
PATTERNS 2014

The Sixth International Conferences on Pervasive Patterns and Applications

ISBN: 978-1-61208-343-8

May 25 - 29, 2014

Venice, Italy

PATTERNS 2014 Editors

Alexander Mirnig, University of Salzburg, Austria

Jaap Kabbedijk, Utrecht University, Netherlands

 1 / 107

PATTERNS 2014

Foreword

The Sixth International Conferences on Pervasive Patterns and Applications (PATTERNS 2014),
held between May 25-29, 2014 in Venice, Italy, targeted the application of advanced patterns, at-large.
In addition to support for patterns and pattern processing, special categories of patterns covering
ubiquity, software, security, communications, discovery and decision were considered. As a special
target, the domain-oriented patterns cover a variety of areas, from investing, dietary, forecast, to
forensic and emotions. It is believed that patterns play an important role on cognition, automation, and
service computation and orchestration areas.

We take here the opportunity to warmly thank all the members of the PATTERNS 2014 Technical
Program Committee, as well as all of the reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to PATTERNS 2014. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the PATTERNS 2014 organizing
committee for their help in handling the logistics and for their work to make this professional meeting a
success.

We hope that PATTERNS 2014 was a successful international forum for the exchange of ideas
and results between academia and industry and for the promotion of progress in the field of pervasive
patterns and applications.

We are convinced that the participants found the event useful and communications very open.
We hope that Venice, Italy, provided a pleasant environment during the conference and everyone saved
some time to enjoy the charm of the city.

PATTERNS 2014 Chairs:

Herwig Manaert, University of Antwerp, Belgium
Fritz Laux, Reutlingen University, Germany
Michal Zemlicka, Charles University - Prague, Czech Republic
Alfred Zimmermann, Reutlingen University, Germany
Richard Laing, Robert Gordon University, UK
Ricardo Sanz, UPM ASlab, Spain
Mauricio Hess-Flores, University of California, Davis, USA
Teemu Kanstren, VTT, Finland
Markus Goldstein, DFKI (German Research Center for Artificial Intelligence GmbH), Germany
Zhenzhen Ye, IBM, Essex Junction, USA
René Reiners, Fraunhofer FIT - Sankt Augustin, Germany
Nguyen Vu Hoàng, Vertigo, France
Alexander Mirnig, University of Salzburg, Austria
Juan C Pelaez, Defense Information Systems Agency, USA
Bastian Roth, University of Bayreuth, Germany
Steve Strauch, IAAS at University of Stuttgart, Germany
Jaap Kabbedijk, Utrecht University, Netherlands

 2 / 107

PATTERNS 2014

Committee

PATTERNS Advisory Chairs

Herwig Manaert, University of Antwerp, Belgium
Fritz Laux, Reutlingen University, Germany
Michal Zemlicka, Charles University - Prague, Czech Republic
Alfred Zimmermann, Reutlingen University, Germany
Richard Laing, Robert Gordon University, UK
Ricardo Sanz, UPM ASlab, Spain
Mauricio Hess-Flores, University of California, Davis, USA

PATTERNS Research/Industry Chairs

Teemu Kanstren, VTT, Finland
Markus Goldstein, DFKI (German Research Center for Artificial Intelligence GmbH), Germany
Zhenzhen Ye, IBM, Essex Junction, USA
René Reiners, Fraunhofer FIT - Sankt Augustin, Germany
Nguyen Vu Hoàng, Vertigo, France
Alexander Mirnig, University of Salzburg, Austria
Juan C Pelaez, Defense Information Systems Agency, USA

PATTERNS Publicity Chairs

Bastian Roth, University of Bayreuth, Germany
Steve Strauch, IAAS at University of Stuttgart, Germany
Jaap Kabbedijk, Utrecht University, Netherlands

PATTERNS 2014 Technical Program Committee

Ina Suryani Ab Rahim, Pensyarah University, Malaysia
Junia Anacleto, Federal University of Sao Carlos, Brazil
Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus
Annalisa Appice, Università degli Studi di Bari, Italy
Martin Atzmueller, University of Kassel, Germany
Senén Barro, University of Santiago de Compostela, Spain
Rémi Bastide, University Champollion / IHCS - IRIT, France
Bernhard Bauer, University of Augsburg, Germany
Noureddine Belkhatir , University of Grenoble, France
Hatem Ben Sta, Université de Tunis - El Manar, Tunisia
Silvia Biasotti, Consiglio Nazionale delle Ricerche, Italy
Félix Biscarri, University of Seville, Spain
Cristian Bonanomi, Universita' degli Studi di Milano, Italy
Michaela Bunke, University of Bremen, Germany João Pascoal Faria, University of Porto, Portugal
Michelangelo Ceci, University of Bari, Italy

 3 / 107

M. Emre Celebi, Louisiana State University in Shreveport, USA
Jian Chang, Bournemouth University, UK

William Cheng-Chung Chu(朱正忠), Tunghai University, Taiwan
Loglisci Corrado, University of Bari, Italy
Bernard Coulette, Université de Toulouse 2, France
Karl Cox, University of Brighton, UK
Jean-Charles Créput, Université de Technologie de Belfort-Montbéliard, France
Mohamed Dahchour, National Institute of Posts and Telecommunications - Rabat, Morocco
Jacqueline Daykin, Royal Holloway University of London, UK
Angelica de Antonio, Universidad Politecnica de Madrid, Spain
Sara de Freitas, Coventry University, UK
Vincenzo Deufemia, Università di Salerno - Fisciano, Italy
Kamil Dimililer, Near East University, Cyprus
Alberto Egon, Federal University of Rio Grande do Sul (UFRGS), Brazil
Giovanni Maria Farinella, University of Catania, Italy
Eduardo B. Fernandez, Florida Atlantic University - Boca Raton, USA
Simon Fong, University of Macau, Macau SAR
Francesco Fontanella, Università di Cassino e del Lazio Meridionale, Italy
Dariusz Frejlichowski, West Pomeranian University of Technology, Poland
Christos Gatzidis, Bournemouth University, UK
Joseph Giampapa, Carnegie Mellon University, USA
Markus Goldstein, German Research Center for Artificial Intelligence (DFKI), Germany
Gustavo González, Mediapro Research - Barcelona, Spain
Pascual Gonzalez Lopez, University of Castilla-La Mancha, Spain
Carmine Gravino, University of Salerno, Italy
Christos Grecos, University of the West of Scotland, UK
Yann-Gaël Guéhéneuc, École Polytechnique - Montreal, Canada
Pierre Hadaya, UQAM, Canada
Brahim Hamid, IRIT-Toulouse, France
Sven Hartmann, TU-Clausthal, Germany
Kenneth Hawick, Massey University, New Zealand
Mauricio Hess-Flores, University of California, USA
Christina Hochleitner, CURE, Austria
Władysław Homenda, Warsaw University of Technology, Poland
Samuelson W. Hong, Zhejiang University of Finance & Economics, China
Chih-Cheng Hung, Southern Polytechnic State University-Marietta, USA
Shareeful Islam, University of East London, UK
Slinger Jansen (Roijackers), Utrecht University, The Netherlands
Jinyuan Jia, Tongji University, China
Maria João Ferreira, Universidade Portucalense - Porto, Portugal
Jaap Kabbedijk, Utrecht University, Netherlands
Hermann Kaindl, TU-Wien, Austria
Abraham Kandel, University South Florida - Tampa, USA
Teemu Kanstren, VTT, Finland
Alexander Knapp, Universität Augsburg, Germany
Richard Laing, The Scott Sutherland School of Architecture and Built Environment/ Robert Gordon
University - Aberdeen, UK
Robert Laramee, Swansea University, UK

 4 / 107

Fritz Laux, Reutlingen University, Germany
Hervé Leblanc, IRIT-Toulouse, France
Gyu Myoung Lee, Institut Telecom/Telecom SudParis, France
Haim Levkowitz, University of Massachusetts Lowell, USA
Fotis Liarokapis, Coventry University, UK
Pericles Loucopoulos, Harokopio University of Athens, Greece / Loughborough University, UK
Herwig Manaert, University of Antwerp, Belgium
Elio Masciari, ICAR-CNR, Italy
Constandinos Mavromoustakis, University of Nicosia, Cyprus
Fuensanta Medina-Dominguez, Carlos III University of Madrid, Spain
Alexander G. Mirnig, University of Salzburg, Austria
Ivan Mistrík, Independent Consultant. Heidelberg, Germany
Paula Morais, Universiadade Portucalense - Porto, Portugal
Fernando Moreira, Universidade Portucalense, Portugal
Haralambos Mouratidis, University of East London, UK
Antonino Nocera, University Mediterranea of Reggio Calabria, Italy
Jean-Marc Ogier, Université de la Rochelle, France
Krzysztof Okarma, West Pomeranian University of Technology, Poland
Hichem Omrani, CEPS/INSTEAD, Luxembourg
Jerry Overton, Computer Sciences Corporation, USA
Ana Paiva, University of Porto, Portugal
Eric Paquet, National Research Council / University of Ottawa, Canada
João Pascoal Faria, University of Porto, Portugal
Galina Pasko, Uformia, Norway
Rodrigo Paredes, Universidad de Talca, Chile
Giuseppe Patane', CNR-IMATI, Italy
Photis Patonis, Aristotle University of Thessaloniki, Greece
Juan C Pelaez, Defense Information Systems Agency, USA
Christian Percebois, IRIT/Université de Toulouse, France
Gabriel Pereira Lopes, Universidade Nova de Lisboa, Portugal
Luciano Pereira Soares, Insper, Brazil
Nadia Pisanti, University of Pisa, Italy
José R. Pires Manso, University of Beira Interior, Portugal
Agostino Poggi, Università degli Studi di Parma, Italy
Giovanni Puglisi, University of Catania, Italy
Francisco A. Pujol, Universidad de Alicante, Spain
Mar Pujol, Universidad de Alicante, Spain
Claudia Raibulet, University of Milano-Bicocca, Italy
Alessandro Rizzi, Università degli Studi di Milano, Italy
José Raúl Romero, University of Córdoba, Spain
Agostinho Rosa, Technical University of Lisbon, Portugal
Gustavo Rossi, UNLP - La Plata, Argentina
Ozgur Koray Sahingoz, Turkish Air Force Academy, Turkey
Maria-Isabel Sanchez-Segura, Carlos III University of Madrid, Spain
Kurt Sandkuhl, Jönköping University, Sweden
Isabel Seruca, Universidade Portucalense - Porto, Portugal
Caifeng Shan, Philips Research, The Netherlands
Karolj Skala, Ruder Boškovic Institute Zagreb, Croatia

 5 / 107

Carina Soledad, Universidad de La Laguna, Spain
Marco Spruit, Utrecht University, The Netherlands
Michael Stal, Siemens, Germany
Martin Stanton, Manchester Metropolitan University, UK
Janis Stirna, Stockholm University, Sweden
Mu-Chun Su, National Central University, Taiwan
Sam Supakkul, Sabre Inc., USA
Stella Sylaiou, Hellenic Open University, Greece
Ryszard Tadeusiewicz, AGH University of Science and Technology, Poland
Dan Tamir, Texas State University - San Marcos, USA
Shanyu Tang, China University of Geosciences - Wuhan City, P. R. China
Horia-Nicolai Teodorescu, "Gheorghe Asachi" Technical University of Iasi / Romanian Academy, Romania
Daniel Thalmann, Nanyang Technological University, Singapore
Alain Toinon Léger, Orange - France Telecom R&D / University St Etienne / ENS Mines - Betton, France
Mati Tombak, University of Tartu / Tallinn Technical University, Estonia
Alessandro Torrisi, Università di Catania, Italy
Theodoros Tzouramanis, University of the Aegean, Greece
Domenico Ursino, University Mediterranea of Reggio Calabria, Italy
Michael Vassilakopoulos, University of Thessaly, Greece
Krzysztof Walczak, Poznan University of Economics, Poland
Stefan Wendler, Ilmenau University of Technology, Germany
Laurent Wendling, University Descartes (Paris 5), France
Wojciech Wiza, Poznan University of Economics, Poland
Mudasser F. Wyne, National University- San Diego, USA
Dongrong Xu, Columbia University & New York State Psychiatric Institute, USA
Reuven Yagel, The Jerusalem College of Engineering, Israel
Zhenzhen Ye, IBM, Essex Junction, USA
Lihua You, Bournemouth University, UK
Hongchuan Yu, Bournemouth University, UK
Alfred Zimmermann, Reutlingen University, Germany
Michal Žemlička, Charles University, Czech Republic

 6 / 107

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 107

Table of Contents

SQL Pattern Design and Development
Huda Al-Shuaily and Karen Renaud

1

Building a General Pattern Framework via Set Theory: Towards a universal pattern approach
Alexander G. Mirnig and Manfred Tscheligi

8

From Pattern Languages to Solution Implementations
Michael Falkenthal, Johanna Barzen, Uwe Breitenbucher, Christoph Fehling, and Frank Leymann

12

Reconfiguration Patterns for Goal-Oriented Monitoring Adaptation
Antoine Toueir, Julien Broisin, and Michelle Sibilla

22

Dynamic Incremental Fuzzy C-Means Clustering
Bryant Aaron, Dan Tamir, Naphtali Rishe, and Abraham Kandel

28

SPEM: A Software Pattern Evaluation Method
Jaap Kabbedijk, Rene van Donselaar, and Slinger Jansen

38

Generating Java EE 6 Application Layers and Components in JBoss Environment
Gabor Antal, Adam Zoltan Vegh, and Vilmos Bilicki

44

Refinement Patterns for an Incremental Construction of Class Diagrams
Boulbaba Ben Ammar and Mohamed Tahar Bhiri

50

Automating Cloud Application Management Using Management Idioms
Uwe Breitenbucher, Tobias Binz, Oliver Kopp, and Frank Leymann

60

A Method for Situational and Guided Information System Design
Dalibor Krleza and Kresimir Fertalj

70

An Analytic Evaluation of the SaCS Pattern Language – Including Explanations of Major Design Choices
Andre Alexandersen Hauge and Ketil Stolen

79

Privacy by Design Permission System for Mobile Applications
Karina Sokolova, Marc Lemercier, and Jean-Baptiste Boisseau

89

Effectively Updating Co-location Patterns in Evolving Spatial Databases
Jin Soung Yoo and Hima Vasudevan

96

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 107

SQL Pattern Design and Development

Huda Al-Shuaily

Department of Information Technology

Higher College of Technology

Muscat, Oman
huda.alshuaily@hct.edu.om

Karen Renaud

School of Computing Science

University of Glasgow

Glasgow, UK

karen.renaud@glasgow.ac.uk

Abstract—This paper presents the processes involved in the

design and development of a set of Structure Query Language

(SQL) patterns. The intention is to support novices during

SQL acquisition. This process is grounded in the SQL learning

model developed from learning theory literature and empirical

investigations into SQL acquisition. One of the crucial cross-

cutting factors identified during the development of this model

was the quality of the instructional material provided to

learners to support the acquisition process. Since patterns have

been successfully deployed in other areas to support knowledge

transfer, we set out to develop SQL patterns to meet this need

for effective instructional material. We detail the process by

which we identified the required components of SQL patterns.

Our patterns were also informed based on observations of how

novices and experts solved SQL queries. We conclude by

presenting our proposed SQL pattern content and structure.

Keywords-Pattern; SQL; Expert

I. INTRODUCTION

 SQL is one of those languages that seem particularly

challenging to master. We previously reported on an
investigation which advanced explanations for this apparent
difficulty [1] and developed a model of SQL learning shown
in Fig.1. Our investigation uncovered four cross-cutting
issues that impacted the learning process. One major factor
was the quality and suitability of the instructional material to
support the learning process. In providing instructional
material, two specific aspects are important:

 The structuring of knowledge within the
instructional material. Merrill [2] explains that the
organization and representation of knowledge
impacts learning. Mayer [3] makes the same
argument, positing that the way in which a body of
knowledge is structured determines how readily it
will be grasped by learners.

 When, during the learning process, the afore-

mentioned instructional material should be

introduced. Learning happens in a predictable and

mediated way, with subsequent knowledge and skills

building on prior knowledge and understanding [4],

[5]. Hence, the sequence in which we present

knowledge is important. It should support learning

rather than encouraging trial-and-error attempts to

produce correct SQL queries without understanding

the underlying principles [6].

Patterns are a widely used mechanism for supporting

knowledge transfer. We set out to investigate whether

patterns could meet the need for optimally-structured

instructional material in this context. Schlager and Ogden [7]

found that incorporating a cognitive model in the form of

expert user and product-independent knowledge into novice

instruction enhances learning. They concluded that such a

cognitive model framework could potentially help to support

knowledge acquisition.

Patterns traditionally structure knowledge in such a way

that they can transfer best practice from experts to novices.

We cannot assume that SQL patterns can be structured in the

exactly the same way as other more well-established

patterns, however, so we need to carefully align them with

the SQL acquisition process.

We briefly present our previously developed model of

SQL learning (Fig. 1), which is the logical place to start

when identifying SQL patterns and positioning them within

the learning process. This model is grounded in Bloom’s

taxonomy [4] and validated by studies of how novices learn

to write SQL queries. The SQL learning model emerged

from the analysis of the educational literature, and was

augmented by the analysis of data gathered during qualitative

and quantitative studies of SQL acquisition.

This model incorporates the notion of the development of

mental models. We demonstrate how mental models are

constructed during SQL acquisition. Learners start with the

development of individual schemata, moving on towards

meaningful structuring of schemata into hierarchies and

constructed mental models. Existence of these models

suggests that the learner will be able to solve a variety of

problems of similar nature, i.e., they have abstracted. An

abstraction exists and they should be able to apply core

concepts in many contexts: learning has resulted in a

heuristic.

The SQL acquisition process is also modeled in the

diagram, showing that learners need first to have a basic

knowledge of SQL concepts, and an understanding of how to

use them. They then have to practice applying these concepts

to a variety of problems: analyzing, synthesizing and

evaluating. They ought to emerge from this stage with an

appreciation of the core principles; with an ability to make

judgments about strategies to be deployed. Learners who

1Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 9 / 107

have progressed to this upper level can be considered to have

mastered SQL.

Figure 1. A Model of SQL Learning

SQL patterns’ identification process is explored in Section II.

The processes that involve SQL pattern identification using

text mining are explored in Section III. The SQL pattern

identification phase using novices’ observation is presented

in Section IV while expert observation is considered in

Section V. Section VI discusses and Section VII concludes.

II. SQL PATTERN IDENTIFICATION

To identify our SQL patterns, we commenced by
studying other pattern identification methods and procedures.
Patterns are not an optimistic or ephemeral collection of
ideas. They encapsulate specific tried-and-tested best
practice techniques specific to a particular field [8]. Patterns
do not state obvious solutions to trivial problems nor do they
cover every possible eventuality, but they do capture
important “big ideas” [9]. A pattern should explain how a
problem should be solved and why the presented solution is
appropriate in a particular context. Alexander [8] points out
that patterns may be discovered by identifying a problem and
later finding a solution or by seeing a positive set of
examples and abstracting a common solution. Coad and
Mayfield [10] suggest that patterns are based on a designer’s
experience of the area.

The SQL pattern development process needed to focus

on both the behavioral and the cognitive aspects of SQL
acquisition. Understanding learner ability to perform
different cognitive tasks such as query formulation,
translation, and writing is essential to be able to design this
new SQL instructional material.

The SQL patterns we derived emerged from an iterative

research process, which involved a review of educational
research, uncovering relevant human factors related to SQL
usability as well as psychology-related research. The process
aimed to accommodate the nature of SQL acquisition. We
explored this process by conducting a general overview of
the literature about educational theory and cognitive

psychology research [4], [5], [11] and instructional design
research. The next step narrowed to cover Computer Science
(CS) educational research [12] and focused on fostering of
problem solving skills.

Having confirmed the possibility of using patterns to
support SQL acquisition, we proceeded to identify and
define the patterns using text mining followed by
observation of novices and experts.

III. PATTERN MINING

According to Bruner [15] new instructional methods need
first to apply what educators know about how students learn,
remember, and use related skills. A text mining procedure
was therefore used to extract this information from texts, to
discover patterns from existing knowledge repositories,
solutions, or designs. This process captures practice that is
both good and significant [14].

This identified common knowledge arguably represents
the core concepts and practices of SQL query writing. There
is a strong precedent for this approach [13].

The mining process was carried out manually based on

the dimensions defined in the SQL Learning Model (Fig 1),
and is depicted in Fig. 2.

Figure 2. Mining Process

The following steps were followed during the mining
process:

1. Identifying Data:

a. Identify expected SQL knowledge from

database texts and categorize the knowledge

into the SQL learning model categories.
b. Identify the declarative or “remembering” SQL

concepts. Here, we mined data such as SQL
facts or concepts. For example joining,
aggregation, sub-query.

2Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 10 / 107

2. Identifying Information:
a. Identify the procedural or “comprehension”

SQL concepts, and how they are used in a
particular context.

b. Identify the “practice” skills by considering
how concepts should be applied in solving
problems. For example, show a context
scenario and explain how the relevant syntax
and rules are applied. Also illustrate the
scenario with appropriate examples which
show, step-by-step, how such a concept should
be applied.

3. Identifying Knowledge:
a. Investigate the “creating” activity. For

example, find evidence of generic principles
being applied in particular contexts.

4. Identify the SQL misconceptions that could potentially
be corrected by the patterns.

The mining process was informed by knowledge

management research that distinguishes between data,

information and knowledge [16].

The process of knowledge extraction and categorization

led to an initial set of patterns. The mining process provided

a starting point, delivering a static understanding of how

SQL core knowledge is presented in textbooks and

commonly-used texts. How such SQL concepts are applied

in reality, by query writers, could not be gauged without a

field investigation. The next step was to observe and analyze

novice SQL problem-solving behavior.

IV. OBSERVING NOVICES

Researchers in the field of pattern identification agree on
the value of direct observation in arriving at patterns. “In
order to discover patterns which are alive we must always
start with observation” [8] (p.254). Furthermore, [17] points
out that “Patterns are not created or invented; they are
identified via an invariant principle”.

Strategy identification, by means of learner observation,
helps determine what gaps “best practice” SQL patterns
should fill. Cognitive science suggests giving learners a
problem and observing everything they do and say while
attempting a solution. Unstructured observations were thus
conducted over a period of two semesters.

The focus of the observation was on the following
particular aspects:

 Remembering:

o When they remembered the required concepts,

were they correct?

 Searching (Not Remembering):

o How were the required, but forgotten, concepts

obtained? For example, did they refer to

textbooks or teaching materials, or did they

search the Web to find similar problems and

related solutions.

 Problem Solving:

o Were the required concepts identified

correctly?

o Were the gathered concepts correctly matched

to the given problem context?

o Did they search for examples on the Web?

o Did they try different possible solutions? If so,

why was a particular solution selected?

o How did they react to errors?

Figure 3. Novice Observation

The observation data, based on observation of 63
students (see Table I), revealed that many students lacked
problem solving skills. Students often started to write SQL
queries without taking the time to consider different
approaches. There was no attempt to choose an optimal
approach from a number of candidate approaches. They
behaved tactically and did not take time to analyze the
problem description and to consider what they should do
before attempting to write the query. This tendency confirms
previous research findings [18]. Students spent the bulk of
their time solving syntax and semantic errors and assessing
the correctness of the generated results.

TABLE I: STUDENTS’ DEMOGRAPHICS INFORMATION

Time Participants Participants

2009/10

Students registered for 2
nd

year course

17

2010/11 Students registered for 2
nd

year course

21

2010/11 Students registered for third
year course

15

Furthermore, novices lacked the ability to sub-divide the
problems into sub-problems or to identify the specific
knowledge required to solve individual sub-problems [19]. If
they do divide and conquer, they then have to synthesize
identified sub-solutions to design a complete solution to the
problem. This, too, seems to be a skill that novices lack (Fig.
4).

3Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 11 / 107

Less searching behavior than anticipated was observed

and when it did take place it was often unproductive.
Students searched for similar problems on the Web or spent
some time looking at the lecture notes, trying to understand
different concepts. This was often unproductive since they
wasted time searching for irrelevant concepts.

Figure 4. Problem Solving Stages, and Novice Strategies

Observation of novices was invaluable in understanding
how to design supporting instructional material. However,
we needed also to understand which particular strategies
were deployed by SQL experts since this was the behavior
we wanted to guide the novices towards. What emerged from
this analysis was the fact that an intervention was required to

support students during problem solving, where they apply
the basic SQL concepts and principles.

The initial set of SQL patterns were refined based on the
observation process.

V. EXPERT OBSERVATION

Professionals have acquired knowledge and skills
through study and practice over the years and are termed
“expert”. Patterns are means of codifying experts’
knowledge and expertise to facilitate knowledge transfer.
Pattern content must be informed by experts’ actual
practices. This section presents a description of problem
solving strategies deployed by two individual expert SQL
query writers. The experts were master students at Glasgow
University who had experience using SQL. The tasks they
solved are shown in Fig. 5. The aim of this observation was
to determine how experts solved these problems, as opposed
to novices.

Q1: Give the titles of books that have more than
one author.
Q2: Display the names of borrowers who have
never returned a book late

Figure 5. Expert Observation task

The cognitive activities performed during problem
solving of two tasks were recorded by employing a “talk-
aloud” protocol [20].

Figure 6. Expert Observation process

The observation process recorded all cognitive activities
(see Fig. 7), such as schemata retrieval (Remembering) and
Searching (Not Remembered). The collected information
was categorized as conceptual (basic building blocks from
Fig. 1), schemata (knowledge of how concepts are used), or
rule (abstract heuristic knowledge) as recommended by [7],
[15], [21].

Experts, after reading the problem description, made an

initial decision about the type of technique that had to be
applied. They then looked at the provided data model and
verbally listed the possible approaches to solving the
problem that they could deploy. After mulling it over, they

Analogy Sources of
analogy

A1 Formulating the problem “number of loan …” Schemata

D1 Dividing the problem into sub problem or sub
goals

Advanced
knowledge

A2: Analysis : Joining two tables “joining the copy
with titles”

Basic
knowledge

R1Reasons why D1 “ to get single table” Basic
knowledge

A3 writing: Write SQL syntax Basic
knowledge

D2 use subquery Advanced
knowledge

A4Evaluation: Execute the A3 without applying D2
and checking the results

Basic
knowledge

D5to apply Self join for the table Advanced
knowledge

A12 Writing: Modifying the query Basic
knowledge

A13Evaluation: Modifying the query with no clear
decision

Schemata

A14Writing Applying D5 Schemata
A15: Analysis of the problem Schemata
Applying aggregation Advanced

knowledge
A16: Writing: Iteration of changing the query Advanced

knowledge

4Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 12 / 107

settled on one particular approach and provided reasons for
discarding the other options. Both experts used a divide-and-
conquer approach and sub-divided the problem: they did not
attempt to write the whole query at once. They wrote and
tested the commands related to the sub-queries and then
synthesized the sub-solutions to arrive at the final complete
solution.

The most interesting part of this observation was the fact

that the experts applied an implicit pattern matching
approach to their assessment of the problem. They clearly
tried to match a number of different learned heuristics to the
problem before settling on the best approach. One can only
assume that they had internalized a number of abstract
heuristics which they tried to match to the given problem
before settling on a “best-fit” approach.

