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Enhancing Ultra-Wideband Localization Accuracy
Using Spatial Filtering

Fahad Alsifiany
Department of IT and Artificial Intelligence

King Fahad Security College
Riyadh, Saudi Arabia

Email: sufyanyf@kfsc.edu.sa

Abstract—Ultra-Wideband (UWB) technology has emerged as
a promising technology for use in precise indoor and outdoor
localization systems, and has become handy for the rapidly
growing fields of robotics and automation. The performance and
accuracy of this technology are, however, affected significantly
by multipath propagation, where the signals are exposed to
reflection, scattering, and diffraction in the environment. This
research embarks on improving UWB positioning accuracy by
using spatial filtering techniques, with special emphasis on
beamforming. A UWB localization model is developed for use in
ranging for both indoor and outdoor environments. Theoretical
modeling and simulations are then carried out to understand the
influence of different environmental factors on the received UWB
signals. Simulations are further carried out on the developed
system, which utilizes beamforming to achieve spatial filtering
of UWB signals. The experimental results show a significant
improvement in UWB positioning accuracy compared to con-
ventional non-beamforming methods.

Index Terms—UWB; Spatial filtering; Beamforming; Accu-
racy; NLOS; LOS.

I. INTRODUCTION

A. Localization Systems

Localization refers to the process of determining the exact or
tentative location of an object, machine, or person in an indoor
or outdoor environment. Most of the existing localization
systems utilize technologies, such as Wi-Fi, Radio Frequency
Identification (RFID), Infrared (IR), Global Positioning Sys-
tems (GPS), Bluetooth, and Ultra-Wideband (UWB). Most of
the aforementioned technologies have been efficient for local-
ization purposes in indoor environments. GPS particularly has
been utilized in outdoor localization systems while UWB has
proven to be efficient in both indoor and outdoor environments
[1]. With the rapid growth of technology, there is a need
for accurate localization systems. The fields of automation
and robotics stand to benefit more from any forthcoming
development in this field.

Despite being in existence for a long time, UWB technology
has not been fully exploited [2]. This technology uses a broad
spectrum of frequencies to transmit data over short distances
with high data rates. The technology has proven to be more
accurate in positioning as compared to other technologies [3].
Improving the accuracy of UWB localization would therefore
offer us a futuristic solution to our growing localization needs.

B. Accuracy in UWB Systems

To improve accuracy, researchers have proposed different
algorithms for use in UWB systems. They include advanced
signal processing algorithms such as spatial filtering and
Machine Learning (ML) algorithms [4] . In addition, optimized
antenna arrays have been proposed to play an important
role in achieving high spatial resolution and accuracy for
these systems. By addressing the challenge of accuracy and
implementing these strategies, UWB systems can realize their
potential as reliable solutions for real-world applications [5].

C. Statement of the Problem

UWB technology is slowly gaining popularity as a promis-
ing technology to use for future localization needs. This is due
to its ability to utilize a wide bandwidth, which gives it a high
data rate capability. It also has low power consumption and has
a better performance in Non-Line Of Sight (NLOS) scenarios
and cluttered spaces than other localization technologies. This
also makes it suitable for use in both indoor and outdoor
environments. The accuracy of UWB localization systems is
critical for their successful deployment in its various appli-
cations. This research explores a conventional beamforming
algorithm as a spatial filtering technique to suppress unwanted
signals due to multipath and interference, to realize accurate
localization of objects using UWB technology.

D. Aims and Objectives

i. Develop a spatial filtering technique for use in UWB
systems to improve the accuracy of localization in both
indoor and outdoor environments.

ii. Implement a conventional beamforming algorithm to en-
hance UWB signal directionality and mitigate interfer-
ence and multipath effects.

iii. Test the developed model through real-world experiments
and simulations, comparing its performance with existing
accuracy-improvement methods for UWB localization
systems.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III presents the theoretical
framework. Section IV describes the methodology approach.
In Section V, results and discussion are shown. Finally, con-
clusions are drawn in Section VI.

1Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-131-2

ICWMC 2024 : The Twentieth International Conference on Wireless and Mobile Communications

                            10 / 20



II. RELATED WORK

Multiple researches have been conducted with an aim of
improving the accuracy of UWB localization. The authors
in [1] propose a UWB localization system utilizing Adap-
tive Kalman Filter to improve its accuracy. This realized
improvement accuracy by significantly reducing the noise in
measurements and NLOS effects. This work is similar to [4],
which proposes an efficient Iterated Adaptive Kalman Filter
(IAKF) algorithm for indoor positioning drift correction. The
research contributes to addressing one of the major challenges
in UWB localization, which is the accumulation of errors over
time. The IAKF method demonstrates promising results in
minimizing drift, thus improving the accuracy of UWB-based
systems.

The authors in [2] investigate UWB positioning accuracy in
a warehouse environment. Their research addresses the chal-
lenges posed by complex indoor settings, such as multipath
effects and non-line-of-sight UWB signal propagation. In [3],
an indoor positioning system utilizing UWB technology based
on a digital twin concept is presented. This work explores
the potential of integrating virtual models of the physical
environment to enhance UWB-based positioning accuracy. The
digital twin approach allows for real-time adjustments and
optimizations, thereby improving the overall accuracy and
reliability of the system.

The authors in [6] develop an UWB indoor positioning algo-
rithm under the influence of human occlusion and spatial non-
line-of-sight conditions. This study acknowledges the impact
of human presence on UWB signal propagation. The work also
investigates techniques to mitigate localization errors caused
by these factors. This work proposes the development of robust
algorithms for improving the accuracy of UWB systems in
dynamic real-world scenarios.

In [7], the authors contribute to this field by outlining key
algorithms that would go a long way to improve the ranging
in UWB systems. These algorithms include Unilateral Dual
Range Ranging, Symmetrical Two-Way Round Range Ranging
(SDS-TWR) and Asymmetric Bilateral Two-Way Ranging
(ADS-TWR).

The authors in [8] introduce an Indoor Positioning System
(IPS) utilizing UWB technology for the Industrial Internet
of Things (IIoT). The study supports the use of UWB-
based localization in industrial applications. It also highlights
the potential impact of accurate indoor positioning on IIoT
systems.

In [9], deeper insights into UWB-based indoor localization
techniques are provided. This serves as a foundation for the
broader exploration of advanced spatial filtering approaches,
such as beamforming presented in this work.

III. THEORETICAL FRAMEWORK

A. UWB Technology

UWB devices operate at a frequency between 3.1 GHz and
10.6 GHz. UWB technology offers several advantages, includ-
ing immunity to multi-path losses and the ability to transmit

signals through opaque media. It can also be delivered over
wire cables, providing increased bandwidth without requiring
changes to existing infrastructure. UWB devices can operate
at very low power, allowing for multiple users and a data rate
exceeding 100 Mb/s. Additionally, UWB signals are difficult
to detect due to their wide bandwidth, and communication can
be done securely through unique randomization of codes at a
million bits/s. UWB technology provides robust communica-
tion due to its large processing power.

B. Line Of Sight (LOS) and Non-Line Of Sight (NLOS)
Propagation of UWB Signals

Line-Of-Sight (LOS) propagation of UWB signals occurs
when the signal travels in a straight line between a trans-
mitter and receiver without any significant obstructions. This
results in low attenuation, high Signal-to-Noise Ratio (SNR),
and minimal delay spread, making it ideal for high accu-
racy applications such as radar imaging, location tracking,
and wireless communication. However, in real-world envi-
ronments, obstacles such as buildings, trees, and walls can
cause signal blockage, reflection, diffraction, and scattering,
leading to NLOS propagation that can significantly affect the
performance and reliability of UWB systems. To mitigate
these effects, techniques such as adaptive antenna arrays, time-
of-arrival estimation, and angle-of-arrival estimation can be
used to improve signal quality and reduce errors in UWB
communication systems.

Figure 1 shows UWB signals propagation in LOS and
NLOS scenarios [10].

