Van Solingen and E. Berghout. The goal question metric
method: a practical guide for quality improvement of software
development, McGraw-Hill Inc, 1999.

[15] V. Basili, G. Caldiera and D. Rombach, “Goal Question
Metric Paradigm”, Encyclopedia of Software Engineering, 1,
1994, pp. 528-532.

[16] S. Pfleeger, “Lessons learned in building a corporate metrics
program”, IEEE Software, 1993, pp. 67-74.

[17] J. McNiff, Action research; Principles and practice, London &
New York: Routledge, 2013.

[18] R. K. Yin, Case study research design and methods, Newbury
Park: Sage Publications, 1989.

[19] D. F. Duque and L. R. Cadavid, “Lean manufactoring
measurement: The relationship between lean activities and
lean metrics”, Estudios Gerenciales, 23 (105), 2007, pp. 69-
83.

[20] D. J. Anderson, Kanban: Successful evolutionary change for
your technology business, Blue Hole Press, 2010.

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 12 / 48

A Novel Three-layer Architecture for Information System Integration

Kamrul Ahsan

School of Information Sciences, University of Tampere

Integration Excellence, HiQ Finland Oy

Tampere, Finland

e-mail: ahsan.kamrul.x@student.uta.fi

Juha-Miikka Nurmilaakso

Integration Excellence, HiQ Finland Oy

Espoo, Finland

e-mail: juha.nurmilaakso@hiq.fi

Abstract— The purpose of Information System Integration

(ISI) is to streamline business processes by synchronized or

asynchoronized completion of a series of steps. Integration

architects use the so called “integration layer” as a

methodology to accomplish such tasks. To date, in the

literature, three kinds of layer mechanisms are reported: No

(Point-to-Point), One (Message Brokers), and Two (Message

Bus). Although these three kind of layer types can solve most of

the integration challenges, among them there are both design

and run-time quality challenges. In this paper, a new type of

layering, named “Three integration layers” is introduced to

improve the quality of the integration solutions. Also, this

paper argues that new integration layers can be used for ISI

projects to improve IS integration quality.

Keywords-information system integration; layer architecture;

router.

I. INTRODUCTION

Information System (IS) is the combination of
information technology, data, personnel and associated
business functions which interact to generate information
and creates an information resource which assists the
organization to achieve its business goals. To accomplish its
business goal, organization uses multiple IS, which leads to
multiple information source. Information System Integration
(ISI) is the sets of tools and methodology that allows various
IS to interact each other to create aggregate business value,
reduce heterogeneity of the IS, allows to adopt of new
information technology (IT), facilitate e-commerce, improve
business efficiency, allows managers in enhancing
performance, increases complete knowledge of the enterprise
and its customers in decision making process [1] [7] [8].

The ISI concept is multi-faceted and multidimensional.
In terms of information integration, the architecture of the
ISI can be – use either a virtualization approach or a
materialization approach [1]. In the virtualization approach,
the data resides in the individual data sources and the
virtualization layer is defined as a virtual schema which has
attributes from all the data sources. When a user query
defined on the virtual schema is received by the system, it
determines the relevant sources to be queried and then breaks
down the query into sub-queries for the different sources [1].
On the other hand, the materialization approach, the data is

materialized at the global level. This approach is generally
used in data warehouses and it does not have any
unstructured information [1].

In the conceptual model, a layer-based architectural
pattern is used in ISI implementation projects [2]. Currently,
there are three ISI layer architectures available namely No
integration layers or point-to-point, one integration layer or
message brokers, and two integration layers or clients /
servers or Enterprise Service Bus (ESB). In general, the No
integration layer or point-to-point integration, data flows
directly from system to system. A point-to-point connection
ensures that only one receiver receives a particular message
[4]. One integration layer or message brokers (also referred
to as hub-and-spoke architectural style) receive messages
from multiple destinations, determine the correct destination
and route the message to the correct channel. Finally, the two
or Client/Server or service bus integration is the integration
systems that are comprised of two logical parts: a server that
provides the integration services and a client that requests
services of the server. Together, they form a complete
integration system with a distinct division of responsibility.

Due to the complexity of IS, constant changes of
business processes, technological advancement and cloud
computing, current layer-based architectural pattern of ISI
has shortcoming in terms of integration quality, especially
quality aspects such as design and run-time attributes. Table
I outlines some of the current challenges of various layer-
based architectural patterns.

In order to overcome some of the quality attributes of the
current integration layering based architectural challenges, a
new type of layer named three-layer or router-based layer
pattern is introduced in this paper. The routing layer or router
works as an orchestration, which is configurable. The router
utilizes a content-based publish-and-subscribe pattern with
filters and self-correlations to support integrations between
the receiving and sending layers. This integration takes place
by wrapping a source or target message as a payload in a
routing-specific envelope. The architecture can be
implemented as a standalone application using Web Services
(WS) or by using any modern ESB (For example, Microsoft
BizTalk).

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 13 / 48

TABLE I. INTEGRATION PATTERNS AND THEIR CHALLENGES [5] [6]

Patterns Challenges

No-layer - Number of connections increases with respect to

number of applications
- Tight coupling

- Less extendable

- Limited re-use
- Less scalable

- Rigid in terms of agility

- Limited to technology (Technology constraint)

One-layer - Single point of failure

- High cost

- Excessive use of network resources
- Unable to integrate applications without enforcing a

common interface

- Cannot allow each application to initiate interactions
with several other applications

Two-layer - The cost of adding or removing applications

increases as an integration solution grows
- Unable to only send messages to the applications

that are interested in receiving the messages without

knowing the identities of the receivers

The proposed layer-based integration architecture tries to

solve some of the quality challenges of ISI. In order to show
the area of the IS, where this new artifacts fits, Section II
contains two useful theory of ISI: interoperability and
integration - with brief narrative descriptions and relevancy
with the proposed method. Existing three types of layer-
based integration architecture have been briefly presented
and compared in the Section III. The proposed new type of
integration architecture is shown in details in Section IV with
comparisons with two layer-based architecture. In Section V,
four kinds of layer-based integration architecture has been
discussed in relation to some of the ISI related quality
attributes. Finally, Section VI contains the concluding
remark.

II. BACKGROUND

Today organizations use multiple software or information
systems to operate their day to day business operations. In
order to achieve aggregate business value, these IS need to
be integrated. Unlike software integration, which is the
practice of assembling a set of software
components/subsystems to produce a single, unified software
system, ISI can be defined as combination of system,
software and tools integration for modernizing,
consolidating, and coordinating the computer applications in
the organization [9].

The architecture of ISI is layered-based due to the fact
that IS architecture comprises of: information, application
and technology. Thus, layer-based design patterns are
suitable for logic interaction. Integration in IS can occur at
the data, method, interface, portal, and process level and
such variety basically represents how the application “sees”
integration [9]. To address such variety, Hohpe and Woolf
[3] have divided the integration types as: Business Process
Integration, Messaging based, Remote Procedure Invocation
(RPC), Shared Database, Managed File Transfer (MFT),
User-Interface based, and Data integration.

Another important characteristic of ISI architecture is
messaging. Regardless of integration type, the exchange of
data is common in all ISI levels [9]. Data (for example,
orders or invoices, not integers or strings) is the primary
means to integrate multiple applications so that they work
together by exchanging information without loss of
accuracy. ISI uses messaging techniques to transfer packets
of data frequently, immediately (synchronously), reliably,
and asynchronously using customizable formats [3]. ISI uses
a special filter named message router, which consumes a
message from one message channel and republishes it to a
different message channel depending on a set of conditions
[3]. Message routers are categorized into the following
groups: simple routers which are variants of the message
router and route messages from one inbound channel to one
or more outbound channels, composed routers that combine
multiple simple routers to create more complex message
flows, and finally the architectural patterns which describe
architectural styles based on message routers [3].
Furthermore, following message routing patterns are
described by [3]: Content-Based Router, Message Filter,
Dynamic Router, Recipient List, Splitter, Aggregator, Re-
sequencer, and Composed Message Processor.

Finally, clear understanding of the term integration and
interoperability is needed when systems needs to be
integrated. The integration is the practice of assembling a set
of software components/subsystems to produce a single,
unified software system that supports some need of an
organization [15]. On the other hand, interoperability is the
ability for two systems to understand one another and to use
functionality of one another [16]. The word ‘‘inter-operate’’
implies that one system performs an operation for another
system. Thus by definition, two integrated systems are
inevitably interoperable; but two interoperable systems are
not necessarily integrated [16]. For example, a good analogy
could be the relationship between Video Cassette Recording
(VCR) and Television (TV). A VCR and a TV bought in the
same country are interoperable. One just needs to connect
them together. However, a VCR bought in the US and a TV
bought in the UK may need the special signal conversion
services of an NTSC/PAL converter in order to integrate
them.

III. LAYER-BASED INTEGRATION

ARCHITECTURE

In this Section, traditional layer-based integration

architectures have been described and compared. To

visualize and count number of interactions needed by each

integration types to implement a business process, “order

creation” [17] business process is used. It is sales related or

more specifically Sales Order (SO) business process where

client creates a SO from a portal to Enterprise Resource

Planning (ERP) system. The business process also needs to

check whether subjected client exists in the Customer

Relationship Management (CRM) system.

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 14 / 48

A. No integration layers: point-to-point

A point-to-point integration (Figure 1) ensures, that only

one receiver receives a particular message [5]. For this to

work, the sending system must know the location of the

receiving node. The sending system often must translate the

message into a format that the receiving system understands.

ERP SCM

CRM Portal

Figure 1. No integration layer-based or direct ISI

Although it is easier, less costly and requires less upfront

work to implement point-to-point integration, the method is

not suitable when a large number of applications need to be

integrated. The number of point-to-point integrations

basically increases as follows: N*(N – 1) / 2. In this

calculation, N is the number of applications involved in the

integration [5]. Figure 2 shows message flows among

various IS to create a SO business process. Note that, the

CustomerPortal which is responsible for integrations may

demand expensive software customization.

CRMCustomerPortal ERP

Check Customer

Prepare SO

Prepare SO Response

Process SO

Check Customer Response

Process SO Response

Figure 2. Sales order business process using point-to-point integration

B. One integration layer: message broker

A message broker can receive messages from multiple

sources, determine the correct destination and route the

message to the correct channel (Figure 3).

ERP SCM

CRM Portal

Integration

Layer

Figure 3. One integration layer-based ISI

It is a physical component that handles the

communication between applications [10]. Instead of

communicating with each other, applications communicate

only with the message broker. An application sends a

message to the message broker, providing the logical name

of the receivers. The message broker looks up applications

registered under the logical name and then passes the

message to them. Figure 4 shows message flows among

various IS to create a SO business process using one layer-

based integration.

Figure 4. Sales order business process using message broker integration

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 15 / 48

TABLE II. COMPARISIONS BETWEEN ONE-LAYER AND NO-LAYER

No-layer One-layer

Design qualities

Maintainability Standardization

of data, process

and technology

It is required that business process and data

model as well as technology must be included

inside both the source and target system's

integration interface so that the integration

between systems works. This requires

customization both in source/target system

increasing the number of the interfaces.

No such requirements thus the

number of interfaces reduces

significantly.

 Add, update or

delete

integration

process

It is challenging to change business processes or

other integration related changes in source/target

system and in their interfaces when required.

It is possible to modify, enrich,

route and operational logic in the

integration interfaces without

changing the source/target

system.

 Process

monitoring and

alerts

Fewer of the source / target system are able to

provide an overall picture of the progress of the

business processes as control of the feature

depends of the subjected system.

Since all the processes use a

single platform, it is relatively

easy to monitor business

processes and integration of

technical performance, as well as

to obtain consistent alarms faults

using custom or built-in custom

tools.

Run-time qualities

Scalability Less saleable and number of connections

increases with respect to number of applications.

The integration substrate may be

nodes, of which one or more are

active at a time, and which are

linked to one another either

directly or with the help of the

integration database. Thus, one

layer architecture can provide a

number of options for

scalability.

C. Two integration layers: clients and servers / service bus

Two integration layer (Figure 5) or client/server or ESB

or a message bus allows applications to connect through a

logical component and it specializes in transporting

messages between applications [11]. A message bus

contains three key elements: A set of agreed-upon message

schemas, a set of common command messages [3], and a

shared infrastructure for sending bus messages to recipients.

Client
Service

Client
Database

Locking,
Reporting

Source

Target

Source

Server
Service

Client
Service

Server
Service

Server
Service

Server
Service

Target

Target

Target

Figure 5. Conceptual model of two integration layer-based ISI

In two layer integration, an application that sends a

message no longer has individual connections to all the

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 16 / 48

applications that must receive the message. Instead, the

application merely passes the message to the message bus,

and the message bus transports the message to all the other

applications that are listening for bus messages through a

shared infrastructure. Likewise, an application that receives

a message no longer obtains it directly from the sender.

Instead, it takes the message from the message bus. In

effect, the message bus reduces the fan-out of each

application from many to one [11].

The two integration layer-based ISI is capable of scaling

pervasively across enterprise applications, regardless of

physical location and technology platform [12]. Any

application can plug into an ESB network using a number of

connectivity options, and immediately participate in data

sharing with other applications that are exposed across the

bus as shared services. This is why the ESB is often referred

to as an integration network or integration fabric [12].

Figure 6 shows message flows among various IS to create a

SO business process using two layer integration.

CRMPrepareSOServerService

CheckCustomerServerService

ProcessSOServerServiceCustomerPortal

PortalSOClientService ERP

Portal SO

Prepare SO

Canonical Order

Check Customer

Canonical Order

Prepare SO Response

Canonical Order Response

Portal SO Response

Check Customer Response

Canonical Order Response

Canonical Order

Process SO

Process SO Response

Canonical Order Response

 Figure 6. Sales order business process using two layer integration

Finally, Table III compares some of the ISI quality

attributes between two-layer and one-layer.

IV. PROPOSED THREE-LAYER ARCHITECTURE A

The conceptual model of the proposed three layer-based
integration is composed of three layers namely receiving,
routing and sending (Figure 7).

Router
Service

Router
Database

Configuration,
Locking,

Reporting

Target

Source
Two-way
Sender
Service

One-way
Sender
Service

Two-way
Receiver
Service

One-way
Receiver
Service

Target

Source

Figure 7. The conceptual model of three layer-based ISI

TABLE III. COMPARIEIONS BETWEEN ONE AND TWO LAYER

 One-layer Two-layer

Design qualities

Reusability It does not contain any re-useable artifact Server layer (component) services are

reusable.

Run-time Qualities

Flexibility Data format It does not support data modelling

functionality.

It uses a CDM. In addition, applications can

use adapters, so it is not mandatory all

applications use the same data format.

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 17 / 48

Prepare CheckRouteStart Finish

Two-way
Sender

Two-way
Receiver

Constructing steps of
sequence or locking

fails for two-way
receiver but

response succeeds

More steps to route
in sequence, no
error occurs and
step continues

sequence

No more steps to
route in sequence,
error occurs or step
interrupts sequence

Begin/
end

One-way
Receiver

Begin

One-way
Sender

End

Constructing steps of
sequence and

locking succeed

Response
to two-way

receiver
succeeds

One-way
receiver or
response to

two-way
receiver fails

Figure 8. Details architecture of the three layer-based ISI

Compared to the Client Interface Layer (CIL) – Concept

Layer (COL) architecture, which has two layers and CIL

components integrate the external (party) systems and COL

components integrate internal systems, the router

architecture does not make such a distinction (Figure 8).

 Figure 9 shows message flows among various IS to

implement SO business processes using router-based

integration.

CRMPrepareSOSenderService

CheckCustomerSenderService

ProcessSOSenderService

CustomerPortal RouterService ERP

Portal SO

Prepare SO

Router Envelope (Canonical Order)

Check Customer

Router Envelope (Canonical Order)

Prepare SO Response

Router Envelope (Canonical Order Response)

Portal SO Response

Check Customer Response

Router Envelope (Canonical Order Response)

Router Envelope (Canonical Order)

Process SO

Process SO Response

Router Envelope (Canonical Order Response)

PortalSOReceiverService

Router Envelope (Canonical Order)

Router Envelope (Canonical Order Response)

Figure 9. Sales order business process using router-based integration

A. Router

The routing layer or router is an orchestration, which is
configurable by the RoutingDB (Name of the database)
database. The router utilizes a content-based publish-and-
subscribe pattern with filters and self-correlations to support
integrations between the receiving and sending layers. This
integration takes place by wrapping a source or target
message as a payload in a routing-specific envelope.
Applying the XPath (It is a language for addressing specific
parts of an XML document) rules to the envelope, the router

can choose how to use the sending layer. In addition, the
router can employ time-based locking to ensure that only one
router instance handles the same object (e.g., order or invoice
etc.) at the sending layer. There are four kinds of routers:

 A non-locking one-way router receives a request
envelope but does not send a response envelope or
lock the object related to the envelope.