1-Reading and understanding the problem
2-Search for more information from the
Internet “Googling”
3-Problem Solving:
a. Analysis

 Consulting ER model
 Identify the available table

holding the required data.
 Rereading the problem.

b. Synthesis
 Deciding which concepts to

apply.
 Searching for SQL syntax or

relevant examples.
c. Writing

 Start writing the first SQL query
in the tool.

d. Checking:
 Evaluate the result of the first

attempt.
 Manipulate the query with some

justification (fixing the errors).
This is done iteratively until they
are satisfied.

4-Repeat sub-steps in number 3 until
satisfied.

The participant broke the
overall problem into a
number of sub-problems. He
first started by joining Book-
Copy and Book-Title tables.
At this stage a few actions
(A1-A3) and a decision (D1)
were performed and other
decisions were pending. The
participant was happy with
his performance at this
stage. He then applied

another decision, i.e., to
use sub-queries

The participant then
exercised the decision to
apply the self-join technique.
However, he failed to apply
it correctly. The participant
then deployed aggregation
and was satisfied that he had
solved the problem.

Figure 7. The cognitive activities experts deployed

The analysis acted to inform research into the type of

approach that ought to be nurtured in novices. The next
section discusses how the reported results contributed to the
SQL pattern identification.

VI. DISCUSSION

The upper half of Fig. 8 shows how experts solve a task
using an analogical approach. The model is based on the
ideas of [23], which depicts how scientists think and solve
physical problems. The bottom half shows how this model
reflects the SQL acquisition process. This model presents the
different sources of knowledge and strategies experts deploy.

Observation of expert activities showed that they divided
the problem into sub-problems. Then, for each sub problem,

different relevant knowledge is applied to arrive at a sub-
solution. When experts solved the first part they applied
basic knowledge. Then, as the problem requirements
required more understanding they applied advanced
knowledge which was sometimes obtained by searching.
They then applied problem solving strategies such as
incremental development, division into sub-queries,
consideration of a number of different ways of solving the
problem, and choice of the optimal strategy.

Figure 8. Expert Problem Solving [23](top) and SQL Acquisition on

Expert Model (bottom)

5Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 13 / 107

Figure 9. Typical Expert Actions (left) and Novice Actions (right)

Observing experts and novices solving led us to visualize
both the expert and novice actions in solving SQL queries
(Fig. 9).

Considering how experts approach the task and relating it
to novices’ actions indicates the nature of the gap between
expert and novice. There was no evidence that novices
struggled with basic knowledge of SQL syntax. They also
knew how the SQL constructs ought to be used. However,
novices clearly lacked the knowledge and skills required to
solve novel problems. This is related to the “PROBLEM
SOLVING” stage as seen in Fig. 9. This, then, is where more
effective instruction material needs to assist the process.

This analysis allowed us to determine what type of
knowledge and skills are required to solve the SQL
problems. We were also able to determine how the
information should be presented to learners, i.e., what the
optimal sequence of information. The results suggest that:

- Experts start solving the problem by re-formulating the

problem statement and determining its context using the

data model.

- Expert knowledge is structured, connected and abstract.

They have:

1- Basic knowledge about SQL syntax and semantics

“SQL Syntax and Semantics”;

2- Advanced knowledge about the meaning of SQL

concepts “SQL Query comprehension” and about

how to apply SQL concepts in the given context;

3- Heuristics:

 Knowledge about the wisdom of SQL

applicability in a certain context “problem-

context-solution”. This is a high level of

knowledge that novice lack as was discussed.

 Knowledge about the consequences of

applying SQL concepts “impact-of-solution”.

This is a skill of evaluating SQL concepts,

which is a high level of knowledge that novices

lack.

Observation made it clear that instructional materials,

such as notes, did not nudge students towards productive
activities or support effective problem solving. To help
novices to achieve a measure of SQL expertise we propose
that the SQL patterns should include components shown in
Table II.

TABLE II. PROPOSED SQL PATTERN CONTENTS

Provide students with data models to

help them understand the context of

the problem

Schema

Formation

The impact of applying the pattern in
such a problem context.

Schema
Formation

Support for matching a problem to a
solution in a simple format such as a
checklist

Schema
Formation

A section which includes the basic
knowledge required to solve the
problem.

Schemata

Step-by-step SQL visual examples of
the pattern being applied

Schemata

This should be augmented with a step
by step plan to train students to deploy
effective problem solving strategies,
as suggested by (Mayer, 2008).

Encourage
Engagement

with Analysis
and Synthesis
Phases during

Problem
Solving

VII. CONCLUSION AND FUTURE WORK

The successful implementation of instructional materials
(SQL patterns) will depend on the pattern writer
understanding all the different factors that influence SQL
learnability, such as: learner characteristics, SQL language
specifications, human cognition and instructional material.
The pattern writer must align with established wisdom about
human cognition. Our study has provided the guidance to
inform SQL pattern content, which should ultimately serve
as the link between the task requirement and the generic
pattern.

REFERENCES

[1] Al-Shuaily, H., SQL pattern design, development &

evaluation of its efficacy. PhD Thesis. University of

Glasgow. 2013

[2] Merrill, M.D. Knowledge objects and mental models. in

Advanced Learning Technologies, 2000. IWALT 2000.

Proceedings. International Workshop on. 2000. pp. 244-

246.

[3] Mayer, R.E., Learning and instruction 2003: Prentice

Hall.

[4] Bloom, Benjamin Samuel, and David R. Krathwohl.

Taxonomy of educational objectives: The classification

of educational goals. Handbook I: Cognitive domain.

1956.

[5] Gorman, M.E., Types of Knowledge and Their Roles in

Technology Transfer, in The Journal of Technology

Transfer Springer Netherlands. 2002, pp. 219-231.

[6] Al-Shuaily., H. Analyzing the Influence of SQL

Teaching and Learning Methods and Approaches. in

6Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 14 / 107

10th International Workshop on the Teaching, Learning

and Assessment of Databases. UK, London. 2012.

[7] Schlager, M.S. and W.C. Ogden, A cognitive model of

database querying: a tool for novice instruction. SIGCHI

Bull. 17(4) 1986, pp. 107-113.

[8] Alexander, C., The timeless way of building. 1979,

Oxford, UK: Oxford University Press.

[9] Winn, T. and P. Calder, Is This a Pattern? IEEE Softw.

19(1) 2002, pp. 59-66.

[10] Coad, P. and M. Mayfield, Object model patterns:

workshop report. SIGPLAN OOPS Mess., 5(4) 1994, pp.

102-104.

[11] Anderson, et al., A Taxonomy for Learning, Teaching,

and Assessing: A Revision of Bloom's Taxonomy of

Educational Objectives (Complete edition) 2001. New

York: Longman.

[12] Bower, M., A taxonomy of task types in computing.

SIGCSE Bull. 40(3) 2008, pp. 281-285.

[13] van Welie, M., K. Mullet, and P. McInerney. Patterns in

practice: a workshop for UI designers. in CHI'02

extended abstracts on Human factors in computing

systems. 2002. ACM.

[14] Fincher, S. and I. Utting. Pedagogical patterns: their

place in the genre. in ACM SIGCSE Bulletin. 2002.

ACM.

[15] Bruner, J.S., Toward a theory of instruction. Vol. 59.

1966: Belknap Press.

[16] Tian, J., Y. Nakamori, and A.P. Wierzbicki, Knowledge

management and knowledge creation in academia: a

study based on surveys in a Japanese research university.

Journal of Knowledge Managemen. 13(2) t, 2009, pp.

76-92.

[17] Fincher, S. Patterns for HCI and Cognitive Dimensions:

two halves of the same story. in Kuljis, J., Baldwin, L.,

Scoble, R., Proceedings of the Fourteenth Annual

Workshop of the Psychology of Programming Interest

Group. 2002.

[18] Ramalingam, V., D. LaBelle, and S. Wiedenbeck, Self-

efficacy and mental models in learning to program.

SIGCSE Bull 36(3) 2004, pp. 171-175.

[19] Lahtinen, E., K. Ala-Mutka, and H.M. Järvinen. A study

of the difficulties of novice programmers. in ACM

SIGCSE Bulletin. 2005. ACM.

[20] Dunbar, K., How scientists think: On-line creativity and

conceptual change in science. Creative thought: An

investigation of conceptual structures and processes.

1997, pp. 461-493.

[21] Ogden, W.C., Implications of a cognitive model of

database query: comparison of a natural language, formal

language and direct manipulation interface. ACM

SIGCHI Bulletin. 18(2) 1986, pp. 51-54.

[22] Reisner, P., Human Factors Studies of Database Query

Languages: A Survey and Assessment. ACM Comput.

Surv. 13(1) 1981, pp. 13-31.

[23] Nersessian, N.J., How do scientists think? Capturing the

dynamics of conceptual change in science. Cognitive

models of science 15 1992, pp. 3-44.

7Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 15 / 107

Building a General Pattern Framework via Set Theory: Towards a Universal
Pattern Approach

Alexander G. Mirnig, Manfred Tscheligi
Christian Doppler Laboratory for “Contextual Interfaces”

HCI & Usability Unit, ICT&S Center, University of Salzburg
Salzburg, Austria

Email: {firstname.lastname}@sbg.ac.at

Abstract— Patterns have been successfully employed for
capturing knowledge about proven solutions to reoccurring
problems in several domains. Despite that, there is still little
literature available regarding pattern generation or common
pattern quality standards across the various domains. We
present an attempt for a universal (i.e., domain independent)
pattern framework. Via basic set theory, it is possible to
describe pattern sets that are composed of several subsets
regarding pattern types, quantities, sequence, and other
factors. We can thus describe patterns as sets of interrelated
elements instead of isolated entities, thus corresponding with
the scientific reality of complex problems with multiple
relevant factors. The framework can be used to describe
existing pattern languages and serve as a basis for new ones,
regardless of the domain they are or were created for.

Keywords-patterns; pattern basics; pattern framework; set
theory

I. INTRODUCTION AND MOTIVATION
Patterns have been used as a tool for capturing

knowledge about proven solutions to reoccurring problems
in many domains. Most prominent among these domains are
architecture and software design [1][2][6]. Patterns allow
documenting knowledge about methods and practices in a
structured and systematic manner. Another major benefit of
patterns is that they can serve to “make implicit knowledge
explicit” [10], i.e., they can be used to explicitly capture
what is normally only acquired via experience after having
worked in a certain field or domain for an extended period of
time. The information contained in such patterns can then be
provided to others (researchers or other interested parties) in
a relatively quick and efficient manner. Despite this, there is
little general (i.e., domain independent) literature available
on patterns and pattern creation.

Having access to a structured collection of implicit and
explicit knowledge about research practices is useful when
conducting research in any domain. There is no How to
Generate Patterns in 10 Easy Steps or similar basic
literature. This is not an entirely new idea [8], and there has
already been a big push in that direction by, e.g., the work of
Meszaros and Doble [11] and Winn and Calder [13], which
we want to expand and build upon.

Two of the main benefits of patterns are that they
facilitate re-application of proven solutions and that they

serve to make implicit knowledge explicit. These benefits are
of particular importance to researches, who do not already
have this knowledge themselves, i.e., it is a way to draw
from a vast pool of knowledge. If working with patterns has
extensive domain experience as a prerequisite, then those
that would need that knowledge the most would benefit the
least from it. The final goal of this research is to arrive at a
structured but still easy to understand framework that
captures the essence of patterns and makes them
understandable as well as usable for practitioners and
researchers in any domain. The first step is to provide a basic
set theoretic analysis that allows to describe patterns and
pattern languages in a general manner. This later on serves as
a domain independent basis for reflections on how patterns
can or should be created and structured.

We argue for a general strand of research on patterns as a
means to capture knowledge about research practices. With
such a theoretical basis available, practitioners from any
domain could have a pool of knowledge to draw from, which
would help them create patterns suitable for their needs. This
should not mean that a variety in pattern languages and
approaches is not desirable. It makes sense to assume that
different domain requirements need different pattern
approaches. However, the basics of patterns should ideally
be similar for everyone and easily accessible, like with
general mathematics. A statistician needs and employs
different mathematical means than a fruit vendor. But both
draw from the same pool of general mathematics as their
basis. In our research, we take a step back, look at patterns
from a general point of view and describe them via basic set
theory [5]. A general analysis of patterns allows us to treat
them as separate phenomena, independent of the domains
they are created and used in. Set theory is one of the most
basic, but at the same time very powerful, mathematical tools
available. By using set theory, we can ensure consistency of
our framework, while still keeping things basic and relatively
easy to understand. An additional benefit of our approach is
that it permits the creation of pattern sets across different
pattern languages that address a similar purpose. This can
facilitate the consolidation of already existing knowledge
within the various domains. In this paper, we begin with an
overview of existing general literature on patterns in Section
II, followed by an outline of the initial proposed set theoretic
pattern framework in Section III. In Section IV, we present
our planned next steps for further iteration and finalization of

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 16 / 107

the framework and conclude with a few paragraphs on the
perceived advantages and possible future challenges of our
approach.

II. RELATED WORK
Patterns have been employed in a multitude of

application domains [1][6][12] and a good number of
extensive pattern collections [3][4][7] have been created in
the past. Literature on the pattern generation process itself,
sometimes also referred as pattern mining [4], is still scarce
[9]. Existing literature on pattern generation is mostly
focused on specific domains [3][6][8][12]. The work of
Gamma et al. [4] can be considered important elementary
literature, but it is still centered on software design. Although
covering a wide spectrum of software design problems, it is
arguably of limited applicability outside of the software
engineering domain. The same can be said about other
specialized pattern generation guidances [8], which would
require adaptation to be employed in other domains (e.g.,
biology or linguistics).

Meszaros and Doble [11], developed a pattern language
for pattern writing,	 which serves to capture techniques and
approaches that have been observed to be particularly
effective at addressing certain reoccurring problems. Their
patterns for patterns were divided into the following five
sections: Context-Setting Patterns, Pattern Structuring
Patterns, Pattern Naming and Referencing Patterns, Patterns
for making Patterns Understandable, Pattern Language
Structuring Patterns. Another interesting approach being
quite similar in its aims to the one presented in this paper, is
the Pattern Language for Pattern Language Structure by
Winn and Calder [13]. They identified a common trait
among pattern languages (i.e., they are symmetry breaking)
and built a rough, nonformal general framework for pattern
languages in multiple domains. These ideas are similar in
concept to what we pursue in our research. The difference is
that we want to provide a purely formal framework without
or minimal statements regarding its content (such as types or
traits). We want to focus on the basics behind patterns and
structure these, so that they can be applied as widely as
possible, although we intend to incorporate the work of
Meszaros and Doble, and Winn and Calder at a later stage
(see Section IV).

Another interesting aspect of patterns is that one single
pattern is usually not enough to deal with a certain issue.
Alexander et al. [2] already expressed this by stating the
possibility of making buildings by “stringing together
patterns“. The pattern itself, however, does not include the
information of which other pattern might be relevant in a
particular case. This information is only available once the
pattern is part of an actual pattern language. Borchers [3]
introduced the notion of high level patterns, which reference
lower level patterns to describe solutions to large scale
design issues. This hierarchy is expressed via references in
the patterns themselves, which is a good way of
understanding and describing patterns as interconnected
entities. A suitable framework for patterns and pattern
languages should ideally be able to capture these relations
between patterns.

III. THE GENERAL PATTERN FRAMEWORK

A. Patterns and Pattern Sets
Before starting to build the framework, we first need to

take a look at patterns, pattern languages, and the concepts
behind them. Alexander [2] characterized patterns in the
following way: “Each pattern describes a problem which
occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a
way that you can use this solution a million times over,
without ever doing it the same way twice.” So on a basic
level, patterns can be understood as a structured assortment
of statements. A pattern language is a complete hierarchy of
patterns, ordered by their scope [12]. We will translate these
concepts into a basic set theoretic structure by employing
regular sets, ordered sets, and subsets, via the following
example based on a Contextual User Experience (CUX)
pattern structure by Krischkowsky et al. [8] (see Tab.1).
Please note that this analysis would work for any pattern
language that is or can be structured in a similar way, such
as, e.g., the design patterns template laid out by Gamma et al.
[6], but we wanted to give a more current and not software-
centered example to prove our point.

TABLE I. CUX PATTERN STRUCTURE [8]

Instructions on Each Pattern Section

Section
Name

Instruction on Each Section

1 Name
The name of the pattern should shortly describe the
suggestions for design by the pattern (2-3 words
would be best).

2 UX
Factor

List the UX factor(s) addressed within your chosen
key finding (potential UX factors listed in this section
can be e.g., workload, trust, fun/enjoyment, stress...).
Please underpin your chosen UX factor(s) with a
definition.

3 Key
Finding

As short as possible - the best would be to describe
your key finding (either from an empirical study or
findings that are reported in literature) in one
sentence.

.
.
.

8 Key-
words

Describe main topics addressed by the pattern in
order to enable structured search.

9 Sources Origin of the pattern (e.g., literature, other pattern,
studies or results)

We now want to generate an actual pattern language set,

let us call it CUX Language (and refer to it as CL for
brevity’s sake), based on the structure outlined in Tab. 1. We
can do so by introducing nine subsets (i.e., sets of the set CL)
CL1 to CL9, each subset corresponding to one of the nine
categories (from Name to Sources, respectively) described
above. To actually generate a pattern for CL, we need to
assign statements to each of the nine subsets. We do that by
assigning a yet undefined set of statements S to CL, making

9Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 17 / 107

sure that none of the subsets remains empty. Note that
‘statement’ in this regard not only refers to full sentences,
but also to single words or sequences of words which are not
full sentences. We can generate n-number of CL-patterns P1
to Pn this way.

Of course, simply arranging patterns into sets and subsets
does not in itself guarantee that any of these patterns are
actually useful or reasonable. What this analysis can tell us is
(a) the pattern language (CL) the patterns are generated in,
(b) how many statement categories a successful pattern
generated in that language must contain, and (c) which
statements can be found in which category, i.e., the patterns
themselves. So, this elementary analysis has already yielded
a powerful starting framework, via which we can express in
a domain-independent manner how patterns and pattern
languages stand in relation to each other, regardless of
domain they were generated in.

B. Descriptors
CL does not yet fully qualify as a pattern language in the

actual sense of the word and there are two things that an
individual CL-pattern does not tell the reader at this stage.
These are (a) which other patterns might be useful or even
necessary for a given purpose, and (b) exactly at which point
during a given task or activity and in which order will they
be needed. Without knowing these, one can only guess what
else they might need upon being presented with only a single
pattern or depend on prior experience. It would be
undesirable and arguably defeat the purpose of patterns, if
extensive meta-knowledge were necessary to be able to use
them successfully. This is why we enrich the basic set
theoretic framework with specialized descriptor sets, which
serve to understand patterns in context with each other. We
shall again illustrate this via a simple example: Assume that
we have three patterns, P1 to P3, which would help us in
conducting a user study in the car. P1 and P2 are CL-patterns
to reduce user distraction, whereas P3 is a pattern about
processing the data gained from the study. P3 was created in
a different pattern language, let us call that one DL. We can
now specify which of these patterns we want or need and in
which order by introducing an ordered set D. Let us further
assume that we want to express that we need only one CL-
pattern as well as the DL-pattern and that the DL-pattern will
be needed after the CL-pattern. We can express all of this via
the following example descriptor set D1. Please note, that
angle brackets (‘<’ and ‘>’) denote an ordered set, as
opposed to an ordinary set, which would be denoted by curly
brackets (‘{’ and ‘}’).

 D1: <CL1, DL1> (1)

Instead, if we need both CL-patterns, we can express this via
the following modification to D1:

 D2: <CL2, DL1> (2)

Considering the fact that D1 in (1) does not tell us which of
the two CL-patterns is needed, we could also specify a
pattern directly, if not any of them would do:

 D3: <P2, DL1> (3)

But how do we now specify which of these descriptors

(D1-D3) is the appropriate one for a given scenario? Patterns
are created for a certain purpose, and in most cases that
purpose is how to deal with a certain reoccurring problem.
We can specify which descriptor fits a certain purpose better
than another. To properly express this, we introduce the
notion of targets T that contain the general purpose of a
certain activity (e.g., car user experience). This is different
from the problem-field of a pattern, since a given high level
pattern could very well reference a lower level problem that
addresses a different problem, while both serve the same
general purpose. We can now map descriptors to targets,
depending on what is needed. In this example, a target that
does not require both CL-patterns would be assigned either
D1 or D3, whereas one that does would be assigned D2. So, in
addition to being able to specifying the relations between
patterns in a single pattern language, we are not confined to
that single pattern language. This means, that we can also
describe hierarchical pattern sets from different domains and
pattern languages in the same framework. By adding one
additional layer (targets and descriptors) to what was already
available before, we have arrived at a highly modular and
flexible pattern framework. Fig. 1 provides an overview of
the interrelation of pattern languages, patterns, descriptors,
and targets.

Figure 1. The Pattern Framework – Overview

Currently, one problem of this proposed structure is that
any sets of statements can be made into a set and called a
pattern language. This is hardly acceptable, of course, and
needs to be rectified. We are currently still working on
identifying requirements, that any set of statements should
fulfill in order to be called a pattern language and what the
respective descriptors should look like. Descriptors are
ordered sets themselves, so each of their elements have a
clearly defined spot in a concrete sequence. This rigid
structure also means that it can be difficult to express that
particular patterns could be relevant at any point in the
sequence or at several fixed points. But it cannot be assumed
that all patterns would only ever be relevant at one very
specific point. Even if that were the case, it could similarly
not be assumed that these specific points were always
known. A refinement of the descriptor sets will be in order,
to permit more numerous and less cumbersome expression
possibilities with regard to sequences.

 Target Descriptor

Pattern language

Patterns

specify

assign

create from

10Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 18 / 107

IV. NEXT STEPS
The framework outlined in this paper is still a work in

progress. To arrive at a sufficiently detailed and refined
framework, we are currently working on the following:

A. Refine the Framework: Pattern Languages,
Descriptors, Targets
We intend to pursue a refinement of pattern language

requirements similar to Winn and Calder’s approach [13]
and introduce symmetry breaking (or a similarly suitable
property) as a necessary property of descriptors. We will
then research the requirements a descriptor and its subsets
need to fulfill in order to acquire that property. A more
detailed analysis of pattern languages as hierarchical
structures and how this translates into concrete descriptor
sets is being worked on. Descriptors permit specifying
patterns directly, via specifying the language they are part of,
or with regard to other additional factors. The type of a
pattern could be regarded as one such relevant factor. We
will, therefore, incorporate the notion of pattern types into
the framework, in particular the pattern types put forward by
Meszaros and Doble [11]. We consider these as particularly
important in this regard, due to their general nature, but also
analyze domain-specific pattern types (e.g., the three types of
software design patterns put forward by Gamma et al. [6])
will have to be taken into consideration. In addition, we will
provide a more concrete structure for targets, with more
detailed information on what a target is and the information
it should contain.

B. Apply the Framework
Once the framework has been completed, we will

demonstrate the suitability of the framework by actually
generating and describing sample pattern sets from two very
different domains (e.g., User Experience (UX) research and
Neuroscience).

V. CONCLUSION
The great advantage of the approach described in this

paper is that patterns are separate from descriptors, which are
themselves separate from the targets. This means that
patterns can be generated as usual, descriptors generated and
assigned on an as-needed basis. For the pattern user, this
means that they do not have to scour vast databases of
patterns for those they might need. All they need is to have a
look at the descriptor(s) that is/are assigned to the target they
have in mind. Thus, existing pattern databases can be
expanded with descriptors, which help make them more
usable and reduce the amount of domain experience and
previous knowledge required in order to employ patterns
successfully.

But even more importantly, descriptors can specify
patterns with regard to certain properties, such as pattern
language, context, etc. Descriptors functions similarly to
references are contained in the patterns themselves (as
suggested by Borchers [3]), but enable additional or
alternative references to other patterns at any time, since they
are not actual parts of a pattern. This means that descriptors

can be used to describe virtually any pattern set, regardless
of which domain(s) its patterns came from or when the
pattern was created. Not only is it possible to capture the
hierarchical order of existing pattern languages via
descriptors, but also reference patterns from other languages
that might fit a certain purpose. This means that the
framework is not tied to a single pattern language or even a
single domain and permits references to patterns from
multiple pattern languages. We therefore consider it a
suitable basis for domain independent pattern research.

ACKNOWLEDGMENT
We gratefully acknowledge the financial support by the

Austrian Federal Ministry of Economy, Family and Youth
and the National Foundation for Research, Technology and
Development (Christian Doppler Laboratory for „Contextual
Interfaces").

REFERENCES
[1] C. Alexander, The Timeless Way of Building, New York:

Oxford University Press, 1979.
[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I.

Fiksdahl-King, and S. Angel, A Pattern Language: Towns,
Buildings, Construction, Oxford: University Press, 1979.

[3] J. Borchers, A pattern approach to interaction design, New
York: John Wiley & Sons, 2001.

[4] A. Dearden and J. Finlay, “Pattern Languages in HCI: A
Critical Review,” HCI, Volume 21, January 2006, pp. 49-102.

[5] K. Devlin, The Joy of Sets: fundamentals of contemporary set
theory, 2nd ed., Springer, 1993.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
patterns: elements of reusable object-oriented software,
Boston: Addison-Wesley Professional, 1995.

[7] S. Günther and T. Cleenewerck, “Design principles for
internal domain-specific languages: a pattern catalog
illustrated by Ruby,” Proc. 17th Conf. on Pattern Languages
of Programs (PLOP '10). ACM, New York, NY, USA, ,
Article 3 , pp. 1-35, DOI=10.1145/2493288.2493291,
retrieved: April, 2014.

[8] A. Krischkowsky, D. Wurhofer, N. Perterer, and M.
Tscheligi, “Developing Patterns Step-by-Step: A Pattern
Generation Guidance for HCI Researchers,” Proc.
PATTERNS 2013, The Fifth International Conferences on
Pervasive Patterns and Applications, ThinkMind Digital
Library, Valencia, Spain, May 2013, pp. 66–72.

[9] D. Martin, T. Rodden, M. Rouncefield, I.Sommerville, and S.
Viller, “Finding Patterns in the Fieldwork,” Proc. Seventh
European Conf. on Computer-Supported Cooperative Work,
Bonn, Germany, September 2001, pp. 39-58.

[10] D. May and P. Taylor, “Knowledge management with
patterns,” Commun. ACM 46, 7, July 2003, pp. 94-99,
DOI=10.1145/792704.792705, retrieved: April, 2014.

[11] G. Meszaros and J. Doble, “A pattern language for pattern
writing,” Pattern languages of program design 3, Robert C.
Martin, Dirk Riehle, and Frank Buschmann (Eds.). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
November 1997, pp. 529-574.

[12] J. Tidwell, “Designing Interfaces : Patterns for Effective
Interaction Design,” O’Reilly Media, Inc., 2005.

[13] T. Winn and P. Calder, “A pattern language for pattern
language structure,” Proc. 2002 Conf. on Pattern Languages
of Programs - Volume 13 (CRPIT '02), James Noble (Ed.),
Vol. 13. Australian Computer Society, Inc., Darlinghurst,
Australia, Australia, June 2003, pp. 45-58.