Figure 1. LOS and NLOS propagation of UWB signals [10].

C. UWB Localization Systems

UWB localization systems utilize different algorithms for
measurement approximations. These algorithms include:

• Time Of Arrival (TOA)
• Angle Of Arrival (AOA)
• Received Signal Strength (RSS)
• Time Difference Of Arrival (TDOA)
• Hybrid algorithms

2Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-131-2
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1) AOA based algorithms: In these algorithms, two sources
are considered in estimating the angle at which a signal is
received at the receiver end. The angle of signal reception is
then compared to the carrier phase across different antennas or
the amplitude of the signal. The intersection of the angle line
for each source of the signal is taken to be the location. This
algorithm is complex and the geometry of the antenna array
determines its accuracy. Figure 2 illustrates the AOA based
algorithm [10].

Figure 2. Angle Of Arrival (AOA) [10].

2) TOA based algorithms: These algorithms assume arbi-
trary circles around multiple transmitters. The radius of these
circles is taken to be the distance between the transmitter and
receiver. The intersection of these circles is the point of interest
[4]. Time synchronization is necessary for the transmitters but
not as important for the receivers. The one-way propagation
time between the transmitter and receiver helps in calculating
the distance between them. Any observable delay needs to be
accounted for in the calculation.

3) TDOA based algorithms: These algorithms rely on cal-
culating the time difference in the arrival of a signal sent by
one transmitter and received by three or more receivers. A
single receiver would also be used to estimate the delta varia-
tions in the arrival times of two transmitted signals [5]. These
algorithms require significant bandwidth as typically in UWB
positioning, only one transmitter is available, which means
that all receivers have to work in synchrony to determine the
time delay in the arrival of the transmitted signal. Figure 3 is
an illustration of a TDOA-based algorithm [11].

4) RSS based algorithms: The target being tracked moni-
tors the signal strengths of signals from different transmitters
and uses them to estimate the distance between these trans-
mitters and receivers. This allows the receiver to calculate its
relative position with respect to the transmitting nodes. These
algorithms are however unpopular as they have poor accuracy
in NLOS signal propagation and in multipath environments.

5) Hybrid algorithms: Depending on the environment
where an adaptive positioning system needs to be deployed,
hybrid algorithms can be used. These algorithms combine the
efficiencies of two or more of the aforementioned algorithms
to increase the accuracy of ranging. This approach, however,
increases the expense and complexity of the system equally.

Figure 3. Time Difference Of Arrival (TDOA) [11].

IV. METHODOLOGY

The Qorvo DWM1000 IC Modules were used as the UWB
transceiver modules. This UWB module allows items to be
located in Real-Time Location Systems (RTLS) with a reso-
lution of up to 200 meters. It is also compatible with a wide
range of micro-controller units (MCUs). The frequency range
of this transceiver module is 3.5 GHz to 6.5 GHz. Figure 4
shows the Qorvo DWM1000 IC Module.

Figure 4. Qorvo (DWM1000) IC Module.

In the first set-up, a Qorvo DWM1000 module was defined
as the anchor transceiver. Another transceiver was placed at a
distance of 30m as the tag transceiver. Localization was then
performed on the tag transceiver from the anchor, and the
ranged distances recorded against each of the actual distances.
The tag transceiver was further moved to distances of 90 and
160m. This was carried out in two different environments. In
one environment, an indoor space with cluttered space was
used. The UWB signal was forced to navigate through walls
and around obstacles to understand UWB performance when
subjected to multipath effects. In the other environment, an
outdoor space was chosen, with no obstacles and with a clear
LOS. In the second set-up, 5 UWB transceivers were used as
the tags. These transceivers were placed at similar distances
as for those of the first set-up. Localization was then done,
and the ranged distances recorded against the actual distances.
This was carried out for both an indoor cluttered space and
an outdoor environment.

The accuracy for the developed system was then evaluated
as a percentage using the ranged and the actual distances, and
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the corresponding SNR recorded. The behavior of this system
was then modeled on MATLAB software. A conventional
beamforming algorithm was then developed. The beamforming
algorithm was used to perform spatial filtering on the modeled
UWB signal, as derived from its real-world behavior.