 A non-locking two-way router receives a request
envelope and sends a response envelope but does
not lock the object related to the envelope.

 A locking one-way router receives a request
envelope, locks, relocks and unlocks the object
related to the envelope but does not send a response
envelope.

 A locking two-way router receives a request
envelope, locks, relocks and unlocks the object
related to the envelope and sends a response
envelope.

B. Receiver layer

The receiving layer or receivers enable one-way and two-
way integrations with external and internal source systems.
The one-way/two-way receiver is an orchestration or a one-
way/request-response receive port with a map and, if
necessary, a custom pipeline. The receiver receives a source
message using a source protocol, transforms the source
message to an envelope and sends this envelope to the router.
The two-way receiver also receives a response envelope,
transforms it to a response message and sends the message to
the source system using the source protocol. It is possible but
not recommended, that the one-way receiver sends the
response message or the two-way receiver does not send the
message.

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 18 / 48

C. Sender layer

The sending layer or senders enable one-way and two-
way integrations with external and internal target systems.
The one-way/two-way sender is an orchestration or a one-
way/solicit-response send port with a map and, if necessary,
a custom pipeline. The sender receives an envelope,
transforms this envelope to a target message and sends this
target message to the target system using a target protocol.
The two-way sender also receives a response message using
the target protocol, transforms it to a response message and

sends the message to the router. It is possible but not
recommended that the one-way sender receives the response
message or the two-way receiver does not receive the
message.

Finally, Table IV compares ISI related quality attributes
between router-layer and two layer integration pattern.

TABLE IV. COMPARISIONS BETWEEN TWO AND THREE LAYER

 Two-layer Three-layer

Design qualities

Reusability Server layer (component) services are reusable. Both receiver and sender layer (component)

services are reusable

Run-time Qualities

Flexibility It does not have such functionalities. Router layer (composite) services are flexibly

configurable and provide reusable locking and

monitoring functionalities for process integration.

V. DISCUSSION

Layered architecture is widely used architectural patterns
in software design practice. It helps to structure applications
that can be decomposed into n groups of subtasks in which
each group is at a particular level of abstraction with well-
defined interfaces [2]. Proposed new ISI router-based layer
pattern improves quality and brings more flexibility to the
integration architect over existing no, one and two layered-
based ISI architecture.

Modularity

Parnas [13] defined information hiding as an approach to

devising modular structures for software designs. The

purpose of modular design is to decouple design decisions

that are likely to change so that they can be changed

independently and at the same time to improve the

reusability and maintainability. Maintainability refers to the

ease with, which a software system or component can be

modified to correct faults, improve performance or other

attributes, or adapt to a changed environment [14]. On the

other hand, reusability is the degree to which a software

module or other work product can be used in more than one

computer programs or software systems [14]. In the

followings paragraphs, the proposed three layer-based ISI

architecture is compared with other existing layer-based

architectures with respect to maintainability and reusability.

First of all, at the center of modular design is the module

it-self where business processes and integrations are mostly

formed by independent modules. They are better known as

services or producers/consumers. In such scenario, modules

are made of standardized interfaces and functionalities. In

addition, in order to communicate with other modules,

interfaces must be compatible and follow standard data

structure. The Canonical Data Model (CDM), which is

sufficiently comprehensive and independent regardless of

source and target systems, can be used for this purposes. It

provides additional level of indirection between

application's individual data formats. If a new application is

added to the integration solution only transformation

between the CDM has to be created, independent from the

number of applications that already participate [3]. Another

important requirements of the modularity is that

orchestration, data structures and transformations required

by the integration are not tightly coupled, but they are

loosely coupled in the form of individual packages. In

general, orchestration is integration specific, while some of

the data structures and modifications may be generic.

Since no or direct ISI forms “tightly coupled”

connections between components or source/target IS (Figure

1), it is impossible to design such integration using modular

design principles. Thus, such integration is difficult to

maintain. In addition, both interfaces and functionalities of

direct integration often cannot be reused.

Two- and three-layer architectures are modular. As

Figure 10 suggests, these approaches do not exclude each

other and do not forbid use of orchestration which is an

integral part of integration artifacts. For example (Figure

10), when some changes occur in the basic information of

system A, then Master Data Management (MDM) and

systems B, C, D will also be immediately updated. In

addition, the MDM solution can provide details of the

change for the basic information. If update procedure is

successful in all relevant systems, change of basic

13Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 19 / 48

information in MDM solution can be confirmed. Otherwise

changed but unconfirmed basic information can be updated

in the A, B, C and D systems in a batch mode from the

MDM solution. Note that, in this example, A and D systems

only support asynchronous interfaces, whereas B and C

systems support synchronous data transfer.

Figure 10. Example of layer-based ISI using basic orchestration

Two-layer architecture consists of CIL- and COL-

services (Figure 11). The purpose of CIL-service is to

transfer data with the source system, modify and enrich data

in source system and the internal data structure for the data

between the content and the distribution of the data content

of the COL services. CIL-service can be of a stateless or

state-full. On the other hand, COL-service is responsible for

modifications and enrichment of the information content in

the target system as well as transfer information within the

target system. However, regardless of integration platform,

the information transformation between CIL- and COL-

services is done either using request-response or publisher-

subscriber mechanism.

The three-layer architecture proposed in this paper is

composed of receiver-service, router, and sender-service

(Figure 12). Router has two versions which can serve as

both one- and two-way receiver-services. Sender and

receiver service support the internal data structure, and

based-on such mechanism router service decide which

router versions to use.

B

MDM

D

C

A

A Update Basic Data CIL

MDM Update Basic Data
COL

B Update Basic Data COL

C Update Basic Data COL
MDM Basic Data Updated

COL

D Update Basic Data COL

Figure 11. Detail example of two layer-based ISI

14Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 20 / 48

A

B

MDM

D

C

A Update Basic Data Receiver

One-way Router

MDM Update Basic Data
Sender

B Update Basic Data Sender

C Update Basic Data Sender
MDM Basic Data Updated

Sender

D Update Basic Data Sender

Figure 12. Detail example of three layer-based ISI

Figure 8 presents the behavior of the router service. The

router server receives envelopes from one-way receivers,

while it interacts with two-way receivers by request and

response envelopes. To lock an object such as a sales order

or to report its identity and state, the router service must

create the object based to the envelope and store it into the

database. The router service can lock and unlock a given

object so that only one router service instance per this object

can be performed at the same time. The router service

instance has a sequence which consists of steps. Evaluating

configured rules against the envelope determines which step

the router service instance should perform next in the

sequence. A step determines how the router service sends

the envelope to a one-way sender or interacts with a two-

way sender by the request and response envelopes. The

router service can maintain the object state according to

these response envelopes.

Router-service, two-way communication and Sender-

Receiver with the services take place between CIL- and

COL services. One-way service, this data is to be either one-

way or publisher-subscriber relay model of integration

depending on the substrate.

VI. CONCLUSIONS

Due to multiple known and unknown components

(business and technology) both in-source, integration

platform and destination systems, layer-based architecture is

the right architectural fit for ISI. Although all the layer-

based integration methods have advantages and

disadvantages over one another, in relatively complex and

routine integration projects, various quality attributes need

to be considered. In this paper, both existing and proposed

layer-based ISI architecture have been compared in terms of

design and run-time quality category. Among all ISI

architecture types, the proposed three layer-based or router

based architecture provides more modularity and flexibility.

Even though layer-based architecture also directly involve

other quality category such as system and user qualities in

the ISI, comprehensive comparisons of such quality

categories are the natural direction for the future work of the

proposed three-layer based ISI. The authors are carrying out

further research including an empirical study to compare

these architectures using a real life industrial business Use-

case.

ACKNOWLEDGMENT

 Authors would like to gratefully and sincerely thank Dr.

Eleni Berki (University Of Tampere) and Elli Georgiadou

(Middlesex University, UK) for the discussions, reviewing

the paper and for their valuable comments during the

writing process. In addition, authors also like to take the

opportunities to thank HiQ Finland Oy and University Of

Tampere for being very co-operative and supportive to carry

out this research activities.

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 21 / 48

REFERENCES

[1] M. Mohania and M. Bhide,“New trends in information integration,”
ICUIMC '08 Proceedings of the 2nd international conference on
Ubiquitous information management and communication, 2008, pp.
74-81

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
“Pattern-Oriented Software Architecture, Volume 1, A System of
Patterns,” John Wiley and Sons, 2000, ISBN-10: 0471958697

[3] G. Hohpe and B. Woolf, “Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions,” Addison Wesley,
Oct. 2006, ISBN : 0-321-20068-3

[4] Microsoft patterns and practices, integration patterns, June. 2004.
[retrieved: May, 2015]. Available from :
https://msdn.microsoft.com/en-us/library/ff647958.aspx#intpatt-
ch05_pointtopointconnection

[5] W. Roshen, “SOA-Based Enterprise Integration: A Step-by-Step
Guide to Services-Based Application Integration,” The McGraw-Hill,
2009, ISBN: 978-0-07-160553-3

[6] Microsoft patterns and practices, Integration Topologies, June. 2004.
[retrieved: May, 2015]. Available from :
https://msdn.microsoft.com/en-us/library/ff647958.aspx#intpatt-
ch05_broker

[7] C. S. Chapman and L. Kihn, “Information system integration,
enabling control and performance,” Elsevier, Accounting,
Organizations and Society Volume 34, Issue 2, Feb. 2009, pp. 151–
169, ISSN: 0361-3682

[8] K. Ravi and M. Robinson, “E-business 2.0: Roadmap for Success,”
Addison-Wesley, 2001, ISBN 0201721651

[9] A. Vasconcelos, M. Mira da Silva, A. Fernandes, and J. Tribolet, “An
information system architectural framework for enterprise application

integration,” System Sciences, 2004. Proceedings of the 37th Annual
Hawaii International Conference on , vol., no., Jan. 2004, pp.9, doi:
10.1109/HICSS.2004.1265551

[10] Microsoft patterns and practices, Message broker, June. 2004.
[retrieved: May, 2015]. Available from :
https://msdn.microsoft.com/en-us/library/ff648849.aspx

[11] Microsoft patterns and practices, Message bus, June. 2004. [retrieved:
May, 2015]. Available from : https://msdn.microsoft.com/en-
us/library/ff647328.aspx

[12] D. Chappell, “Enterprise Service Bus,” O'Reilly, Jun. 2004, ISBN 0-
596-00675-6

[13] D. L. Parnas, “On the criteria to be used in decomposing system into
modules,” Communications of the ACM, Vol. 15, No. 12, Dec. 1972,
pp.1053–1058.

[14] IEEE Std 610.12-1990, “Glossary of software engineering
terminology,” in software engineering standards collection, IEEE CS
Press, Dec. 1990, doi: 10.1109/IEEESTD.1990.101064

[15] V. Stavridou,“Integration in software intensive systems,” Journal of
Systems and Software, vol. 48, Issue 2, Oct. 1999, pp. 91–104,
doi:10.1016/S0164-1212(99)00049-7

[16] D. Chena, G. Doumeingtsb, and F. Vernadatc,“Architectures for
enterprise integration and interoperability: Past, present and future,”
Computers in Industry, vol. 59, Issue 7, Sep. 2008, pp. 647–659,
doi:10.1016/j.compind.2007.12.016

[17] J. Nurmilaakso and J. Kauremaa,“Business-to-business integration:
Applicability, benefits and barriers in the telecommunications
industry,” Computers in Industry, vol. 63, Issue 1, Jan. 2012, pp. 45-
52, doi:10.1016/j.compind.2011.10.006

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 22 / 48

Medical Device Software as a Subsystem of an Overall Medical Device

The MDevSPICE
®
 Experience

Fergal McCaffery, Marion Lepmets, Paul Clarke

Regulated Software Research Centre & Lero,

Department of Computing & Mathematics
Dundalk Institute of Technology

Co. Louth, Ireland

Email{fergal.mccaffery, marion.lepmets, paul.clarke}@dkit.ie

Abstract—Embedded software is a sub-system that needs to be

integrated with the electrical and mechanical subsystems for a

functional medical device to be developed and marketed. In

order to be able to develop a medical device system through

integrating its sub-systems, the complete system requirements

should be known at the start of the project and managed

throughout development. Software requirements are then

derived from the systems requirements. We have developed

and piloted a medical device software process assessment

framework called MDevSPICE
®
 that integrates processes from

various medical device software standards as well as generic

software development standards. This paper describes how the

MDevSPICE
®
 framework has been designed so as to enable

medical device software developers to produce software that

will be safe and easily integrated with other sub-systems of the

overall medical device. We also describe the lessons learned

from piloting MDevSPICE
®
 in the medical device industry and

challenges medical device software developers meet in tracing
requirements and risks to and from the system level.

Keywords- software integration; medical device software;

MDevSPICE
®
; medical device risks; medical device.

I. INTRODUCTION

Safety-critical software systems are increasingly
affecting our lives and welfare as more and more software is
embedded into medical devices, cars and airplanes each day.
New approaches and international standards are being
developed to ensure the safety of these systems before they
are delivered. In order to market a medical device, for
example, the manufacturer has to satisfy a number of
regional regulatory requirements commonly achieved by
following international standards and guidance issued by
international standardizing bodies and regional regulatory
authorities. To help software companies in the medical
device domain in their attempt to reach regulatory
compliance, we have developed an integrated framework of
medical device software development best practices called
MDevSPICE®. This framework integrates generic software
development best practices with medical device standards’
requirements enabling robust software process assessments
to be performed. The “SPICE” in MDevSPICE® reflects its
foundation in the ISO/IEC 15504 (SPICE) [25] series of
standards for process assessment. Through validating the

MDevSPICE® framework we provide evidence of the
importance of traceability between the system and software
levels of development – and explain how the establishment
of robust requirements interfacing between these levels can
support more effective software integration

In Section II, we describe the regulatory requirements
medical device software development companies face before
they are able to market their devices. In Section III we
describe the development of the MDevSPICE® framework
We then focus in Section IV on the lessons we learned when
validating the framework in expert reviews and in industry
through MDevSPICE® pilot assessments. We also discuss
the importance of traceability between system and software
development processes when developing an embedded
medical device software system as it increases the safety and
quality of the developed medical device. The paper
concludes in section V.

II. MEDICAL DEVICE REGULATION

A medical device can consist entirely of software or have
software as a component of the overall medical device
system. In order to be able to market a medical device within
a particular region it is necessary to comply with the
associated regulatory demands. Two of the largest global
bodies responsible for issuing and managing medical device
regulation belong to the central governing functions of the
US and EU. In the US, the Food and Drug Administration
(FDA) issues the regulation through a series of official
channels, including the Code of Federal Regulation (CFR)
Title 21, Chapter I, Subchapter H, Part 820 [1]. Under US
regulation, there are three medical device safety
classifications: Class I, Class II and Class III. The medical
device safety classification is based on the clinical safety of
the device. Class I devices are not intended to support or
sustain human life, and may not present an unreasonable risk
of harm. A thermometer is a Class I device. Class II devices
could cause damage or harm to humans. An example of a
Class II medical device is a powered wheelchair. Class III
medical devices are usually those that support or sustain
human life, and are of significant importance in the
prevention of human health impairment. An example of a
Class III device is an implantable pacemaker. All

17Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 23 / 48

implantable devices are Class III medical devices as the
surgery required carries with itself additional high risks from
anesthesia and possible infections that go beyond the safety
risks of the medical device.

In the EU, the corresponding regulation is outlined in the
general Medical Device Directive (MDD) 93/42/EEC [2],
the Active Implantable Medical Device Directive (AIMDD)
90/385/EEC [3], and the In-vitro Diagnostic (IVD) Medical
Device Directive 98/79/EC [4] - all three of which have been
amended by 2007/47/EC [5]. Similarly to the US, the EU
device safety is also based on the clinical safety of the device
embodying similar classifications and limitations, where
Class I in the EU corresponds to Class I in the US, Class IIa
and IIb to Class II, and Class III to Class III.