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 19 / 107

From Pattern Languages to Solution Implementations

Michael Falkenthal, Johanna Barzen, Uwe Breitenbücher, Christoph Fehling, Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart
Stuttgart, Germany

{falkenthal, barzen, breitenbuecher, fehling, leymann}@iaas.uni-stuttgart.de

Abstract—Patterns are a well-known and often used concept in
the domain of computer science. They document proven
solutions to recurring problems in a specific context and in a
generic way. So patterns are applicable in a multiplicity of
specific use cases. However, since the concept of patterns aims
at generalization and abstraction of solution knowledge, it is
difficult to apply solutions provided by patterns to specific use
cases, as the required knowledge about refinement and the
manual effort that has to be spent is immense. Therefore, we
introduce the concept of Solution Implementations, which are
directly associated to patterns to efficiently support
elaboration of concrete pattern implementations. We show how
Solution Implementations can be aggregated to solve problems
that require the application of multiple patterns at once. We
validate the presented approach in the domain of cloud
application architecture and cloud application management
and show the feasibility of our approach with a prototype.

Keywords-pattern; pattern languages; pattern-based solution;
pattern application; cloud computing patterns

I. INTRODUCTION
Pattern and pattern languages are a well-established

concept in different application areas in computer science
and information technology (IT). Originally introduced to
the domain of architecture [2], the concept of patterns
recently got more and more popular in different domains
such as education [18], design engineering [16], cloud
application architecture [23] or costumes [17]. Patterns are
used to document proven solutions to recurring problems in
a specific context. However, since the concept of patterns
aims at generalization and abstraction, it is often difficult to
apply the captured abstracted knowledge to a concrete
problem. This can require immense manual effort and
domain-specific knowledge to refine the abstract,
conceptual, and high-level solution description of a pattern
to an individual use case. These following examples show
that this problem occurs in several domains due to the
abstraction of solution knowledge into patterns. For
example, if a PHP: Hypertext Preprocessor (PHP) developer
uses the Gang of Four patterns of Gamma et al. [19], he is
faced with the problem that he has to translate the general
solution concepts of the patterns to his concrete context, i.e.,
he has to implement solutions based on a given
programming paradigm predefined by PHP. An enterprise
architect who has to integrate complex legacy systems may
use the enterprise application architecture patterns of
Fowler [20] or the enterprise integration patterns of Hohpe

and Wolf [12] to gain insight to proven solutions of his
problems; but, these are still generic solutions and he has to
find proper implementations for the systems to integrate.
This can lead to huge efforts since besides paradigms of
used programming languages he has also to consider many
constraints given by the running systems and technologies.
A teacher who uses the learning patterns of Iba and
Miyake [18] has to adapt them to match his prevailing
school system with all the teaching methods. To give a final
example, a costume designer could use the patterns of
Schumm et al. [17] to find clothing conventions for a
cowboy in a western film but he still has to come up with a
specific solution for his current film.

While patterns in general describe proven generic
solutions at a conceptual level, the examples above show
that it is still time consuming to work out concrete solutions
of those generic solutions.

To overcome this problem, we suggest that patterns
should be linked to the (i) original concrete solutions from
which they have been deduced (if available) and (ii) to
individual new concrete implementations of the abstractly
described solution. This enables users that want to apply a
certain pattern to take already existing implementations for
their use cases, which eases applying patterns and reduces
the required manual effort significantly.

The remainder of this paper is structured as follows: we
clarify the difference between the common concept of
pattern solutions and concrete solutions in Section II. In
Section III, we discuss related work and the lack of directly
usable concrete solutions in state of the art pattern research.
We show how to keep patterns linked to concrete solution
knowledge and how to select them to establish concrete
solution building blocks, which can be aggregated in
Section IV. In Section V, we give an example of how to
apply the introduced concepts in the domains of cloud
application architecture and cloud application management
and verify the feasibility of the presented approach by
means of an implemented prototype in Section VI. We
conclude this paper with an outline of future work in
Section VII.

II. MOTIVATION
Patterns document proven solution knowledge mainly in

natural text to support human readers of a pattern. Patterns
are often organized into pattern languages, i.e., they may be
connected to each other. Pattern languages provide a
common template for documenting all contained patterns.

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 20 / 107

This template typically defines different items to be
documented such as “Problem”, “Context”, “Solution”, and
“Known Uses”. The problem and context section describe
the problem to be solved in an abstract manner where the
solution describes the general characteristics of the solution
– all only conceptually, in an abstract way. Thus, the general
solution is refined for individual problem manifestations
and use cases resulting in different concrete solutions every
time the pattern is applied. The known uses section is the
only place where concrete solutions from which the pattern
has been abstracted are described. But these are commonly
not extended as the pattern is applied nor do they guide
pattern readers during the creation of their own solutions.

Therefore, due to the abstract nature of patterns and
generalized issues, most pattern languages only contain
some concrete solutions a pattern was derived from in the
known uses section. This leads to the problem that the user
of the pattern has to design and implement a specific
solution based on his individual and concrete use case, i.e., a
solution has to be implemented based on the user’s
circumstances considering the given pattern. However,
many patterns are applied several times to similar use cases.
Thus, the effort has to be spent every time for tasks that
were already executed multiple times. For example, the
Model-View-Controller (MVC) Design Pattern is an often
used pattern in the domain of software design. This pattern
was, therefore, implemented for many applications in many
programming languages from scratch, as patterns typically
provide no directly usable concrete solutions for use cases in
a concrete context. Patterns are not linked with a growing
list of solutions that can be used as basis to apply them to
individual use cases rapidly: each time a pattern should be
applied, it has to be refined manually to the current use case.
The provided sections such as “Known Uses” and
“Examples”, which are part of the pattern structure in most
pattern languages, therefore, support the reader in creating
new solutions only partially [10][12][13]: they provide only
partial solution refinements or solution templates as written
text but not directly applicable implementations that can be
used without additional effort. The major reasons for this
problem are, that neither the concrete solution is
documented in a way that enables reusing it efficiently nor it
is obvious how to aggregate existing solutions if multiple
patterns are applied together. Thus, the reader of a pattern is
faced with the problem of creation and design to elaborate a
proper solution based on a given pattern each time when it
has to be applied – which results in time-consuming efforts
that decrease the efficiency of using patterns.

As of today, patterns are typically created by small
groups of experts. By abstracting the problems and solutions
into patterns relying on their expertise, these experts
determine the content of the patterns. This traditional way of
pattern identification created the two issues already seen:
first, the patterns are not verifiable because the concrete
solutions they have been abstracted from are not traceable
(“pattern provenance”) and second the patterns document

abstracted knowledge, therefore manual effort and specific
knowledge is needed to apply them to concrete problems.

Another problem occurs if multiple patterns have to be
combined to create a concrete solution. Pattern languages
tackle the problem of aggregating patterns to solve overall
problems. As shown by Zdun [9], this can be supported by
defining relationships between patterns within a pattern
language, which assure that connected patterns match
together semantically, i.e., that they are composable
regarding their solutions. This means that patterns can be
used as composable building blocks to create overall
solutions. Once patterns are composed to create overall
solutions the problem arises that concrete solutions have to
be feasible in the context of concrete problem situations.
Referring to the former mentioned example of a PHP
developer, the overall concrete solution, consisting of the
concrete solutions of the composed patterns, has to be
elaborated that it complies with the constraints defined by
the programming language PHP. So, the complexity of
creating concrete solutions from composed patterns
increases with the number of aggregated solutions, since
integration efforts add to the efforts of elaborating each
individual solution. Thus, to summarize the discussion
above, we need a means to improve the required refinement
from a pattern’s abstract solution description to directly
applicable concrete solutions and their composition.

III. RELATED WORK
Patterns are human readable artifacts, which combine

problem knowledge with generic solution knowledge. The
template documenting a pattern contains solution sections
presenting solution knowledge as ordinary text [2][19][13].
This kind of solution representation contains the general
principle and core of a solution in an abstract way. Common
solution sections of patterns do not reflect concrete solution
instances of the pattern. They just act like manuals to support
a reader at implementing a solution proper for his issues.

Iterative pattern formulation approaches as shown by
Reiners et al. [6] and Falkenthal et al. [5] can enable that
concrete solution knowledge is used to formulate patterns.
Patterns are not just final artifacts but are formulated based
on initial ideas in an iterative process to finally reach the
status of a pattern. Nevertheless, in these approaches
concrete solution knowledge only supports the formulation
process of patterns but is not stored explicitly to get reused
when a pattern is applied.

Porter et al. [15] have shown that selecting patterns from
a pattern language is a question of temporal ordering of the
selected patterns. They show that combinations and
aggregations of patterns rely on the order in which the
patterns have to be applied. This leads to so called pattern
sequences which are partially ordered sets of patterns
reflecting the temporal order of pattern application. This
approach focuses on combinability of patterns, but not on the
combinability of concrete solutions.

Many pattern collections and pattern languages are stored
in digital pattern repositories such as presented by

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 21 / 107

Fehling [4], van Heesch [7] and Reiners [3]. Although these
repositories support readers in navigating through the
patterns they do not link concrete solutions to the patterns.
Therefore, readers have to manually recreate concrete
solutions each time when they want to apply a pattern.

Zdun [9] shows that pattern languages can be represented
as graphs with weighted edges. Patterns are the nodes of the
graph and edges are relationships between the patterns. The
weights of the edges represent the semantics of the
relationships as well as the effects of a pattern on the
resulting context of a pattern. These effects are called goals
and reflect the influence of a pattern on the quality attributes
of software architectures. While this approach helps to select
proper pattern sequences from a pattern language it does not
enable to find concrete solutions and connect them together.

Demirköprü [8] shows that Hoare logic can be applied to
patterns and pattern languages such that patterns are getting
enriched by preconditions and postconditions. By
considering this conditions, pattern sequences can be
connected into aggregates respectively compositions of
patterns where preconditions of the first pattern of the
sequence are the preconditions of the aggregate and
postconditions of the last pattern in the sequence are
accordingly the postconditions of the aggregate. This
approach also only tackles aggregation of patterns without
considering concrete solutions.

Fehling et al. [31][33] show that their structure of cloud
computing patterns can be extended to annotate patterns with
additional implementation artifacts. Those artifacts can
represent instantiations of a pattern on a concrete cloud
platform. Considering those annotations, developers can be
guided through configurations of runtime environments.
Although patterns can be annotated with concrete
implementation artifacts, this approach is only described in
the domain of cloud computing and does not introduce a
means to ease pattern usage and refinement in general.

IV. SOLUTION IMPLEMENTATIONS: BUILDING BLOCKS
FOR APPLYING AND AGGREGATING CONCRETE SOLUTIONS

FROM PATTERNS
In the section above, we summarized the state of the art and
identify that (i) concrete solutions are not connected to
patterns and that (ii) there are no approaches dealing with
the aggregation of concrete solutions if multiple patterns
have to be applied together. Even though there are
approaches to derive patterns from concrete solution
knowledge iteratively [5][6], concrete solutions are not
stored altogether with the actual patterns nor are they linked
to them. Concrete solutions, thus, cannot be retrieved from
patterns without the need to work them out manually over
and over again for the same kind of use cases. Therefore, we
propose an approach that (i) defines concrete, implemented
solution knowledge as reusable building blocks, (ii) that
links these concrete solutions to patterns, and (iii) enables
the composition of concrete solutions.

A. Solution Implementations
We argue that concrete solutions are lost during the

pattern writing process since patterns capture general core
solution principles in a technology and implementation
agnostic way. In addition, applications of patterns to form
new concrete solutions are not documented in a way that
enables reusing the knowledge of refinement. As a result,
the details of the concrete solutions are abstracted away and
must be worked out again when a pattern has to be applied
to similar use cases. Thus, the benefits of patterns in the
form of abstractions lead to effort when using them due to
the missing information of concrete realizations. We suggest
keeping concrete solutions linked to patterns in order to ease
pattern application and enable implementing new concrete
solutions for similar use cases based on existing, already
refined, knowledge. These linked solutions can be, for
example, (i) the concrete solutions which were considered
initially to abstract the knowledge into a pattern, (ii) later
applications of the pattern to build new concrete solutions,
or (iii) concrete solutions that were explicitly developed to
ease applying the pattern.

Concrete solutions, which we call Solution
Implementations (SI), are building blocks of concrete
solution knowledge. Therefore, Solution Implementations
describe concrete solution knowledge that can be reused
directly. For example, in the domain of software
development, Solution Implementations provide code,
which can be used directly in the development of an own
application. For example, a PHP developer faced with the
problem to implement the Gang of Four Pattern MVC [19]
in an application can reuse a Solution Implementation of the
MVC pattern written in PHP code. Especially, patterns may
provide multiple different Solution Implementations – each
optimized for a special context and requirements. So, there
could be a specific MVC Solution Implementation for PHP4
and another for PHP5, each one considering the
programming concepts of the specific PHP version. Another
Solution Implementation could provide a concrete solution
of the MVC pattern implemented in Java. So, in this case
also a Java developer could reuse a concrete MVC solution
to save implementation efforts.

By connecting Solution Implementations to patterns,
users do not have to redesign and recreate each solution
every time a pattern is applied. The introduced Solution
Implementations provide a powerful means to capture
existing fine-grained knowledge linked to the abstract
knowledge provided by patterns. So, users can look at the
connected Solution Implementations once a pattern is
selected and reuse them directly. To distinguish between
pattern’s abstract solutions and Solution Implementations,
we point out that the solution section of patterns describes
the core solution principles in text format and the Solution
Implementations represent the real solution objects – which
may be in different formats (often depending on the problem
domain), e.g., executable code in software development or
real clothes in the domain of costumes. Thus, while patterns

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 22 / 107

are documented commonly in natural text, their Solution
Implementations depend mainly on the domain of the
pattern language and can occur in various forms. Since
many specific Solution Implementations can be linked to a
pattern, we need a means to select proper Solution
Implementations of the pattern to be applied.

B. Selection of Solution Implementations from Patterns
Once a user selects a pattern, he is faced with the

problem to decide which Solution Implementation solves
his problem in his context properly. To enable selecting
proper Solution Implementations of a pattern we introduce
Selection Criteria (sc), which determine when to use a
certain Solution Implementation. The concept of keeping
Solution Implementations linked to the corresponding
pattern and supporting the selection of a proper Solution
Implementation is shown in Figure 1. Selection Criteria are
added to relations between Solution Implementations and
patterns. Selection Criteria may be human readable or
software interpretable descriptions of when to select a
Solution Implementation. They provide a means to guide
the selection using additional meta-information not present
in the Solution Implementation itself.

To exemplify the concept, we give an example of
Solution Implementations from the domain of architecture.
In this domain addressed by Christopher Alexander [1][2], a
Solution Implementation would be, e.g., a real entrance of a
building or a specific room layout of a real floor, which are
described in detail and linked to the corresponding
pattern [1][2]. To find the most appropriate Solution
Implementation for a particular use case, Selection Criteria
such as the cost of the architectural Solution Implementation
or the choice of used material can be considered. For
example, two Solution Implementations for the pattern
mentioned above that deals with room layouts might differ
in the historical style they are built or by the functional
purpose like living, industrial or office, etc. Thus, based on
such criteria, the refinement of a pattern’s abstract solution
can be configured by specifying desired requirements and
constraints.

To summarize the concept of Solution Implementations
it has to be pointed out that solutions in the domain of
patterns are abstract descriptions that are agnostic to

concrete implementations and written in ordinary text to
support readers. In contrast to this abstract description, we
grasp Solution Implementations as fine-grained artifacts,
which provide concrete implementation information for
particular use cases of a pattern. Solution Implementations
are linked to patterns where Selection Criteria are added to
the relation between the pattern and the Solution
Implementation to guide pattern users during the selection
of Solution Implementations.

C. Aggregation of Solution Implementations
The concepts of Solution Implementations and Selection

Criteria enable to reuse concrete solutions, which are linked
to patterns. But most often problems have to be solved by
combining multiple patterns. Therefore, we also need a
means to combine Solution Implementations of patterns to
solve an overall problem altogether. For this purpose,
Solution Implementations connected to patterns can have
additional interrelations with other Solution
Implementations of other patterns affecting their
composability. For example, Solution Implementations in
the domain of software development are possibly
implemented in different programming languages.
Therefore, there may exist various Solution
Implementations for one pattern in different programming
languages, remembering the above example of the PHP and
Java Solution Implementations of the MVC pattern. To be
combined, both Solution Implementations often have to be
implemented in the same programming language.

This leads to the research question “How to compose
Solution Implementations selected from multiple patterns
into a composed Solution Implementation?”

Patterns are often stored and organized in digital pattern
repositories. These repositories, such as presented by
Fehling [4], van Heesch [7] and Reiners [3], support users in
searching for relevant patterns and navigating through the
whole collection of patterns, respectively a pattern language
formed by the relations between patterns. To support
navigation through pattern languages, these relations can be
formulated at the level of patterns indicating that some
patterns can be “combined” into working composite
solutions, some patterns are “alternatives”, some patterns
can only be “applied in the context of” other patterns etc.
Zdun [9] has shown that pattern languages can be
formalized to enable automated navigation through pattern
languages based upon semantic and quality goal constraints
reflecting a pattern’s effect once it is applied. This also
enables combining multiple patterns based on the defined
semantics. The approach supports the reader of a pattern
language to select proper pattern sequences for solving
complex problems that require the application of multiple
patterns at once. But, once there are Solution
Implementations linked to patterns this leads to the
requirement to not only compose patterns but also their
concrete Solution Implementations into overall solutions.

Figure 1. Solution Implementations (SI) connected to a pattern (P)
are selectable under consideration of defined Selection Criteria (sc).

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 23 / 107

We extend the approach of Zdun to solve the problem of
selecting appropriate patterns to also select and aggregate
appropriate Solution Implementations along the selected
sequence of patterns.
To assure that Solution Implementations are building blocks
composable with each other, we introduce the concept of an
Aggregation Operator, as depicted in Figure 2. The
Aggregation Operator is the connector between several
Solution Implementations. Solution Implementations can
just be aggregated if a proper Aggregation Operator
implements the necessary adaptations to get two Solution
Implementations to work together. Adaptions may be
necessary to assure that Solution Implementations match
together based on their preconditions and postconditions.
Preconditions and postconditions are functional and
technical dependencies, which have to be fulfilled for
Solution Implementations. In Figure 2., the three patterns
P!, P!!and P!!! show a sequence of patterns, which can be
selected through the approach of Zdun considering
semantics (s) of the relations, goals (g) of the patterns and
further weights. Solution Implementations are linked with
the patterns and can be selected according to the Selection
Criteria introduced in the section above. Furthermore, there
are two Solution Implementations associated with pattern P!
but only Solution Implementation SI!"! can be aggregated
with Solution Implementation SI!""! of the succeeding
pattern P!! due to the Aggregation Operator between those
two Solution Implementations. There is no Aggregation
Operator implemented for SI!"! , so that it cannot be
aggregated with SI!""! , but, nevertheless, it is a working
concrete solution of P! . So, in the scenario depicted in
Figure 2 an Aggregation Operator has to be available to
aggregate SI!"! and SI!""!.

In general, Aggregation Operators have to be available
to compose Solution Implementations for complex problems
requiring the application of multiple patterns. Solution
Implementations aggregated with such an operator are
concrete implementations of the aggregation of the selected
patterns. Aggregated Solution Implementations are,
therefore, concrete building blocks solving problems
addressed by a pattern language.

Aggregation Operators depend on the connected
Solution Implementations, i.e., they are context-dependent

due to the context of the Solution Implementations. In
contrast to the context section of a pattern, which is used
together with the problem section to describe the
circumstances when a pattern can be applied, the Solution
Implementations’ context is more specific in terms of the
concrete solution. For example, if an Aggregation Operator
shall connect two Solution Implementations consisting of
concrete PHP code, the operator itself could also be
concrete PHP code wrapping functionality from both
Solution Implementations. If the Solution Implementations
to aggregate are Java class files, e.g., an Aggregation
Operator could resolve their dependencies on other class
files or libraries and load all dependencies. Afterwards it
could configure the components to properly work together
and execute them in a Java runtime. Thus, an Aggregation
Operator composes and adapts multiple Solution
Implementations considering their contexts. Another
example on how the Aggregation Operators can be used in
very different domains is an example of the domain of
costumes in films. When dressing the characters of a
western movie usually the sheriff costume pattern and the
outlaw costume pattern need to be applied. But there are
numerous Solution Implementations of these patterns in
terms of concrete sheriff and outlaw costumes, e.g., for
different historical time periods. To make sure the costumes
of the sheriff and outlaw match together, an Aggregation
Operator, for example, can ensure that certain Solution
Implementations originate from the same time period or the
same country and can be used together in one movie.
Further the Aggregation Operator adapts Solution
Implementations to suit to the settings of a scene in a film,
i.e., by adapting the color of the costumes. Thus, the
costumes’ Solution Implementations are aggregated to solve
a problem in combination. Those examples show that
Solution Implementations of patterns from different
domains have to be aggregated using specific Aggregation
Operators. Since different pattern languages deal with
different contexts, they can contain different Aggregation
Operators to compose Solution Implementations.

V. VALIDATION
To validate the proposed concept of Solution
Implementations, this section explains the application of

Figure 2. Aggregating Solution Implementations (SI) along the sequence of selected patterns (P).

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 24 / 107

Solution Implementations in the domains of cloud
application architecture and cloud management.

A. Deriving Solution Implementations in the Domain of
Cloud Application Architecture
To explain the concept of Solution Implementations in

the domain of cloud computing patterns, the example
depicted in Figure 3 shows the three patterns stateless
component, stateful component, and elastic load balancer
from the pattern language and pattern catalogue of Fehling
et al. [10][31]. The stateless component and stateful
component patterns describe how an application component
can handle state information. They both differentiate
between session state – the state with the user interaction
within the application and application state – the data
handled by the application, for example, customer addresses
etc. While the stateful component pattern describes how this
state can be handled by the component itself and possibly be
replicated among multiple component instances, the
stateless component pattern describes how state information
is kept externally of the component implementation to be
provided with each user request or to be handled in other
data storage offerings. The elastic load balancer pattern
describes how application components can be scaled out:
their performance is increased or decreased through addition
or removal of component instances, respectively. Decisions
on how many component instances are required are made by
monitoring the amount of synchronous requests to the
managed application components. The elastic load balancer
pattern is related to both of the other depicted patterns as it
conceptually describes how to scale out stateful components
and stateless components: while stateless components can
be added and removed rather easily, internal state may have
to be extracted from stateful components upon removal or
synchronized with new instances upon addition.

As depicted in Figure 3, the stateless component and
stateful component pattern both provide Solution
Implementations, which implement these patterns for Java
web applications packaged in the web archive (WAR)
format that are hosted on Amazon Elastic Beanstalk [21]
which is part of Amazon Web Services (AWS) [30]. The
elastic load balancer has three Solution Implementations
implementing the described management functionality for
stateful components and stateless components for WAR-
based applications on Amazon Elastic Beanstalk and
Microsoft Azure [22]. The Selection Criteria “WAR is
deployed on Microsoft Azure” respectively “WAR is
deployed on Elastic Beanstalk” support the user to choose
the proper Solution Implementation. For example, if SI2 is
selected the user knows that this results in a concrete load
balancer in the form of a deployed WAR file on Elastic
Beanstalk. Since a load balancer scales components, it needs
concrete instances of either stateless component or stateful
component to work with. Thus, the user can select a proper
Solution Implementation for the components based on his
concrete requirements considering the Selection Criteria of
the relations between the patterns stateless component and
stateful component and their Solution Implementations. To
assure that Solution Implementations are composable, i.e.,
that they properly work together, they refine and enrich the
pattern relationships to formulate preconditions respectively
postconditions on the Solution Implementation layer. The
preconditions and postconditions of the elastic load balancer
Solution Implementations, therefore, capture which related
pattern – stateless component or stateful component – they
expect to be implemented by managed components.
Furthermore, they capture the supported deployment
package – WAR in this example – and runtime environment
for which they have been developed: SI3.1 of stateless
component has the postcondition “WAR on Elastic

Figure 3. Solution Implementations in the domain of cloud application architecture linked to patterns and aggregated by Aggregation Operators.

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 25 / 107

"MyLB" : {
 "Type" : "AWS::ElasticLoadBalancing::LoadBalancer",
 "Properties" : {
 "Listeners" : [{
 "LoadBalancerPort" : "80",
 "InstancePort" : "80",
 "Protocol" : "HTTP"
 }],
 }
},
"MyCfg" : {
 "Type" : "AWS::AutoScaling::LaunchConfiguration",
 "Properties" : {
 "ImageId" : { "ami-statelessComponent" },
 "InstanceType" : { "m1.large" },
 }
},
"MyAutoscalingGroup" : {
 "Type" : "AWS::AutoScaling::AutoScalingGroup",
 "Properties" : {
 …
 "LaunchConfigurationName" : { "Ref" : "MyCfg"},
 "LoadBalancerNames" : [{ "Ref" : "MyLB" }]
 …
 }
}

Beanstalk” while SI1.2 of elastic load balancer is enriched
with the precondition “WAR on Elastic Beanstalk” and SI1.1
with “WAR on Azure”. The previously introduced
Aggregation Operator interprets these dependencies and, for
example, composes SI3.1 and SI1.2. During this task, the
configuration parameters of the solutions are adjusted by the
operator, i.e., the elastic load balancer is configured with the
address of the stateless component to be managed. As some
of this information may only become known after the
deployment of a component, the configuration may also be
handled during the deployment.

Following, this example is concretely demonstrated by
an AWS Cloud Formation template [28] generated by the
Aggregation Operator in Listing 1. An AWS Cloud
Formation template is a configuration file, readable and
processable by the AWS Cloud to automatically provision
and configure cloud resources. For the sake of simplicity the
depicted template in Listing 1 shows only the relevant parts
of the template, which are adapted by the Aggregation
Operator. To run the example scenario on AWS, three parts
are needed within the AWS Cloud Formation template to
reflect the aggregation of SI3.1 and SI1.2: (i) an elastic load
balancer (MyLB), which is able to scale components, (ii) a
launch configuration (MyCfg), which provides
configuration parameters about an Amazon Machine Image

(AMI) containing the implementation of stateless
component as well as a runtime to execute the component in
the form of an AWS Elastic Compute Cloud (EC2) [32]
instance and, (iii) an autoscaling group
(MyAutoscalingGroup) to define scaling parameters used by
the elastic load balancer and the wiring of the elastic load
balancer and the launch configuration.

MyLB defines an AWS elastic load balancer for scaling
Hypertext Transfer Protocol (HTTP) requests on port 80.
Further, MyCfg defines the AMI ami-statelessComponent in
the property ImageId, which is used for provisioning new
instances by an elastic load balancer. The autoscaling group
MyAutoscalingGroup wires the elastic load balancer and the
stateless component instances by means of referencing the
properties LoadBalancerNames and
LaunchConfigurationName to MyLB and MyCfg,
respectively. Since all the mentioned properties are in
charge of enabling an elastic load balancer instance to
automatically scale and load balance instances of
components contained in an AMI, an Aggregation Operator
can dynamically adapt those properties based on the
selected Solution Implementations to be aggregated. So,
presuming that ami-statelessComponent contains an
implementation of SI3.1, an Aggregation Operator can
aggregate SI3.1 and SI1.2 by adapting the mentioned
properties and, therefore, provides an executable
configuration template for AWS Cloud Formation. The
same principles can be applied to aggregate SI1.3 and SI2.1
because of their matching preconditions and postconditions.
By adapting the ImageId of the LaunchConfiguration to an
AMI, which runs an AWS EC2 instance with a deployed
stateful component, the Aggregation Operator can aggregate
SI1.3 and SI2.1.