The modeled conventional beamforming algorithm is de-
tailed below.

Let x(t) be the UWB signal of interest, and n(t) be
the additive noise. The received signal at antenna i can be
expressed as:

yi(t) = hi · x(t− τi) + ni(t), (1)

where yi(t) is the received signal at antenna i at time t, hi

represents the channel gain of antenna i, τi is the time delay
of signal arrival at antenna i, and ni(t) is the noise at antenna
i.

Calculate the beamforming weights wi for each antenna
element i to focus the reception towards the desired direction
of arrival:

wi =
1

N
ej·2πfcτi , (2)

where fc is the carrier frequency.
The beamformed signal s(t) can be obtained by combining

the received signals from all antennas after applying the
beamforming weights:

s(t) =

N∑
i=1

wi · yi(t). (3)

Assuming the use of Time Of Arrival (ToA) method for
localization, one can estimate the time delay τ from the
received beamformed signal s(t) and use it to calculate the
distance d to the source:

τ = argmax
t

|s(t)| , (4)

d =
c · τ
2

, (5)

where c is the speed of light.

Algorithm 1 Beamforming Algorithm
1: UWB signal measurements from N antennas.
2: for i = 1 to N do
3: Compute τi (time delay).
4: Compute wi =

1
N ej·2πfcτi (Beamforming weight).

5: end for
6: Beamformed signal s(t) = 0.
7: for i = 1 to N do
8: Obtain received signal yi(t) from antenna i.
9: Weighted signal contribution: s(t) += wi · yi(t).

10: end for
11: Estimate time delay τ = argmaxt |s(t)|.
12: Compute distance to source: d = c·τ

2 .

V. RESULTS AND DISCUSSION

The modeled UWB system exhibited minimal variations
of results for localization conducted in indoor and outdoor
environments. This shows the efficiency of UWB signals to
offer accurate localization even in cluttered indoor spaces.

Figure 5. Localization at 30m using 2 antennas.

Figure 5 displays a plot of the pulses for the original UWB
signal and the beamformed UWB signal for a localization
distance of 30m between 2 antennas in an indoor environment.
The plot indicates a reduction in amplitude in the beamformed
signal compared to the original signal.

Figure 6. Localization at 30m using 6 antennas.

Figure 6 presents a plot of the pulses for the original UWB
signal and the beamformed UWB signal for a localization
distance of 30m between 6 antennas in an indoor setting. There
is a significant decline in amplitude in the beamformed signal
relative to the original signal.

Figure 7 shows a plot of the pulses for the original UWB
signal and the beamformed UWB signal for a localization dis-
tance of 160m between 2 antennas in an indoor environment.
The plot indicates a reduction in amplitude in the beamformed
signal compared to the original one.

Figure 8 illustrates a plot of the pulses for the original UWB
signal and the beamformed UWB signal for a localization dis-
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Figure 7. Localization at 160m using 2 antennas.

Figure 8. Localization at 160m using 6 antennas.

tance of 160m between 6 antennas in an indoor environment.
The plot demonstrates a significant reduction in amplitude in
the beamformed signal relative to the original signal.

Figure 9. Multipath effect using 2 antennas.

Figure 9 demonstrates the impact of conventional beam-

forming on a signal under NLOS propagation with multipath
effects during localization using 2 antennas.

Figure 10. Multipath effect using 6 antennas.

Figure 10 shows the effect of conventional beamforming
on a signal in a Non-Line-of- Sight (NLOS) propagation
with multipath effects while performing localization using 6
antennas.

Figure 11. Beamformed and Non-Beamformed lobes.

Figure 11 depicts the signal lobes of the original and
beamformed UWB signal in a modeled system that uses
4 antennas for localization, whereby one antenna serves as
the anchor while the rest serve as the tags, in an indoor
environment.

Figure 12 is a depiction of the accuracy prior to and post-
beamforming. The maximum realized ground-truth accuracy
for the developed system was around 99.5% while the maxi-
mum accuracy realized after beamforming reached 100%.