A further safety classification applies to the software in
medical devices as outlined in IEC 62304:2006 [6], where
the safety classification is determined based on the worst
possible consequence in the case of a software failure. In the
case of failure of software that is of safety Class A, no injury
or damage to health of a patient can occur. When software of
safety class B fails, injury may occur but it is not serious or
life-threatening. Class C medical device software is of
highest risk and in the case of failure of such software death
or serious injury can happen. Depending on the functionality
of software within the medical device, the software safety
classification may vary from the overall medical device
safety class. When software is of critical functionality of the
medical device, it will carry the same classification as the
device, i.e., Class C software in Class III device. The safety
classification of software may be lower but cannot be higher
than the overall medical device safety class, e.g., software of
safety Class B, may be embedded in Class III device but
there cannot be software of safety Class C, in a Class I or
Class II device.

Medical device manufacturers in the US as well as in EU
must satisfy quality system requirements to market their
developed devices. In the medical device domain, ISO
13485:2003 (ISO 13485 from hereon) [7] outlines the
requirements for regulatory purposes from a Quality
Management System (QMS) perspective in medical device
domain. ISO 13485, which is based on ISO 9001 [8], can be
used to assess an organization’s ability to meet both
customer and regulatory requirements in the medical device
domain. ISO 13485 does not, however, include requirements
for software development. IEC 62304, which can be used in
conjunction with ISO 13485, does offer a framework for the
lifecycle processes necessary for the safe design and
maintenance of medical device software. As a basic
foundation, IEC 62304 assumes that medical device software
is developed and maintained within a QMS such as ISO
13485, but does not require an organization to be certified
against ISO 13485. Therefore, IEC 62304 can be considered
to be a software development specific supplement to ISO
13485, similar to ISO 90003 for ISO 9001.

IEC 62304 is based on ISO/IEC 12207:1995 [9] which
although a comprehensive standard for software
development lifecycle processes has effectively been
decommissioned following the publication of the more
extensive ISO/IEC 12207:2008 [10]. Furthermore, other

developments in the ISO and IEC communities for software
development, such as ISO/IEC 15504 [11], have provided
significant additional levels of software process detail to
support ISO/IEC 12207:2008. IEC 62304 is a critical
standard for medical device software developers as it is the
only standard that provides recommendations for medical
device software implementations based on the worst
consequences in the case the software failure causing
hazards. Furthermore, for general medical device risk
management, IEC 62304 is used in conjunction with ISO
14971 [12] and IEC 80002-1 [13] that provides guidance on
the application of ISO 14971 for software development.

Since IEC 62304 considers a medical device system to
consist of software as a sub-system, the system or product
level requirements are not included within IEC 62304 but
instead within the medical device product standard IEC
60601-1 [14]. Due to the increasing importance of usability
of devices within the medical device industry, organizations
should also adhere to the medical device usability
engineering process requirements outlined in IEC 62366
[15]. When Medical Device Directives were amended in
2007 [5], it allowed standalone software to be defined as a
medical device in its own right. Previously, software had
always been seen as a subsystem embedded in a medical
device. This amendment revealed a gap in international
standards as none of the published standards were addressing
the concerns for standalone software as a medical device.
Today, IEC CD 82304-1 [16] applies to the safety of health
software that is designed to operate on general purpose IT
platforms and that is intended to be placed on the market
without dedicated hardware, e.g., iPad applications.

All companies planning to market a medical device in the
United States need to register their product with the US
FDA. Most Class I devices can be self-registered but most
Class II devices require a 510(k) submission. For Class III
devices, a Pre-Market (PMA) submission is needed. To
support manufacturers in addressing the relevant guidance,
the FDA has issued an overview of their guidance documents
for medical device manufacturers and software developers
[17]. The FDA Guidance on Premarket Submissions [18]
provides guidance and recommendation for premarket
submissions for software devices, including standalone
software applications and hardware-based devices that
incorporate software. Premarket submission includes
requirements for software-related documentation that should
be consistent with the intended use of the Software Device
and the type of submission. The FDA Guidance on Off-The-
Shelf Software Use in Medical Devices [19] was published
in 1999 with the purpose of describing the information that
should be provided in a medical device application that uses
off-the-shelf (OTS) software. Many of the principles outlined
in this guidance document may also be helpful to device
manufacturers in establishing design controls and validation
plans for use of off-the-shelf software in their devices. The
FDA General Principles of Software Validation [20] outlines
general validation principles that the FDA considers to be
applicable to the validation of medical device software or the
validation of software used to design, develop, or
manufacture medical devices. This guidance describes how

18Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 24 / 48

certain provisions of the medical device Quality System
regulation apply to software. The scope of this guidance is
somewhat broader than the scope of validation in the strictest
definition of that term to support a final conclusion that
software is validated.

The challenge that software development companies in
the medical device domain face when they want to market a
device is in the adherence to a large number of regulatory
requirements specified in various international standards
(that can often become overwhelming). In order to help these
companies better prepare for demanding and costly
regulatory audits, we developed the MDevSPICE®
framework. MDevSPICE® includes requirements from the
previously mentioned standards and guidance documents
rendering the task of regulatory compliance much less
complex. Following is a description of the development of
the MDevSPICE® framework that integrates the
requirements from various international medical device
standards and guidance documents with the generic software
development best practices while providing a possibility to
assess processes.

III. MDEVSPICE
® FRAMEWORK

This section describes the development of the MDevSPICE®

process reference model, how MDevSPICE® provides

support for integration, and how MDevSPICE® was piloted

in industry.

A. Development of the MDevSPICE® Process Reference

Model

A process reference model (PRM) describes a set of
processes in a structured manner through a process name,
process purpose and process outcomes where the process
outcomes are the normative requirements the process should
satisfy to achieve the purpose of the process. In order to
develop a PRM that integrates requirements from various
standards allowing the processes to be evaluated in terms of
their achievement of their purpose statements, we followed
the format of the process description illustrated in ISO/IEC
24774 [21]. With that in mind, we first mapped and
integrated the requirements from ISO/IEC 12207:2008 and
IEC 62304 into what today is called the PRM for IEC 62304
that also reflects the updates to ISO/IEC 12207 from the
1995 to the 2007 version. A systematic approach of
memoing and constant comparison, which is based on the
principles of Grounded Theory [22] was followed when
developing the PRM, further details of which are to be found
in [23]. The Process Reference Model of IEC 62304 was
published in June 2014 as IEC TR 80002-3 [24].

While IEC 62304 describes only the software life cycle
processes, additional processes should be in place for system
development in the case where software is not embedded as
part of an overall medical device. These additional processes
were derived from ISO/IEC 12207:2008. Design and
development related requirements from ISO 13485 and ISO
14971 were also added to the MDevSPICE® Process
Reference Model. Both ISO 13485 and ISO 14971 are de
facto standards for medical device software organizations.

ISO 13485 requirements are primarily related to system level
processes and ISO 14971 is concerned with risk management
(and therefore aligned with the Software Risk Management
process of the PRM.

The final MDevSPICE® PRM consists of 23 processes of
which 10 are system life cycle processes, 8 are software life
cycle processes and the remaining 5 support both the system
and life cycle processes as can be seen in Figure 1.

Figure 1. Processes of MDevSPICE

®
 PRM

The MDevSPICE® PRM was then extended with

additional elements to create a process assessment model
(PAM). The aim of the MDevSPICE® PAM is to provide a
comprehensive model for assessing the software and systems
development processes against the widely recognized
medical device regulations, standards and guidelines that a
software development organization in the medical device
domain has to adhere to. The MDevSPICE® PAM, similar to
ISO/IEC 15504-5 (SPICE) [25], has two dimensions – a
process dimension and a capability dimension. The process
dimension lists three groups of processes from various
models and standards, i.e., systems life cycle processes,
software life cycle processes and support processes. Each
process is described in terms of a Process Name, Process
Purpose, Process Outcomes, Base Practices, Work Products
and Work Product Characteristics.

The MDevSPICE® PRM is based on IEC 62304,
ISO/IEC 12207:2008, ISO 14971 and ISO 13485. The
MDevSPICE® PAM then extends this PRM with base
practices and work products, some of the latter also being
normative as they are described in IEC 62304, ISO 14971 or
ISO 13485 as requirements. Where process outcomes are
derived from ISO/IEC 12207:2008, their corresponding base
practices and work products are derived from ISO/IEC
15504-5. Where process outcomes are derived from ISO
14971, their corresponding base practices are derived from
IEC 80002-1. In addition to these sources, FDA guidance on
premarket submissions, software validation and off-the-shelf
software have been added to the informative base practices
where the base practice did not already address the
requirements of the corresponding FDA guidance. Product
safety requirements have been added to the MDevSPICE®
PAM from both IEC 60601-1 and IEC CD 82304-1, while

19Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 25 / 48

the usability engineering requirements have been
incorporated from IEC 62366.

The capability dimension of the MDevSPICE® PAM is
derived directly from ISO/IEC 15504 together with the
Capability Levels, Process Attributes, Generic Practices,
Generic Resources and Generic Work Products.

While integrating processes from different standards and
guidance documents for the MDevSPICE® PRM and PAM ,
a focus on the traceability between and within system and
software life cycle processes was maintained [26]. Both the
FDA General Principles of Software Validation [20] and
ISO/IEC 12207 [10] incorporate traceability of risks,
changes and requirements throughout the development life
cycle. This interaction and traceability of requirements is a
key enabler of subsequent integration, and it has a vital role
to play in raising the safety of medical device software.

B. MDevSPICE® Framework support for integration

The MDevSPICE® framework contains key facilities for
integrating medical device software. Since MDevSPICE® is
grounded in IEC 62304, the software sub system
decomposition is consistent with the requirements of IEC
62304, meaning that the language of a software unit, a
software item and a software system is adopted.

A software system is the integrated collection of software
items to accomplish a specific function or set of functions; a
software item is any identifiable part of a computer program;
and a software unit is a software item that is not subdivided
into other items. This software system hierarchy has an
important role to play when a software developer wishes to
decompose a system into parts of varying software safety
classification. A benefit of such decomposition is that those
parts of the software subsystem that are vital for safety (and
which require additional safety activities when under
development) can be isolated until they are later integrated
with the other software components. It is also important that
when the components are integrated that the safety
implications are reflected in test cases that are pre-defined,
then tested and the results are checked to ensure that they
match the expected results. Otherwise sign-off cannot take
place at the various levels – unit tests, integration tests and
system tests.

Integration activities in the MDevSPICE® framework
start by integrating software units into software items, and
thereafter software items are further integrated with each
other (and possibly with other units as well) into the software
subsystem (which in turn is integrated into the overall
medical device system). There are therefore several levels of
integration and they must take into consideration the safety
implications at each step. It is further the case that the bi-
directional traceability of requirements (including
requirements related to safety) from the product level right
down to the individual software units is supported in
MDevSPICE

®
 thus further supporting medical device

software safety at the integration stage and beyond.

C. Piloting the MDevSPICE® Framework

The MDevSPICE® framework has been validated in
various stages of its development by different parties through
both international expert review and industrial trials. The
foundation of the MDevSPICE® PAM, IEC TR 80002-3 (the
development of which was led by the authors), was
published after several iterations of development and
analysis by the standardization working group responsible
for the publication of IEC 62304 (i.e., ISO/IEC Sub-
Committee 62A, Joint Working Group 3). An international
standard is published only after the national delegates of the
standard’s working group have agreed on every detail of that
standard.

In addition to working with the international medical
device standards community, the MDevSPICE® PAM has
also been developed together with and analyzed by experts in
process assessment working group 10 of ISO/IEC Joint
Technical Committee 1, Sub-Committee 7, responsible for
the development and maintenance of the series of process
assessment standards. These standards are currently being
revised from ISO/IEC 15504 series to ISO/IEC 330xx series
of standards. MDevSPICE® framework keeps abreast of
these updates as well as with the updates of any other
standard and guidance document information from which is
contained in the MDevSPICE® framework.

Upon successful completion of international expert
review, the MDevSPICE® process assessment framework
was then validated in the medical device software industry
through pilot assessments over the past two years.
MDevSPICE® process assessments were conducted in
different types of organizations: (1) a small software
company wishing to supply software to a large medical
device manufacturer who wants them to demonstrate that
they are capable of developing safe medical device software
and provide the medical device manufacturer with a feeling
that they will not jeopardize the safety of their overall
medical device or the reputation of their organization; (2)
three different assessments (across a 2 year period) were
performed in two different international sites of a
multinational medical device manufacturer who wants to
ensure that they are incorporating best practices within their
software development processes to not only achieve
regulatory compliance but also reduce the likelihood of
recalls through developing better quality and more robust
software; (3) a software development company seeking to
achieve regulatory compliance against IEC 62304 so that
they can become medical device software suppliers; and (4)
a large automotive manufacturer experienced in developing
safety-critical embedded automotive software now wishing
to also develop embedded medical device software.

IV. LESSONS LEARNED FROM PILOTING MDEVSPICE
®

As a result of the MDevSPICE® pilot assessments we
have witnessed different types of needs and challenges in
companies where MDevSPICE® pilot assessments were
conducted.

20Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 26 / 48

In companies that manufacture medical devices as well
as develop the embedded software for their devices, the
traceability and integration between system and software life
cycle processes is well managed. This might be due to
systems and software engineers working closely together for
safe medical device development where the software
developers are aware of the system risks and requirements.

For software companies that develop software for large
medical device manufacturers though, it can be difficult for
the third party software developers to become aware of the
overall system level requirements and risks before software
development project commences. When the system
requirements are not provided to the software developers,
this hinders the traceability engineering and integration of
the subsystems of the medical device. But medical device
manufacturers working on innovative devices are sometimes
reluctant to provide their software subcontractors with the
details of their device design as this could jeopardise device
novelty or competitive advantage. Yet, the safety risks
related to the performance of medical devices can outweigh
the business risks, which can be diminished with proper legal
knowhow, for the medical device manufacturer. We would
therefore recommend medical device manufacturers to more
openly communicate with their software subcontractors in
order to best support risk and requirements management
throughout their device design – even if this only
encompasses those product requirements which are related to
software requirements (and especially those which are safety
related). The ultimate goal for all device providers is to have
a safe medical device on the market and not risk liability or
damage of their brand as a result of a recall of a faulty
device.

V. CONCLUSION

Safety-critical domains are characterized by heavy
regulatory demands that companies have to adhere to before
they can place their devices on the market. Regulatory audits
are conducted regularly to evaluate these companies and the
safety of their devices. In order to pass these audits, medical
device manufacturers have to ensure that all regulatory
requirements have been adhered to in the design and
development of each of the medical device subsystems.

In this paper, we have explained the medical device
regulatory requirements and the related standards and
guidance documents, and how MDevSPICE® addresses all of
these concerns in a single medical device software
framework. Key to developing this framework was an
acknowledgement that the overall medical device
requirements have a direct impact on the safety of the device,
and it is therefore critical that top level product requirements
are fully realized in the software system and its related
requirements. This can be especially difficult to achieve in
environments where device manufacturers may choose to
outsource software development without necessarily sharing
all top level product requirements subcontractors. To address
this critical interface, the MDevSPICE® framework
incorporates not just software development lifecycle
processes but also system level process. Hence, system
requirements that have an impact on software requirements

are identified in MDevSPICE®, and through the
implementation of bilateral requirements traceability,
decisions taken during the software subsystem development
are fed back to the top level system requirements – thus
providing a closed loop for requirements management which
can help to raise the overall safety of the device.

Requirements management is a key activity when
integrating software subsystems and when integrating
software into higher level systems (such as is the case for
embedded medical device software). Closely aligned to
requirements management is the management of safety
related risks, and these too are supported in a bilateral top-to-
bottom (system to subsystem) mechanism in MDevSPICE,
with the result that software integration for medical devices
is conducted in an environment that fully harmonises both
general requirements and safety concerns. While such steps
may not be desirable or economically viable in the case of
general non-safety critical software, they do provide a
mechanism for thorough requirements management, even in
the case where subcontracting is undertaken – and this is a
positive development in terms of supporting robust and
effective software integration on all levels.

ACKNOWLEDGMENT

This research is supported by the Science Foundation
Ireland Principal Investigator Programme, grant number
08/IN.1/I2030 (the funding of this project was awarded by
Science Foundation Ireland under a co-funding initiative by
the Irish Government and European Regional Development
Fund),and by Lero - the Irish Software Research Centre
(http://www.lero.ie) grant 10/CE/I1855 & 13/RC/20194.

REFERENCES

[1] FDA. Chapter I - Food and drug administration, department of

health and human services subchapter H - Medical devices, Part

820 - Quality system regulation. Available from:

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSe

arch.cfm?CFRPart=820. Last date accessed - 28
th
 May 2015.

[2] Directive 93/42/EEC of the European Parliament and of the

Council concerning medical devices. 1993. European

Commission, Brussels, Belgium. pp. 43.