Further, SI1.1 has precondition “WAR on Azure” and is,
therefore, incompatible with SI2.1 and SI3.1, i.e., SI1.1 cannot
be combined with these Solution Implementations due to
their preconditions and postconditions. The selection of a
Solution Implementation, therefore, may restrict the number
of matching Solution Implementations of the succeeding
pattern since postconditions of the first Solution
Implementation have to match with preconditions of the
second. This way, the space of concrete solutions is reduced
based on the resulting constraints of a selected Solution
Implementation. To elaborate a solution to a overall
problem described by a sequence of patterns exactly one
Solution Implementation has to be selected for each pattern
in the sequence considering its selection criteria to match
non-functional requirements, as well as postconditions of
the former Solution Implementation.

B. Deriving Solution Implementations in the Domain of
Cloud Application Management
In this section, we show how the presented approach can

be applied in the domain of cloud application management.
Therefore, we describe how applying management patterns
introduced in [10][29] to cloud applications can be supported

Listing 1. Extract from AWS Cloud Formation template produced by an
Aggregation Operator to aggregate configuration snippets to aggregate

elastic load balancer and stateless component.

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 26 / 107

by reusing and aggregating predefined Solution
Implementations in the form of executable management
workflows.

In the domain of cloud application management,
applying the concept of patterns is quite difficult as the
refinement of a pattern’s abstract solution to an executable
management workflow for a certain use case is a complex
challenge: (i) mapping abstract conceptual solutions to
concrete technologies, (ii) handling the technical complexity
of integrating different heterogeneous management APIs of
different providers and technologies, (iii) ensuring non-
functional cloud properties, (iv) and the mainly remote
execution of management tasks lead to immense technical
complexity and effort when refining a pattern in this domain.
The presented approach of Solution Implementations enables
to provide completely refined solutions in the form of
executable management workflows that already consider all
these aspects. Thus, if they are linked with the corresponding
pattern, they can be selected and executed directly without
further adaptations. This reduces the (i) required
management knowledge and (ii) manual effort to apply a
management pattern significantly. To apply the concept of
Solution Implementations to this domain, two issues must be
considered: (i) selection and (ii) aggregation of Solution
Implementations in the form of management workflows.

To tackle these issues, we employ the concept of
management planlets, which was introduced in our former
research on cloud application management automation [24].
Management planlets are generic management building
blocks in the form of workflows that implement management
tasks such as installing a web server, updating an operating

system, or creating a database backup. Each planlet exposes
its functionality through a formal specification of its effects
on components, i.e., its postconditions, and defines optional
preconditions that must be fulfilled to execute the planlet.
Therefore, each specific precondition of a planlet must be
fulfilled by postconditions of other planlets. Thus, planlets
can be combined to implement a more sophisticated
management task, such as scaling an application. If two or
more planlets are combined, the result is a composite
management planlet (CMP), which can be recursively
combined with other planlets again: the CMP inherits all
postconditions of the orchestrated planlets and exposes all
their preconditions, which are not fulfilled already by the
other employed planlets. Thus, management planlets provide
a recursive aggregation model to implement management
workflows. Based on these characteristics, management
planlets are ideally suited to implement management patterns
in the form of concrete Solution Implementations. We create
Solution Implementations, which implement a pattern’s
refinement for a certain use case by orchestrating several
management planlets to an overall composite management
planlet that implements the required functionality in a
modular fashion as depicted in Figure 4.

As stated above, selection and aggregation of Solution
Implementations must be considered, the latter if multiple
patterns are applied together. For example, Figure 4 shows
two management patterns: (i) forklift migration [29] –
application functionality is migrated with allowing some
downtime and (ii) elasticity management process [10] –
application functionality is scaled based on experienced
workload. Both patterns are linked to two Solution

Figure 4. Management Planlets are Solution Implementations in the domain of cloud management linked to patterns and aggregated
by an Aggregation Operator.

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 27 / 107

Implementations each in the form of composite management
planlets. The forklift migration pattern provides two Solution
Implementations: one migrates a Java-based web application
(packaged as WAR file) to Microsoft Azure [22], another to
Amazon Elastic Beanstalk [21]. Thus, if the user selects this
pattern and chooses the Selection Criteria defining that a
WAR application shall be migrated to Elastic Beanstalk, SI1.2
is selected. Whether this Solution Implementation is
applicable at all depends on the context: if the application to
be migrated is a WAR application, then the Solution
Implementation is appropriate. Equally to this pattern, the
elasticity management process pattern shown in Figure 4
provides two Solution Implementations: one provides
executable workflow logic for scaling a WAR application on
Elastic Beanstalk (SI2.1). Thus, if these two patterns are
applied together, the selection of SI1.2 restricts the possible
Solution Implementations of the second pattern, as only SI2.1
is applicable (its preconditions match the postconditions of
SI1.2). As a result, the selection of appropriate Solution
Implementations can be reduced to the problem of (i)
matching Selection Criteria to postconditions of Solution
Implementations and (ii) matching preconditions and
postconditions of different Solution Implementations to be
combined.

After Solution Implementations of different patterns have
been selected, the second issue of aggregation has to be
tackled to combine multiple Solution Implementations in the
form of workflows into an overall management workflow
that incorporates all functionalities. Therefore, we implement
a single Aggregation Operator for this pattern language as
described in the following: to combine multiple Solution
Implementations, the operator integrates the corresponding
workflows as subworkflows [27]. The control flow, which
defines the order of the Solution Implementations, i.e., the
subworkflows, is determined based on the patterns’ solution
path depicted in Figure 2. So in general, if a pattern is
applied before another pattern, also their corresponding
Solution Implementations are applied in this order.

VI. SOLUTION IMPLEMENTATIONS PROTOTYPE
To prove the approach’s technical feasibility, we

implemented a prototype. That consists of two integrated
components: (i) a pattern repository and (ii) a workflow
generator. The pattern repository aims to capture patterns
and their cross-references in a domain-independent way to
support working with patterns. Based on semantic wiki-
technology [11] it enables capturing, management and search
of patterns. To adapt to different pattern domains, the pattern
format is freely configurable. The pattern repository already
contains various patterns from different domains like cloud
computing patterns, data patterns and costume patterns to
demonstrate the genericity of our approach. The cross-
references between the patterns enable an easy navigation
through the pattern languages. Links like “apply after” or
“combined with” supports to connect the patterns to result in
a pattern language. The pattern repository does not only
contain the patterns and their cross-references but can be
connected to a second repository containing the solution
implementations of these patterns. Also, based on semantic

wiki-technology we implemented a Solution Implementation
repository for the domain of costume patterns [14]. Here, for
example, the concrete costumes of a sheriff occurring in a
film can be understood as the Solution Implementation of a
sheriff costume pattern. By connecting the pattern to a
Solution Implementation as a concrete solution of the
abstracted solution of the pattern the application of the
pattern in a certain context is facilitated.

The combination of several concrete Solution
Implementations has been prototyped for the domain of
cloud management patterns. A workflow generator has been
built that is used to combine different management planlets
to an overall workflow implementing a solution to a problem
that requires the use of multiple patterns. The input for this
generator is a partial order of (composite) management
planlets, i.e., Solution Implementations that have to be
orchestrated into an executable workflow. This partial order
is determined by the relations of combined patterns: if one
pattern is applied after another pattern, also their Solution
Implementations, i.e., management planlets, have to be
executed in this order. The workflow generator creates
BPEL-workflows while management planlets are also
implemented using BPEL. As BPEL is a standardized
workflow language, the resulting management plans are
portable across different engines and cloud environments
supporting BPEL as workflow language, which is in line
with TOSCA [25][26].

VII. CONCLUSION AND FUTURE WORK
In this paper, we introduced the concept of Solution

Implementations as concrete instances of a pattern’s solution.
We showed how patterns and pattern languages can be
enriched by Solution Implementations and how this approach
can be integrated into a pattern repository. To derive
concrete solutions for problems that require the application
of several patterns we proposed a mechanism to compose
these solutions from concrete solutions of the required
patterns by means of operators. We concretized the general
concept of Solution Implementations in the domain of cloud
management by introducing management planlets as
examples for Solution Implementations. We verified the
approach by means of a prototype of an integrated pattern
repository and workflow generator.

Currently, we extend the implemented repository for
solution knowledge in the domain of costume design to
capture Solution Implementations more efficiently. This
repository integrates patterns and linked Solution
Implementations in this domain and we are going to enlarge
the amount of costume Solution Implementations. We are
also going to tackle the limitation of the presented approach
to not only work on solution implementation sequences but
also on aggregations of concrete solution instances not
ordered temporally due to pattern sequences. Since Solution
Implementations are composed by Aggregation Operators
we are going to enhance our pattern repositories to also store
and manage the Aggregation Operators. Finally, we will
investigate Aggregation Operators in domains, besides the
above mentioned to formulate a general theory of Solution
Implementations and Aggregation Operators.

20Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 28 / 107

REFERENCES
[1] C. Alexander, “The timeless way of building,” Oxford

University Press, 1979.
[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I.

Fiksdahl-King, and S. Angel, “A pattern language: towns,
buildings, constructions,” Oxford University Press, 1977.

[3] R. Reiners, Bridge Pattern Library, http://bridge-pattern-
library.fit.fraunhofer.de/pattern-library/, last accessed on
2014.01.30.

[4] C. Fehling, F. Leymann, R. Mietzner, and W. Schupeck, “A
collection of patterns for cloud types, cloud service models,
and cloud-based application architectures,”
http://www.cloudcomputingpatterns.org, last accessed on
2014.01.30, University of Stuttgart, Report 2011/05, Mai
2011.

[5] M. Falkenthal, D. Jugel, A. Zimmermann, R. Reiners, W.
Reimann, and M. Pretz, “Maturity assessments of service-
oriented enterprise architectures with iterative pattern
refinement,” Lecture Notes in Informatics - Informatik 2012,
September 2012, pp. 1095–1101.

[6] R. Reiners, “A pattern evolution process – from ideas to
patterns,” Lecture Notes in Informatics – Informatiktage
2012, March 2012, pp. 115–118.

[7] U. van Heesch, Open Pattern Repository,
http://www.patternrepository.com, last accessed on
2014.01.30.

[8] M. Demirköprü, “A new cloud data pattern language to
support the migration of the data layer to the cloud,” in
German “Eine neue Cloud-Data-Pattern-Sprache zur
Unterstützung der Migration der Datenschicht in die Cloud,”
University of Stuttgart, diploma thesis no. 3474, 2013.

[9] U. Zdun, “Systematic pattern selection using pattern language
grammars and design space analysis,” Software: Practice and
Experience, vol. 37, 2007, pp. 983–1016.

[10] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P.
Arbitter, “Cloud computing patterns,” Springer, 2014.

[11] N. Fürst, “Semantic wiki for capturing design patterns,” in
German “Semantisches Wiki zur Erfassung von Design-
Patterns,” University of Stuttgart, diploma thesis no. 3527,
2013.

[12] G. Hohpe and B. Wolf, “Enterprise integration patterns:
designing, building, and deploying,” Addison-Wesley, 2004.

[13] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, “Pattern-oriented software architecture volume 1: a
system of patterns,” Wiley, 1996.

[14] D. Kaupp, “Application of semantic wikis for solution
documentation and pattern identification,” in German
“Verwendung von semantischen Wikis zur
Lösungsdokumentation und Musteridentifikation,” University
of Stuttgart, diploma thesis no. 3406, 2013.

[15] R. Porter, J. O. Coplien, and T. Winn, “Sequences as a basis
for pattern language composition,” in Science of Computer
Programming, Special issue on new software composition
concepts, vol. 56, April 2005, pp. 231–249.

[16] F. Salustri, “Using pattern languages in design engineering,”
Proceedings of the International Conference on Engineering
Design, August 2005, pp. 248–362.

[17] D. Schumm, J. Barzen, F. Leymann, and L. Ellrich, “A
pattern language for costumes in films,” Proceedings of the

17th European Conference on Pattern Languages of Programs
(EuroPLoP), July 2012, pp. C4-1–C4-30.

[18] T. Iba, T. Miyake, “Learning patterns: a pattern language for
creative learners II,” Proceedings of the 1st Asian Conference
on Pattern Languages of Programs (AsianPLoP 2010), March
2010, pp. I-41 – I-58.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
patterns: elements of reusable object-oriented software,”
Addison-Wesley, 1995.

[20] M. Fowler, “Patterns of enterprise application architecture,”
Addison-Wesley, 2003.

[21] Amazon, Elastic Beanstalk,
http://www.amazon.com/elasticbeanstalk, last accessed on
2014.01.30.

[22] Microsoft, Microsoft Azure, http://www.windowsazure.com,
last accessed on 2014.01.30.

[23] C. Fehling, F. Leymann, R. Retter, D. Schumm, and W.
Schupeck, “An architectural pattern language of cloud-based
applications”, Proceedings of the 18th Conference on Pattern
Languages of Programs (PLoP), October 2011, pp. A-20–A-
30.

[24] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann,
“Pattern-based runtime management of composite cloud
applications”, Proceedings of the 3rd International
Conference on Cloud Computing and Service Science
(CLOSER), May 2013, pp. 475–482.

[25] OASIS, Topology and Orchestration Specification for Cloud
Applications Version 1.0, http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html, last
accessed on 2014.01.30.

[26] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann,
“TOSCA: portable automated deployment and management
of cloud applications,” in Advanced Webservices, A.
Bouguettaya, Q. Z. Sheng, F. Daniel, Eds., Springer, 2014,
pp. 527–549.

[27] O. Kopp, H. Eberle, and F. Leymann, “The subprocess
spectrum”, Proceedings of the 3rd Business Process and
Services Computing Conference (BPSC), September 2010,
pp. 267–279.

[28] Amazon, AWS Cloud Formation,
http://aws.amazon.com/cloudformation/, last accessed on
2014.01.30.

[29] C. Fehling, F. Leymann, S. T. Ruehl, M. Rudek, and S.
Verclas “Service migration patterns – decision support and
best practices for the migration of existing service-based
applications to cloud environments,” Proceedings of the IEEE
International Conference on Service Oriented Computing and
Applications (SOCA), December 2013, in press.

[30] Amazon, Amazon Web Services, http://aws.amazon.com, last
accessed on 2014.01.30.

[31] C. Fehling, F. Leymann, J. Rütschlin, D. Schumm, “Pattern-
based development and management of cloud applications,”
Future Internet, vol. 4, 2012, pp. 110–141.

[32] Amazon, AWS EC2, http://aws.amazon.com/de/ec2/, last
accessed on 2014.04.10.

[33] C. Fehling, F. Leymann, R. Retter, D. Schumm, W.
Schupeck, “An architectural pattern language of cloud-based
applications,” Proceesings of the 18th Conference on Pattern
Languages of Programs (PLoP), Oct. 2011, pp. A-20 – A-21

21Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 29 / 107

Reconfiguration Patterns for Goal-Oriented
Monitoring Adaptation

Antoine Toueir, Julien Broisin, Michelle Sibilla
IRIT, Université Paul Sabatier

Toulouse, France
Email: {toueir,broisin,sibilla}@irit.fr

Abstract—This paper argues that autonomic systems need to
make their distributed monitoring adaptive in order to improve
their “comprehensive” resulting quality; that means both the
Quality of Service (QoS), and the Quality of Information (QoI). In
a previous work, we proposed a methodology to design monitoring
adaptation based on high level objectives related to the manage-
ment of quality requirements. One of the advantages of adopting a
methodological approach is that monitoring reconfiguration will
be conducted through a consistent adaptation logic. However,
eliciting the appropriate quality goals remains an area to be
investigated. In this paper, we tackle this issue by proposing
some monitoring adaptation patterns falling into reconfiguration
dimensions. Those patterns aim at facilitating the adaptation
design of monitoring behavior of the whole set of distributed
monitoring modules part of autonomic systems. The utility of
those patterns is illustrated through a case-study dealing with
monitoring adaptation based on high level quality objectives.

Keywords–Quality requirements; adaptive monitoring; auto-
nomic systems; goal-oriented adaptation.

I. INTRODUCTION

Autonomic systems that are implemented by virtue of their
four characteristics self-configuration, self-optimization, self-
healing and self-protection, are serving the ultimate objective
of making them self-managed to achieve high level objectives
[1]. These objectives are strongly related to the quality level
provided by autonomic systems. When large and complex sys-
tems are targeted, the self-management characteristic (self-*) is
a key issue to deal with. Basically, self-management is thought
as the auto-adaptation capability that brings the system to reach
an absolute or preferable state. Concretely, the four self-*
characteristics are realized by implementing the Monitoring,
Analyzing, Planning, Executing - Knowledge (MAPE-K) loop
modules. This implementation is either embedded within a
resource, or distributed over several resources.

In MAPE-K loop, the monitoring module plays a crucial
role, since wrong decisions might be taken by the analyzing
& planning modules. Therefore, autonomic systems need to
ensure the quality of information (e.g., correctness, freshness,
timeliness, accuracy, etc.) exposed by the distributed monitor-
ing modules. Moreover, within autonomic systems, monitoring
is usually QoS-oriented. Thus, the services implemented by the
functional system must respect the required QoS level that is
determined through the Service Level Agreements (SLAs) that
have been agreed with clients. Since the management system
(managing the functional system) could provide the possibility
to renegotiate or modify the QoS specification afterward, the

monitoring system has to adapt its behavior according to these
new requirements and constraints.

To summarize, the monitoring of autonomic systems has to
be capable of configuring the underlying mechanisms carrying
the monitoring functions (e.g., measuring, gathering, calculat-
ing, evaluating, filtering, etc.) starting from QoS specification,
as well as reconfiguring those mechanisms based on quality
requirements.

Most of the time, reconfiguration is held through ad-hoc
logic (proposing solutions for particular scenarios dealing with
specific issues). But, this approach is not suitable for reuse
in other scenarios, and it also does not satisfy high level
objectives extended over the whole scale of the autonomic
system. To overcome these issues, we adopted a Requirements
Engineering methodology to design monitoring adaptation; it
starts from high level goals, and ends up with the configuration
of monitoring mechanisms [2].

Right now, the key question is: how to identify goals
representing the ”starting point” for deriving monitoring
(re)configuration? In other words, reconfiguration questions
such as: why to delay launching some monitoring mecha-
nisms? Why to substitute remote agents? How to aggregate
alarms? What determines the monitoring of this set of met-
rics and not another one? Why to exchange metrics among
distributed management entities? This paper deals with these
questions by proposing monitoring adaptation patterns that as-
sist human administrators in designing meaningful adaptations
and thus increase the overall quality of the autonomic systems.

The work presented here relies on both a 3-layered adaptive
monitoring framework [3][4][5] and our goal-oriented adapta-
tion methodology [2]. We pursue this research by focusing on
adaptation patterns dedicated to the identification of high level
goals, together with their refinement. The paper is organized
as follows: the next section gives an overview of the studied
monitoring framework; the monitoring adaptation patterns are
discussed in Section III; and then applied to a case-study in
Section IV; before concluding, Section V enumerates other
monitoring adaptation approaches and points out their weak-
nesses.

II. THE STUDIED ADAPTIVE MONITORING FRAMEWORK

Our approach is based on a 3-layered framework [3][4][5]
illustrated in Figure 1, and defines three fundamental capa-
bilities required to control monitoring: being configurable,
adaptable and governable.

22Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 30 / 107

Figure 1: Adaptation Methodology & Monitoring Framework

The configurability layer relies on the Distributed Man-
agement Task Force (DMTF) Common Information Model
(CIM) standard. In addition to the managed resources, this
low level layer aims at representing the metrics [6] and the
gathering mechanisms [3] that are required to monitor both
the QoS provided by the functional system and the QoI
of the monitoring system itself; this layer deals with both
mechanisms. The adaptability layer provides an interface
encapsulating operations to be applied on the lower layer
models. Thus, the behavior of the underlying monitoring
mechanisms will be reconfigured during runtime by invoking
these operations. Finally, the governability layer is the top
level layer representing the ”intelligence” of the monitor-
ing adaptation. To express the quality requirements, it uses
Event/Condition/Action (ECA) policies to describe when and
how adaptation should take place, that is, in which contexts
those operations of the adaptability layer should be invoked.

We exploit the Requirements Engineering (RE) to propose
monitoring adaptation methodology, and to build configura-
bility and adaptability models [2]. RE iterates activities of
”eliciting, evaluating, documenting, consolidating and chang-
ing the objectives, functionalities, assumptions qualities and
constraints that the system-to-be should meet based on the
opportunities and capabilities provided by new technologies”
[7]. Keep All Objectives Satisfied (KAOS) is adopted as RE
goal-oriented method, due to its formal assertion layer that
proves correctness and completeness of goals [8]. In KAOS,
the system-to-be is divided into various models. Goals Model
determines the objectives to be realized through that system
(e.g., minimizing monitoring cost). Agents Model comprises
the agents (e.g., human automated component) responsible
for realizing the refined elicited goals. Notice that the term
Agents in networks and systems management represents enti-
ties responding to management requests coming from other
management entities called Managers; therefore, the term
Agent in RE has a different meaning. Operations Model deals
with the internal operations to be carried by agents (e.g.,
updating polling period). Object Model identifies the system-
to-be objects (e.g., entities, agent, relationships).

Therefore, based on KAOS, our methodology identifies the

TABLE I: Patterns Refining Achieve Goals (P ⇒ ♦Q)

Pattern Subgoal 1 Subgoal 2 Subgoal 3
Milestone P ⇒ ♦R R ⇒ ♦Q

Case P ∧ P1 ⇒ ♦Q1 P ∧ P2 ⇒ ♦Q2 �(P1 ∨ P2)
Q1 ∨ Q2 ⇒ Q

Guard P ∧ ¬R ⇒ ♦R P ∧ R ⇒ ♦Q P ⇒ PWQ

high level quality objectives the monitoring framework carries
on. By iterating a refinement process, we finally identify what
it is called leaf goals or requirements (see Figure 1). Once
the leaf goals are determined, both policies (to be inserted
into the governability layer) and agents (invoking operations
of the adaptability layer) will be recognized. Thus, monitoring
system adaptation is automatically handled. However, human
administrators have to manually identify the leaf goals accord-
ing to the high level objectives they want to reach. To facilitate
this task, we conducted an investigation about the monitoring
aspects that could be subject to adaptation. As a result, we have
identified various leaf goals belonging to four dimensions (i.e.,
Spatial, Metric, Temporal, Exchange) [2]. Hereafter, in the next
section, we propose monitoring adaptation patterns falling into
those dimensions.

III. MONITORING ADAPTATION PATTERNS

With regard to the refinement process, besides the basic
AND/OR-decompositions, we rely on some predetermined cor-
rect and complete refinement patterns proved mathematically
[9]. Those patterns refine Achieve goals of the form P ⇒ ♦Q
(see Table I), and are written in Linear Temporal Logic (LTL)
classical operators where ♦, � and W mean some time in
the future, always in the future, and always in the future
unless, respectively. Starting from a given goal (P), milestone
pattern identifies one (various) intermediate goal(s) (R, [...])
that must be reached orderly before reaching the ultimate one
(Q). Rather, case pattern identifies the set of different and
complete cases (P1, P2) for reaching final goals (Q1, Q2)
that OR-decompose the ultimate goal (Q). Finally, the guard
pattern requires the recognition of a specific condition (R)
before achieving the ultimate goal (Q).

In order to clarify the exploitation contexts, pattern goals
and requirements, as well as some application situations, our
pattern structure encompasses: context, pattern refinement, and
examples. Notice that we are focusing on adaptation actions
taken at the autonomic manager side only. Thus, investigating
adaptations at the agent side is out of scope. In addition, the
patterns are refined using KAOS graphical language [7].

A. Exchange Dimension Pattern

Context. Relying on IBM blueprint reference architecture
[10], autonomic systems could distribute self-management
(MAPE) loops over multiple collaborating autonomic man-
agers. Each of them is responsible for managing a particular
scope of managed resources. Patterns belonging to this dimen-
sion are useful to overcome metrics gathering/delivering prob-
lems. Those problems could manifest either on metrics values,
reliability of communication between information sources &
destinations, or even on their trustworthiness.

23Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 31 / 107

Figure 2: Exchange Dimension Pattern

Pattern Refinement. Communications inside autonomic
system could be classified according to the entities in-
volved in information exchange (i.e., managers, agents,
shared databases). Therefore, we identify three communication
classes: Manager-2-Agent, Manager-2-Manager, and Manager-
2-Shared Database (see Figure 1). Besides identifying commu-
nication classes, we need to deal with pull & push communi-
cation modes. In pull, the entity needing information solicits
the one possessing it, which responds with the queried infor-
mation; where in push, the entity possessing the information
reports it to other entities. By taking into consideration push
and pull modes, along with previous communications classes,
we use case pattern for the first two refinement levels to cover
all possible cases (see Figure 2).

Based on the triplet 〈 Information Source, Communi-
cation Protocol, Information Destination 〉, the Manager-2-
Agent pull mode will be OR-decomposed into Substitute
Agent and Substitute Protocol leaf goals. Rather, Substi-
tute Protocol and Substitute Destination OR-decompose both
Manager-2-(Manager/Shared DB) push mode. Besides, Acti-
vate/Deactivate Polling & Exporting leaf goals are elicited to
launch and stop polling & exporting.

Notice that in both Manager-2-(Manager/Shared DB) pull
mode communications, the manager responding to requests is
considered as agent (because it is the information source);
therefore, this case becomes identical to Manager-2-Agent
pull mode. Moreover, adaptation actions related to Manager-
2-Agent push mode are not treated because they need to be
held at the agent side.

Examples. This pattern is suitable for the following cases:
(1) Increasing accuracy or precision of pulled/pushed metrics
values, by replacing information source. (2) Querying more
available agents, or blocking fake agents trying to integrate the
distributed management system. (3) Securing the communica-
tion between information sources and destinations. (4) Modi-
fying information destination when changing the topology of
collaborating autonomic managers.

B. Metric Dimension Pattern

Context. The main idea behind building autonomic sys-
tems is to delegate decisions, that human administrators are
used to make, to autonomic systems themselves. Thus, to be

Figure 3: Metric Dimension Pattern

able to make ”wise” decisions, the monitoring system needs to
instrument specific metrics that could be activated/deactivated
according to the management needs during runtime. Patterns
belonging to this dimension are useful to control the trade-
off between constructing more knowledge and monitoring the
information that is necessary for management.

Pattern Refinement. Metric instrumentation must be
thought at the whole management system level. In other words,
a given autonomic manager could activate/deactivate instru-
mentation of particular metrics, but when deactivating metrics
on that manager, it doesn’t mean necessarily that those metrics
are ”abandoned”, because they could be transferred to other
collaborating autonomic manager on which they are activated.
These two cases are OR-decomposing the first refinement level
(see Figure 3).