There was a significant reduction in the amplitude of the
beamformed signals compared to the original signals. This
property is associated with beamforming, where energy is
directed in a particular direction, resulting in lower amplitudes
in other directions. However, this does not necessarily repre-
sent the efficiency of the developed conventional beamforming
algorithm.
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Figure 12. Beamformed and Non-Beamformed accuracy.

In an attempt to establish the accuracy of the system, the
SNR metric was used. By analyzing the change in SNR
before and after beamforming, there was a significant measure
of improvement in signal quality, which in turn played an
essential role in enhancing local accuracy.

Beamforming proved more effective at longer distances
than at shorter distances. This was particularly observed
using multiple antennas, which notably contributes to signal
diversity in the received signals. UWB signals ranged at long
distances increase multipath attenuation, which can lead to
signal degradation. However, the use of several antennas take
advantage of the different signal properties to produce a signal
with improved localization accuracy. This further supports
the high efficiency levels observed in UWB localization for
NLOS propagation, where optimal results were realized while
utilizing multiple antennas.

VI. CONCLUSION AND FUTURE WORK

Through empirical experimentation and MATLAB simu-
lations, the study confirmed that beamforming significantly
enhances UWB-based localization accuracy. Despite the no-
ticeable reduction in beamformed signal amplitude, a result
of focused power, the SNR emerged as a strong indicator
of improved accuracy. Furthermore, the study revealed that
leveraging multiple antennas further improved beamforming
accuracy due to signal diversity. This was particularly effective
in mitigating multipath fading and enhancing the performance
of UWB in NLOS environments.

One of the limitations of the developed algorithm was its
over-reliance on signal diversity provided by multiple anten-
nas. There was notably low accuracy while using fewer anten-
nas. This would translate to an increased implementation cost
for the proposed system. Another limitation of the developed
system is that accuracy relied on the Signal-to-Noise Ratio
(SNR) as the key metric, potentially overlooking important
aspects of performance such as robustness to interference.

Future research will focus on combining conventional beam-
forming algorithms with advanced beamforming algorithms
such as ML systems to further improve the accuracy in UWB
localization systems. This would stand to make UWB-based
localization robust for our future localization needs and further
strengthen its application in real-world scenarios.
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Abstract—This paper presents a Discrete Wavelet Transform
based collusion resistant video watermarking to trace colluders
involved in unauthorized video distribution. Our scheme uses
Tardos-Skoric codes as fingerprints. To reduce the errors on the
fingerprinting codes, we propose a joint scheme that combines
pseudo-random spreading sequences and convolutional codes.
The performance when the fingerprint embedding and the attack
are simulated as a binary symmetric channel proves that the
proposed scheme performs better in terms of bit error rate and in
terms of colluders tracing using binary attacks. Simulations of a
darken attack on the watermarked videos show promising results
for low to moderate opacities of the fingerprint embedding.

Keywords—Video watermarking; collusion; fingerprinting codes;
convolutional encoding; spreading.

I. INTRODUCTION

In the age of wide digital content distribution, it is now more
crucial than ever to provide reliable and powerful techniques to
prevent unauthorized redistribution of multimedia objects [1]
[2] denoted as collusion attacks. In collusion attacks, multiple
users merge their content to alter the watermark, making it
difficult to trace these users who are the source of unauthorized
copies and thus posing a significant threat to traditional
watermarking methods [3] [4]. Tardos codes, proposed in 2003
by Tardos [5], are collusion-resistant codes which were the
first theoretically proven codes to efficiently prevent illegal
redistribution of digital content. The principle of collusion-
resistant watermarking is to associate a unique fingerprint per
subscriber into each copy of the content. After the collusion
attack, Tardos codes enable the content distributor to retrieve
the subscribers responsible for the creation and redistribution
of the illegal content. The length of Tardos codes is given by
[5] as 100c0

2 ln 1
ε1

and depends on the number of colluders
to trace, c0, and on the probability of accusing any innocent
user, ε1. Tracing more colluders implies higher fingerprinting
lengths and brings more difficulties to hide the fingerprint into
the video. Later on, Skoric et al. [6] reduced the Tardos code
length approximatelt 5 times taking into account the number
of users n, coming up with a length 1

2 π2c0
2 ln n

ε1
. In this study,

we use Skoric codes as fingerprinting codes against collusion
attacks.