[3] Council directive 90/385/EEC on active implantable medical

devices (AIMDD). 1990. Brussels, Belgium. pp. 35.

[4] Directive 98/79/EC of the european parliament and of the

council of 27 october 1998 on in vitro diagnostic medical

devices. 1998. Brussels, Belgium. pp. 43.

[5] Directive 2007/47/EC of the European Parliament and of the

Council concerning medical devices. 2007. EC: Brussels,

Belgium. pp. 35.

[6] IEC 62304: Medical Device Software - Software Life-Cycle

Processes. 2006. IEC: Geneva, Switzerland. pp. 151.

[7] ISO 13485: Medical Devices - Quality Management Systems -

Requirements for Regulatory Purposes. 2003. ISO: Geneva,

Switzerland. pp. 57.

[8] ISO 9001:2000 - Quality Management Systems - Requirements.

2000. Geneva, Switzerland. pp. 27.

[9] ISO/IEC 12207:1995 - Information Technology - Software Life-

Cycle Processes. 1995. ISO/IEC: Geneva, Switzerland. pp. 106.

[10] ISO/IEC 12207:2008 - Systems and Software Engineering -

Software life cycle processes. 2008. ISO/IEC: Geneva,

Switzerland. pp. 138.

21Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 27 / 48

[11] ISO/IEC 15504-2. 2004. Information technology - Software

process assessment - A reference model for processes and

process capability, in 15504.

[12] ISO 14971 - Medical Devices - Application of Risk

Management to Medical Devices 2009. ISO: Geneva,

Switzerland. pp. 82.

[13] IEC TR 80002-1 - Medical Device Software - Part 1: Guidance

on the Application of ISO 14971 to Medical Device Software.

2009. IEC: Geneva, Switzerland. pp. 58.

[14] IEC 60601-1 - Medical electrical equipment – Part 1: General

requirements for basic safety and essential performance 2005.

IEC: Geneva, Switzerland. pp. 20.

[15] IEC 62366 - Medical devices - Application of usability

engineering to medical devices. 2007. IEC: Geneva,

Switzerland. pp. 104.

[16] IEC 82304-1: Health software -- Part 1: General requirements

for product safety. 2012. IEC: Geneva, Switzerland. pp. 30.

[17] FDA. 2015. Guidance Documents (Medical Devices and

Radiation-Emitting Products).

[18] FDA Guidance for the Content of Premarket Submissions for

Software Contained in Medical Devices. 2005. FDA: USA. pp.

20.

[19] FDA's Guidance for industry, FDA reviewers and compliance

on - Off-The-Shelf Software Use in Medical Devices. 1999.

FDA: USA. pp. 26.

[20] FDA's General Principles of Software Validation; Final

Guidance for Industry and FDA Staff. 2002. FDA: USA. pp. 43.

[21] ISO/IEC 24774 - Systems and Software Engineering - Life

Cycle Management - Guidelines for Process Description. 2010.

Geneva, Switzerland. pp. 15.

[22] B. Glaser, and A. Strauss 1976. The Discovery of Grounded

Theory: Strategies for Qualitative Research, ed. A.d. Gruyter.

Hawthorne, NY, USA.

[23] M. Lepmets,P. Clarke, F. McCaffery, A. Finnegan, and A.

Dorling 2014. Development of a Process Assessment Model for

Medical Device Software Development, in Industrial

Proceedings of the 21st EuroSPI Conference: Luxembourg. p.

2.25-2.35.

[24] IEC TR 80002-3: Medical device software -- Part 3: Process

reference model of medical device software life cycle processes

(IEC 62304). 2014. IEC: Geneva, Switzerland. pp. 23.

[25] ISO/IEC 15504-5. Information technology - process assessment

- Part 5: an exemplar process assessment model. 2012. pp. 211.

[26] G. Regan, M. Biro, F. Mc Caffery, K. McDaid, and D. Flood

2014. A Traceability Process Assessment Model for the Medical

Device Domain, in EuroSPI 2014, Springer: Luxembourg. p.

206-216.

22Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 28 / 48

Enterprise Integration Modeling

A Practical Enterprise Data Integration and Synchronization Solution

Mihaela Iridon

Cândea LLC

Dallas, TX, USA

e-mail: iridon.mihaela@gmail.com

Abstract— As line-of-business software systems take shape and

evolve over time within an organization, so does the need for

such systems to interact with each other and exchange data,

making it imperative to design flexible, scalable integration

architectures and frameworks to support a robust and well-

performing enterprise system. System integration is a multi-

faceted undertaking, ranging from low-level data sharing

(Shared Repository or File Sharing), to point-to-point

communications (Remote Procedure Invocation via Service

Orientation), to decoupled data exchange architectures

(Messaging). It is common to build entire integration sub-

systems responsible not only for exchanging information

between systems (commands and notifications) but also for

potentially more complex business logic orchestration across

the entire enterprise (Message Broker). This paper is

contemplating a practical data notification and

synchronization integration solution that allows multiple

enterprise domains to share data that is critical for business

operations. The article presents a real-world integration

architecture achieving this business objective, together with the

corresponding system models and design artifacts, and shows

how the data integration is realized using a broker-based

messaging approach employing various enterprise integration

patterns.

Keywords-Enterprise integration; system modeling; data

integration; canonical model; integration patterns.

I. INTRODUCTION

Within an enterprise, system integration solutions are
almost always designed and implemented as an afterthought,
as an attempt to build or to expand a new or existing
enterprise architecture comprised of heterogeneous legacy
system. It may be safe to say that most companies do not
start off with an integrated enterprise architecture but rather a
core domain (also referred to as a vertical), which will
eventually grow and become part of a larger enterprise
system. In many cases, such integration is achieved by
employing various off-the-shelf integration products, such as
Microsoft’s BizTalk [7] or TIBCO.

Software system integration comes in different flavors,
depending on the business objectives, the overall enterprise
architecture, and ultimately the realization approach chosen.
In Section II we will investigate these driving factors and
then present a concrete implementation approach and its
models in Section III, as it has been proposed and adopted by
a provider of the nation’s largest portfolio of benefit and

payroll products and services designed to help more than
200,000 small and medium-sized businesses.

This paper presents a data integration and
synchronization blueprint aimed at implementing the
“Maintain Data Copies” data integration pattern [8] by
means of a decoupled integration mechanism realized on a
custom broker-based messaging architecture [10] [12]. The
data payloads exchanged between the loosely coupled sub-
systems abide to a ubiquitous integration language, referred
to as the canonical model [7] as described in Section IV.
This model is the unified abstraction of the data structures
that must be shared and synchronized between these systems.

II. COMPARING AND CONTRASTING FUNCTIONAL AND

DATA INTEGRATION

When building a large enterprise software system by
bringing together multiple domain applications, the first
question that must be answered involves the level of
abstraction at which the integration specifications are being
defined: Do the sub-systems only need the data that allows
them to carry out their own functions, or do they also require
access to cross-domain exposed functional features? In other
words, should a system expose data only or features as well?

The answers to these questions will determine the type of
integration that must be realized: data or functional
integration, and, perhaps even further, it will help discern
between the need of a flexible, lightweight, loosely-coupled
integration architecture and one that adds enterprise features
and interactions, transcending domain system boundaries. It
is also possible that, in some cases, a hybrid approach may
be pertinent, either to realize a quick and simple integration
with a narrower scope (e.g. a test product implementation),
or to overcome deep architectural and data model
discrepancies between the existing systems. In this case, the
solution must fulfill some imperative enterprise needs -
whether they are related to exposing new system features in a
short amount of time or at a lower cost until further market
research proves the worthiness of additional funding for a
comprehensive, scalable, extensible, and suitable solution.

A. Functional Integration

This type of integration involves exposing data and
behavior [9] to systems that participate in the integration in
order to trigger or invoke business features exposed by these
systems. Usually, a pure Service Oriented Architecture
(SOA) [3] [4] would be the simplest architectural approach

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 29 / 48

that could realize this requirement, but it would introduce
system coupling and would not be easily scalable [5]. Web
Services implement in effect the Remote Procedure
Invocation integration pattern paradigm [7] and this implies
mutual awareness of the presence of – and the functionality
provided by - each of the integrating systems.

Complexity becomes apparent when more than two
systems must interact at a logical and/or functional level of
abstraction by invoking these exposed features and
generating chattiness across the network, or when systems
evolve, possibly threatening the stability of the integration
contracts and hence of the solution. Several options are
available to alleviate these problems, from architectural ones
to following best practices and proper functional
decomposition and service encapsulation, and eventually to
making the proper technology choices [4].

B. Data Integration

This type of integration assumes that the various
integrating systems were not designed to work together [1],
and that they do not have direct access to the entire
enterprise data but only to that which they provision directly.
These systems were built in order to fulfill certain functional
and business requirements, rather than architectural ones. It
is also possible that some systems were acquired at a later
time (e.g., corporate mergers, third-party software
acquisitions, etc.)

Given that the systems evolved independently, enabling
them to interoperate using multiple copies of the enterprise
data (i.e., multiple data sources) while providing enterprise-
level business features in a unified fashion is problematic,
since there is no single source of truth and, potentially, no
single source of data entry. Multiple applications may allow
users to enter the same type of data from different user
interfaces that sit atop of different business/logic layers and,
consequently, different data sources.

Achieving this type of data integration can rely on either
custom solutions (for example, involving an enterprise
service bus), or commercial tools (such as implementations
of a Master Data Management system), which may expedite
the time-to-market of such an integration, sometimes at
lower costs than custom solutions [2] [7]

III. A PRACTICAL DATA INTEGRATION AND

SYNCHRONZATION SOLUTION

Consider three major business domains, Human
Resources (HR), Payroll, and Benefits. The common ground
for all three is the demographic data that defines the
companies (or clients) that these systems are servicing and
their employees. As is quite often the case, neither domain
was built with a true enterprise vision in mind, neither
architecturally, nor functionally. Yet the main enterprise data
on employees and clients served must be shared across all
domains when multiple data copies exist, one per domain.
These data sources were designed for a very specific
purpose, making it prohibitively expensive to refactor the
systems’ layers and the business applications so that they
rely on a single source of truth – a unified data source across
the enterprise. A solution employing Master Data

Management (MDM) tools has been evaluated but the
business requirements did not warrant such elaborate
implementations for this particular case. The proposed and
agreed upon solution was to implement the “Maintain data
copies” data integration pattern [8] by means of a custom
scalable and extensible middleware architecture (or
integrating layer [10]), reusable frameworks and models, and
carefully-chosen technologies, to fulfill the business need of
providing multiple services (HR, payroll, and benefits) to an
array of small to large size clients.

The following subsection presents the main models of the
proposed integration solution, where data notifications are
being exchanged between the various domains via a broker-
based messaging architecture, using various enterprise
integration patterns, as depicted in the EAI pattern mapping
diagram in Figure 4. The data payload for these messages is
wrapped inside a context-based notification model, allowing
participating systems to take the appropriate action – based
on their own domain rules – using the data received from the
message broker. The individual domain systems are not
aware of each other, only of the message broker through
which they communicate.

A. The Integration Models

All models, structural and behavioral, included in this
paper are excerpts from the technical design specifications
document created on behalf of the client’s Enterprise
Integration Solution [12] and they are being used hereby
with permission from this client.

1) Structural Models: High-Level Enterprise Integration

Architecture and Components
The integration middleware was designed as an

extensible, highly-responsive, and scalable broker-based
topology through which the integrating domain systems will
exchange data notifications in near real-time and in a
loosely-coupled fashion. The middleware is built on durable
messaging frameworks, such as an enterprise service bus
(ESB), queues, an entity mapping/correlation infrastructure,
and various service endpoints (SOA).

The high-level component diagram (Figure 1) shows the
three business verticals as clients to the enterprise services
that provide access to features that implement cross-cutting
concerns (logging, SSO, audit) while indirectly exchanging
data notification messages among each other, without
awareness of each other or the features they provide, using
the integration middleware exposed via a service endpoint
(i.e., the Data Notification Receiver Service). This design
ensures system scalability and plasticity of the integration
scope (data or functional), while hiding the actual technology
specifics from the systems that participate in the integration.

2) Object/Data Models: The Canonical Model
The data notifications exchanged between the systems

via the service-broker integration middleware is a two-
layered object model, with (a) the actual data payload
represented by the integration ubiquitous model, also
referred to as the Canonical Model [7], and (b) the
notification model which is wrapping (or encapsulating) the
canonical model payload, adding context, source, and target
details to the communication messages.

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 30 / 48

Figure 1. Overall enterprise integration topology: business verticals and integration middleware

This allows for a reusable notification model, where - by
employing generic data types for the payload wrapped within
the notification together with the appropriate inheritance
(generic type inheriting from the non-generic type) – we can
design any number of notification schemata that could
encapsulate any business entity models inside a generic
payload. The payload is domain-specific (or enterprise
integration-specific in this case), whereas the notification
model is domain-agnostic. This is depicted in the object
model in Figure 2. The generic type T of the payload can be
anything that one would define for a given domain:
employee, client, address, benefit, participant, dependent,
etc. In fact, a separate object model for the enterprise
integration has been defined and is used in the
implementation of this solution (see the Section IV for
further details).

3) Behavioral Models: The Communication Model

Describing the Enterprise Data Synchronization Process
For the implemented solution, the data notification

exchange follows a very simple path through the hub-and-
spoke (or star) integration middleware topology (Figure 3).
However, the main challenge that had to be overcome is
associating the business entities from one system to business

entities in other systems, without introducing direct
dependencies between these systems or awareness of other
domains or domain-specific identifiers that – semantically –
tie these enterprise entities together. For this purpose, an
entity correlation service was introduced, using a separate
repository of entity IDs that represent logically - or
semantically - identical entities across the enterprise. Such
correlations will be specified during an initial data setup
process by administrative users or via custom automation
tools and import/export facilities.

B. Noteworthy Features of the Integration Architecture

Some of the rather interesting features of this real-world
integration solution are compiled below, grouped into
functional and non-functional characteristics. Several design
details are included to impart to the reader some level of
context and comprehension of the architectural and technical
approaches chosen.

1) Key Functional Attributes

a) Enterprise Data Coherence

Maintaining multiple data copies synchronized, all
integrators become symmetrical systems of record for the
core/common enterprise data.

 cmp System Components

Dispatcher Queues and Services

Data Integration Middleware

«service»

Common Enterprise Serv ices

«service»

Data Notification

Receiv er Serv ice

«service»

Notification Queue

Listener

«service»

Entity Correlation

Serv ice

«subsystem»

Payroll Applications and

Serv ices

«subsystem»

Benefits Applications

and Serv ices

«subsystem»

HR Applications and

Serv ices

Benefits DB Payroll DB HR DB

Integration

(Correlation

Mapping) DB

Notification

Queue (ESB)

ESB

Repository

(Durable

Messages)

Dispatcher

Queues

(ESB)

«service»

Dispatcher Serv ices

Domain Applications

«flow»

«listen»

DataNotification

«flow»

«flow»

DataNotification

«flow»

25Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 31 / 48

All systems participating in the integration are able to
notify the enterprise about relevant data updates in a
particular line of business system without being aware of the
other systems that might need this information or of the way
in which this data will be consumed.

All systems participating in the integration will be
notified of relevant data updates occurring across the
enterprise via notifications that encapsulate data payloads
following a normalized model. This in turn allows them to
keep their own data copy synchronized with the data across
the enterprise, while continuing to provision it
independently, according to the domain’s business rules.

b) Enterprise Functional Coherence

Specialized domain services offered to clients will
continue to be managed and augmented within each
individual vertical, without the need to cross domain
boundaries, since all necessary data is available at the
domain level, nearly real-time consistent with the enterprise
data.

Decoupled and asynchronous notifications exchanged via
the messaging broker keep systems unaware and independent
of each other, while allowing the enterprise to grow as
needed. Additional applications may be added; if these
applications require their own data copy, they will start
listening to notifications, and if they also support or require
data updates that must be synced with other applications’
data sources, then the new applications will also start sending
notifications to the broker, to be dispatched and consumed
throughout the enterprise, as needed.