Regarding metrics manipulation inside an autonomic man-
ager, the second refinement level uses case pattern to cover
metric classes. Our research exploits both CIM Metric Model
classifying metrics into Base, Discrete & Aggregation, as well
as our mathematical extension [6] classifying base metrics into
Resource, Measurable & Mathematical. Each of these classes
is OR-decomposed using Add Aspects and Remove Aspects leaf
goals. On the other hand, the transfer of metrics among auto-
nomic managers could be refined through milestone pattern,
when metrics are activated on the collaborating manager (Add
Aspects in Figure 3, as Subgoal 1 in Table I) first, and then
removed from the delegating one (Remove Aspects, as Subgoal
2).

It is worth noting that previously mentioned aspects are
representing ”metric definitions”, rather than ”metric values”.
The former encompasses attributes related to the nature of
metric (e.g., data type, unit), where the latter attributes describe
the instrumented values and their relevant contexts. For further
information, the reader is referred to the DMTF Base Metric
Profile [11].

Examples. This pattern can be applied in the following
cases: (1) Performing troubleshooting, or applying root cause
analysis algorithms, because they require the instrumentation
of additional metrics. (2) Modifying the hierarchical topol-
ogy of the management system by instrumenting aggregated
metrics to be exported to other managers or shared DBs. (3)
”Engineering” the distribution of monitored metrics among
autonomic managers.

24Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 32 / 107

Figure 4: Spatial Dimension Pattern

C. Spatial Dimension Pattern

Context. As mentioned earlier, in an autonomic system,
each manager is responsible for managing a set of managed
resources. In many cases, the number of users consuming the
autonomic system services may oscillate rapidly, or even be-
come quite important in term of size. Thus, managed resources
are subject to be joined/withdrawn during the runtime. Patterns
belonging to this dimension are useful to react in regard with
important changes concerning the scope of managed resources.

Pattern Refinement. Management of autonomic systems
is orchestrated by the collaboration of multiple autonomic
managers, each of which can act on its own perimeter, as
well as the perimeters of its collaborating peers. Thus, the first
refinement level uses case pattern to cover these two cases (see
Figure 4).

In fact, acting on its own perimeter is OR-decomposed
using Expand and Shrink Monitoring Perimeter leaf goals.
Rather, acting on others perimeters is refined using case
pattern into deploying a new manager, or soliciting an existing
one. First, the case of deploying a new manager is refined using
milestone pattern into launching manager (Launch Delegated
Manager in Figure 4, as Subgoal 1 in Table I), and then,
delegating perimeter (Delegation, as Subgoal 2). In turn, the
delegation goal is also refined though milestone pattern into
joining delegated perimeter on the delegated manager (Expand
Perimeter, as Subgoal 1), and then, deleting this perimeter from
the delegating manager (Shrink Perimeter, as Subgoal 2).

In the second case, where acting is held on an existing
manager, the refinement is done twice, first using milestone
pattern, into delegating the whole perimeter to the delegated
manager (Delegation, as Subgoal 1), and then shutting down
the delegating one (Shutdown Delegating Manager, as Subgoal
2).

Examples. This pattern is suitable for the following cases:
(1) Load balancing of monitoring among autonomic managers.
(2) Supporting scalability of the autonomic systems. (3) Min-
imizing the overall monitoring charge in terms of dedicated
monitoring entities.

D. Temporal Dimension Pattern

Context. Temporal aspects are decisive factors in adapt-
ing monitoring behavior. Notice that previous patterns are
explained without time considerations, but in fact, they imply
some temporal aspects. Patterns belonging to this dimension
are useful either to overcome both temporal violations and
scheduling problems, or to tune the analysis over the instru-
mented metrics.

Pattern Refinement. Regarding information exchange,
once again, we use case pattern to represent the same cases
identified in Exchange dimension. Obviously, dealing with
information exchange temporal aspects means that the ex-
change is done iteratively and not once. Thus, Manager-2-
Agent case is OR-decomposed into periodic poll, and both
Manager-2-(Manager/Shared DB) cases are OR-decomposed
into periodic export (see Figure 5). Note that Manager-2-Agent
push mode and Manager-2-(Manager/Shared DB) pull mode
are not mentioned for the reasons explained in Section III-A.

We distinguish two levels of temporal granularity: the fine-
grained level deals with an individual polling (exporting),
whereas the coarse-grained level addresses a collective polling
(exporting). Based on this distinction, we identify six leaf
goals OR-decomposing periodic poll (export), namely: Update
Polling (Exporting) Period to update the frequency of a given
polling (exporting), Align Polling (Exporting) to launch a set
of synchronized parallel pollings (exported metrics) at the
same time, and Misalign Polling (Exporting) to launch pollings
(exported metrics) according to a given/adjustable offset.

Regarding metrics calculation, we identify the case of
modifying the temporal interval covered by the metric value.
However, the validity of a metric value that is not instantaneous
(e.g., throughput) is equal to the temporal interval through
which that value was measured. Therefore, case pattern is used
twice to cover all possible metric classes previously mentioned.
We refine only the measurable, mathematical & aggregation
metrics, because time has a sense in their calculation, but not
the other metrics. Thus, at the fourth refinement level, we OR-
decompose measurable & mathematical metrics using Update
Time Scope Interval. Rather, Update Time Series Interval OR-
decomposes aggregation metrics.

Examples. This pattern is suitable for the following cases:
(1) Controlling (e.g., relaxing, stressing) the monitoring load
on autonomic managers, network paths among autonomic
managers and shared DBs, as well as remote agents. (2) Tuning
temporal parameters of metrics analysis.

Notice that all previous patterns are subject to be updated
and enriched, in order to integrate new monitoring adaptation
actions. For instance, we can address temporal aspects of
alarms filtering by delaying delivery of redundant alarms [12],
as well as alarms correlation by modifying the stream interval
time during which Complex Event Processing engines (e.g.,
Esper & Drools) perform correlations. OR-decomposition into
Update Waiting Time & Update Window Time could be used
for these two cases respectively.

IV. CASE-STUDY

Context. Our scenario takes place in a cloud data center
hosting a large number of virtual machines (VMs), and pro-

25Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 33 / 107

Align Polling

Update Polling
Period

Misalign Polling

Align Exporting

Update Exporting
Period

Misalign Exporting

Base

Case Pattern

Mathematical

Resource OR
Measurable OR
Mathematical

Measurable

OR Decomposition

OR Decomposition

Update Time
Scope Interval

Update Time
Series Interval

OR Decomposition

in Exchange

Temporal Dimension

in Metrics

Manager-2-Manager Manager-2-Agent

Case Pattern
Mgr-2-Agt OR
Mgr-2-Mgr OR
Mgr-2-Sh DB

Manager-2-Shared DB

Periodic PollPeriodic Export

OR Decomposition

Case Pattern

Aggregation

Base OR
Discrete OR
Aggregation

Discrete

Resource

Figure 5: Temporal Dimension Pattern

viding its clients with a continuous monitoring of the enforced
SLAs metrics. Each VM integrates an agent providing prede-
termined metrics reflecting VM healthiness. In most large scale
systems, distributed agents periodically push their metrics; in
our case, agents push those metrics every 10 seconds to specific
pre-configured autonomic managers. To facilitate the case-
study, we assume that our studied SLA template encapsulates
the same metrics pushed by agents. Besides, this SLA template
distinguishes two time-slots: metrics are to be refreshed at the
client side with a freshness falling into the range of 3-6 seconds
during the first time-slot, and a range of 30-40 seconds for
the second one. The SLAs metrics values are instrumented
and delivered automatically through polling and exporting,
respectively. Once a new SLA is enforced, the autonomic
managers use pull mode to collect VMs metrics with the lowest
freshness value (3 seconds).

Objectives. Human administrators identify two high level
goals to be satisfied during the monitoring system runtime:
Respect Metrics Freshness makes sure that SLAs are monitored
appropriately, and Minimize Monitoring Cost aims at limiting
the resources dedicated to monitoring as much as possible.

Patterns. We can exploit several patterns to deal with
the first objective. During the first time-slot, we use the
temporal pattern to relax polling & exporting by updating
their periods (Update Polling & Exporting Period in Figure
6) with respect to the highest freshness range (6 seconds). If
delivering freshness violates the highest freshness, that would
be a result of overloading manager [2], thus we apply the
spatial pattern as a second alternative, and consequently, a
new autonomic manager will be deployed to assist the over-
loaded one (Launch Delegated Manager, Expand Perimeter
& Shrink Perimeter). As a third alternative, and in case that
the overloaded autonomic manager monitors non-SLAs metrics
(e.g., physical servers healthiness), the metric pattern could be
applied to transfer them to other manager, in order to relax the
first one (Add & Remove Aspects). Since the second time-slot
freshness (30-40 seconds) is greater than agents push period
(10 seconds), there is no need to poll metrics, nor to export

all received metrics. Rather, we apply the temporal pattern to
update the exporting period from 3-4 to 30-40 seconds (Up-
date Exporting Period). This adaptation necessitates applying
another one belonging to exchange pattern to stop the pollings
that are launched during the first time-slot (Deactivate Polling).

The second objective is refined using spatial pattern in
order to shutdown recently deployed managers, during the
first time-slot. Thus, an underloaded manager delegates its
whole perimeter to another one, and shutdowns itself (Ex-
pand Perimeter, Shrink Perimeter & Shutdown Delegating
Manager). During the second time-slot, autonomic managers
already deliver to clients around one-third of the metrics
pushed by agents, thus no adaption actions are to be taken
in regard with minimizing monitoring resources.

Autonomic managers would be able to adapt their mon-
itoring, if they recognize adaptation stimuli. Therefore, we
exploit guard pattern to apply adaptation actions (Adaptation
in Figure 6, as Subgoal 2 in Table I) as response to specific
stimulus (Guard, as Subgoal 1), while maintaining the current
monitoring behavior unless adaptation takes place (Unless, as
Subgoal 3).

V. RELATED WORK

In this section, we try to align our approach of adapting
monitoring using goal-oriented dimensional patterns with other
existing trends focusing on monitoring of QoS in autonomic
systems [13][14][15][16][17][18].

In order to manage QoS in autonomic systems, the latter
applies adaptation actions. In many cases, for instance [13],
this adaptation doesn’t concern the monitoring system itself,
but precisely, is applied on the managed system services
and infrastructure (i.e., reconfiguring resource allocation). Cer-
tainly, this adaptation will result in increased quality, but this
way, the knowledge of the management system won’t exceed a
”maximum ceiling” and management will be limited in terms
of treating new situations.

Monitoring more metrics or managed resources is ad-
dressed in [14][16][18] either to deal with the managed scope
changes, or to operate a ”minimal” monitoring that is able
to be extended in case of SLA violations, or even to adapt
monitoring to meet SLA modifications. Indeed, it is important
to scale up/down monitored metrics and resources. But it isn’t
clear whether this capability could be applied in other scenarios
for other objectives, if so, how that could be feasible.

Runtime deployment of monitoring resources (i.e., man-
agers, probes) is discussed in [14][15][17] either to integrate
monitoring into the SLA management life-cycle of large scale
systems, or to replace failed managers, or even to monitor
some metrics concerning particular paths or segments. But
here also, besides the undeniable gains of deploying moni-
toring resources during runtime, we don’t see how the system
administrators can orchestrate the monitoring adaptation (i.e.,
planning & executing) of the distributed monitoring among
several collaborating managers.

Inspired from the autonomic computing reference archi-
tecture proposed in [10], patterns regarding the distribution
of the MAPE loop modules were proposed in [19][20]. Those
patterns are useful in terms of design reuse as well as clarifying

26Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 34 / 107

Milestone Pattern

Expand
Perimeter

Shrink
Perimeter

Launch
Delegated
Manager

Expand
Perimeter

Shrink
Perimeter

Milestone Pattern

Shutdown
Delegating
Manager

Guard Adaptation Unless

Guard Pattern

Minimize Monitoring Cost

Acting on Spatial Dimension

Guard

Adaptation Unless

Guard
Pattern

Add
Aspects

Remove
Aspects

Mileston Pattern

Update
Exporting

Period

Milestone Pattern

Deactivate
Polling

Update
Exporting

Period

Milestone Pattern

Update
Polling
Period

Guard

Adaptation Unless

Guard
Pattern

Guard

Adaptation Unless

Guard
Pattern

Acting on
Temporal Dimension

Respect Metric Freshness

Acting on
Spatial Dimension

Acting on
Metric Dimension

Acting on Exchange &
Temporal Dimensions

Guard

Adaptation Unless

Guard
Pattern

Figure 6: Respect Metrics Freshness & Minimize Monitoring Cost Refinement

the application contexts and benefits, but they target mainly
the deployment of the monitoring modules rather than the
monitoring behavior itself. In addition, they don’t treat the
monitoring adaptation in regard with quality requirements.

VI. CONCLUSION & PERSPECTIVES

We proposed a goal-oriented approach for designing self-
managed monitoring in autonomic systems. This approach
assists human administrators to adapt the monitoring system
behavior regarding quality requirements. It means that mon-
itoring is configured starting from quality specification (e.g.,
SLA), and reconfigured based on adaptation patterns, that are
exploited to achieve high level quality objectives. We designed
four monitoring adaptation patterns according to dimensions
that represent various aspects on which adaptation actions can
apply to. Thus, each dimension represents a ”starting point”
reflection to elicit monitoring goals that are refined till reaching
leaf goals.

About perspectives, we are currently investigating how
monitoring adaptations could influence the stability at the
autonomic system whole scale, in case of applying many over-
lapped adaptation leaf goals over several autonomic managers.
In addition, the agent side adaptations need to be investigated,
and orchestrated with those applied at the autonomic manager
side.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, Jan. 2003, pp. 41–50.

[2] A. Toueir, J. Broisin, and M. Sibilla, “A goal-oriented approach for
adaptive sla monitoring: a cloud provider case study,” in LATINCLOUD
2013, Maceió, Brazil, December 2013.

[3] A. Moui, T. Desprats, E. Lavinal, and M. Sibilla, “A cim-based
framework to manage monitoring adaptability,” in Network and ser-
vice management (cnsm), 2012 8th international conference and 2012
workshop on systems virtualiztion management (svm), 2012, pp. 261–
265.

[4] A. Moui, T. Desprats, E. Lavinal, and M. Sibilla, “Information models
for managing monitoring adaptation enforcement,” in International
Conference on Adaptive and Self-adaptive Systems and Applications
(ADAPTIVE), Nice, 22/07/2012-27/07/2012, 2012, pp. 44–50.

[5] A. Moui, T. Desprats, E. Lavinal, and M. Sibilla, “Managing polling
adaptability in a cim/wbem infrastructure,” in 2010 4th International
DMTF Academic Alliance Workshop on Systems and Virtualization
Management (SVM), 2010, pp. 1–6.

[6] A. Toueir, J. Broisin, and M. Sibilla, “Toward configurable perfor-
mance monitoring: Introduction to mathematical support for metric
representation and instrumentation of the cim metric model,” in 2011
5th International DMTF Academic Alliance Workshop on Systems and
Virtualization Management (SVM), 2011, pp. 1–6.

[7] A. Van Lamsweerde, Requirements Engineering: From System Goals
to UML Models to Software Specifications. Wiley, 2009.

[8] A. Van Lamsweerde, “Requirements engineering in the year 00: A
research perspective,” in Proceedings of the 22Nd International Con-
ference on Software Engineering, ser. ICSE ’00, 2000, pp. 5–19.

[9] R. Darimont and A. Van Lamsweerde, “Formal refinement patterns
for goal-driven requirements elaboration,” in ACM SIGSOFT Software
Engineering Notes, vol. 21, no. 6. ACM, 1996, pp. 179–190.

[10] IBM Corp., “An architectural blueprint for autonomic computing,” IBM
White Paper, June 2005.

[11] A. Merkin, “Base metrics profile,” December 2009, document Number:
DSP1053.

[12] A. Clemm, Network Management Fundamentals. Cisco Press, 2006,
ch. 5, pp. 138–141.

[13] G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis, A. Meny-
chtas, and T. Varvarigou, “A self-adaptive hierarchical monitoring
mechanism for clouds,” Journal of Systems and Software, vol. 85, no. 5,
2012, pp. 1029–1041.

[14] D. Roxburgh, D. Spaven, and C. Gallen, “Monitoring as an sla-oriented
consumable service for saas assurance: A prototype,” in 2011 IFIP/IEEE
International Symposium on Integrated Network Management (IM),
2011, pp. 925–939.

[15] P. Thongtra and F. Aagesen, “An adaptable capability monitoring
system,” in 2010 Sixth International Conference on Networking and
Services (ICNS), 2010, pp. 73–80.

[16] M. Munawar, T. Reidemeister, M. Jiang, A. George, and P. Ward,
“Adaptive monitoring with dynamic differential tracing-based diagno-
sis,” in Managing Large-Scale Service Deployment, ser. Lecture Notes
in Computer Science, F. Turck, W. Kellerer, and G. Kormentzas, Eds.
Springer Berlin Heidelberg, 2008, vol. 5273, pp. 162–175.

[17] J. Nobre, L. Granville, A. Clemm, and A. Prieto, “Decentralized
detection of sla violations using p2p technology,” in Proceedings of
the 8th International Conference on Network and Service Management,
2012, pp. 100–107.

[18] P. Grefen, K. Aberer, H. Ludwig, and Y. Hoffner, “Crossflow: Cross-
organizational workflow management in dynamic virtual enterprises,”
International Journal of Computer Systems Science & Engineering,
vol. 15, 2000, pp. 277–290.

[19] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer,
J. Wuttke, J. Andersson, H. Giese, and K. Göschka, “On patterns for
decentralized control in self-adaptive systems,” in Software Engineering
for Self-Adaptive Systems II, R. Lemos, H. Giese, H. Müller, and
M. Shaw, Eds. Springer Berlin Heidelberg, 2013, vol. 7475, pp. 76–
107.

[20] A. J. Ramirez and B. H. C. Cheng, “Design patterns for developing
dynamically adaptive systems,” in Proceedings of the 2010 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing
Systems, ser. SEAMS ’10, 2010, pp. 49–58.

27Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 35 / 107

Dynamic Incremental Fuzzy C-Means Clustering

Bryant Aaron, Dan E. Tamir

Department of Computer Science,

Texas State University,

San Marcos, Texas, USA

{ba1127, dt19}@txstate.edu

Naphtali D. Rishe and Abraham Kandel

School of Computer Science

Florida International University

Miami, Florida, USA

rishen@fiu.edu, abekandel@yahoo.com

Abstract-Researchers have observed that multistage clustering

can accelerate convergence and improve clustering quality.

Two-stage and two-phase fuzzy C-means (FCM) algorithms

have been reported. In this paper, we demonstrate that the

FCM clustering algorithm can be improved by the use of static

and dynamic single-pass incremental FCM procedures.

Keywords-Clustering; Fuzzy C-Means Clustering;

Incremental Clustering; Dynamic Clustering; Data-mining.

I. INTRODUCTION

The FCM algorithm provides a soft (fuzzy) assignment
of patterns to clusters [1]. The assignment is represented by
a partition matrix. The algorithm starts with either seeding
the FCM with an initial partition matrix or through initial
cluster centers and attempts to improve the partition matrix
according to a given quality criterion.

 Traditionally, in each of the FCM iterations, the
algorithm is applied to the entire data set represented as a
vector residing in the processor memory and representing a
multi-dimensional set of measurements. Recently, however,
the FCM algorithm, as well as numerous other clustering
and data-mining algorithms, such as K-means, ISODATA,
Kohonen neural networks (KNN), expectation
maximization, and simulated annealing [1]-[6], have been
exposed to a relatively new challenge referred to as “big-
data.” Often, the enormous amount of data available online
cannot fit processors’ physical memory. In fact, often the
data does not even fit secondary memory. Given that
input/output operations are generally the most taxing
computer operations, working on the entire data set in every
FCM iteration requires numerous consecutive reads of
massive amounts of data. A scenario that might challenge
the traditional approach to FCM clustering occurs when
portions of the data are generated or become available
dynamically and it is not practical to wait for the entire data
set to be available.

This brings the need for incremental clustering into the
forefront. Incremental clustering is also referred to as a
single-pass clustering, whereas the traditional clustering is
referred to as multi-pass clustering [7]-[11]. The idea is to
cluster a manageable portion of the data (a data block) and
maintain results for the next manageable block until
exhausting the data. Under this approach, each block is
processed by the algorithm a limited number of times,
potentially only once. Ideally, a block, along with the
preliminary number of initial centers selected should be as
large as possible, occupying as much of the available
internal processor memory. One might question the validity

of “visiting” every data element for a limited number of
iterations in a specific order as opposed to the traditional
approach which considers every piece of data in each
iteration.

A related approach is the multi-resolution or multistage
clustering. Researchers observed that a multistage-based
training procedure can accelerate the convergence and
improve the quality of the training as well as the quality of
the classification/decision phases of many of the clustering
algorithms [5][12][13]. For example, our previous research
reports show that the pyramid K-means clustering
algorithm, the pyramid FCM, and multi-resolution KNN
yield two-to-four times convergence speedup [13]. Both the
multistage clustering and the incremental clustering apply
an approach of sampling the data. In the multistage
clustering, data is sampled with replacement, whereas in
incremental clustering, due to the cost of replacement, the
data is sampled without replacement. In both cases the
validity of the sampling has to be addressed.

This paper describes a new approach for incremental
FCM clustering. In difference from the pyramid FCM
approach, the sampling is done without replacement.
Furthermore, the sampling size is fixed. On the other hand,
two measures are applied to the data in order to overcome
the fact that each data block is processed only one time.
First, the algorithm starts with a relatively large number of
clusters and scales the number down in the last stage. This is
referred to as a two-phase procedure. Hence, in the
intermediate stages (first phase) each block might affect
different cluster centers. A second and innovative version of
the algorithm enables a dynamic number of clusters. Again,
the algorithm starts with a relatively large number of
clusters; however, each transaction on a block might change
(increase or decrease) the number of clusters. In both cases
the algorithms work on “chunks” of data referred to as
blocks. This paper presents several experiments with multi-
pass and static/dynamic single-pass versions of the FCM
and empirically evaluates the validity of the static and
dynamic incremental clustering approach.

The main contributions of this paper are: 1) a new
approach, described in Section III.F, for incremental
clustering, where the number of clusters is relatively high
and is followed by clustering the resultant centers, is
presented — this approach, increases the validity of
incremental clustering, and 2) a second approach, described
in Section III.G, where initially the number of clusters is
relatively high and the number of clusters dynamically
changes throughout execution, provides better incremental

28Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 36 / 107

clustering quality/validity, and can be used to resolve the
issue of identifying the right number of cluster centers.

A literature review performed shows numerous papers
on incremental clustering. To the best of our knowledge
there are no reports on research that applies the operations
listed in this paper to the FCM algorithm.

The rest of the paper is organized in the following way.
Section II reviews related research. Section III provides
details of several single-pass and multi-pass variants of
FCM clustering and lists metrics used to assess the quality
of clustering. Section IV describes a set of experiments
conducted to assess the performance and validity of the
incremental clustering algorithms described in Section III,
and Section V concludes with findings and proposes further
research.

II. REVIEW OF RELATED RESEARCH

Clustering is a widely-used data classification method
applied in numerous research fields, including image
segmentation, vector quantization (VQ), data mining, and
data compression [14]-[20]. K-means is one of the most
commonly used clustering algorithms; a variant of the K-
means algorithm — the Linde, Buzo, and Gray (LBG) VQ
algorithm with unknown probability distribution of the
sources — is utilized in many applications [1][16]. The LBG
algorithm has been intensively researched. Some of these
research results relevant to K-means and FCM are reviewed
next.

Lloyd proposes an iterative optimization method for
quantizer design, it assumes that the distribution of the data
is unknown and attempts to identify the optimal quantizer
[21]. This approach is equivalent to 1-means (that is, K-
means with). While Lloyd’s method yields optimal
minimum mean square error (MMSE) for the design of one
dimensional quantizer, its extension to multi-dimensional
data quantizer (i.e., VQ) with unknown distributions is not
guaranteed to yield optimal results [21]. Consequently, K-
means with is not guaranteed to reach a global
optimum.

 The LBG method for VQ with unknown underlying
distribution generalizes Lloyd’s iterative method and sets a
VQ design procedure that is based on K-means [16]. The
LBG VQ procedure is currently the most commonly
used/researched VQ approach. Garey has shown that the
LBG VQ converges in a finite number of iterations, yet it is
NP-complete [22]. Thus, finding the global minimum
solution or proving that a given solution is optimal is an
intractable problem. Another problem with K-means is that
the number of clusters () is fixed and has to be set in
advance of executing the algorithm. ISODATA is a
generalization of K-means which allows splitting, merging,
and eliminating clusters dynamically [23][24]. This might
lead to better clustering (better local optimum) and
eliminate the need to set in advance. ISODATA, however,
is computationally expensive and is not guaranteed to
converge [2].

Several clustering algorithms and combinatorial
optimization techniques, such as genetic algorithms and
simulated annealing, have been devised in order to enforce

the clustering algorithm out of local minima [4][25][27].
These schemes, however, require long convergence time,
especially for large clustering problems. FCM and fuzzy
ISODATA generalize the crisp K-means and ISODATA.
The FCM clustering algorithm is of special interest since it
is more likely to converge to a global optimum than many
other clustering algorithms, including K-means. This is due
to the fact that the cluster assignment is “soft” [28][29]. On
the other hand, the FCM attempt to “skip” local optima may
bear the price of numerous soft iterations and can cause an
increase in computation time. FCM is used in many
applications of pattern recognition, clustering, classification,
compression, and quantization including signal and image
processing applications such as speech coding, speech
recognition, edge detection, image segmentation, and color-
map generation [28]-[35]. Thus, improving the convergence
time of the FCM is of special importance.

Multistage processing is a well-known procedure used
for reducing the computational time of several applications,
specifically, image processing procedures. This method uses
a sequence of reduced resolution versions of the data to
execute an image processing task. Results of execution at a
low resolution stage are used to initialize the next, higher
resolution stage. For example, Coleman proposes an
algorithm for image segmentation using K-means clustering
[14]. Hsiao has applied Coleman’s technique for texture

segmentation [36]. He used a

-sample of the image to

identify . Huang and Zhu have applied the Coleman
algorithm to DCT based segmentation and color separation

respectively [37][38]. Like Hsiao, they used

-of the

image-pixels to set up the parameters of the final clustering
algorithm, where the final clustering is performed on the
entire image. They found that the final cluster-centers
obtained in the training-stage are very close to the final
cluster centers obtained from clustering the entire image.
This lends itself to a two-stage K-means procedure that uses
one low resolution sample to initiate the parameters of the
actual clustering. Pyramid processing is a generalization of
the two-stage approach where the resolution of samples is
growing exponentially and each execution stage doubles the
number of samples.

Additional applications of multistage architectures are
reported in the literature [27][31][39]. Rosenfeld surveys the
area and proposes methods for producing the multistage
snapshots of an image [40]. Kasif shows that multistage
linking is a special case of ISODATA [41] and Tilton uses
multistage for clustering remote sensing data [42]. Tamir
introduces a pyramid multistage method to non-supervised
training in the context of K-means and neural networks. He
has shown that the pyramid approach significantly
accelerates the convergence of these procedures [12][13].