The problem is that embedding fingerprints into videos
adds noise yielding binary errors on the fingerprint, and
consequently decreasing the performance of Tardos-Skoric
codes. This is the reason why numerous studies take advantage
of pseudo-random spreading [7]–[11] to hide data into images
with low errors after retrieving the data. In a recent study [14],
we also used random spreading to hide Tardos-Skoric gener-
ated fingerprints in a watermark image and found out the best
generator-decoder combination of collusion codes for real time
implementation to find at-least one colluder. However, the gain
provided by random spreading is decreased as the fingerprint
length is increased for a given image size. To improve the
performance of random spreading, we propose to use Error
Correcting Codes (ECC).

The authors in [12] demonstrated that using convolutional
encoding with Discrete Wavelet Transform (DWT) watermark-
ing provided enhanced resistance to multimedia compression,
but without addressing other crucial attacks, such as collu-
sion, geometric distortions and cropping. In [13], the authors
illustrate the robustness of a watermarking scheme for images
using convolutional codes embedding, and considering all
standard multimedia attacks. However, collusion attacks are
not adressed. Also, watermarking in this study is non-blind,
meaning that the original image is required. In this article,
we focus on blind watermarking: the original content is not
available at the receiver side. Convolutional encoding and
random spreading are also combined in [15] to lower the bit
error rate brought on by interference from the host signal.
However, in the simulations, no attacks of any kind were taken
into account. In this work, we propose to use convolutional
codes either concatenated with random spreading or jointly,
as proposed in [15], to improve colluders tracing in collusion
attacks.

Our paper is organized as follows. In Section II, we review
the fundamentals of watermarking and illustrate the need for
spreading when using collusion codes. Then, we describe the
two proposed spreading schemes using convolutional codes:
a joint scheme and a concatenated spreading schemes. The
performance of these spreading schemes is presented in Sec-
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tion III, first over a binary symmetric channel, and then for
collusion tracing in a realistic scenario where the fingerprint
is embedded into the videos and where a real collusion attack
is performed. Conclusions and perspectives are presented in
Section IV.

II. COMBINING CODING AND SPREADING FOR
WATERMARKING

A. Motivation

1) Definition and Notations: In collusion resistant video
watermarking, a Tardos-Skoric fingerprinting code of length
k is hidden into an image to trace the colluders. To trace
a higher number of colluders among many users requires
higher k. The maximum value of k to be hidden in a 360p
image corresponds to the image size given by 360 × 640.
The watermarked image Iwt is obtained by alpha blending
Iwt =OIi+(1−O)Iw, where O is the opacity ranging between
0 and 1, Iw is the watermark image (the information to
be hidden, e.g., the fingerprint code) and Ii is the original
image. We employed DWT with level-3 to obtain Iw from the
fingerprint. Note that we omit the LL3 (lowest frequency) part
of the DWT since it cannot be reproduced in a blind detection
of the watermark image [16]. We thus come up with the
final watermark image size m = (360×640)−LL3 = 226800
corresponding to the maximum value for the fingerprint code
k. However, watermarking should be discrete. To accomplish
this, the opacity O has to be very close to 1 yielding a power
ratio between the watermark image Iw and the watermarked
image Iwt to be as low as about -20dB, depending on the
considered image.

2) Impact of binary errors on the Tardos-Skoric codes:
For such low SNRs, many errors occur in the fingerprint,
which leads to dramatic performance for collusion tracing
with Tardos-Skoric codes. We analyzed the performance of
Tardos-Skoric codes using the majority vote attack to trace
out the colluders without any spreading. The simulation model
is depicted in Figure 1(a): Tardos-Skoric codes are modified
by a Binary Symetric Channel (BSC) with error probability π ,
which represents the possible errors due to the embedding with
a low Signal over Noise Ratio (SNR). Figure 1(b) illustrates
that, whatever the length of the fingerprint k, the number of
average detected colluders drops for binary error probabilities
higher than π = 2×10−1, which corresponds to a much higher
SNR than -20dB.