Figure 3. High-level integration communication model mapped to the service broker (star) topology

 sd Routing-Only Communication Model

«System»

Components::Benefits

«System»

Components::

Payroll

«Router/Dispatcher»

Broker

SB Queue
Mapping/

Correlation

Repository

«System»

Components::HR

Source of data notification

1: ProcessBenefitsEvent()

1.1: Translate()

1.2: HandleNotification()

1.3: PutMessage()

1.4: OK()

2: GetNextMessage()

2.1: LookupIDs()

2.2: HandleEvent()

2.2.1: Translate()

2.2.2: InvokePayrollFeature()

2.2.3: Response(IDs)

2.3: HandleEvent()

2.3.1: Translate()

2.3.2: InvokeHRFeature()

2.3.3: Response(IDs)

2.4: DeleteMessage()

2.5: Update(IDs)

 cmp CanonicalModel - Simplified

DataNotification

- KnownTypes :Type ([]) {readOnly}

- DataNotification()

+ DataNotification()

+ ToString() :string

- LoadKnownTypes() :Type[]

«property»

+ PayloadType() :Type

+ Id() :Guid

+ Source() :string

+ SerializedPayload() :string

+ Context() :NotificationContext

+ Target() :string

+ CreatedDate() :DateTime

+ CreatedBy() :string

Notification

«property»

+ Domain() :string

T > class, new()

Notification

- _payload :T

- LoadKnownTypes() :Type[]

«property»

+ PayloadTypeName() :string

+ Payload() :T

NotificationContext

+ ToString() :string

«property»

+ Operation() :Operation

«enumeration»

Operation

 Insert

 Update

 Delete

 Unknown

Agnostic of the payload type.

There is no explicit dependency

between the Notification Model

and the Canonical Model.

Figure 2. Data notification object model

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 32 / 48

2) Key Quality Attributes

a) Scalability

Without any architectural changes to the integration
framework or the domain systems, new systems can be
added to this topology and can be enabled to participate in
the integration (assuming they also use their own data
source(s) that require continuous or occasional
synchronization with the enterprise data). The only two-fold
requirement is for these systems to expose a data notification
service endpoint to handle enterprise notifications and to be
able to raise and react to such data notifications
appropriately, while being aware of the canonical model as
the lingua franca of the enterprise integration.

b) Testability

Although additional testing frameworks for the
integration components must be designed and built,
individual systems will continue to be tested independently
of each other or the integration middleware.

Components that simulate/generate notification traffic
through the integration framework can be built to allow for
independent testing of the service broker and the integration
infrastructure.

c) Maintainability

The basic SOLID design principles employed, and most
importantly the “separation of concerns” (or SoC) principle,
ensure a highly maintainable architecture and codebase due
to overall high cohesion and low coupling [5] [10].

Domain rules do not escape the boundaries of the system
to which they belong, and similarly integration logic is
isolated to the broker components and services.

d) High Availability

By employing load balancing and clustering around the
integration services and the choice of technology (e.g.,
Service Bus Farm), the deployment topology was designed
so as to ensure high availability as far as the integration
components are concerned.

e) Performance

Assuming appropriate technology choices, the integration
framework ensures a high throughput of notifications with
minimal integration logic (i.e., entity correlation map
lookup) required between the moment of receiving a
notification and that of dispatching one.

For example, Microsoft’s Windows Server Service Bus
1.1 (on premise) can process 20k messages/second (based on
1K message size) with an average latency of 20-25ms [11].

C. Enterprise Integration Patterns Mapping

The integration patterns [7] that were employed in
designing and realizing the integration architecture are
presented below. They can easily be mapped to the business
verticals and integration middleware components as an
overlay atop the simplified enterprise system block diagram,
as seen in Figure 4.

Figure 4. Mapping of enterprise integration patterns to domain systems and to integration middleware components

27Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 33 / 48

IV. SUMPPLEMENTARY INTEGRATION MODELS

A. The Canonical Model’s Base Class Details

The Canonical Model integration pattern [7] has been the
central theme of the solution implemented and is the only
integration element that was allowed to permeate the
enterprise (at each system’s integration endpoints). This
model can be envisioned as the ubiquitous integration
language, which describes entities that are shared across the
various domains of the enterprise. However, these entities in
turn share data elements that are best modeled separately, as
properties on base classes, using elemental inheritance,
aggregation, and composition modeling concepts. For the
domains in the presented case study, the need to support
entity identifiers of different types, active timeframes, and
traceability/audit features, led to the design of the model in
Figure 5 where all domain entities inherit from the abstract
class EntityBase shown in the center of the class diagram.

B. The Canonical Model and the Main Integration Entities

The main (aggregate root) entities in the integration’s
lingua franca are Group and Employee. They reflect the
primary integration objective: keep Employee and Group
demographics data in sync among all enterprise systems, by
allowing each system to maintain and operate on their
individual copy of the data. The model shown in Figure 6 is
specific to the integration solution proposed for the client,
aiming at integrating Benefits, Payroll, and Human
Resources domains, more specifically for achieving the
business goal of cross-selling services to various clients.

Noteworthy here is the fact that if we consider the
canonical model as the domain of the integration, then it is
following the anemic domain model design anti-pattern [6].
This is because these are simple data containers and do not
encapsulate functionality as the integration framework’s
domain itself is behavior-less. The model’s only purpose is
to capture and transport data notifications across systems –
so, from this (proper) perspective the model is abiding to the
Data Transport Object (DTO) pattern of enterprise
application architecture [5].

Generic functionality is exposed in the form of service
operation contracts for handling notifications (whether a
domain system raises a notification or must handle one), but
no enterprise features are being implemented here, hence
data representation and modeling is of essence and
imperatively impacts the success of the proposed system
integration solution.

C. The Enterprise Integration Activity Model

The overall system integration flow is modeled in the
activity diagram in Figure 7, where the various integrating
systems and the broker components are bounded by the
vertical swim lanes, to indicate where activities and actions
cross system boundaries. The diagram also shows how the
correlation service is being employed to allow the integration
framework to associate the same (logical) clients across
domains by looking up and populating the appropriate
domain identifiers, as part of the context that wraps the
notification data payload passing through the broker.

Figure 5. Base class and common elements for the canonical model types

 cmp CanonicalModel - Simplified

EntityBase

- LoadKnownTypes() :Type[]

«property»

+ Id() :Identifier

+ CreateUpdateDetail() :CreateUpdateDetail

+ Lifespan() :EffectivePeriod

Identifier

«Property»

+ Id :Guid

+ LogicalKey :string

+ AlternativeId :string

T

Identifier

+ Identifier()

+ ToString() :string

«property»

+ Id() :T

«interface»

IEntityBase Marker I/F (used for

Reflection)

CreateUpdateDetail

«property»

+ CreatedBy() :string

+ CreatedDate() :DateTime?

+ UpdatedBy() :string

+ UpdatedDate() :DateTime?

Effectiv ePeriod

«property»

+ EffectiveEndpoint() :PeriodEndpoint

+ TerminateEndpoint() :PeriodEndpoint

PeriodEndpoint

«property»

+ Date() :DateTime

+ Reason() :string

Base class for all the main entities

in the enterprise-integration-

specific canonical model

Generic identifier - to support entity

IDs of any (primitive) type

2

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 34 / 48

Figure 6. Canonical model’s main entities: the payload of the data notifications

Behind the broker services, multiple queues were used as
a durable and priority-based messaging mechanism, in order
to decouple the various processes that take place at the
integration framework level: receiving notifications,
processing notifications and their context, and finally
dispatching notifications to targeted systems.

V. CONCLUSION

Data integration and synchronization in medium to large
multi-domain enterprise systems can be achieved via custom
integration frameworks using various enterprise integration
patterns and making appropriate technology choices.

This paper presented an actual, real-world integration
solution, explained via several structural and behavioral
system models, and provided details on how the “maintain
data copies” data integration pattern would be realized via a
broker-based messaging system. The data exchanged
between the various domains is encapsulated inside a
canonical model, which is the common data abstraction
across the enterprise. This in turn is wrapped inside a
context-based, generic, and reusable notification model,
allowing systems to react to these notifications based on their
own business rules.

The resulting architecture presented here features
scalability, extensibility, and high-availability – to mention
just a few quality attributes, while supporting near-real-time
data synchronization between systems and allowing them to
operate without awareness of each other, while using their
individual data formats, features, and domain rules.

REFERENCES

[1] T. Erl, “Service-Oriented Architecture: A field Guid to
Integrating XML and Web Services,” Prentice Hall, 2004.

[2] T. Erl, “Service-Oriented Architecture (SOA): Concepts,
Technology, and Design,” s.l.:Prentice Hall, 2005.

[3] T. Erl., “SOA Design Patterns,” Prentice Hill, 2009.

[4] T. Erl, et al., “Next Generation SOA: A Concise Introduction
to Service Technology & Service-Orientation,” Prentice Hall,
2014.

[5] M. Fowler, “Patterns of Enterprise Application Architecture,”
Addison-Wesley Professional, 2002.

[6] M. Fowler, Martin Fowler. [Online]. Available from:
http://www.martinfowler.com/bliki/AnemicDomainModel.ht
ml [retrieved: June, 2015]

[7] G. Hohpe, and B. Woolf, “Enterprise Integration Patterns;
Designing, Building, and Deploying Messaging Solutions,”
Addison-Wesley, 2012.

 class CanonicalModel Alt - Simplified

EntityBase

Models::Address

EntityBase

Models::Benefit

EntityBase

Models::Contact

EntityBase

Models::Employee

EntityBase

Models::Group

EntityBase

Models::Participant

EntityBase

Models::Person

Models::PersonInfo

ParentEntityDetail

Models::AddressCollection

ParentEntityDetail

Models::Div isionCollection

Models::GroupInfo

Models::ContactDetail

ParentEntityDetail

Models::EmployeeCollection

ParentEntityDetail

Models::ContactCollection

ParentEntityDetail

Models::

RelatedPersonCollection

ParentEntityDetail

Models::BenefitCollection

Models::EmployeeInfo

«required»

Benefits

1..*

Benefits

RelatedPersons

RelatedPersons

1..*

Divisions
1..*

«required»

Phones

0..*

Addresses

«required»

Employees

1..*

Contacts

Emails

0..*

Contacts

1..*

Addresses

1..*

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 35 / 48

[8] Microsoft, Data Integration. [Online]. Available from:
https://msdn.microsoft.com/en-us/library/ff647273.aspx
[retrieved: June, 2015]

[9] Microsoft, Functional Integration. [Online]. Available from:
https://msdn.microsoft.com/en-us/library/ff649730.aspx
[retrieved: June, 2015]

[10] Microsoft, Integration Patterns. [Online]. Available from:
https://msdn.microsoft.com/en-us/library/ff647309.aspx
[retrieved: June, 2015]

[11] Microsoft, Service Bus for Windows Server Quotas. [Online].
Available from: https://msdn.microsoft.com/en-us/library/
dn441429.aspx [retrieved: June, 2015]

[12] M. Iridon, Cândea LLC. “Technical Design Specifications for
Enterprise Integration Solution,” , 2015, unpublished/internal
document.

 act Integration with Correlation Activ ity Model

Applications

Notification Receiv er

Broker Serv ices

Notification Processing Serv ice Correlation Serv ice

Enterprise Serv ices

Group Mgmt Serv ices

Raise Data

Notification
Notification

Handle

Notification

Notification

Notification

Send to

Queue

Notification

FlowFinal

Start

Listening to

Queue

ListenerInitial

Get

Notification

from Queue

Update

Targets

Get Serv ices

Prov ided for

Group

Update Entity

IDs

Get Entity

IDs

Dispatch to

Targets
Notification

Handle

Notification Notification

Notification

The Receiver of the Notification is

NOT the same as the Sender of the

Notification. (Target <> Source)

Routing is based on what

services a given group has

signed up for.

Dispatcher Serv ice(s)

Get

Notification

from Queue

Send to All

Dispatch

Queues

FlowFinal

DispatcherInitial

Start

Listening to

Queue

Validate/Populate

IDs

Integration Services call this

action ONLY if smart routing is

supported at the Broker

Services level.

Update IDs

Update Entity

IDs
FlowFinal

The received notification

object will be populate with

the domain's specific IDs

Notification Receiv er

Notification Flow

Notification Flow

Figure 7. Enterprise integration activity model

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 36 / 48

Development of the MedITNet Assessment Method

Enabling Healthcare Delivery Organisation Self Assessment against IEC 80001-1

Silvana Togneri MacMahon, Fergal McCaffery, Frank Keenan

Department of Computing & Mathematics

Dundalk Institute of Technology

Co. Louth, Ireland

{e-mail: silvana.macmahon, fergal.mccaffery, frank.keenan}@dkit.ie

Abstract— The provision of care to patients has moved away

from episodic acute care due to the increase in chronic

diseases such as diabetes. This has changed the relationship

between the patient and the care team. The management of

chronic disease requires the use of information technology

including networked medical devices to facilitate the

establishment of an ongoing relationship between the patient

and care team. The use of networked medical devices can

provide benefits to patients such as reduced cost of care,

reductions in adverse events and improved care through the

provision of accurate and up-to-date information. However,

the placement of a medical device onto an IT network can

lead to risks to the device. These risks may lead to incorrect

or degraded performance of the device impacting patient

care and negating the potential benefits of using the device.

While, IEC 80001-1 was developed to assist Healthcare

Delivery Organisations (HDOs) in addressing these risks,

HDOs may struggle in implementing the requirements of the

standard. This paper discusses the development of an

Assessment Method which forms part of MedITNet, an

assessment framework which can be used by HDOs to assist

them in implementing the requirements of the standard by

providing a flexible, consistent and repeatable approach to

assessing the capability of their risk management processes

relating to networked medical devices. The assessment

highlights weaknesses in the process and can be used as a

foundation to improve these processes.

Keywords- Risk Management; Medical IT Networks; IEC

80001-1; MedITNet; Assessment Framework; Assessment

Method.

I. INTRODUCTION

The recent downturn in the global economy has led to

an increased focus on ensuring that a high standard of

care is provided to the patient while reducing the cost of

care. Interoperability of medical devices has been

recognised for its potential to achieve this goal [1]-[3].

Such is the potential that governments have provided

incentives to promote the meaningful use of interoperable

medical devices and Health Information Technology

(HIT), such as Electronic Health Records (EHRs) [4]-[6].

The use of interoperable medical devices has resulted

from the increased prevalence of chronic conditions such

as diabetes which has resulted in a move away from acute

episodic care. The management of chronic disease

requires the establishment of an ongoing relationship

between the patient and their care team facilitated by

carefully designed care processes and requiring the

support of information technology [7]-[10] As a result of

this change, the number of networked medical devices in

use continues to increase [11]-[13].

A number of benefits of the use of networked medical

are recognised. These include reducing the instances of

adverse events improving patient safety, reducing the time

spent by clinicians manually entering information,

reducing redundant testing due to inaccessible

information, improving patient care, reducing healthcare

costs and ensuring comprehensive and secure

management of health information [14]-[15]. These

benefits have resulted in medical IT networks becoming a

critical, integral component of the medical system [16].

However, as medical devices increasingly interface with

other equipment and hospital information systems the

integration complexity of the systems is increased and this

presents additional operational risks [13][17]–[19].

Proprietary networks were traditionally used when a

device was placed onto a network. However, these are

being used less with medical devices being designed to be

placed onto the hospitals general IT network. This means

that medical device manufacturers no longer exercise

control over the configuration of the network [20]. This

lack of control can lead to risks which result in

unintended consequences outside the control of the

medical device manufacturer. The placement of the

device onto the hospital network creates a new system in

which the device has not been validated [21]. These risks

can result in the incorrect and degraded performance of

the medical device [22][23] compromising patient safety,

effectiveness and the security of the IT network [24]-[26].

IEC 80001-1: Application of risk management for IT-

networks incorporating medical devices [27] was

published in 2010 to address the risks associated with the

incorporation of a medical device into an IT network.

However, HDOs face challenges when implementing the

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 37 / 48

requirements of this standard [28]. HDOs vary in size and

in terms of the capability of their risk management

processes [16] [29] and the regulatory requirements of the

region in which they provide care differ meaning that the

implementation of the requirements of the standard will

vary depending on the relevant regulatory requirements.

The effective performance of risk management activities

requires interaction between different stakeholder groups.

An understanding of the context of the HDO is also

required in order to manage the identified risks [17][30].

In addition, organisational changes are required to

facilitate the necessary level of interaction among

stakeholders and HDOs may be unprepared for this [13]

due to the fact that departments within the HDO typically

operate in silos [7]. These challenges make the

requirements of the standard confusing and difficult to

implement.

These difficulties in implementing the requirements of

the standard highlighted the need to provide HDOs with

assistance. This research has focused on the development

of an assessment framework which provides HDOs with a

flexible approach to assessing the capability of their

current risk management processes relating to medical IT

networks. The use of the assessment framework enables

communication among stakeholders groups allowing

HDOs to implement the requirements of the standard.
The rest of this paper is organized as follows. Section

II describes the development of the Assessment Method
component of the MedITNet assessment framework while
Section III described the stages of the Assessment while
the validation of the resultant Assessment Method is
discussed in Section IV. The conclusions are presented in
Section V.