Several papers deal with accelerating the convergence of
FCM [39][45][46]. Altman has implemented a two-stage
FCM algorithm [47]. The first stage operates on a random
sample of the data and the second stage uses the cluster
centers obtained in the first stage to cluster the entire set.

Cheng improves the method proposed by Altman and
has investigated a two-phase approach [31]. The first phase

29Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 37 / 107

implements a linear multistage algorithm which operates on
small random slices of the data. Each slice contains of
the data. The algorithm finds the cluster centers of the first
slice (say), then uses these centers as initial centers for
clustering a sample that contains the first slice and an
additional slice () obtained through random sampling.
After running the multistage phase for stages, the final
centers for the combination of slices { which
contain of the entire data are obtained. Next, in the
second phase, these centers are used to cluster the entire
data.

Other approaches for improving the convergence rate of
clustering include data reduction techniques and data
sampling using hypothesis testing [48][49].

A related research effort deals with clustering of very
large data sets that are too big to fit into the available
memory. One approach to this problem is to use incremental
algorithms [10][11][27]. Several of these algorithms load a
slice of the data, where the size of a slice is constrained by
the available memory, and cluster this slice [7][9]. Results
of clustering current slices (e.g., centers, partition matrices,
dispersion, etc.) are used in the process of clustering
upcoming slices. Hore has proposed a slice based single-
pass FCM algorithm for large data sets [39]. The proposed
method lumps data that has been clustered in previous slices
into a set of weighted points and uses the weighted points
along with fresh slices to commence with the clustering of
the entire set in one path [39]. Another approach for
clustering large data sets is to sample, rather than slice, the
data [49].

Instead, in this report, the incremental approach we use
has two phases. In the first phase, a very large set of clusters
is used. Practically, we are trying to fit as many elements in
a block and as many clusters per block as possible in the
memory. In the second phase, after processing all the
blocks, a process of clustering the centers obtained from the
last block is applied.

It is interesting to note that K-means, FCM, Neural
Networks (e.g., KNN), and many other iterative
optimization algorithms have two main modes of operation,
the batch mode and the parallel-update mode. For example,
in the batch mode execution of FCM, each iteration
considers every pattern individually and the centers are
updated with respect to every pattern considered. The
parallel-update mode, which is less computationally
expensive and is the predominantly used mode in most
current applications, assigns all the patterns to the relevant
clusters and then updates the centers. In this context, the
slice approach which is used for large data sets can be
considered as a hybrid of batch and parallel update.

This brings the issue of parallel processing of clustering
algorithms. Several ways to partition and distribute the
clustering task have been considered [19][39][42][50]-[52].
One possible way is to assign a set of samples or a slice of
data to each processor and eventually merge the cluster
centers obtained from each processor into one set of centers.
We plan to address this problem as a future research subject.

III. FUZZY C-MEANS CLUSTERING VARIANTS

In this section, we present several variants of FCM
clustering.

A. The Classical Fuzzy C-Means Clustering Algorithm

The FCM algorithm is a generalization of the crisp K-
means clustering. Actually, the generalization is quite
intuitive. In the K-means algorithm, set membership is
crisp. Hence, each pattern belongs to exactly one cluster. In
the FCM, set membership is fuzzy and each pattern belongs
to each cluster with some degree of membership. The
following formalizes this notation.

 Let , where , be a set of ,
 -dimensional vectors representing the data to be clustered
into clusters with cluster centers
 . Under the FCM, each element

belongs to every cluster with some degree of

membership . Hence, the matrix [], referred to as

the partition matrix, represents the fuzzy cluster assignment
of each vector to each cluster . The goal of FCM is to

identify a partition matrix , such that optimizes a given
objective function. A commonly used FCM objective
function is defined to be:

 ∑∑

 ‖ ‖ (1)

where is the weighting exponent. In this research, is
set to the most commonly used and proposed value of 2
[28].

The most common measures for FCM clustering quality
are: 1) the value of the objective function, 2) the partition
coefficients, 3) the classification entropy, 4) measures of
deviation of the partition matrix from a matrix obtained with
uniformly distributed data, and 5) measures of induced
fuzziness [24][28][44]. It should be noted that some of the
quality criteria are derived from distortion measures. Hence,
in this case, the goal is to minimize distortion, and high
quality means low distortion. In other words, the quality can
be considered as the inverse of distortion. Measures 1
through 5 assume that the end result of the clustering is soft.
Nevertheless, in many cases, it is desirable to obtain “hard
clustering” assignment to be used for VQ, image
segmentation, or other classification applications. In these
cases, two additional quality criteria can be considered: 6)
the rate distortion function, and 7) the dispersion matrix
[2][44]. Of all these measures, 1, 6, and 7 are most
commonly used. Specifically, for metric 1, the functional
 can be interpreted as a generalized distortion measure,

which is the weighted sum of the squared distances from all
the points in the cluster domain to their assigned cluster
center. The weights are the fuzzy membership values
[28][29]. Hence, this metric is proportional to the inverse of
the quality of FCM. Lower distortion denotes higher quality.
Metrics 6 and 7 are further elaborated in the next section.

In general, the rate distortion function is used when the
FCM is utilized for quantization. In this case, after

convergence, the matrix [] is defuzzified; e.g., by

30Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 38 / 107

using a nearest neighbor assignment. The compression rate
of FCM is fixed by the selection of . Hence, the rate
distortion quality-measure boils down to the MMSE, given
by:

∑ ∑ ‖ ‖

 (2)

Again, lower distortion denotes higher quality. When the
clustering is used for classification, a quality criteria that
measure the density of cluster as well as the relative
distance between clusters can be used to estimate the
recognition accuracy. In this case, a dispersion measure can
be used. To elaborate, let

 be the set of

clusters obtained through “hard clustering,” and let
 be the set of the corresponding cluster
centers, then , the within dispersion matrix of the cluster
 , is defined to be the covariance matrix of the set of
elements that belong to . The within dispersion matrix
of ,) is a given function of the entire set of the within
dispersion matrices of the individual clusters. For example,
the elements of can be the averages of the compatible
elements of for . The between dispersion
matrix of , , is the covariance matrix of . The quality
of the clustering can be expressed as a function of the within
dispersion matrix and the between dispersion matrix .
A commonly used dispersion function is [44]:

(3)

where is the trace of the matrix .

B. The Fuzzy C-Means Algorithm

The FCM consists of two main phases: setting/updating
the membership of vectors in clusters and setting/updating
cluster centers. Some variants of FCM start with a set of
centers which induces a partition matrix [28][29]. In this
case, seeding the algorithm relates to the initial selection of
centers. Other variants initialize a partition matrix which
induces initial centers [24]. Hence, seeding these FCM
variants amounts to initializing the partition matrix. The two
approaches are virtually equivalent that choosing one over
the other is just a matter of convenience related to the
format of data and the form of the application. We are using
the second approach, where the seeding relates to selecting
the initial partition matrix. Hence, in the seeding step, the
membership matrix is initialized. In the next iterations, the
cluster centers are calculated and the partition matrix is
updated. Finally, the value of the objective function for the
current classification is calculated. The algorithm terminates
when a limit on the number of iterations is reached or a
“short circuit condition” is met. A commonly used
termination condition halts the algorithm when the
derivative of the distortion function is small. Because the c-
means algorithm is sensitive to the seeding method, a
variety of procedures have been proposed for selecting seed
points [26][52]. The following paragraphs include a formal
definition of the algorithm and presents a pseudo-code.

Given a set of vectors , where

 and an initial partition matrix , the FCM is an
iterative algorithm for partitioning a set of vectors into

clusters , with cluster centers
 . In iteration the algorithm uses the

cluster centers

 induced by the

partition matrix to re-partition the data set and obtain a

new partition matrix . Cluster centers at iteration are
computed according to:

 (∑(

)

) (∑(

)

) (4)

The matrix [

] is calculated according to:

 [

] ∑(
‖

‖

‖

‖
)

 (5)

The process of center induction, data partition, and
matrix update continues until a given termination condition,
which relates to an optimization criteria or limit on the
number of iterations, is met. The following is a commonly
used criterion [16]:

 |

| (6)

Fig. 1 is a pseudo code of the algorithm.

1. Parameters:

a. ,

(- a set of

vectors

b. - the number of

vectors

c. - the number of

partitions

d. - a weighting

exponent (

e. [

] - the

partition matrix at

iteration

f.

- the set of clustering

centers at iteration

g. - the maximum

number of iterations

h.

 - the objective-

function’s value at

iteration

2. Set , choose an

initial partition matrix

3. In iteration let

be the induced

clustering centers

computed by equation

4.

a. Set [

]

according to equation

5.

b. Compute

according to equation

1.

c. Set .

4. Stop if ; or

if , and equation

6 holds for a small

such as .

Otherwise, go to (2).

Figure 1. Algorithm for baseline FCM

The idea behind the multistage methods reported in the
next section is that an estimate of the partition matrix and
the location of the cluster centers can be obtained by
clustering a sample of the data. There is a trade-off that
relates to the sample size. A small sample is expected to
produce a fast yet less reliable estimation of the cluster

31Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 39 / 107

centers. This leads to a multistage approach, which involves
several stages of sampling (with replacement) of the data
and estimating the membership matrix for the next stage.
The size of the first sample should be as small as possible.
On the other hand, it should be statistically significant [44].
Each of the stages includes more objects from the data and
sets the initial partition matrix of stage according to the
final partition matrix of stage .

C. The LBG Termination Criterion

The main difference between the LBG variant of the
FCM algorithm and the classical FCM algorithm is the
termination condition. The LBG algorithm stops when an
approximation for the derivative of the MSE given by

)1(

)()1(

m

mm

D

DD
 is smaller than a threshold,

)(
)1(

)()1(

m

mm

D

DD
.

D. The Sequential Fuzzy C-Means Algorithm

FCM can be executed in one of two basic modes; batch
mode and online mode. The batch mode updates the
partition matrix after considering the entire set of data. The
online mode is also referred to as the sequential mode. In an
epoch l of a sequential mode, for each pattern, the partition

matrix and cluster centers are found. The cluster

centers are used to find the distortion value and

weighted distortion value. The partition matrix are used
in the next epoch of the sequential mode.

E. The Block Sequential Fuzzy C-Means Algorithm

The block sequential mode is a compromise between the
stringent computational requirements of the sequential FCM
and the need to operate on data online. In this case, the
clustering occurs on accumulated blocks of data. Each block
is going through epochs of FCM where the final centers of
block are used as the initial centers for block . In
many cases . In this sense, the algorithm resembles
other multistage clustering such as the pyramid FCM. The
block sequential algorithm might be utilized in an iterative
fashion, where each of the iterations performs epochs of
FCM on a single block of data elements at a time.

Note that all the clustering algorithms described so far
assume that (at some point) the entire data set is available.
Moreover, generally, due to the iterative fashion of
execution, these algorithms access the same elements more
than once (in different iterations). When the data is very
large and cannot fit the memory of the processor, a different
approach, referred to as single-pass, has to be adapted.
Under the single-pass (incremental) approach, each
block/data-element is accessed only one time and then
removed from internal memory to provide space for new
elements. This is described next.

F. The Incremental Fuzzy C-Means Algorithm

The incremental FCM algorithm presented in this paper
is similar to the block sequential algorithm with the
exception that each block is accessed only one time. Each

block is going through a set of epochs of FCM where the
final centers of block are used as the initial centers for
block .
The fact that each block is “touched” just one time might

raise a question about the validity of the results. The results
might be valid if the data elements of blocks share similar
features. For example, the data elements are drawn from the
same probability distribution function or the same fuzzy
membership function. Alternatively, validity might be
attained if the features of data elements vary “slowly”
between blocks. We use two methods to improve the
validity of results. First, we use a two-phase incremental
algorithm. In the first phase, a very large set of clusters is
used. Practically, we are trying to fit as many elements in a
block and as many clusters per block as possible in the
memory. In the next phase, after processing all the blocks, a
process of clustering the centers obtained from the last block
is applied. The second measure for increasing validity is
using a relatively large number of clusters and at the same
time allowing the number of clusters to change dynamically.
This is described in the next section.

G. The Dynamic Incremental Fuzzy C-Means Algorithm

The dynamic incremental FCM algorithm presented in
this paper is similar to the incremental FCM algorithm. The
difference is that the number of clusters is allowed to
change.

Several operations can change the number of clusters.
First, following the ISODATA algorithm principles, clusters
with too few elements might be eliminated, clusters that are
too close to each other might be merged, and clusters with
large dispersion might be split [13][25][27]. The criteria for
merge and split might be related to the within and between
dispersion of the clusters [1]-[3][43]. Other methods for
changing the number of clusters might include
incrementing/decrementing the number of clusters (without
split/merge) based on a criterion such as a threshold on the
distortion. We have implemented the threshold approach.

Each block is going through a set of epochs of FCM
where the final centers of block are used as the initial
centers for block . Following the application of FCM
on a block, a decision concerning the effective number of
clusters is made and the number might be incremented or
decremented based on a predetermined quality criteria
threshold. We place an upper bound and a lower bound on
the number of clusters, where the lower bound ensures that
we still have enough clusters to maintain validity and enable
the two-phase approach described above. Again, we are
trying to fit as many elements in a block and a large number
of clusters per block in the memory and apply a two-phase
approach where the centers from the last iteration are
clustered and provide the final set of clusters.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

In order to compare and contrast the performance and
validity of the FCM variants presented, we have
implemented these algorithms numerous times on different

32Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 40 / 107

data sets, using different parameters. Three sets of data of
data are used for the experiments performed. The first set
(1) consists of the red, green, and blue (RGB) components
of relatively small (pixels) color images. These
images e.g., Lena and Baboon are used by many other
researchers and the results of algorithms that use these
images are published in numerous papers and books [2][6].
The images of the first set are subject to color quantization.
The second set (2) is composed of the RGB components of
relatively large aerial photography images (pixels
or 81 million pixels) color this set is used for more
aggressive color quantization. The third set (3) includes 20
million elements of six-dimensional synthetic data points
with known centers and known distribution. Hence, data
sets (2) and (3) are relatively large. It should be noted that
the pixel images are the largest images that fit the
memory of our current hardware/software configuration.
This is important since we use the entire image for running
non-incremental clustering in order to assess the results of
the incremental clustering and this is the maximal size that
can be used for non-incremental clustering. Three types of
output data/results are collected: 1) records of convergences
(distortion per iteration), 2) execution time, and 3)
clustering quality (inverse of distortion at the final iteration).

The experiments are divided into two classes; multi-pass
and single-pass. In the multi-pass experiments, we
compared the performance of classical FCM, LBG based
FCM, sequential FCM, and block sequential FCM. Given
the constraints of these algorithms, they have been applied
to a manageable data set (i.e., a data set with a medium
number of elements). In the single-pass experiments, we
tested the incremental and the dynamic incremental
approaches with the same data used for the multi-pass
algorithms and with a “huge” set of synthetic data that is not
suitable for multi-pass processing. Nevertheless, to verify
the results with the large data set, we ran the LBG variant of
the FCM algorithm on that data using a “powerful”
multicore computer. The computer worked on the data for
several hours. For the dynamic incremental algorithm, we
used an approach where the number of clusters is
incremented/decremented by 3 based on a threshold on
distortion and the number of clusters during the current
epoch.

1) Color Quantization
The problem of color quantization can be stated in the

following way: given an image with N different colors,
choose colors such that the resulting K-color image
is the least distorted version of the original image [1]. Color
quantization can be implemented by applying the FCM
clustering procedure to the image-pixels where each pixel
represents a vector in some color representation system. For
example, the clustering can be performed on the three-
dimensional vectors formed by the RGB color components
of each pixel in the image [1]. After clustering, each three-
dimensional vector (pixel) is represented by the cluster-
number to which the vector belongs and the cluster centers
are stored in a color-map. The K-value image, along with
the color-map, is a compressed representation of the N-
colors original image. The compressed image can be used to

reconstruct the original three-dimensional data set by
replacing each cluster-number by the centroid associated
with the cluster. In the case of 8-bit per color component
and , the original 24-bit per pixel image is
represented by a 4-bit per pixel image, along with a small
color map. Hence, about six-fold compression is achieved.
In this set of experiments, a block processed by the single-
pass algorithm consists of an image row. The sequential
algorithm is applied to every pixel of a scaled down version
of the images, while the rest of the multi-pass algorithms
operate on the entire set of the pixels of the original images.
The experimental results are scaled to represent the
distortion for the entire image. The static incremental
algorithm starts with 192 clusters per block. Following the
processing of the last block, the 192 centers are clustered
into 16 centers and the distortion for the entire image with
these centers is measured. The dynamic incremental
algorithm starts with 192 clusters per block and allows
fluctuations in this number. Following the processing of the
last block, the centers are clustered into 16 centers and the
distortion for the entire image with these centers is
measured.

2) Synthetic Data
A set of random cluster centers with a total of

 six-dimensional vectors is generated. The
vectors within a cluster are distributed according to a 2-D
normal distribution with standard deviation of 0.05 around
the center. For the single-pass experiments, the data is
divided into 500 blocks of 40,000 elements per block. Other
parameters are identical to the ones used for the color map
quantization experiments.

B. Experimental Results

Fig. 2 shows the distortion per iteration of the multi-pass
algorithms executed on the image Lena, which is a
 RGB image. Fig. 2a shows the distortion results of the
LBG variant the final distortion is 23.6 db. The block
sequential algorithm distortion per iteration is presented in
Fig. 2b. The distortion results converge to the value of 23.8
db. This is equivalent to the results of running the other
single pass algorithms for several iterations. Visually, all the
versions of clustering executed in this research produced
about the same reconstructed image.

Fig. 3a and Fig. 3b show the results of running the
single-pass incremental version on the image Lena with
single row per block. Both the static and dynamic
incremental algorithms converge to a distortion value of
about 25 db. This is slightly higher than the multi pass
algorithms. But, it is expected as the single pass algorithm
“visits” every block only one time. The dynamic
incremental algorithm has slightly lower distortion than the
incremental algorithm. We have repeated these experiments
numerous times, with different seed values using nine
different images and obtained similar results.

Fig. 4a and Fig. 4b show the results of running the
single-pass incremental version on the image
“Neighborhood” with single row per block. Both the static
This is a much larger image, and it is subject to more
aggressive quantization which ends up in a monochromatic

33Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 41 / 107

image. In this case, the distortion obtained through the LBG
variant on the entire image is 20.4 db. The incremental
algorithm and the dynamic incremental algorithms produce
a result of 23.2 db. and 24 db. Respectively. The
degradation is justified by the fact that the image
is the largest image that fits our software/hardware
configuration. Hence, a larger image cannot undergo a multi
pass procedure.

Fig. 5 shows the original and reconstructed versions of
“Neighborhood.” Figs. 6 and 7 show the same experiments
with the image “Park.” The results are similar with a
distortion of 17.5 db., 19.5 db., and 20 db., for the LBG,
incremental and dynamic incremental variants respectively.

Fig. 8a and Fig. 8b show the results of incremental
clustering and dynamic incremental clustering with a large
amount of synthetic data points (20,000,000 points) in a six-
dimensional space). Fig. 8a shows the results of running the
static incremental FCM on the synthetic data. Due to the
fact that the data is drawn from a fixed distribution, the
results of distortion per block are quite stable and the
execution ends up at a distortion value of 0.38. The
execution of the dynamic version of incremental FCM is
depicted in Fig. 8b. The distortion per block is better than
results obtained for the static case and stabilizes at 0.11.

V. RESULT EVALUATION

The results of the experiments reported and additional
experiments performed show the utility of using a two-
phase single-pass incremental FCM algorithm, where the

first phase uses a large number of centers and the second
phase clusters the centers obtained in the first phase into a
desired size of clusters. Moreover, the dynamic clustering
approach allows the number of centers in the first phase to
vary and, in the case of very large data sets, outperforms the
static incremental approach.

VI. CONCLUSION AND FUTURE WORK

This paper has reviewed static and dynamic single-pass
and multi-pass variants of the FCM. A novel two-phase
static single-pass algorithm as well as a dynamic two-phase
single-pass algorithm have been presented and are showing
high utility. Future research will concentrate on additional
methods for dynamic change in the number of clusters in
both steps of dynamic incremental FCM. In addition, we
plan to initiate research on equivalent approaches in the
KNN. We also plan to investigate parallel incremental
algorithms. Finally, we have recently received access to an
aerial photography data set where the resolution of each
image is pixels (1 tera pixels) and we plan to
explore the algorithms with this data set. Additionally, we
have access to a vector data set related to the aerial
photography. This set contains 170 million records of
varying size with an average size of 40 entries per record.
Moreover, this set contains a mixture of categorical and
numerical data. We plan to use this set as well for further
exploration of our algorithms.

Figure 2. Distortion per iteration for the multi-pass algorithms with the Image Lena

Figure 3. Incremental and Dynamic Incremental Clustering of the Image Lena

a

a b

34Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 42 / 107

a
 b

Figure 4. Incremental and Dynamic Incremental Clustering of the Image “Neighborhood”

 Figure 5. Original and Reconstructed Versions of the Image “Neighborhood”

Figure 6. Incremental and Dynamic Incremental Clustering of the Image “Park”

35Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 43 / 107

Figure 7. Original and Reconstructed Versions of the Image “Park”

Figure 8. Incremental and Dynamic Incremental Clustering of Synthetic Data

ACKNOWLEDGMENT

This material is based in part upon work supported by the
National Science Foundation under Grant Nos. I/UCRC IIP-
1338922, AIR IIP-1237818, SBIR IIP-1330943, III-Large IIS-
1213026, MRI CNS-0821345, MRI CNS-1126619, CREST
HRD-0833093, I/UCRC IIP-0829576, MRI CNS-0959985,
and FRP IIP-1230661.

REFERENCES

[1] D. E. Tamir and A. Kandel, “The Pyramid Fuzzy C-means
Algorithm,” International Journal of Computational Intelligence
in Control, vol. 2 iss: 2, Dec. 2010, pp. 270-302.

[2] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. 5th Berkeley Symposium on
Mathematical Statistics and Probablity, vol. 1, University of
California Press, 1967, pp. 281-297.

[3] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles.
London: Addison-Wesley, 1974.

[4] P. Berkhin, ”Survey of Clustering Data Mining Techniques,”
Technical Report, Accrue Software, San Jose, CA, 2002.

[5] A. A. El-Gamal, “Using Simulated Annealing to Design Good
Codes,” IEEE Transactions on Information Theory, vol. 33 iss:
1, Jan. 1987, pp. 116-123.

[6] T. Kohonen, (1991) Self-organizing maps: optimization
approaches. In T. Kohonen, K. Mäkisara, O. Simula, and J.
Kangas, (eds), Artificial Neural Networks. Proceedings of
ICANN'91, International Conference on Artificial Neural
Networks, vol. II, 1991, pp. 981-990, North-Holland,
Amsterdam.

[7] P. S. Bradley, U. M. Fayyad, and C. A. Reina, ”Scaling
Clustering Algorithms to Large Databases,” in Proceedings of
the Fourth International Conference on Knowledge Discovery
and Data Mining (KDD98), R. Agrawal, P. Stolorz, and G.
Piatetsky-Shapiro (eds), AAAI Press, Menlo Park, CA, 1998,
pp. 9-15.

[8] M. Charikar, C. Chekuri, T. Feder, and R. Motwani,
“Incremental clustering and dynamic information retrieval,”
in STOC '97 Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, ACM, New York, NY,
USA, May 1997, pp. 626-635.

[9] F. Farnstrom, J. Lewis, and C. Elkan, “Scalability for clustering
algorithms revisited,” in ACM SIGKDD Explorations
Newsletter, ACM, New York, NY, USA, vol. 2 iss: 1, June
2000, pp. 51-57.

[10] C. Gupta and R. Grossman, “GenIc: A Single Pass Generalized
Incremental Algorithm for Clustering,” in the Fourth (SIAM)
International Conference on Data Mining (SDM04), 2004, pp.
147-153.

[11] J. Lin, M. Vlachos, E. Keogh, “Iterative Incremental Clustering
of Time Series,” Advances in Database Technology - EDBT
2004, vol. 2992, March 2004, pp. 106-122.

[12] D. E. Tamir, C. Park, and W. Yoo, “The validity of pyramid K-
means clustering,” in Proc. SPIE 6700 Mathematics of
Data/Image Pattern Recognition, Compression, Coding, and
Encryption X, with Applications, 67000D, Sept. 2007, pp. 658-
675, doi:10.1117/12.735436.

[13] D. E. Tamir, Cluster Validity of Multi Resolution Competitive
Neural Networks. International Conference on Artificial
Intelligence, 2007, pp. 303-312.

b a

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 44 / 107

[14] G. B. Coleman and H. C. Andrews, “Image segmentation by
clustering,” in Proceedings of the IEEE, vol. 67 iss: 5, May
1979, pp. 773-785.

[15] W. H. Equitz, “A new vector quantization clustering algorithm,”
in Acoustics, Speech and Signal Processing, IEEE Transactions,
vol. 37 iss: 10, Oct. 1989, pp. 1568-1575.

[16] Y. Linde, A. Buzo, and R. Gray, “An Algorithm for Vector
Quantizer Design,” in IEEE Transactions on Communications,
vol. 28 iss: 1, Jan. 1980, pp. 84-95.

[17] H. V. Lung and J.-M. Kim, “A generalized spatial fuzzy C-
means algorithm for medical image segmentation,” in
Proceedings of the 18th International Conference on Fuzzy
Systems, Jeju Island, Korea, Aug. 2009, pp. 409-414. ISSN:
1098-7584, doi:10.1109/FUZZY.2009.5276878.

[18] S. Das and A. Konar, “Automatic image pixel clustering with an
improved differential evolution,” Applied Soft Computing, vol.
9 iss: 1, Jan. 2009, pp. 226-236, doi:10.1016/j.asoc.2007.12.008.

[19] X. Xu, J. Jager, and H.-P. Kriegel, “A Fast Parallel Clustering
Algorithm for Large Spatial Databases,” Data Mining and
Knowledge Discovery, vol. 3 iss: 3, Sept. 1999, pp. 263-290.

[20] P. Heckbert, “Color image quantization for frame buffer
display,” ACM Transactions on Computer Graphics, vol. 16 iss:
3, July 1982, pp. 297-307.

[21] S. Lloyd, “Least squares quantization in PCM,” IEEE
Transactions on Information Theory, vol. 28 iss: 2, Mar. 1982,
pp. 129-137.

[22] M. Garey, D. Johnson, and H. Witsenhausen, “The complexity
of the generalized Lloyd-Max Problem (Corresp.),” IEEE
Transactions on Information Theory, vol. 28 iss: 2, Mar. 1982,
pp. 255-256.

[23] G. H. Ball and J. D. Hall, “ISODATA, A Novel Method of Data
Analysis and Pattern Classification,” Technical Report, SRI
International, Stanford 1965.

[24] J. C. Bezdek, “A Convergence Theorem for the Fuzzy
ISODATA Clustering Algorithms,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. PAMI-2 iss: 1,
Jan. 1980, pp. 1-8.

[25] D. Cheng, R. Kannan, S. Vempala, and G. Wang, “A divide-
and-merge methodology for clustering,” ACM Transactions on
Database Systems (TODS), vol. 31 iss: 4, Dec. 2006, pp. 1499-
1525.