A well known way to improve SNR is to spread the
fingerprint length k over the image length m. Let α denote
the spreading rate α = k

m . A lower α results in fewer binary
errors on the watermark image but, but as the image length
is fixed, it also resultsin lower fingerprint k, reducing total
colluders detecting capacity. In this Section, firstly, we propose
to improve the efficiency of the spreading by combining
pseudo-random sequences with ECC. Then, we address the
issue of optimizing the spreading rate α for a fixed image
length m.

(a) Simulation model

(b) Simulation results

Figure 1: Colluders tracing without spreading scheme for ma-
jority vote attack: (a) Simulation model (b) Average detected
colluders with k = [1440,2880],n = 1000 and ε1 = 10−3.

B. Proposed Spreading Schemes

1) Convolutional Codes and Viterbi Decoding: Although
convolutional codes have been surpassed by many others, they
are still often used in watermarking. The authors from [17]–
[19] showed that using convolutional codes with fragile wa-
termarking improves the SNR but also that the scheme is not
robust to compression, contrast enhancement and collusion
attacks. In this paper, we propose to use convolutional codes to
increase the robustness against noise on embedded collusion
codes. A convolutional code [20] is specified by its coding rate
rcc and the depth N of its shift register. The trellis diagram
is a result of expanding the convolutional code state diagram
in time. The number of the states in the trellis diagram is 2N .
To decode a convolutional code, we generally use the Viterbi
algorithm [20], which finds efficiently the shortest path on the
trellis diagram.

2) Combination of coding and pseudo-random sequences:
Two spreading schemes using convolutional codes are pro-
posed hereafter: the concatenated scheme and the joint scheme.

For the concatenated scheme, the convolutional encoder is
utilized to encode the k bits of the fingerprint with rate rcc.
The trellis shown in Figure 2(a) illustrates the outputs of the
convolutional encoder of rate rcc = 1/2 with N = 2 for each
possible transition between 2 states. The output of the encoder
is then spread using pseudo-random sequences of rate α

rcc
.

In the joint scheme, the k bits of fingerprint are encoded and
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spread simultaneously utilizing joint convolutional encoding
and spreading with rate α , as proposed by [15]. In this scheme,
the outputs are given pseudo-random sequences sri with i ∈
[1, . . . ,2×2N ] of rate 1

α
, as illustrated in Figure 2(b).

Figure 2: Trellis diagram for 4 states: (a) concatenated scheme
with rate rcc =

1
2 (b) joint scheme with rate 1

α
.

C. Performance comparison

We evaluated the performance of the spreading using a
Binary Symmetric Channel (BSC) with error probability p,
as shown in Figure 3(a). For performance evaluation, the
concatenated and joint schemes are compared with a pure
pseudo-random spreading scheme denoted ”uncoded” since no
convolution code is used.

For the concatenated scheme, we compare three different
numbers of shift register: N = 3,5 and 9, respectively, asso-
ciated with 3 different rates rcc =

1
2 ,

1
4 and 1

8 . The random
spreading rates after encoding are thus, respectively, 2α,4α

and 8α . Simulations have been performed for α = 1/157
(k being set to 1440) and are illustrated in Figure 3(b).
The joint scheme clearly outperforms the two other schemes.
Note, however, that the uncoded scheme outperforms the
concatenated scheme, thus showing that convolutional codes
not always improve the spreading performance.