II. DEVELOPMENT OF THE ASSESSMENT METHOD

The Assessment Method described in this paper is one of

three components which make up the MedITNet

assessment framework [31][32]. In addition to the

Assessment Method, MedITNet contains a Process

Reference Model (PRM) and Process Assessment Model

(PAM). The PRM provides a description of 14 processes

which address the requirements of IEC 80001-1. The

processes within the PRM are described in terms of the

purpose of the process and the outcomes achieved as a

result of performing the process. The PAM extends the

description of the processes by including a description of

the base practices or activities performed during the

process and the work products used or produced as a

result of performing the process. The PAM also

introduces the concept of a measurement framework or

scale on which the capability of the process can be

measured. The Assessment Method provides a consistent

approach to assessing the capability of the processes in

the PAM using questions related to each of the base

practices. The Assessment Method can be tailored for use

based on the context in which the HDO provides care.

A. Development Approach

The approach to the development of the Assessment

Method combines the learnings from a literature review

with knowledge of risk management practices in a HDO.

In order to understand the risk management practices

within the HDO, focus groups sessions were conducted

with risk management stakeholders within a HDO. These

sessions were performed during the Practice-Inspired

Research phase of the Action Design Research (ADR)

process [33] which was used in the development of the

Assessment Method and also in the development of the

MedITNet Assessment framework.

B. Literature Review

In order to inform the development of the Assessment

Method, a review of Assessment Methods for similar

standards was completed. This review focused on

ISO/IEC 15504-3 [34] and Appraisal Requirements for

CMMI [35] Domain specific including Rapid Assessment

for Process Improvement in Software Development

(RAPID) [36], Express process appraisal (EPA) [37],

Adept [38], Med-Adept [39] and Tudor IT Service

Management Process Assessment (TIPA) [40] were also

reviewed. While this review informed the development of

the Assessment Method, the results of the review were not

sufficient in themselves to develop the Assessment

Method. In order to develop the Assessment Method, the

results of the literature review were combined with the

knowledge gained during the Practice-Inspired Research

conducted as part of this study. This approach allowed the

researcher to take into account the concerns which HDOs

express in relation to the implementation of the IEC

80001-1 standard.

The literature review provided an understanding of

the challenges that HDOs encounter when incorporating a

medical device into an IT network. Each of the identified

challenges was considered when developing the

requirements for the Assessment Method, using a similar

approach to that used by Mc Caffery and Coleman [41]

using criteria for Assessment Methods as outlined by

Anacleto et al. [42]. The criteria were adapted to take into

account the domain in which the Assessment Method will

be used, that is, within the HDO rather than in the context

of software development. The development of the

requirements for the Assessment Method also took into

account the challenges related to the management of risk

associated with the incorporation of a medical device into

an IT network which were highlighted as part of the

Literature Review and Practice-Inspired Research. The

requirements for the Assessment Method were defined as

follows:

 Due to the constraints on resources within

HDOs, the Assessment Method should be

lightweight in its approach and facilitate self-

assessment;

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 38 / 48

 The Assessment Method should be based on the

processes described in the MedITNet PAM;

 Guidance should be provided for tailoring the

Assessment Method for use in various scales of

HDOs and in different geographical contexts.

The Assessment Method should also facilitate

assessments based on conformance with the

standard as well as those which seek to assess

the capability level with which risk management

processes are being performed;

 The Assessment Method should support the

identification of risks and improvement

opportunities;

 The Assessment Method should not assume any

previous knowledge of process assessment on

the part of those conducting the assessment;

 The Assessment Method should facilitate the

development of tool support in the future;

 The Assessment Method should be publicly

available;

 The Assessment Method should encourage a

culture of communication among various

multidisciplinary risk management stakeholders

including those within and external to the HDO;

 The Assessment Method should be validated for

use within the HDO context.

In addition to the literature review and, to augment the

Practice-Inspired Research, members of the Clinical

Engineering team (CE) and the Clinical Informatics team

in a HDO were consulted throughout the development of

the questions for the Assessment Method. This was an

iterative process which is in the following section.

C. Question Development

The involvement of HDO risk management stakeholders

in the development of the Assessment Method was

considered to be vital as HDOs may use the Assessment

Method in its form within the technical report and without

reference to the PRM and PAM. The Assessment Method

assesses against ISO/IEC 15504-2 compliant models i.e.

the MedITNet PRM and PAM. These models describe

processes at the level of the process purpose, outcomes,

practices and work products. This approach to the

development of the Assessment Method ensures its

applicability beyond the HDO assisting with its

development, across varying geographical and regulatory

contexts. The development of the assessment questions,

which form part of the Assessment Method, was

completed in two phases.

a) Question Development – Phase 1

During phase 1 of the question development process, a

meeting was held in the HDO with the Principal Physicist

and a Physicist/Clinical Engineer. Both had taken part in

the initial phase of the Practice-Inspired Research and

were already familiar with the provisions of the standard

and the proposed MedITNet framework.

During the previous discussions on the current risk

management practices within the HDO, it was agreed that

the Risk Analysis and Evaluation Process was the main

process relating to the identification and classification of

risks. It was noted during the previous focus groups

session that discussion of the Risk Analysis and

Evaluation process lead to discussion of other aspects of

risk management which are outside the scope of that

process. Therefore, it was decided that questions should

be developed for this process first.

The development of these questions would inform the

development of the assessment questions for the

remaining processes. In order to develop the questions for

the Risk Analysis and Evaluation process, each of the

base practices was reviewed and the participants were

asked to formulate a question that could be used to assess

the base practice being described. To facilitate gaining an

understanding of each of the base practices, each base

practice was discussed in the context of the standard with

the relevant section of the standard being consulted and

reviewed if required. Once all participants were clear on

the meaning of the base practice, the participants from the

clinical engineering team were encouraged to think of a

“real” scenario where the relevant base practice had been

implemented in the past. The discussion of the scenario

would focus on how the base practice was implemented in

the context and any constraints that may have affected the

implementation of the base practice.

Once the practice had been discussed in context, the

participants were encouraged to formulate questions that

could be used to assess the degree to which the base

practice had been implemented during the proposed

scenario. All questions which were formulated by the

participants were recorded and the participants were

encouraged to rephrase the questions in order to decrease

the number of questions used to assess each base practice.

The Risk Analysis and Evaluation Process contains five

base practices against which 14 questions were eventually

formulated. This draft of questions was used in the

validation focus group within HDO A which was

conducted as part of the ADR process. However, the set

of questions (presented in Table I) does not represent the

final set of questions which were developed to be used in

the assessment of this process.

b) Question Development – Phase 2

During the second phase of the development of the

questions, the questions for the remaining 13 processes

were developed. These questions were developed with the

assistance of the Clinical Informatics Manager (CIM) of

the HDO. The CIM is a former nurse who oversees the

systems administration tasks of the Clinical Information

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 39 / 48

System within the Intensive Care Unit. The CIM was

briefed on the research being carried out on the

development of the Assessment Method and was given

the PRM and PAM to review and was briefed on the

requirements of the IEC 80001-1 standard. Following the

development of the assessment questions for the

remaining 13 processes, the CIM was also shown the

questions developed during phase 1 for the Risk Analysis

and Evaluation Process. The CIM was asked to review

and reformulate the questions, as required, for this process

based on their experience of development of the questions

for the remaining processes.

In general, one question was related to each of the base

practices. However, the assessment of some base

practices required more than one question. The CIM was

asked to participate in the development of the questions in

order to ensure that the questions were phrased in a way

that could be understood by various risk management

stakeholders within the HDO. The questions were also

developed based closely on the base practices defined

within the PAM to ensure that the questions could be

applied across multiple HDO contexts and were not

specific to the HDO in which the research was being

carried out.

TABLE I – SAMPLE ASSESSMENT QUESTIONS

Base Practice

Summary:

Question

Number:

Question:

BP.1 - Identify

likely hazards.

BP.1 Q.1 How do you identify likely safety

hazards for individual devices?

BP.1 Q.2 How do you analyse the system as a

whole to identify likely safety hazards?

BP.1 Q.3 How do you consider the impact of the

device on the environment?

BP.1 Q.4 How do you consider the impact of the

device in terms of effectiveness?

BP.1 Q.5 How do you consider the impact of the

device in terms of data and system

security?

BP.2 - Estimate

associated risks.

BP.2 Q.1 Do you have a procedure for estimating

risk?

BP.2 Q.2 What approach do you use to estimate

the risk associated with each source of

harm?

BP.2 Q.3 What information sources do you use

to estimate the risks associated with

each source of harm?

BP.2 Q.4 Are risks reviewed throughout the life

cycle?

BP.3 - List

possible

consequences of

harm.

BP.3 Q.1 How do you identify possible

consequences of harm?

BP.4 - Record

results of Risk

Analysis and

Evaluation

activities.

BP.4 Q.1 How are risk management activities

recorded?

BP.4 Q.2 Are instances where risk estimate is so

low that risk reduction is not required

recorded?

BP.5 -

Implement Risk

Control

Measures.

BP.5 Q.1 How are risk control measures

implemented?

BP.5 Q.2 Are risk control measures implemented

in line with risk management policy?

III. STAGES OF THE ASSESSMENT METHOD

The stages of the assessment process are illustrated in
Figure 1 and discussed in the remainder of this section.

Stage 1 – Definition of Assessment
Scope

Stage 2 – Conduct Initial Briefing

Stage 3 – Conduct Assessment
Interviews

Stage 4 - Generation of Findings
Report

Stage 5 - Presentation of Findings
Report

Stage 6 - Implementation of
Recommendations

Stage 7 - Reassessment (Optional)

Figure 1. Stages of the Assessment Process

Participants in the assessment process include the lead
assessor, a risk management stakeholder from within the
HDO, who will manage the assessment on behalf of the
Top Management (TM) of the HDO. Focus group
interviews are used during the assessment to ensure
communication among risk management stakeholders. An
additional Assessor (A) may be required to assist the LA.
In addition to sponsoring the assessment, TM will ensure
that Risk Management Stakeholders (RMS) are available
to participate in the assessment. The RMS will be drawn
from a multi-disciplinary team from within the HDO and
will include members of the IT, CE and Clinical Teams
and any other relevant RMS as required. The RMS may
also include participants who are external to the HDO such
as MDMs. It should be noted that Stages 1 to 5 above
complete the assessment activities. Stage 6 involves the
implementation of recommendations made during the
assessment. Where a follow-up assessment is required,
stage 7 is performed. A reassessment can be used to
confirm that the recommendations for improvements to the
risk management process have improved risk management
processes as envisaged.

a) Stage 1

The lead assessor meets with Top Management and the

scope of the assessment is discussed. The system which is

to be the focus of the assessment is defined and the

context of the system is understood. At this time, the

availability of relevant risk management stakeholders to

participate in the assessment is confirmed.

b) Stage 2

The lead assessor meets with relevant risk management

stakeholders who will be taking part in the assessment to

explain the Assessment Method and give details of what

their participation will involve.

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 40 / 48

c) Stage 3

The lead assessor conducts interviews based on the

scripted questions with the relevant risk management

participants and evaluates the responses. The assessor

makes notes on the interviews and additional questions

are asked if clarification is required. Relevant work

products are reviewed at this stage.

d) Stage 4

A findings report is prepared based on the data gathered at

stage 3. Each process is reviewed in turn and where

relevant particular strengths and weaknesses are identified

based on the evaluation and interview notes. Suggested

actions to address these issues and to facilitate process

improvement are outlined and discussed.

e) Stage 5

The findings report is presented.

f) Stage 6

Having allowed time for the contents of the report to be

considered, the findings are discussed and a plan for

improvement of the processes with specific improvement

objectives is agreed.

g) Stage 7

The HDO having implemented the agreed improvements

have the option of performing a reassessment to ensure

that improvements have been implemented and that risk

management processes have improved accordingly.

IV. VALIDATION OF THE ASSESSMENT METHOD

The Assessment Method was validated from the

perspective of its utility in a specific HDO context. The

first stage of validation consisted of performing an

assessment of current risk management practices within a

HDO context using the Assessment Method. This phase

consisted of a pilot implementation of the Assessment

Method by performing an assessment of the Risk Analysis

and Evaluation process using the questions from the

Assessment Method. A focus group session took place in

the HDO with participants from various risk management

stakeholder groups taking part. The assessment allowed

for areas of weakness in the current risk management

processes related to medical IT networks to be highlighted

and addressed. A findings report was provided to the

HDO and a follow-up focus groups session took place

nine months later to review which recommendations had

been implemented. A summary of the recommendations is

provided in Table 2. This phase of the validation ensured

that the developed questions could be understood by risk

management stakeholders and were suited for use for the

performance of an assessment in the specific HDO

context. The performance of the assessment resulted in

improvement to not only the risk analysis and evaluation

process within the HDO, but participants also reported

improvements in the overall risk management of medical

IT networks within the HDO. The performance of this

stage of the validation confirmed the utility of the

Assessment Method in a specific HDO context.

TABLE II - SAMPLE ASSESSMENT RESULTS SUMMARY

BP.1 - Identify likely hazards

Develop a standardised process for the identification of hazards,

including the identification of hazards during the tendering process

Maintain the same level of documentation in the recording of identified

hazards, regardless of when in the lifecycle the hazard is identified

Store information related to risk management in a manner which can be

accessed as an information source for the estimation of future risks

BP.2 - Estimate associated risks

Establish a policy detailing risk acceptability criteria

Formalize and document a procedure for the estimation of risk which

stipulates which risk management stakeholders should be involved

BP.3 - List possible consequences of harm

Consider consequences of harm based on the risk acceptability criteria

Consider consequences of harm based on the risk management policy

BP.4 - Record the results of Risk Analysis and Evaluation activities

Record Risk Analysis and evaluation activities in the risk management

file

Ensure accessibility of emails containing information on Risk Analysis

and Evaluation activities

BP.5 - Implement Risk Control Measures

Establish a process for risk control

Ensure that risk control measures are implemented in line with the risk

control process

Document risk which have been considered so low as not to require

additional risk control measures

In order to confirm the generalisability of the

Assessment Method across a range of HDO contexts, the

Assessment Method was also validated through expert

review by members of the standards community from the

International Electrotechnical Commission (IEC) Sub-

Committee 62A and the International Organization for

Standardization (ISO) Technical Committee 215 Joint

Working Group 7 (JWG7). Members of this group are

drawn from risk management stakeholders within HDOs,

medical device manufacturers and providers of other IT

technology. They are recognised as experts in their field

and represent their country in this capacity. The focus of

this stage of the validation is to ensure that the

Assessment Method can be used across multiple HDO

contexts, regardless of the regulatory environment in

which the HDO operates. During this phase of the

validation the Assessment Method was circulated to

members of JWG7 for review. The Assessment Method

was circulated with the MedITNet PRM and PAM and

members were invited to make comments on any aspect

of these components of MedITNet. The review by

members of this group resulted in a number of changes to

the Assessment Method including the provision of sample

templates which could be used by HDOs during the

performance of an assessment and in the preparation of

the findings report for circulation to Top Management of

the HDO. In addition to the review by members of JWG7,

a focus group session was conducted with a selection of

experts from the group. These experts were asked to

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 41 / 48

comment on various aspects of the overall MedITNet

framework. During this session experts reported that the

use of the Assessment Method and specifically the

assessment questions resulted in risk management

stakeholders having a greater understanding of the

requirements of the IEC 80001-1 standard. The experts

also noted that the definition of the requirements of the

standard at the level of processes in the PAM enabled the

assessment questions to be tailored to take into account of

the context in which the HDOs provide care. This was
Each of these phases was performed iteratively as part

of the ADR process and changes suggested by each phase
of the validation were incorporated into the next version of
the Assessment Method and the overall MedITNet
framework.

V. CONCLUSIONS

While IEC 80001-1 takes steps to address the risks
associated with the placement of a medical device onto an
IT network, HDOs may face challenges in understanding
and implementing the requirements of the standard. The
MedITNet framework has been developed in order to
assist HDOs in addressing these challenges. The
Assessment Method provides a consistent, repeatable and
tailorable approach to the assessment of the capability of
risk management processes related to the management of
medical IT networks. An assessment of these processes
can highlight weaknesses therein and can be used as a
foundation for an improvement of risk management
processes. Effective risk management of medical IT
networks ensures that the potential benefits of networked
medical devices are realised while ensuring the safety of
the patient is protected, the effectiveness of the device is
assured and the security of the data and system are
preserved.