[26] C. Alippi and R. Cucchiara, “Cluster partitioning in image
analysis classification: a genetic algorithm approach,” in
Proceedings of the Computer Systems and Software
Engineering, CompEuro ’92, May 1992, pp. 139-144, doi:
10.1109/CMPEUR.1992.218520.

[27] S. Young, I. Arel, T. P. Karnowski, D. Rose, "A Fast and Stable
Incremental Clustering Algorithm," 2010 Seventh International
Conference on Information Technology: New Generations
(ITNG), April 2010, pp.204-209.

[28] J. C. Bezdek, Pattern Recognition with Fuzzy Objective
Function Algorithm, New York, USA: Plenum Press, 1981.

[29] A. Kandel, Fuzzy Mathematical Techniques with Applications,
New York: Addison Wesley, 1987.

[30] A. M. Bensaid, L. O. Hall, J. C. Bezdek, and L. P. Clarke,
“Partially supervised clustering for image segmentation,”
Pattern Recognition, vol. 29 iss: 5, May 1996, pp. 859-871.

[31] T. W. Cheng, D. B. Goldgof, and L. O. Hall, “Fast fuzzy
clustering,” Fuzzy Sets and Systems, vol. 93 iss: 1, Jan. 1998,
pp. 49-56.

[32] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy
Cluster Analysis: Methods for Classification, Data Analysis and
Image Recognition, New York: Wiley, 1999.

[33] S. K. Pal and D. K. D. Majumder, Fuzzy Mathematical
Approach to Pattern Recognition, New York: Wiley, 1986.

[34] L. Ma and R. C. Stauton, “A modified fuzzy C-means image
segmentation algorithm for use with uneven illumination

patterns,” Pattern Recognition, vol. 40 iss: 11, Nov. 2007, pp.
3005-3011.

[35] R. R. Yager, S. Ovchinnikov, R. M. Tong, and H. T. Nguyen,
Fuzzy Sets and Applications: Selected Papers by L. A. Zadeh.
New York: Wiley, 1987.

[36] J. Y. Hsiao and A. Sawchuk, “Unsupervised textured image
segmentation using feature smoothing probabilistic relaxation
techniques,” Computer Vision, Graphics, and Image Processing,
vol. 48 iss: 1, Oct. 1989, pp. 1-21.

[37] J. F. Huang, “Image Segmentation Using Discrete Cosine
Transform and K-Means Clustering Algorithm,” in Computer
Science. 1991, Florida Institute of Technology: Melbourne,
Florida.

[38] Y. Zhu, “Image Segmentation for Color Separation,” in
Computer Science. 1991, Florida Institute of Technology:
Melbourne, Florida.

[39] P. Hore, L. W. Hall, and D. B. Goldgof, “Speedup of Fuzzy
Clustering Through Stream Processing on Graphics Processing
Units,” in IEEE International Conference on Fuzzy Systems,
London 2007.

[40] A. Rosenfeld, “Pyramids: Multi-resolution Image Analysis,” 3rd
Scandinavian Conference on Image Analysis, June 1983, pp. 23-
28.

[41] S. Kasif and A. Rosenfeld, “Pyramid linking is a special case of
ISODATA,” IEEE Transactions on Systems, Man and
Cybernetics, vol. SMC-13 iss: 1, Jan.-Feb. 1983, pp. 84-85.

[42] J. C. Tilton, “Multi-resolution Spatially Constrained Clustering
of Remotely Sensed Data on the Massively Parallel Processor,”
IGARSS Symposium, 1984, pp. 661-666.

[43] E. Lughofer, “Dynamic Evolving Cluster Models Using On-line
Split-and-Merge Operations,” in Proceedings of the 2011 10th
International Conference on Machine Learning and Applications
and Workshops (ICMLA), vol. 2, Dec. 2011, pp. 20-26.

[44] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data.
Englewood Cliffs: Prentice Hall, 1988.

[45] R. L. Cannon, J. V. Dave, and J. C. Bezdek, “Efficient
Implementation of the Fuzzy C-Means Clustering Algorithms,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. PAMI-8 iss: 2, March 1986, pp. 248-255.

[46] J. F. Kolen and T. Hutcheson, “Reducing the time complexity of
the fuzzy C-means algorithm,” IEEE Transactions on Fuzzy
Systems, vol. 10 iss: 2, Apr. 2002, pp. 263-267.

[47] D. Altman, “Efficient fuzzy clustering of multi-spectral
images,” in IEEE 1999 International, IGARSS ’99 Proceedings,
Geoscience and Remote Sensing Symposium, vol. 3, Jun.-Jul.
1999, pp. 1594-1596.

[48] S. Eschrich, J. Ke, L. O. Hall, and D. B. Goldgof, “Fast accurate
fuzzy clustering through data reduction,” IEEE Transactions on
Fuzzy Systems, vol. 11 iss: 2, Apr. 2003, pp. 262-270.

[49] N. R. Pal and J. C. Bezdek, “Complexity reduction for "large
image" processing,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 32 iss: 5, Oct. 2002, pp.
598-611.

[50] S. Rahimi, M. Zargham, A. Thakre, and D. Chhillar, “A parallel
Fuzzy C-Mean algorithm for image segmentation,” IEEE
Annual Meeting of the Fuzzy Information (Processing NAFIPS
’04), vol. 1, June 2004, pp. 234-237.

[51] A. Petrosino and M. Verde, “P-AFLC: a parallel scalable fuzzy
clustering algorithm,” in Proceedings of the 17th International
Conference on Pattern Recognition (ICPR 2004), vol. 1, Aug.
2004, pp. 809-812, ISSN: 1051-4651, doi:
10.1109/ICPR.2004.1334340.

[52] D. T. Anderson, R. H. Luke, and J. M. Keller, “Speedup of
Fuzzy Clustering Through Stream Processing on Graphics
Processing Units,” IEEE Transactions on Fuzzy Systems, vol.
16 iss: 4, Aug. 2008, pp. 1101-1106.

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 45 / 107

SPEM: A Software Pattern Evaluation Method

J. Kabbedijk, R. van Donselaar, S. Jansen
Department of Information and Computing Sciences

Utrecht University, The Netherlands
{J.Kabbedijk, R.VanDonselaar, Slinger.Jansen}@uu.nl

Abstract—Software architecture makes extensive use of many
software patterns. The decision on which pattern to select is
complex and architects struggle to make well-advised choices.
Decisions are often solely made on the experience of one architect,
lacking quantitative results to support the decision outcome.
There is a need for a more structured evaluation of patterns,
supporting adequate decision making. This paper proposes a
Software Pattern Evaluation Method (SPEM), that enables the
quantification of different pattern attributes by using structured
focus groups. The method is formed using a design science
approach in which an initial method was created using expert
interviews, which was later refined using several evaluation
sessions. SPEM helps software producing companies in struc-
turing their decision making and selecting the most appropriate
patterns. Also, SPEM helps in enriching pattern documentation
by providing a way to add quantitative information to pattern
descriptions.

Keywords—architectural patterns. quality attributes. software
architecture. decision making. pattern evaluation.

I. INTRODUCTION

Modern software architecture heavily relies on the use of
many different software patterns, often used complementary to
each other in order to solve complex architectural problems.
Software architecture provides guidelines and tools for high
level system design in which architects select best fitting pat-
terns to be used within the software product [1]. Many different
patterns and tactics exist, leading to a complicated trade-off
analysis between different solutions and causing the evaluation
and selection of the appropriate software patterns to be a
complex task [2]. This complexity means architects need to
have in-depth understanding of the project characteristics and
requirements combined with extensive experience in software
development.

The information needed for appropriate pattern selection
is seldom available to all architects in a centralized or stan-
dardized way. Architectural decisions are frequently made
based on experience and personal assessment of one person,
instead of using the knowledge of many [3]. Allowing software
architects to use all information efficiently saves time when
selecting fitting software patterns and leads to better and more
adequate decision making. For this to be possible, a method
has to be created enabling the evaluation and documentation
of crucial attributes of a software pattern [4]. This structured
evaluation will allow architects and decision makers to com-
pare different solutions and select the best matching pattern.
Patterns, however, are a high-level solution that can be used
different scenarios, making it impossible to use one specific
implementation of the pattern to evaluate the entire pattern.
Because specific implementations are unusable, the relevant

pattern attributes can not be directly measured in a quantitative
way.

Pattern evaluation adds retrospect and the knowledge of
many experts to existing pattern documentation. This study
also relates to software architecture as it solves a problem
found in the software pattern selection process. Software
pattern evaluation helps when performing pattern oriented
software architecture in cases where alternative patterns to
solve the same problem and only a single pattern can be
selected. This is an important factor to take into account,
because it means that rather than selecting individual patterns,
an architect will want to select an architectural style, and
thus select a large set of patterns that fit this style. This area
of software architecture has developed, which resulted in a
large amount of documented patterns and allows for comparing
architectural styles [5].

Although it seems that comparing individual patterns is
less relevant for software architecture, an architectural style is
selected at the early stages of software design and cannot easily
be changed after the development has started. This creates a
problem because while the software is being developed, the
requirements for the project or the environment will change.
Therefore it is necessary to extend the architecture or at
times alter the existing architecture. At this point it becomes
relevant to compare individual patterns in order to select the
pattern that fits the project requirements. This is an ongoing
process that happens throughout software development and
relies on the experience of software architects and developers.
Current documentation of software patterns is lacking a way to
compare them with each other. But, if multiple patterns tackle
the same problem, how does an architect decide which one
to use? This is tacit knowledge of experienced architects and
developers, leading to the following problem statement:“There
is no formal way to express the quality of one pattern over
another”.

This paper presents the Software Pattern Evaluation
Method (SPEM). Using SPEM, software producing companies
are supported in pattern selection decision making and are able
to quantitatively compare different patterns. SPEM enables
them to get an overview of specific pattern characteristics in a
timely manner. Also, SPEM can be used to generate a publicly
available pattern related body of knowledge, helping research
and practitioners in architectural research and decision making.
This paper first gives an overview of research related to pattern
comparison in Section II. The design science approach used
in the research is described in Section III, after which SPEM
is presented in Section IV. The pattern evolution, including
the initial method creation (Section V-A) and method evalu-
ation (Section V-B), showing the changes during the method

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 46 / 107

creation process can be found in Section V. To conclude, the
applications of SPEM are discussed (Section VI), followed by
a conclusion (Section VII).

II. RELATED WORK

Software Patterns — As software development was ma-
turing in the 1980s, the need arose to share common solutions
to recurring problems. This process started out by developers
communicating to their colleagues how they solved a recurring
development issue. The communication was informal and there
were no clear rules for documentation. In later years, software
patterns have become an essential part of software development
as a way to capture and communicate knowledge. Software
patterns are solutions to a recurring problem in a particular
context [6], [7]. When properly documented these solutions
are a valuable asset for communication with and among
practitioners [8]. Usage of software patterns allows for time
and cost reduction in software development projects, making
them an important tool for software design and development.
Although software patterns started out as a way to communi-
cate solutions among developers, they have become a crucial
part of software architecture [9] as well. A pattern selected
by a developer, however, does not take into account the entire
architecture and how it combines with existing patterns. This
problem is solved by selecting patterns at the architectural
level.

Architecture Evaluation — Evaluation is commonly used
in software architecture in order to increase quality and
decrease cost [10]. Many evaluation methods for software
architecture have been developed and compared in recent
years [11]. The evaluation should be performed as early as
possible in order to prevent large scale changes in later stages
of development. Software architecture evaluation is linked to
the development requirements and desired quality attributes.
Therefore, it is not a general evaluation of software archi-
tecture, nor an evaluation of a specific implementation. The
evaluation should be an indication of whether the proposed
architecture is a good fit for the project. Pattern comparison
and evaluation has been done before [12] in a quantitative
manner, but has focussed on the implementation of different
patterns and lacks the evaluation of the idea the pattern
describes.

III. RESEARCH APPROACH

This section presents the research questions answered in
this paper and the design science approach used to construct
SPEM. The main research question (MRQ) answered in this
paper is:

MRQ: How can software patterns be evaluated
in a manner that is objective and allows for com-
parison?

The aim of this study is to aid software architects in the
decision making process of selecting software patterns. This
can only be useful when the evaluation method yields objective
results. Since a software pattern can not be objectively mea-
sured in any way, the opinions of multiple software architects
are used in the form of scores. A quantitative study also
allows for easy comparison between alternative patterns. For

the purpose of answering this research question, multiple sub-
questions are constructed:

SQ1: Which attributes are relevant in pattern
evaluation?

Rationale: Patterns can possess many attributes that give
important information on usefulness and quality. For example,
how the pattern effects performance or maintainability can both
be attributes of a pattern.

Attributes are used in software architecture to evaluate
the quality of certain aspects of the architecture. We apply
the same principles for evaluation of software patterns. The
first step is to create a list of attributes by looking at related
literature. This list is then reduced by performing expert
interviews. This tells us which of the listed attributes are
important to software architects when evaluating a pattern.
A validation of the reduced list of attributes is performed by
interviewing a second expert. The result of these interviews
is a validated list of attributes relevant in the software pattern
evaluation process.

SQ2: How can attributes relevant in pattern
evaluation be quantified in a manner that allows for
comparison?

Rationale: Typical documentation on software patterns
is qualitative in nature. Although this might be suited for
documentation on patterns it does not allow for comparison.
For this reason, the different attributes relevant for pattern
evaluation need to be quantified. A structured method of
quantification that is used for evaluations would allow for
patterns to be compared on attribute level.

Conduct expert
interviews

Evaluate method

Improvements

No improvements

Initial method

Improved method

Is basis for

SPEM methodBuild SPEM method

Is finalized in

Fig. 1. Design Science Research Method

To answer this question we first look at comparable
methods of quantification within the domain of software
engineering. From these methods the specific characteristics
are deduced. An example of these characteristics can be the

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 47 / 107

ability to assign a negative value to an attribute. A method for
quantification is constructed based on the list of characteristics.
The method is evaluated by using it in a focus group session
after which is can be incrementally improved.

A design science approach is used, which is depicted in
Figure 1. An initial method is created based on an earlier
exploratory study [13], extended by expert interviews. The
method is evaluated in multiple cycles in which the method
was put to practice in a real-world setting. Three subsequent
sessions are organized in which both professional software
architects and software architecture students used the method.
Information system master students can be used as test subjects
instead of professional software developers [14]. All sessions
were recorded and an evaluation form is filled in by all par-
ticipants after each session. A revised method was constructed
after each session, based on the feedback, which is used as
input for the next session. After three sessions no significant
changes were needed any more, leading to the creation of the
final method (i.e. SPEM).

IV. SPEM - SOFTWARE PATTERN EVALUATION METHOD

SPEM has been constructed to evaluate software patterns in
a manner which allows for comparison. There are two distinct
roles:

Evaluator — Leads the evaluation process by introducing con-
cepts and directing discussions. Is responsible for timekeeping,
collecting all deliverables and noting scores.

Participant — A software architect or developer who uses
his knowledge to assign scores to attributes, enters discussion,
shares arguments and tries to reach consensus.

The evaluation data is gathered during a focus group
session. These sessions vary in duration from one to two hours.
Four to twelve participants can partake in the evaluation, ex-
cluding the evaluator. The basis of the evaluation are attributes,
categorized in both quality attributes and pattern attributes.
Quality attributes are used to measure the impact the pattern
has on software quality and are based on ISO/IEC 25010 [15].
The following quality attributes (excluding sub-attributes) are
used in SPEM:

• Performance efficiency — Degree to which the software
product provides appropriate performance, relative to the
amount of resources used, under stated conditions.

• Compatibility — The ability of multiple software com-
ponents to exchange information or to perform their
required functions while sharing the same environment.

• Usability — Degree to which the software product can
be understood, learned, used and attractive to the user,
when used under specified conditions.

• Reliability — Degree to which the software product
can maintain a specified level of performance when used
under specified conditions.

• Security — The protection of system items from acci-
dental or malicious access, use, modification, destruction,
or disclosure.

• Maintainability — Degree to which the software product
can be modified. Modifications may include corrections,
improvements or adaptation of the software to changes in

environment, and in requirements and functional specifi-
cations.

• Portability — Degree to which the software product can
be transferred from one environment to another.

Assign scores

Create participant
profiles

Assign personal
scores

Assign group score

Write evaluation
summary

Consensus

No consensus

Participant profiles

Personal score list

Evaluation summary

Is included in

Is input for

[All attributes discussed]

[Next attribute]

Score table

Is included in

Fig. 2. SPEM: Software Pattern Evaluation Method

Pattern attributes are characteristics of the pattern itself,
used to measure its learnability or ease of implementation. The
goal of the evaluation is to assign a score to each attribute by
all participants. The score is a relative measure based on the
experience of the participant, ranging from −3 to +3. The
score is a generalization of the software pattern, not based on
a specific implementation. Experience using the pattern in a
variety of situations is expressed by the score. Therefore the
difference in experience among all participants is a key factor
in the evaluation, which is compensated in a group score.
A group score is assigned to each attribute (excluding sub-
attributes) and expresses a score after a round of discussion.
The discussion of each attribute allows the participants to share
their knowledge with each other. The goal of the discussion
is to reach consensus, meaning that after knowledge has
been shared between participants with different amounts of
experience, one score is assigned on which all participants
agree. The result is quantitative data in the form of scores
based on personal experience and the knowledge of a group,
visualized in an evaluation summary (see Figure 3).

SPEM consists of four activities and four deliverables,
as shown in Figure 2. The first activity focuses on creating
participant profiles [16]. These profiles are forms containing
fields for the participant’s name, job description and years of
experience. Additionally, there are input fields for the pattern
name and experience with the pattern. Provided with the
participant profile is a personal score list containing a list
of quality attributes, sub-attributes and pattern attributes. For

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 48 / 107

Fig. 3. SPEM evaluation summary (observer pattern)

each item on this list there is a possibility to give a personal
score. The evaluator introduces the method to the participants
by explaining each deliverable and the focus group session
protocol. In the protocol, all activities and by who they are
performed are listed and described. Thereafter, the evaluator
asks the participants to fill out the participant profile.

In the second process, personal scores are assigned to an
attribute. During the evaluation the scores are recorded in the
personal score list. After the evaluation the personal scores are
entered in the score table. The score table contains rows with
all attributes used in the evaluation and columns containing all
personal scores, average scores, standard deviations and group
scores. The evaluator introduces an attribute by giving a short
description. The participants are then asked to assign a score
to the attribute and all corresponding sub-attributes.

In the next phase, a group score is assigned to an attribute
and noted in the score table. The group score is a score which
is produced by gaining consensus. This means all participants
partake in a discussion. The focus of the discussion is to
exchange arguments on the score of an attribute. If consensus
is reached among all participants, the resulting group score
is assigned and noted on the score table. If consensus is not
reached, the group score is not assigned and no score will be
noted in the score table. The evaluator initiates a discussion
on the current attribute by asking a single participant’s score
and motivation for the score. Other participants are free to
respond and exchange views, directed by the evaluator. If the
discussion ends or if no time is left, the evaluator asks the
participants if they have reached consensus. When consensus
is reached, the group score is recorded in the score table.

When all attributes have been evaluated, an evaluation sum-
mary is created. The evaluation summary is a combination of
all participant profiles and a filled out score table. Additionally
a new form is added containing the name of the evaluator, date
and threats to validity. This gives the evaluator the opportunity
to note any occurrences that are not expressed in the main
deliverables. This process is performed by the evaluator at the
end of the focus group session and concludes the evaluation.

V. METHOD EVOLUTION

This section discusses how the initial method evolved and
shows the explicit changes made to the method based on the

expert evaluation sessions.

A. Initial Method Construction

Expert interviews formed the basis of the initial version
of the SPEM method. Two software architects from different
companies cooperated to share their views on software pattern
evaluation. Understanding which attributes are relevant in pat-
tern evaluation and how they could be quantified was the goal
of the interview. During the interview a list of quality attributes
derived from ISO/IEC 9126 [17] and ISO/IEC 25010 [15] was
discussed, the latter being preferred by the interviewees. Al-
though both interviews had different results on the importance
of each individual attribute of the standard, none could be
excluded. Ease of learning and ease of implementation are
both attributes describing characteristics of software patterns.
Both these attributes should be included in software pattern
evaluation as they play an important part in software pattern
selection.

Scenarios are often used in software architecture evalu-
ation, but do not fit pattern evaluation. The fact that patterns
are evaluated without a specific implementation in mind makes
the use of scenarios irrelevant. A software architect should
interpret the results of pattern evaluation by relating it to their
own project. When attributes are quantified using a score, it
should be possible to assign a negative value. Patterns can
affect software quality in a negative way or have negative
characteristics, which a score should be able to express. The
range of the scores should be between a five and ten point
scale. At larger ranges it would be difficult for an architect to
assign an accurate score.

When multiple architects perform a pattern evaluation, they
are likely to have varying degrees of experience. Experience
is key in understanding software patterns and their effect
on software quality. It is important to assign a score to an
attribute which takes into account the varying degrees of
experience software architects have. This should be done using
discussion and consensus. In a discussion, those who have
more experience can share their knowledge with those who
have less experience. Together working towards consensus
can improve the level of knowledge of the participants and
consequently improve the score. Software pattern evaluation
should be performed with at least one architect who has

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 49 / 107

experience using the pattern which is being evaluated. This
restriction makes sure the evaluation yields a valuable result.

Based on these interview results a method was constructed
incorporating the following:

• All attributes and sub-attributes from ISO/IEC
25010 [15].

• Two additional attributes; ease of implementation and
ease of learning.

• Scoring ranging from −5 to +5.
• Discussion after each attribute.
• The goal of trying to reach consensus on each attribute.

B. Method Evaluation

Using a design science approach the initial method was
evaluated and improved several iterations. A total of three
focus group sessions were hosted to evaluate the method.
In these sessions the method was carried out by evaluating
a software pattern. Participants were asked to fill out an
evaluation form at the end of the focus group session. The
feedback gathered in the evaluation forms and experiences
from hosting the sessions were the basis for each new iteration
of the SPEM method.

During the first focus group session, four software archi-
tects participated, each having over nine years of experience
in software development. During this session the observer
pattern was evaluated using the initial version of SPEM. The
first attribute, functional suitability and corresponding sub-
attributes raised many questions. It was not possible to assign a
score, as the attribute demanded a specific context. Not having
a description for sub-attributes was confusing and diverted
discussions to the definitions of certain sub-attributes. Based
on the evaluation session, the following improvements were
incorporated in the method:

• Removal of attribute ‘Functional suitability’ — This
attribute, including its sub-attributes turned out to be
irrelevant based on the focus group session. Functional
suitability can only be assessed by looking at specific
implementations.

• Including a description for all sub-attributes — A de-
scription of each attribute, including all sub-attributes was
needed. This way different interpretations of attributes can
be precluded.

The second focus group session was performed with twelve
participating master students. The students have an information
systems background and were all enrolled in the Software
Architecture course, which prepared the students for the focus
group session. The Access Point pattern was evaluated and
participants were free to discuss attributes without any inter-
vention from the evaluator. This resulted in lengthy discussions
making the session take longer than anticipated. Discussions
should be halted by the evaluator after a certain period of time
based on the time that is available.

Assigning scores to sub-attributes and discussing them was
time consuming. Sub-attributes needed a less prominent role
in the method. It was not always possible for participants to
assign a score to an attribute. Therefore it should be possible to
have an explicit option stating that no score is assigned, instead

of leaving it empty which might imply a neutral score. The
introduction of the pattern was unclear, leading to discussion
and debate. How scores should be assigned and what they
represent raised questions during the session. The evaluator
should focus more on explaining the meaning of scores and
the difference between quality attributes and pattern attributes.

Based on the second evaluation session, the following
improvements were incorporated in the method:

• Sub-attributes removed — Because discussion on sub-
attributes took too long, they were removed from the
method.

• Added an option to give an attribute no score — An
explicit way was added for participants to indicate they
do not want to give a score to a certain attribute.

• More focus on pattern introduction — The pattern
needs to be thoroughly explained to prevent discussions.

• More focus on explaining what the scores represent
— Scores represent the impact the evaluated pattern has
on software quality or characteristics of the pattern itself.
This distinction needs to be clear in order to properly
assign scores.

• Stronger role of the evaluator — The evaluator needs to
direct the discussions. Apart from initiating discussions,
they should also be halted. Time keeping is the responsi-
bility of the evaluator.

The third focus group session was performed with different
students from the same group as the second focus group
session. Although sub-attributes did not receive a score, they
were referred to in discussions to better understand an attribute.
Therefore it is important to include the sub-attributes in the
method. Discussions for each sub-attribute would increase the
time to complete an evaluation substantially. A personal score
should be assigned to a sub-attribute while discussions and
consequently group scores, should be left out.

Based on the third evaluation session, the following im-
provements were incorporated in the method:

• Sub-attributes added — Can help the understanding of
attributes and provide more detail to the data.

• Sub-attribute discussions removed — Gives the sub-
attributes a less prominent role in the method and focusses
more on attributes.

• Descriptions for each attribute / sub-attribute added
to participant profile — Allows the participants to read
descriptions of attributes independent of the evaluator.

After the three sessions, the final method (i.e. SPEM) was
created.

VI. SPEM IMPLEMENTATION

SPEM is created to evaluate software patterns in general,
without a specific implementation in mind. This enables the
option for comparison of software patterns, because each
pattern has been evaluated as an abstract solution. It prevents
unbalanced comparison between patterns based on different
implementations. There is a trade-off between easy to compare
generic evaluation and implementation specific evaluation. An
implementation specific evaluation provides more accurate

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 50 / 107

data, but it can only be compared to evaluated patterns based
on the same implementation. A generic evaluation might not be
as accurate, but ensures all evaluated patterns can be compared.
SPEM can be used for implementation specific evaluation
with few adjustments. It requires the evaluator to explain
that the scores should be assigned with an implementation
in mind. There needs to be an input field describing the
implementation on the score table. With these adjustments an
evaluation session would be identical to SPEM and allows for
use of all processes and deliverables used in SPEM.

This study provides knowledge on software pattern evalu-
ation by introducing a method to evaluate software patterns.
The data SPEM evaluations provide further expands the body
of knowledge on patterns. It adds retrospect to the existing
software pattern documentation and provides insight on the
impact patterns have on software quality. A collection of
SPEM evaluation results provides valuable knowledge on
the understanding of software patterns and software quality.
A knowledge base would enable the disclosure of SPEM
evaluation results and would allow results to be combined and
compared. From an industrial perspective, a SPEM knowledge
base would enable software architects to share their knowledge
on software patterns. It would make knowledge available to aid
in software pattern selection, leading to better decision making
and overall software quality. It is through sharing knowledge
that software pattern selection can reach a higher level of
maturity, allowing for a structured way of comparing software
patterns.

SPEM uses discussion and consensus to obtain quantitative
evaluation data. This method of quantification was introduced
to cope with different experience levels among participants.
It has imposed a constraint on the method of data gathering
used in SPEM. As discussions require interaction between
participants, all participants need to be able to communicate
with each other at the same time. Therefore SPEM is used
in focus group sessions, limiting the number of participants.
A trade-off exists between a more accurate score based on
consensus with a small number of participants and a less
accurate, but more reliable score with a large number of
participants.