To determine a viable fingerprint length with an acceptable
BER, we investigated the trade-off between spreading rate and
BER. We performed simulations considering different finger-
print lengths k = [256,512,1024,1440,2880]. Considering the
BER target of 2.10−1, the selected possible fingerprint lengths

(a) Simulation model

(b) Simulation results

Figure 3: Bit Error Rate (BER) for spreading schemes com-
bined with convolutional codes and compared to a pure random
spreading scheme (uncoded) BSC with error probabilities p for
a spreading rate al pha = 1/157.

are k= 2880 for the joint scheme and k= 1440 for the uncoded
scheme, as shown in Figure 4. These trade-offs correspond to
a spreading rate of al pha = [1/157,4/315], respectively, for
lengths k = [1440,2880].

III. PERFORMANCE OF SPREADING SCHEMES FOR
COLLUDERS TRACING

Taking the two fingerprint lengths of Tardos-Skoric fin-
gerprints with n = 1000 users and a probability of accusing
innocent users set to ε1 = 10−3, we can trace a maximum of
c0 = [4,6] colluders [6]. In this section, we address colluder
tracing performance by first emulating video embedding and
attacks thanks to a BSC, and then by simulating the realis-
tic embedding (alpha blending and darken attack). To trace
the colluders, we used the Nearest Neighbor Search (NNS)
decoder for its higher tracing rate and lower complexity [21].

To analyse the impact of spreading scheme for colluders
tracing, the fingerprint k is spread and noised over a BSC with
error probability p before a majority vote collusion attack is
performed, as illustrated in Figure 5(a).

The performance over the BSC is illustrated in the upper
graph of Figure 6: we observe that colluders tracing is much
improved by the proposed joint scheme compared to the state
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Figure 4: Trade-off between BER and spreading rate for the joint
and uncoded scheme with error probability p ∈ [0.05, ...0.5] for
BSC.

(a) Majority attack

(b) Darken attack

Figure 5: Simulation model for colluders tracing with k =
[1440,2880],n = 1000 and ε1 = 10−3 for the uncoded and the
joint coding and spreading schemes: (a) Majority vote attack
over BSC (b) Darken attack on video with FFMpeg and alpha
blending embedding.

of the art uncoded spreading scheme, even when binary errors
are higher than π = 2×10−1.

In the realistic setup, the watermark image is embedded
into an open source 1080p video Tear of Steel [22]. The
watermarked video is created using blending filter of the
FFMpeg with alpha channel as opacity. A darken attack
using FFMpeg is performed to create an illegal copy of a
video as explained in [Mode:B and Table V in [14]]. The
model is illustrated in Figure 5(b). In the simulation, we also
consider two fingerprint lengths and we let the opacity range
from 0.90 to 0.99. The simulation results are depicted in the
lower graph of Figure 6. As the opacity increases close to
1 (thus decreasing the SNR), the performance between the
2 schemes becomes equivalent for both fingerprint lengths.
However, for lower opacities (higher SNR), the joint scheme

Figure 6: Results for the two simulation models of colluders
tracing: The upper part is for the majority vote over BSC, while
the plot below is for darken attack on the video with FFMpeg.

still outperforms the uncoded spreading scheme.

IV. CONCLUSION AND FUTURE WORK

Tardos-Skoric codes are used to identify the colluders who
took part in the collusion to unlawfully redistribute pirated
copies of multimedia contents like e.g., videos. Discreetly
watermarking the videos with these codes implies a very low
SNR. Spreading schemes on Tardos-Skoric codes improve the
SNR at the cost of reducing the Tardos-Skoric code length
and the tracing performance. In this article, we proposed to
combine error correcting codes with pseudo-random spread-
ing to improve the colluder tracing performance. Firstly, we
analyzed the trade-off between the spreading rate and the
bit error rate on the fingerprint code. We then estimated the
performance of the proposed joint convolutional code and
random spreading compared to the uncoded random spreading
scheme. Performances were obtained first on a 360p image
over a binary symmetric channel with a majority vote attack,
and then on a 1080p video with Discrete Wavelet Transform
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embedded using alpha blending with a darken attack. The
performance results in terms of colluder tracing showed that
the proposed joint scheme outperforms the uncoded one.
Perspectives to this work include the use of more powerful
error correction coding schemes to be jointly combined with
random spreading.
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