ACKNOWLEDGMENT

This research is supported by the Science Foundation
Ireland Principal Investigator Programme, grant number
08/IN.1/I2030 (the funding of this project was awarded by
Science Foundation Ireland under a co-funding initiative
by the Irish Government and European Regional
Development Fund),and by Lero - the Irish Software
Research Centre (http://www.lero.ie) grant 10/CE/I1855 &
13/RC/20194.

REFERENCES

[1] West Health Institute, "The Value of Medical Device

Interoperability - Improving patient care with more than $30

billion in annual health care savings," 2013.

[2] A. Hamilton, et al., "Summary of the August 2011 Symposium on

the Role and Future of Health Information Technology in an Era

of Health Care Transformation," The George Washington

University, 2011.

[3] I. Lee, et al., "High-confidence medical device software and

systems," Computer, vol. 39, 2006, pp. 33-38,.

[4] N. Milenkovich, March 15, 2013, [Accessed 14/07/2015]. OCR

issues new HITECH regulations Available:

http://drugtopics.modernmedicine.com/drug-topics/news/drug-

topics/health-system-news/ocr-issues-new-hitech-regulations

[5] Centers for Medicare & Medicaid Services, "42 CFR Parts 412,

413, 422. Medicare and Medicaid Programs; Electronic Health

Record Incentive Program; Final Rule ", Health and Human

Services Ed., ed, 2010.

[6] Centers for Medicare & Medicaid Services. 10/04/2013,

[Accessed 14/07/2015]. EHR Incentive Programs. Available:

http://www.cms.gov/Regulations-and-

Guidance/Legislation/EHRIncentivePrograms/index.html?redirect

=/ehrincentiveprograms

[7] Institute of Medicine. (2001). Crossing the Quality Chasm: A

New Health System for the 21st Century. Available:

https://download.nap.edu/catalog.php?record_id=10027

[8] E. H. Wagner, "The role of patient care teams in chronic disease

management," BMJ: British medical journal, vol. 320, 2000, p.

569.

[9] E. H. Wagner, B. T. Austin, C. Davis, M. Hindmarsh, J. Schaefer,

and A. Bonomi, "Improving chronic illness care: translating

evidence into action," Health affairs, vol. 20, 2001, pp. 64-78.

[10] C. Hoffman and D. Rice, "Chronic care in America: A 21st

century challenge," Princeton, NJ: The Robert Wood Johnson

Foundation, 1996.

[11] J. Comstock. 2013,. [Accessed 14/07/2015] 14M networked

medical devices to ship by 2018.

Available: http://mobihealthnews.com/28295/14m-networked-

medical-devices-to-ship-by-2018/

[12] Agency for Healthcare Research and Quality (AHRQ), "Health IT

for Improved Chronic Disease Management," Department of

Health and Human Services, Ed., ed, 2013.

[13] M. Castañeda, "Connecting devices and data on the healthcare

network," Biomedical Instrumentation & Technology, vol. 44,

2010, pp. 18-25.

[14] J. Goldman and S. Whitehead, "Advancing the Adoption of

Medical Device "Plug-and-Play" Interoperability to Improve

Patient Safety and Healthcare Efficiency," 2010.

[15] K. K. Venkatasubramanian, S. K. S. Gupta, R. P. Jetley, and P. L.

Jones, "Interoperable Medical Devices - Communication Security

Issues," IEEE Pulse, vol. Sept/Oct 2010, 2010.

[16] R. Hampton and R. Schrenker, "What Does IEC 80001-1 Mean to

You?," 24x7 - Technology and Service Solutions for Biomeds,

2011.

[17] S. R. Rakitin, "Networked Medical Devices: Essential

Collaboration for Improved Safety," AAMI.org, 2009.

[18] S. Loughlin and J. S. Williams, "The top 10 medical device

challenges," Biomedical Instrumentation & Technology, vol. 45

2011, pp. 98-104.

[19] T. Mehta and C. Mah, "Auto-Provisioning of Biomedical Devices

on a Converged IP Network," Biomedical Instrumentation &

Technology, vol. 43, 2009, pp. 463-467.

[20] T. Gee. 2008. [Accessed 14/07/2015] Medical Device Networks

Trouble Industry. Available:

http://medicalconnectivity.com/2008/12/18/medical-device-

networks-trouble-industry/

[21] S. Eagles, "An Introduction to IEC 80001: Aiming for Patient

Safety in the Networked Healthcare Environment," IT Horizons,

vol. 2008, 2008.

[22] National Cybersecurity and Communications Integration Center,

"Attack Surface: Healthcare and Public Health Sector," ed, 2012.

[23] D. Talbot. 2012, [Accessed 14/07/2015] Computer Viruses Are

"Rampant" on Medical Devices in Hospitals. MIT Technology

Review. Available:

http://www.technologyreview.com/news/429616/computer-

viruses-are-rampant-on-medical-devices-in-hospitals/

[24] J. Graham and C. Dizikes, "Baby's death spotlights safety risks

linked to computerized systems," in Chicago Tribune, ed, 2011.

[25] J. Shuren, "Health Information Technology (HIT) Policy

Committee Adoption/Certification Workgroup - Testimony of

Jeffrey Shuren, Director of FDA's Centre for Devices and

Radiological Health," ONC, Ed., ed, 2010.

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 42 / 48

[26] S. Eagles, "IEC 80001: An Introduction," 80001-1 Experts,,

Presentation from 19th Annual NCBA ConferenceSeptember 13,

2012.

[27] IEC, "IEC 80001-1 - Application of Risk Management for IT-

Networks incorporating Medical Devices - Part 1: Roles,

responsibilities and activities," ed. Geneva, Switzerland:

International Electrotechnical Commission, 2010.

[28] F. J. Hegarty, S. T. MacMahon, P. Byrne, and F. McCaffery,

"Assessing a Hospital's Medical IT Network Risk Management

Practice with 80001-1," Biomedical Instrumentation &

Technology, vol. 48, 2014, pp. 64-71.

[29] T. Cooper and K. Fuchs, "The Wireless Challenge - Technology

Risk Assessment In Healthcare Facilities," Biomedical

Instruments and Technology, vol. May/June 2013, 2013.

[30] M. Janssen and R. Schrenker, "Guidelines From 80001:

Maintaining a Medical IT Network," Biomedical Instrumentation

& Technology, vol. 45, 2011, pp. 295-299, 2011/07/01.

[31] S. T. MacMahon, F. McCaffery, S. Eagles, F. Keenan, M.

Lepmets, and A. Renault, "Development of a Process Assessment

Model for assessing Medical IT Networks against IEC 80001-1,"

presented at the Software Process Improvement and Capability

Determination (SPICE) 2012, Mallorca, Spain, 2012.

[32] S. T. MacMahon, F. McCaffery, and F. Keenan, "Transforming

Requirements of IEC 80001-1 into an ISO/IEC 15504-2

Compliant Process Reference Model and Process Assessment

Model," presented at the European Systems and Software Process

Improvement and Innovation Conference, Dundalk, Co Louth,

Ireland, 2013.

[33] M. Sein, O. Henfridsson, S. Purao, M. Rossi, and R. Lindgren,

"Action design research," 2011.

[34] ISO/IEC, "ISO/IEC 15504-3:2004 Information technology --

Process assessment -- Part 3: Guidance on performing an

assessment," ed. Geneva, Switzerland, 2004.

[35] M. Busby, et al., "Appraisal Requirements for CMMI (Registered

Trademark) Version 1.3 (ARC, V1. 3)," DTIC Document2011.

[36] T. P. Rout, A. Tuffley, B. Cahill, and B. Hodgen, "The rapid

assessment of software process capability," in First International

Conference on Software Process Improvement and Capability

Determination, 2000, pp. 47-56.

[37] F. Wilkie, D. McFall, and F. Mc Caffery, "The Express Process

Appraisal Method," 2005.

[38] F. Mc Caffery, P. S. Taylor, and G. Coleman, "Adept: A unified

Assessment Method for small software companies," Software,

IEEE, vol. 24, 2007, pp. 24-31.

[39] F. McCaffery and V. Casey, "Med-Adept: A Lightweight

Assessment Method for the Irish Medical Device Software

Industry," presented at the EuroSPI, Grenoble France, 2010.

[40] B. Barafort, et al., ITSM Process Assessment Supporting ITIL :

Using TIPA to Assess and Improve your Processes with ISO

15504 and Prepare for ISO 20000 Certification vol. 217.

Zaltbommel, Netherlands: Van Haren, 2009.

[41] F. Mc Caffery and G. Coleman, "The development of a low-

overhead Assessment Method for Irish software SMEs," Journal

of Information Technology Management (JITM), 2007.

[42] A. Anacleto, C. G. von Wangenheim, C. F. Salviano, and R. Savi,

"Experiences gained from applying ISO/IEC 15504 to small

software companies in Brazil," in 4th International SPICE

Conference on Process Assessment and Improvement, Lisbon,

Portugal, 2004, pp. 33-37.

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 43 / 48

XML Schema for Implementing Safety Management System in Shipbuilding

Youhee Choi, Byungtae Jang

Smart Mobility Research Department

ETRI

Daejeon, Korea

e-mail: {yhchoi, jbt}@etri.re.kr

Abstract—With a rising demand for developing deep sea

resources recently, that for offshore plant construction are

getting greater. Accordingly, plant owners request more for a

safety management system in the process of offshore plant

building. Thus, it is required that a safety management system

is built for each shipyard or offshore plant building project. In

order to develop a safety management system, it is important

that risk factors in each task should be properly identified.

Most information with respect to work processes or risk

factors can be commonly applicable. But, most of the safety

management system is developed upon an assumption that

such information is implicitly inherent within the system. In

this respect, to ensure that the key information, such as task

and hazard information for building safety management

system is not inherent within the system, we defined XML

(eXtensible Markup Language) Schema to ensure that such

information can be expressed in standardized-format XML. By

doing so, even if risk and work process contents change, XML

files can be used after redefined - without changing safety

management logic of a relevant system.

Keywords-safety;shipbuilding;XML Schema; hazard; risk.

I. INTRODUCTION

The shipbuilding industry refers to ship building and
repair sectors. The industry is regarded as one of the most
dangerous sectors. Accordingly, safety management is
essential task of project management in shipbuilding industry.
This promoted consistent efforts for technology
advancement concerning shipbuilding processes, facilities
and equipment. Still, today most of tasks at shipyards are
labor-intensive and requires the specialized, highly skilled.
In addition, shipbuilding tasks are mostly performed
outdoors, largely influenced by air temperature, climate and
other atmospheric environmental factors. Relevant working
conditions change constantly. In order to improve safety
management, such real workplace environment changes
should be reflected in a safety management system promptly.
Nonetheless, the current safety management framework is
featured by policy aspects covering safety management
manuals, safety training for workers and supervision by
safety management supervisors. For this reason, proper
safety management is not undertaken effectively reflecting
actual situations for each worker [1]. In an effort to address
this problem, studies are carried out from various

technological perspectives. First of all, there is a study
striving to improve the current safety management
framework by monitoring workers’ safety utilizing building
information modeling (BIM) [2], virtual reality [3] and
augmented reality [4]. Also, there is an endeavor to enhance
workplace monitoring technology in terms of worker
location monitoring technologies [5]-[8]. Another approach
is to improve safety management system in terms of risk
analysis-based risk assessment model and related supporting
system to prevent accidents [9][10]. While, in terms of safety
management logic, it is important that risk factors in each
task should be properly identified. This information can be
accumulated empirically. Only some processes differ related
to what is produced in the same domain. Accordingly, most
information with respect to work processes or risk factors
can be commonly applicable. But, most of the safety
management system is developed upon an assumption that
such information is implicitly inherent within the system. In
this aspect, we defined XML Schema to ensure that this
information is not inherent within the system but explicitly
expressed in standardized format XML. By defining work
process or risk factor information in XML files based on
XML Schema, our approach allows to promptly reflect real-
time workplace situations and be made use of by various
shipyards or other industrial sites not modifying the logic of
safety management systems. The rest of this paper is
organized as follows. Several related researches are
presented in Section II. Section III presents the XML schema
for implementing the safety management system. Section IV
presents XML files as examples based on the XML schema.
The paper concludes with future work and conclusions in
Section V.

II. RELATED RESEARCHES

In the existing approach for developing safety
management frameworks, risks are identified through
meetings between safety managers and task managers using
plans, accident cases and empirical information, etc. These
risks do not sufficiently reflect changing situations in real
worksites. For these reasons, some visualization techniques,
such as BIM, game technologies, virtual reality, and
augmented reality have been utilized to improve the current
safety management practices. In this respect, there is a study
performing 6-day cycle safety plan through 3D modeling of

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 44 / 48

the working environment [11]. In addition, there is also an
approach offering a framework providing pre-designed
virtual project site model in safety management system, for
risk identification [12]. Also, there is another approach
proposing rule-based safety checking system for falls based
on 4D BIM [13]. These researches are a part of visualization
technologies for workplace. On the other hand, there are
studies about monitoring technologies of real-time locations
of workers in workplace. In order to prevent accidents, there
is a study using RFID (Radio Frequency IDentification)
technologies to track workers’ location in real-time [14].
Also, there is an approach that combines wireless
communication systems with sensors not using tagging
technologies, such as RFID in order to detect moving objects
[15]. Its focus is to identify the accurate location of moving
workers and objects to prevent accidents. Also, there are
studies about risk identification and assessment. Most of risk
identification and assessment relies on experiences and
expertise of safety management experts or work managers. A
study was carried out concerning tools and evaluation
models to assist such risk assessment processes [16].

III. XML SCHEMA FOR IMPLEMENTING SAFETY

MANAGEMENT SYSTEM

A. Definition of data relationship for building safety

management system

First of all, we should consider relationship among data
that is necessary for building safety management system as
shown in Figure 1.

Task

Zone

Adjacent
Task

Environment
Condition

Hazard

Material

Incident

Machine

Incident
Prevention
Measure

Prerequisite
Task

Task
Quality

Management
Human
Action

is performed in

as a part of a preparation process

a kind of the hazard

can be triggered by

to prevent incident

Figure 1. Data relationship for safety management system

As shown in Figure 1, most of accidents at shipbuilding
sites are closely related with a task undertaken. Accordingly,
a relationship is formed focusing on such task information.
As hazard factors exist according to the characteristics of
task, task information is related to those factors. As regards
prerequisite task like equipment checking carried out before
each task may not be considered as individual task but
simply as part of a preparation process. Still, since such task
can entail hazard factors, a relationship about prerequisite
task should also be factored into. Then, each task is
performed in a specific zone. This means the features of the
zone can influence hazard factors and a relationship is also
established with zone information. Furthermore, as climate
or other outside environmental conditions can also serve as
major hazard factors depending on in which area what task is

done, such a relationship should also be taken into account.
Especially, in shipbuilding sites, as large-sized objects are
handled in a limited space, different processes of work may
be performed adjacently in parallel. In this regard, hazard
factors of each task can have an impact on adjoining zones,
which requires relevant consideration. Hazard factors
identified from each perspective can vary ranging from:
those related to work materials and equipment; those in an
aspect of workplace management; to those from wrong
human behaviors. Ultimately, as the goal of safety
management system is to prevent accidents, it is required to
identify incident factors triggered by each hazard factor, and
formulate and define incident prevention measures from the
relationship between hazard factors and task.

B. XML Schema for defining the relationship between

Task and Hazard

It is necessary to define the kinds of specific information
required for each information listed in the previous section. It
is important to define data structure and relationship in a
standardized format utilizing XML formats - a standardized
markup language expressing rule sets for data encoding. In
this term, the definition rules for specific information -
necessary for developing safety management system logic –
are defined in XML Schema. Figure 2 illustrates definition of
XML Schema for representing task information.

Task ID Task Code Number Task Name Prerequisite Task

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="tasklist" type="tasklistType"/>

<xs:complexType name="tasklistType">
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="taskitem"/>
</xs:sequence>

</xs:complexType>
<xs:element name="taskitem" type="taskitemType"/>
<xs:complexType name="taskitemType">
<xs:sequence>

<xs:group ref="item" />
<xs:element maxOccurs="unbounded" minOccurs="0" ref="prerequisitetask" />

</xs:sequence>
</xs:complexType>
<xs:group name="item">

<xs:sequence>
<xs:element ref="taskcode" />
<xs:element ref="taskname" />

</xs:sequence>
</xs:group>
<xs:element name="taskcode" type="taskcodeType" />
<xs:simpleType name="taskcodeType">

<xs:restriction base="xs:string">
<xs:pattern value="[A-Za-z0-9]{3}" />

</xs:restriction>
</xs:simpleType>
<xs:element name="taskname" type="xs:string" />
<xs:element name="prerequisitetask" type="prerequisitetaskType" />
<xs:complexType name="prerequisitetaskType">

<xs:sequence>
<xs:group ref="item" />
</xs:sequence>

</xs:complexType>
</xs:schema>

Figure 2. The XML Schema for task information

As shown in Figure 2, in order to express task
information, we classified task information into task ID, task
code number, task name, and prerequisite task. Task code
number is assigned to each task for easy identification in
safety management logic. The code number list should be
managed in a separate file and adjusted according to
individual projects and shipyard situations. Task name
represents a textual name for each task. Prerequisite task is a
preparatory work performed before main task.

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 45 / 48

Based on the classification, in order to represent a list of
task information, we declared <tasklist> element as the
topmost element in the XML Schema. The element
<tasklist> contains the <taskitem> element to represent each
task as shown in Figure 2. The element <taskitem>
comprises the <item> element and the <prerequisitetask>
element. The element <item> is used to show the task name
and task code number. The <taskcode> element reflects the
task code number of each task and shall be supplied in the
format of 3 alphanumeric characters. The <prerequisite task>
element shall be used to represent the task which should be
performed before main task of the <task> element. Since one
or more prerequisite tasks shall be existed, we defined the
value of ‘maxOccurs’ value as ‘unbounded’. The
<prerequisitetask> element shall be represented using the
<item> element.

Then, although hazard information is closely related with
other information, we defined XML Schema elements for
hazards to contain information for the hazard itself to
exclude overlap of information. Figure 3 shows the XML
schema for representing hazard information.

First of all, we classified hazard information into hazard
ID, hazard code number, hazard name, hazard type, causes of
incident, and hazard zone.

Hazard code number is assigned to each hazard for easy
identification in safety management logic. The code number
list should be managed in a separate file and adjusted
according to individual projects and shipyard situations.
Hazard name represents a textual name for each hazard.
Hazard type represents hazard factors identified from each
perspective. Causes of incident represent causes of an
incident by the hazard. Hazard zone is required for
representing the specific zone that can be affected by the
hazard.

Based on the classification, in order to represent a list of
hazard information, we declared <hazardlist> element as the
topmost element in the XML Schema. The element <
hazardlist> contains the <hazard> element to represent each
hazard as shown in Figure 3. The element <hazard> contains
the <hazarditem> element. The <hazard> element contains
<hazardcode>, <hazardname>, and <hazardzone>. It also
comprises the ‘cause’ attribute and the ‘seriousness’ attribute.
The <hazardcode> element reflects the hazard code number
of each hazard and shall be supplied in the format of 3
alphanumeric characters. The <hazardname> element
reflects the hazard name. In case the hazard occupies the
fixed spot, the <hazardzone> element reflects the spot of
hazard. The ‘cause’ attribute reflects causes of incident and
can be one value of “Falls from height”, "Slips", "Trips",
"Hit something fixed/stationary", "Hit by moving/falling
object", "Struck by something", and "Collapse".

Next, to represent relationships between a task and
hazards, task code number, hazard code number, prevention
measures and seriousness can be used. The hazard code
number is the hazard which can be occurred by the task. The
prevention measures reflect measures that prevent incidents
that arise from hazards. The seriousness represents degrees
of the seriousness of the incident. Figure 4 shows the XML

Schema for representing relationships between a task and
hazards information.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name=“hazardlist" type=“hazardlistType"/>
<xs:complexType name=" hazardlistType ">

<xs:sequence>
<xs:element maxOccurs="unbounded" ref=“hazard"/>

</xs:sequence>
</xs:complexType>
<xs:element name="hazard" type="hazardType"/>
<xs:complexType name="hazardType">

<xs:sequence>
<xs:element minOccurs="1" maxOccurs="1" ref="hazardcode" />
<xs:element ref="hazardname" />
<xs:element ref="hazardtype" />
<xs:element minOccurs="0" ref="hazardzone" />

</xs:sequence>
<xs:attribute ref="cause"/>

</xs:complexType>
<xs:element name="hazardcode" type="hazardcodeType" />
<xs:simpleType name="hazardcodeType">

<xs:restriction base="xs:string">
<xs:pattern value="[A-Za-z0-9]{3}" />

</xs:restriction>
</xs:simpleType>
<xs:element name="hazardname" type="xs:string" />
<xs:element name="hazardtype" type="hazardtypeType" />
<xs:simpleType name="hazardtypeType">

<xs:restriction base="xs:string">
<xs:enumeration value="Material"/>
<xs:enumeration value="Machine"/>
<xs:enumeration value="Task Quality"/>
<xs:enumeration value="Management"/>
<xs:enumeration value="Human action"/>

</xs:restriction>
</xs:simpleType>
<xs:element name="hazardzone" type="hazardzoneType" />
<xs:complexType name="hazardzoneType">

<xs:sequence>
<xs:element ref="referencepoint" />
<xs:element ref="horizontalwidth" />
<xs:element ref="verticallength" />

</xs:sequence>
</xs:complexType>
<xs:element name="referencepoint" type="referencepointType" />
<xs:complexType name="referencepointType">

<xs:sequence>
<xs:element name="x" type="xs:long" />
<xs:element name="y" type="xs:long" />
<xs:element name="z" type="xs:long" />

</xs:sequence>
</xs:complexType>
<xs:element name="horizontalwidth" type="xs:long" />
<xs:element name="verticallength" type="xs:long" />
<xs:attribute name=“cause" type=“causeType” />
<xs:simpleType name="causeType">

<xs:restriction base="xs:string">
<xs:enumeration value="Falls from height"/>
<xs:enumeration value="Slips"/>
<xs:enumeration value="Trips"/>
<xs:enumeration value="Hit something fixed/stationary"/>
<xs:enumeration value="Hit by moving/falling object"/>
<xs:enumeration value="Struck by something"/>
<xs:enumeration value="Collapse"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

Hazard ID Hazard Code Number Hazard Name Hazard Type Causes of Incident Hazard Zone

Figure 3. The XML Schema for hazard information

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="taskhazardlist" type="taskhazardlistType"/>
<xs:complexType name="taskhazardlistType">

<xs:sequence>
<xs:element maxOccurs="unbounded" ref="taskhazard"/>

</xs:sequence>
</xs:complexType>
<xs:element name="taskhazard" type="taskhazardType"/>

<xs:complexType name="taskhazardType">
<xs:sequence>

<xs:element minOccurs="1" maxOccurs="1" ref="taskcode"/>
<xs:group minOccurs="1" maxOccurs="unbounded" ref="hazardprevention" />

</xs:sequence>
<xs:attribute ref="seriousness"/>

</xs:complexType>
<xs:group name="hazardprevention">

<xs:sequence>
<xs:element ref="hazardcode"/>
<xs:element ref="preventionmeasure"/>

</xs:sequence>
</xs:group>
<xs:element name="preventionmeasure" type="preventionmeasureType"/>
<xs:complexType name="preventionmeasureType">

<xs:sequence>
<xs:element name="actionitem" type="xs:string" minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>
</xs:complexType>
<xs:attribute name="seriousness" type="seriousnessType" />
<xs:simpleType name="seriousnessType">

<xs:restriction base="xs:positiveInteger">
<xs:enumeration value="1"/>
<xs:enumeration value="2"/>
<xs:enumeration value="3"/>
<xs:enumeration value="4"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

TaskHazard ID Task Code

Number

Hazard Code

Number

Prevention Measure Seriousness

Figure 4. The XML Schema for relationships between a task and hazards

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 46 / 48

First, in order to represent a list of mapping information

between a task and hazards, we declared <taskhazardlist>
element as the topmost element in the XML Schema. The
element < taskhazardlist> contains the <taskhazard> element
to represent each mapping information as shown in Figure 4.
The <taskhazard> element contains the <taskcode> element
and the group element <hazardprevention>. The group
element <hazardprevention> comprises the <hazardcode>
element and the <preventionmeasure> element. The
<preventionmeasure> element contains the <actionitem>
element that reflects an action item for preventing each
hazard. The ‘seriousness’ attribute can be a number from “1”
to “4”.

IV. EXAMPLE

This section describes an example that a XML file is
defined based on the XML Schema for the safety
management system for shipyards.

Figure 5 shows an example of XML representing some
tasks of major work processes at shipyards using XML
Schema defined in Section III.

Task ID Task Code Number Task Name Prerequisite Task

000 Marking Checking NC/M

001 Primer coating Checking conveyor

… … …

010 Checking NC/M Confirm that use of the NC/M was prohibited

020 Checking conveyor Confirm that use of the conveyor was prohibited

… ….

<tasklist xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="hse_task.xsd">
<taskitem>

<taskcode>000</taskcode>
<taskname>Marking</taskname>
<prerequisitetask>

<taskcode>010</taskcode>
<taskname>Checking NC/M</taskname>

</prerequisitetask>
</taskitem>
<taskitem>

<taskcode>010</taskcode>
<taskname>Checking NC/M</taskname>
<prerequisitetask>

<taskcode>011</taskcode>
<taskname>Stop NC/M</taskname>

</prerequisitetask>
</taskitem>
<taskitem>

<taskcode>001</taskcode>
<taskname>Primer coating</taskname>
<prerequisitetask>

<taskcode>020</taskcode>
<taskname>Checking conveyor</taskname>

</prerequisitetask>
</taskitem>
<taskitem>

<taskcode>020</taskcode>
<taskname>Checking conveyor</taskname>
<prerequisitetask>

<taskcode>021</taskcode>
<taskname>Stop conveyor</taskname>

</prerequisitetask>
</taskitem>

…..
…

</tasklist>
Figure 5. The XML file for task information

It represents XML defined using the <taskitem> element
for each task listed in the table in Figure 5.

Figure 6 shows an example of XML representing hazard
factors that can be occurred in work processes of shipyards
based on the XML Schema defined in Section III.

It represents XML defined using the <hazard> element
for each hazard listed in the table in Figure 6.

<hazardlist xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="hse_in.xsd">
<hazard cause=“Hit by moving/falling object”>

<hazardcode>001</hazardcode>
<hazardname>NC/M</hazardname>
<hazardtype>Machine</hazardtype>

</hazard>
<hazard cause=“Struck by something”>

<hazardcode>002</hazardcode>
<hazardname>Conveyor roll</hazardname>
<hazardtype>Machine</hazardtype>

</hazard>
<hazard cause=“Falls from height”>

<hazardcode>003</hazardcode>
<hazardname>Danger of falling spot</hazardname>
<hazardtype>Human action</hazardtype>

</hazard>
…..

…

</hazardlist>

Hazard ID Hazard Code Number Hazard Name Hazard Type Causes of Incident Hazard Zone

001 NC/M Machine Hit by moving/falling
object

002 Conveyor roll Machine Struck by something

003 Danger of falling
spot

Human action Falls from height

…

Figure 6. The XML file for hazard information

Figure 7 illustrates an example of XML representing the
relationship between tasks and related hazard factors based
on the XML Schema defined in Section III.

<taskhazardlist>
<taskhazard seriousness=“4”>

<taskcode>010</taskcode>
<hazardcode>001</hazardcode>
<preventionmeasure>

<actionitem>Confirm that use of the NC/M was prohibited</actionitem>
</preventionmeasure>

</taskhazard>
<taskhazard seriousness=“4”>

<taskcode>020</taskcode>
<hazardcode>002</hazardcode>
<preventionmeasure>

<actionitem>Confirm that use of the conveyor was prohibited</actionitem>
</preventionmeasure>

</taskhazard>
…..

…
</taskhazardlist>

TaskHazar

d ID

Task Code

Number

Hazard Code

Number

Prevention Measure Seriousness

010 001 Confirm that use of the NC/M was
prohibited

4

020 002 Confirm that use of the conveyor
was prohibited

4

Figure 7. The XML file for relationships between a task and hazards

The first value line of the table in Figure 7 shows the
relationship between the task item which has 010 as the
‘Task Code Number’ and the hazard item which has 001 as
the ‘Hazard Code Number’. Similarly, the second line of the
table in Figure 7 shows the relationship between the task
item which has 020 as the ‘Task Code Number’ and the
hazard item which has 002 as the ‘Hazard Code Number’.

V. CONCLUSIONS

In order to ensure that the key information, such as task
and hazard information for building safety management
system is not inherent within the system but explicitly
expressed in standardized format XML, we defined XML
Schema to express such data in standardized XML formats.
Based on it, diverse data of existing systems can be
integrated and interoperated in standardized format for the
safety management system. In the future, it is essential to
conduct studies on how to integrate with a variety of existing
systems on the basis of defined XML files. It is also required
to develop a framework for the safety management system
that can be integrated with existing process management
systems.

ACKNOWLEDGMENT

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

 47 / 48

This work was supported by the IT R&D program of
MSIP/KEIT. [Development of Smart HSE System for
Shipbuilding and Plant]

REFERENCES

[1] M. Golparvar-Fard, F. Peña-Mora, C. A. Arboleda, and S. H. Lee,
“Visualization of construction progress monitoring with 4D
simulation model overlaid on time-lapsed photographs”, Journal of
Computing in Civil Engineering vol. 23, no. 4,
November/December 2009, pp. 391-404.

[2] M. Kiviniemi, K. Sulankivi, K. Kahkonen, T. Makela, and M.
L. Merivirta, “BIM-based Safety Management and
Communication for Building Construction”, VTT Technical
Research Centre of Finland, 2011, pp.1-118.

[3] B. Hadikusumo and S. Rowlinson, “Integration of virtually
real construction model and design-for-safety-process
database”, Automation in Construction vol. 11, no. 5, 2002,
pp. 501–509.

[4] Y. Mizuno, H. Kato, and S. Nishida, “Outdoor Augmented
Reality for Direct Display of Hazard Information”, IEEE
SICE 2004 Annual Conference, vol. 1, 2004, pp. 831–836.

[5] C. H. Caldas, D. G. Torrent, and C. T. Haas, “Using global
positioning system to improve materials-locating processes in
industrial projects”, Journal o f Construction Engineering and
Management, vol. 132, no. 7, 2006, pp. 741–749.

[6] J. Song, C. T. Haas, and C. H. Caldas, “Tracking the location
material on construction job sites”, Journal of Construction
Engineering and Management, vol. 132, no. 9, 2006, pp. 911–
918.

[7] J. Gong and C. H. Caldas, “Data processing for real-time
construction site spatial modeling”, Automation in
Construction, vol. 17, issue 5, 2008, pp. 526–535.

[8] J. Teizer, C. H. Caldas, and C. T. Haas, “Real-time three-
dimensional occupancy grid modeling for the detection and
tracking of construction resources”, Journal of Construction
Engineering and Management, vol. 133, no. 11, 2007, pp.
880–888.

[9] T. Aksorn and B. H. W. Hadikusumo, “Critical success
factors influencing safety program performance in Thai
construction projects”. Safety Science, vol. 46, no. 4, 2008, pp.
709–727.

[10] O. N. Aneziris, et al., “Quantified risk assessment for fall
from height”, Safety Science, vo. 46, no. 2, 2008, pp. 198–
220.

[11] H. Li, Z. Ma, Q. Shen, and S. Kong, “Virtual experiment of
innovative construction operations”, Automation in
Construction, vol. 12, no. 5, 2003, pp. 561–575.

[12] C. S. Park and H. J. Kim, “A framework for construction
safety management and visualization system”, Automation in
Construction, Vol.33, August 2013, pp. 95–103.

[13] K. Sulankivi, K. Kähkönen, T. Mäkelä, and M. Kiviniemi, “4D-BIM
for construction safety planning”, CIB 2010 World Congress
proceedings, 2010, pp. 117–128.

[14] H. Yang, D. A. S. Chew, W. Wu, Z. P. Zhou, and Q. Li,
“Design and implementation of an identification system in
construction site safety for proactive accident prevention”,
Accident Analysis and Prevention, vol. 48, 2012, pp. 193-203.

[15] U. K. Lee, J. H. Kim, H. Cho, and K. I. Kang, “Development
of a mobile safety monitoring system for construction sites”,
Automation in Construction, vol. 18, issue 3, May 2009, pp.
258–264.

[16] I. W. H. Fung, V. W. Y. Tam, T. Y. Lo, and L. L. H. Lu,
“Developing a Risk Assessment Model for construction
safety”, International Journal of Project Management, vol. 28,
issue 6, August 2010, pp. 593–600.

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-448-0

FASSI 2015 : The First International Conference on Fundamentals and Advances in Software Systems Integration

Powered by TCPDF (www.tcpdf.org)

 48 / 48

http://www.tcpdf.org