VII. CONCLUSION

SPEM is an objective software pattern evaluation method
which can be used to compare patterns. It is used to eval-
uate relevant attributes of patterns based on the experience
of software architects. SPEM provides quantitative data on
attributes in the form of scores. The data can be interpreted
and visualized to allow for software pattern comparison. This
answers the main research question (MRQ).

The question “Which attributes are relevant in pattern
evaluation?” (SQ1) is answered with a list of attributes, con-
sisting of quality attributes and pattern attributes. The quality
attributes are based on ISO/IEC 25010 and modified for pattern
evaluation, resulting in the following set of attributes: a) Per-
formance efficiency, b) Compatibility, c) Usability, d) Re-
liability, e) Security, f) Maintainability, and g) Portability.
These attributes can be quantified in a manner that allows for
comparison (SQ2) by rating the different attributes by experts
in a focus group setting. It requires that personal scores ranging

from -3 to +3 are assigned to all attributes and sub-attributes. A
group score is assigned to all attributes after a discussion and
reaching consensus. All scores are noted in the score table.
A future step is to perform SPEM sessions to gather data
and produce results allowing for software pattern comparisons.
Gathering the output of evaluation sessions and adding them to
the knowledge base can help to further validate the method and
produces valuable knowledge for both academic and industrial
purposes.

ACKNOWLEDGMENT

The authors would like to thank Leo van Houwelingen from
Exact Software and Raimond Brookman from Info Support
for their valuable input. We also want to thank the architect
team from Info Support for their cooperation. This research is
funded by the NWO ‘Product-as-a-Service’ project.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
2/E. Pearson Education India, 1998.

[2] A. Jansen, J. Van Der Ven, P. Avgeriou, and D. K. Hammer, “Tool sup-
port for architectural decisions,” in The Working IEEE/IFIP Conference
on Software Architecture (WICSA’07). IEEE, 2007, pp. 4–4.

[3] M. A. Babar and I. Gorton, “A tool for managing software architecture
knowledge,” in Proceedings of ICSE Workshop on Sharing and Reusing
Architectural Knowledge (SHARK). IEEE, 2007, pp. 11–17.

[4] J. Tyree and A. Akerman, “Architecture decisions: Demystifying archi-
tecture,” Software, IEEE, vol. 22, no. 2, pp. 19–27, 2005.

[5] G. Booch, “On creating a handbook of software architecture,” in Pro-
ceedings of the Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA), vol. 16, no. 20, 2005, pp. 8–8.

[6] F. Buschmann, Pattern oriented software architecture: a system of
patterns. Ashish Raut, 1999.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1995.

[8] K. Beck, R. Crocker, G. Meszaros, J. Vlissides, J. O. Coplien, L. Do-
minick, and F. Paulisch, “Industrial experience with design patterns,”
in Proceedings of the 18th international conference on Software engi-
neering. IEEE Computer Society, 1996, pp. 103–114.

[9] F. Buschmann, K. Henney, and D. C. Schmidt, “Past, present, and future
trends in software patterns,” IEEE Software, vol. 24, no. 4, pp. 31–37,
2007.

[10] G. Abowd, L. Bass, P. Clements, R. Kazman, and L. Northrop, “Rec-
ommended best industrial practice for software architecture evaluation,”
DTIC Document, Tech. Rep., 1997.

[11] M. A. Babar, L. Zhu, and R. Jeffery, “A framework for classifying and
comparing software architecture evaluation methods,” in Proc. of the
Australian Software Engineering Conference. IEEE, 2004, pp. 309–
318.

[12] M. Hills, P. Klint, T. Van Der Storm, and J. Vinju, “A case of visitor
versus interpreter pattern,” in Objects, Models, Components, Patterns.
Springer, 2011, pp. 228–243.

[13] J. Kabbedijk, M. Galster, and S. Jansen, “Focus group report: Evaluating
the consequences of applying architectural patterns,” in Proc. of the
European conference on Pattern Languages of Programs (EuroPLoP),
2012.

[14] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjectsa
comparative study of students and professionals in lead-time impact
assessment,” Emp. Softw. Engineering, vol. 5, no. 3, pp. 201–214, 2000.

[15] ISO/IEC, ISO/IEC 25010. Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE) - System
and software quality models, 2010.

[16] R. Donselaar and J. Kabbedijk, [Accessed: 2014-04-08]. [Online].
Available: http://www.staff.science.uu.nl/ kabbe101/PATTERNS2014

[17] ISO/IEC, ISO/IEC 9126. Software engineering – Product quality, 2001.

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 51 / 107

Generating Java EE 6 Application Layers and Components in JBoss Environment

Gábor Antal, Ádám Zoltán Végh, Vilmos Bilicki

Department of Software Engineering

University of Szeged

Szeged, Hungary

{antalg, azvegh, bilickiv}@inf.u-szeged.hu

Abstract—Nowadays, prototype-based development models are

very important in software development projects, because of

the tight deadlines and the need for fast development.

Prototypes can be very efficient in the analysis, validation and

clarification of the requirements during the development

iterations. Model-driven development and code generation are

frequently used techniques to support the fast development of

application prototypes. There are many recurring tasks in the

iterations of a prototype development process, which can be

performed much faster using high level models and the

automatic generation of application component

implementations. The goal of this paper is to review model-

driven development and code generation methods and tools,

which can be used to create Java Enterprise Edition 6

applications. Besides, this paper introduces a new code

generation tool, which uses the JBoss Forge framework for

generating application layers and components based on the

entities of the application.

Keywords- prototype development; model-driven engineering;

code generation.

I. INTRODUCTION

There are many software development projects at present
where it is very hard to collect all the requirements at the
beginning of the project. The customers can be uncertain or
they cannot visualize the requirements in detail and
precisely. Therefore, the classical waterfall development
model does not work in these projects. The requirements
specification and the system plan need more phases to
validate and clarify, which need active communication with
the customer. Therefore, prototype-based development
models can be useful in these cases [1]. Using these models
it is possible to show a functional application prototype to
the customer to validate and clarify the requirements. But
very fast prototype implementation is needed for effective
prototype-based development processes. For this purpose,
model-driven development and code generation methods are
used to speed up the implementation. However, it is
important to examine and use software design patterns to
ensure the maintainability of the application.

The goal of Model-Driven Development (MDD) [2] is to
simplify the system design process and increase development
productivity by reusing standard software models and design
patterns. The developer defines the components of the
system with their relations, the structures and relations of the
data to be managed, and the use cases and behaviors of the
system using high level models. Based on these high level

representations the model-driven development tools can
automatically produce lower level system models, and in the
end of the process they can generate implementations in
specific programming language. Transitions between the
different model levels and the generation of the
implementation from the models are performed by
predefined automatic transformations. The model-driven
development process supports the regeneration of the
implementation after modifying the system models.

A very important tool of model-driven development is
code generation, which is used in the implementation phase
[3]. The goal of code generation is to automatically create a
runnable implementation of the system in a specific
programming language based on the initial high level system
models. Using this technique the production of prototypes
can be accelerated significantly. The usage of different
design patterns can cause a lot of recurring manual
implementation tasks, which can be supported with code
generation effectively. The generated source code is
supported by expert knowledge, so the maintainability of the
code can be higher compared to the manual implementation.

However, the existing code generation solutions have
some main disadvantages and deficiencies, which make them
unable to use effectively for generating Java EE 6 [4]
applications. Our goal is to introduce a new code generation
toolkit, which eliminates these drawbacks and generates
application prototypes based on Java EE design patterns.

This paper provides insights on some methods, which can
be used for effective development of Java EE (Enterprise
Edition) 6 application prototypes. Section II examines some
related work in the area of code generation and shows the
disadvantages of the existing generator toolkits. Section III
presents the JBoss Forge [5] framework, which can generate
Java EE 6 application prototypes with its Forge Scaffold [6]
extension. Section IV describes some practical
methodologies for code generation using some tools from the
JBoss Forge framework. Section V introduces a Forge-based
code generation toolkit, which eliminates the defects of the
Forge Scaffold and provides more application components to
generate. Section VI presents a case study about the usage of
our generator toolkit in a telemedicine project. Section VII
concludes the paper and discusses some interesting problems
that are targeted to be further studied and improved in the
future.

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 52 / 107

II. RELATED WORK

During model-driven development processes the high
level system models are often created using Unified
Modeling Language (UML) [7], mostly based on class-,
sequence-, activity- and state diagrams. The programming
language of the implementation is mostly Java, C# or C++.
The GenCode toolkit [8] generates Java classes from UML
class diagrams, which include fields, getter and setter
methods, default constructors, but it can generate only stubs
for non-trivial methods. Other UML-based model-driven
development tools, e.g., Modelio [9], ObjectIF [10], IBM
Rational Rose [11] and Rhapsody [12], have the same
drawback. Some toolkits introduced in [13][14][15] papers
can generate non-trivial methods based on sequence- and
activity diagrams. However, these tools need these diagrams
for each non-trivial method and they cannot use generic
diagram templates for generating pattern-based applications.

Some MDD tools define their own modeling languages,
e.g., Acceleo [16] and ActifSource [17], but they do not have
any metamodels for Java EE code generation.

A part of the source code can be also a model. A great
example for this statement is the entity layer implementation
of an application, which defines the data structures managed
by the system. The entity implementations can be used to
generate Create-Read-Update-Delete (CRUD) user interfaces
for the application. Entity-based code generation tools are,
e.g., JBoss Forge, seam-gen [18], MyEclipse for Spring [19],
and OpenXava [20]. In the case of these toolkits, the
generated user interfaces are in some cases incomplete,
inaccurate, or difficult to use, e.g., inheritance, association
between entities.

III. THE JBOSS FORGE FRAMEWORK

One of the most important entity-based code generation
toolkits is the JBoss Forge framework, which is developed
by the JBoss Community. The main goal of this tool is to
manage the lifecycle and configuration of Maven projects
[21] and to support the automatic generation of some
application components with some simple commands. Forge
has a command line interface, which includes most of the
important Linux file manager commands. These commands
are extended to read and modify the structure of Java source
files. Besides, there are commands implemented for creating
and configuring projects, and creating Java Persistence
Application Programming Interface (JPA) entities. The
Forge commands can be run batched in a script to make the
use of the framework easier.

There are many available and downloadable plug-ins for
Forge, extending its functionality. It is also possible to
develop new plug-ins to support new code generation
capabilities. A very useful plug-in included by the
framework is Forge Scaffold, which can be used to generate
basic Java EE 6 prototypes with CRUD web user interfaces
based on the JPA entities of the application. The Scaffold
plug-in can be extended with several scaffold providers,
which can be used to specify the UI component library for
generating user interface layer, e.g., standard Java Server

Faces (JSF), RichFaces, Primefaces. Unfortunately, the
Forge Scaffold plug-in has some defects.

 If the entity layer contains inheritance between
entities, the user interfaces of the child class do not
contain the fields of the super class.

 If a field has a @ElementCollection annotation, the
edit page does not contain any component for
selecting/adding elements to the field.

 In case of associations between entities, the edit page
contains a dropdown menu for selecting/adding
elements with the return value of the toString()
method of the related entity instances. It is not
possible to select a field as label.

 List pages do not provide ordering and filtering by
multiple criterions.

 The generated code is difficult to maintain. The
business logic is generated into one Bean class per
entity. There is no separate Data Access Object
(DAO) layer.

IV. CODE GENERATION METHODOLOGIES

The Forge Scaffold plug-in uses the combination of two
main methodologies for generating source code: template-
based and procedural code generation. The tools for these
code generation methods are provided by the JBoss Forge
framework, so new code generator plug-ins can be developed
using these tools.

The concept of template-based code generation
methodology is to produce source code based on predefined
templates, which will be rendered depending on the
generation context. These templates consist of two types of
parts: static parts, which will be generated into every source
code instances; and dynamic parts, which will be replaced
depending on the different inputs of the generation process.
For supporting template-based code generation, JBoss
Community provides the Seam Render tool, which is also
used by Forge Scaffold plug-in [22]. The syntax of Seam
Render code templates is quite simple. The static code parts
should be specified the same way as they should appear in
the generated code instances. The dynamic code parts should
be indicated by expressions with named objects given in the
form @{indicatorExpr}. The template-based code generation
process consists of three phases:

1. Compiling the template: the specified template is
processed and the dynamic template parts are
collected with their object names and positions.

2. Defining the rendering context: every object names
in indicator expressions are mapped to a Java object
(mostly a String) for replacing every occurrence of
the proper object name with the value of the object.

3. Rendering the template with the given context.
This method can be efficiently used in cases when the

source code to generate contains small dynamic parts, which
can be rendered by simple replacements, e.g., DAO classes,
Beans for business logic. But, there can also be cases when
the source code to generate contains “highly dynamic” parts,
which can be rendered using very complex replacements
(e.g., user interfaces) or when a given existing source code

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 53 / 107

file must be modified in a later phase of the generation
process. In these cases the procedural code generation
methodology can be useful.

The procedural code generation aims the production of
code elements using libraries for parsing and representing the
elements of the specified language. For generating Java
source code procedurally, Forge provides the Forge Java
Parser library, which can parse Java source code to its own
high level representation, create new code elements (classes,
interfaces, fields, methods, etc.) or modify existing elements
in the source code [23]. For generating XHTML (eXtensible
Hypertext Markup Language) elements of the web user
interface, the Metawidget framework can be useful, which
contains the high level representation of standard XHTML
tags, and JSF components [24]. Using these tools, new
generator components can be developed to produce highly
dynamic code parts and extend existing source code with
new elements.

V. FORGE-BASED CODE GENERATION TOOLKIT

For eliminating the defects of Forge Scaffold and
extending its functionality with the generation of other
application components, we aimed the development of a new
code generation toolkit based on the JBoss Forge framework.
We analyzed some of our software development projects to
find application layers and components, which contain a
large amount of repetitive work that can be replaced with
code generation methods to accelerate the development
process. We found nine general areas that can be effectively
supported with code generation. We examined these areas
and their design patterns, collected the knowledge and
experience we have in relation to the development of these
components and implemented a code generation toolkit for
supporting the effective production of them. In the following
subsections we discuss these areas in detail.

A. Entity and Validation Management

The entity generator of the Forge framework is a very
useful tool but it has some defects:

 It is not possible to generate inheritance between
entities.

 It cannot generate enum types with specific values.

 It is not possible to generate custom constructors,
hashCode, equals and toString methods based on
specific fields.

We implemented these capabilities to extend the
functionality of the entity generator. Besides, Forge cannot
generate validation annotations to the entity fields, so we
extended our toolkit with the possibility to add annotations
of Bean Validation API (Application Programming
Interface) to the entities. The generated entities use the
Composite Entity design pattern to implement associations
between the entities.

B. DAO Layer

The DAO layer of the application is responsible for the
operations, which can be made on the entities of the system:
inserting, updating, deleting, querying. Using JPA-based
EntityManagers it is easy to generalize the DAO layer based

on the Data Access Object design pattern. We created a
generic DAO superclass for providing simple EntityManager
operations and the entity-dependent DAO child classes
extend this superclass to provide queries and entity-specific
operations. Therefore, only the child classes should be
generated depending on the entity based on a DAO template.
We used Hibernate as JPA provider in our generator toolkit.

C. Business Logic Layer

The business logic layer of an application is responsible
for establishing connection between the user interface and
the entities (using the DAO layer), and managing complex
business processes and transactions. There are two main
components in general, which are used by CRUD user
interfaces:

 Data Models: provides the listing of specific type of
entities with paging, ordering and filtering. They use
the Session Façade and Value List Handler design
patterns.

 Entity Action Beans: provides editing, viewing and
deleting of a selected entity instance. They use the
Session Façade design pattern.

These business logic components are also easy to
generalize using generic superclasses. Only the entity-
specific Data Models and Entity Action Beans should be
generated depending on the entity based on code templates.
We used Contexts and Dependency Injection (CDI) for
context management and dependency injection, and
Enterprise JavaBeans (EJB) 3 for transaction management in
our generator toolkit.

D. CRUD User Interfaces

The CRUD user interfaces provide simple listing,
creating, editing, viewing and deleting capabilities for the
application user. Simple UI components (text fields, labels,
dropdown menus, etc.) can be inserted using JSF 2
components. Complex UI components (list items, fields with
labels, complex selector components, etc.) can be efficiently
generalized using JSF 2 composite components, which can
simplify the generation of complex user interfaces. These
components use the Composite View design pattern. We also
eliminated the defects of Forge Scaffold in our user interface
generator. The generation of user interface components is
performed by procedural code generation and the result is
inserted into predefined XHTML page templates.

An example list user interface generated by our toolkit is
shown on Figure 1. The layout and content of list items are
generated using the structure of the entity classes.

Figure 1. List user interface generated by our toolkit

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 54 / 107

E. Authentication, Authorization, Auditing

The system needs authentication and authorization
modules to provide appropriate data security. Users need to
be authenticated before using the system and it is very
important to check the permissions of the actual user before
data access or modification. These modules can be the same
in most of the applications. We use the PicketLink [25]
security and identity management framework in our
generated security module, which provides a general entity
layer pattern and JPA-based solutions for identity and role
management. In our security module, we also implemented
PicketLink-based registration, password change and
password reminder components, which can be automatically
generated for the given application.

The logging of the operations made by application users
is also a very important data security aspect, which is called
data auditing. Our code generation toolkit can produce an
auditing module for the application, which is capable to log
every data operations with the name of the performer user
and the actual timestamp. The auditing module uses
Hibernate Envers [26] in a combination with our auditing
solutions.

F. REST Interfaces

Mobile client applications often connect with a server
application for data querying or uploading. Therefore, both
the client and the server application need interfaces to
communicate with each other. The most frequently used
methodology of client-server communication is the
Representational State Transfer (REST) architecture. For
transferring data between the client and the server, the
JavaScript Object Notation (JSON) and eXtensible Markup
Language (XML) formats are often used. Our toolkit can
generate common source files for REST-based
communication (both for client and server) and REST
service stubs for server application based on DAO methods.
Data objects transferred between server and clients are
implemented using the Data Transfer Object (DTO) design
pattern. The generated service implementation includes DTO
classes based on entities and converters between entities and
DTO classes. Our solution uses the RESTEasy library for
REST implementation and Jackson library for JSON
implementation.

G. Data Visualization on Charts

In server applications there can be a lot of numerical data
(e.g., measurement data, quantities), which should be
visualized on charts to analyze their changes. Our toolkit is
capable to generate chart visualization user interfaces for
specified numerical data over the changes of a specified
entity field (e.g., measurement date). A generated example
chart user interface is shown on Figure 2. We use the Flot
[27] JavaScript-based library for visualizing charts, FlotJF
[28] library for representing Flot objects in Java, and
RESTEasy for the REST services, which provides data for
charts.

Figure 2. Chart user interface generated by our toolkit

H. Demo Data Generators

During the development the system needs a lot of demo
data for testing. Demo data can also make presentation of the
application to the customer easier. Therefore, demo data
generator components are needed in the system, which can
be very time-consuming to implement in case of large
domain models. Our toolkit can generate demo data
generators for the selected entities in the application. The
constraints of entity fields are also taken into consideration
during the generation. It is also possible to configure the
number of entities to be generated before the production of
data generators.

I. Dashboards

Many applications may need special, customizable user
interfaces, which can show only the most important
information for users, with simple and clear visualization
elements. Our code generator toolkit can produce dashboard
user interfaces with customizable layout (tiles, which can be
moved or hidden) and content (charts, gauges, switches,
status indicators, etc.). A generated example dashboard is
shown on Figure 3. The dashboard is created using Gridster
jQuery-based library [29].

Figure 3. Dashboard user interface generated by our toolkit

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 55 / 107

VI. CASE STUDY: DEVELOPMENT OF A TELEMEDICINE

APPLICATION

We used our code generation toolkit successfully in a
telemedicine project where we had to develop a data
collector application for supporting the long distance
monitoring of patients after heart surgery. The task of server
application was the collection, storage, and the visualization
of the incoming data from different sensors, e.g., weight
scales, ECG sensors, blood pressure monitors.

When planning the mentioned application we analysed
the components to be developed and the results showed that
a significant part of the development can be supported with
code generating methods. Relying on this, the prototype
development of the patient monitoring system with our code
generating tool was started. The following components of the
application were generated:

 DAO (Data Access Object) and business level layer.

 Listing, editing, visualizing user interfaces.

 Charts for the visualization of ECG measurements
and for the representation of the temporal changes of
blood pressure and weight.

 Data uploading REST service stubs on the server
side and REST client stubs in the mobile client
application.

Above this, only the refinement of user interfaces and the
implementation of REST interfaces were required.
Furthermore, for integrating sensors, Android mobile
prototypes were developed, whose task was to receive and
process the data sent by a single channel ECG sensor, a
blood pressure monitor, and a weight scale.

We measured the time requirements at this application
with our productivity measurement plug-in for Eclipse IDE,
and compared them with the time needed by developing this
application manually [30][31]. The measurement results can
be examined in Table I. tm means the manual implementation
time (in person days), and tcg means the implementation time
with code generation support (in person days). The
application layers needed about 80% less time in average to
implement with code generation support, compared to the
manual development.

TABLE I. COMPARISON OF DEVELOPMENT TIME IN MANUAL- AND

CODE GENERATION SUPPORTED DEVELOPMENT

Layer tm tcg tcg/tm (%)

Total

time

spent (%)

Domain model 0.1 0.02 20 5

DAO layer 3 1 33 10

CRUD user

interfaces
10 0.2 2 50

Authentication,
authorization,

auditing

20 0.2 1 15

Data
visualization

3 1 33 10

System

integration

interfaces

3 1 33 10

VII. CONCLUSION AND FUTURE WORK

This paper reviewed model-driven development and code
generation methods and tools for producing Java EE 6
applications, and introduced a code generation toolkit based
on the JBoss Forge framework, which can generate many
application components based on Java EE design patterns to
accelerate the prototype development process. We also used
this toolkit in the development of a telemedicine application
and measured the efficiency of the code generation
supported development compared to the manual
development. The measurement results show that the
development process with code generation needed
significantly less time than the manual development.

In the future, we would like to continue the development
of our generator toolkit and extend its functionality. We
identified the following goals, which we would like to reach
in the further development of the toolkit.

 Now, the generator works based on Forge 1.4.3. We
would like to upgrade our toolkit to Forge 2.

 During the test phase of the development, unit tests
provide the correctness of small, low level system
units. The development of correctly functioning
system units can be more effective with
implementing unit tests for given units. We would
like to extend our toolkit with the capability to
generate unit tests for selected classes.

 An entity-based code generator toolkit can be easier
to use if it can process UML class diagrams, which
contain the entities of the application. These UML
diagrams should be extended with some additional
properties, such as JPA and Bean Validation
annotations for entity classes and fields. Using these
diagrams the Java implementation of entities can be
automatically generated. We would like to develop
an extension for our code generator toolkit to process
extended UML class diagrams of entities as the input
of application prototype generation.

 The main goal of our toolkit is to generate web-
based server application components. In the future
we would like to identify some areas in Android
mobile application development, which can be
supported with code generation and implement a
generator toolkit for Android applications.

 Many entity fields can have special meanings that
imply special criterions during the demo data
generation and special validation processes. For
example, an entity field with String type can be a
first name of a person, an address or a country name.
This semantic aspect should be taken into
consideration during the data generation and
validation of values in entity fields. Our goal is to
provide an opportunity to add semantic annotations
to entity fields, which are related to ontology
definitions of special data structures, and to generate
special data generators and validators for the
annotated fields.

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 56 / 107

ACKNOWLEDGMENT

The publication is supported by the European Union and
co-funded by the European Social Fund.

Project title: “Telemedicine-focused research activities
on the field of Mathematics, Informatics and Medical
sciences”

Project number: TÁMOP-4.2.2.A-11/1/KONV-2012-
0073

REFERENCES

[1] M. F. Smith, Software prototyping: adoption, practice, and
management. McGraw-Hill, 1991.

[2] B. Sami, Model-Driven Software Development. Springer, 2005.

[3] J. Herrington, Code Generation in Action. Manning Publications Co.,
2003.

[4] http://docs.oracle.com/javaee/, [retrieved: 2014.04.11].

[5] http://forge.jboss.org/, [retrieved: 2014.04.11].

[6] http://forge.jboss.org/docs/important_plugins/ui-scaffolding.html,
[retrieved: 2014.04.11].

[7] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Guide, Second Edition, Addison-Wesley
Professional, 2004.

[8] A. G. Parada, E. Siegert, and L. B. de Brisolara, “GenCode: A tool
for generation of Java code from UML class models”, 26th South
Symposium on Microelectronics (SIM 2011), Novo Hamburgo,
Brazil, pp. 173-176.

[9] http://www.modeliosoft.com/, [retrieved: 2014.04.11].

[10] http://www.microtool.de/objectif/en/, [retrieved: 2014.04.11].

[11] http://www-03.ibm.com/software/products/us/en/ratirosefami/,
[retrieved: 2014.04.11].

[12] http://www-03.ibm.com/software/products/us/en/ratirhapfami/,
[retrieved: 2014.04.11].

[13] A. G. Parada, E. Siegert, and L. B. de Brisolara, “Generating Java
code from UML Class and Sequence Diagrams”, Computing System
Engineering (SBESC), 2011 Brazilian Symposium, Florianopolis,
Brazil, pp. 99-101.

[14] M. Usman and A. Nadeem, “Automatic Generation of Java Code
from UML Diagrams using UJECTOR”, in International Journal of
Software Engineering and Its Applications vol. 3, no. 2, 2009, pp. 21-
38.

[15] E. B. Oma, B. Brahim, and G. Taoufiq, “Automatic code generation
by model transformation from sequence diagram of system’s internal
behavior”, in International Journal of Computer and Information
Technology, vol. 1, issue 2, 2012, pp. 129-146.

[16] http://www.eclipse.org/acceleo/, [retrieved: 2014.04.11].

[17] http://www.actifsource.com/, [retrieved: 2014.04.11].

[18] http://docs.jboss.org/seam/2.3.1.Final/reference/html/gettingstarted.ht
ml, [retrieved: 2014.04.11].

[19] http://www.myeclipseide.com/me4s/, [retrieved: 2014.04.11].

[20] http://openxava.org/home, [retrieved: 2014.04.11].

[21] http://maven.apache.org/, [retrieved: 2014.04.11].

[22] https://github.com/seam/render, [retrieved: 2014.04.11].

[23] https://github.com/forge/java-parser, [retrieved: 2014.04.11].

[24] http://metawidget.org/, [retrieved: 2014.04.11].

[25] http://picketlink.org/, [retrieved: 2014.04.11].

[26] http://envers.jboss.org/, [retrieved: 2014.04.11].

[27] http://www.flotcharts.org/, [retrieved: 2014.04.11].

[28] https://github.com/dunse/FlotJF, [retrieved: 2014.04.11].

[29] http://gridster.net/, [retrieved: 2014.04.11].

[30] G. Kakuja-Toth, A. Z. Vegh, A. Beszedes, and T. Gyimothy, “Adding
process metrics to enhance modification complexity prediction”,

Proceedings of the 2011 IEEE 19th International Conference on
Program Comprehension (ICPC 2011). Kingston (ON), pp. 201-204.

[31] G. Kakuja-Toth, A. Z. Vegh, A. Beszedes, L. Schrettner, T. Gergely,
and T. Gyimothy, “Adjusting effort estimation using micro-
productivity profiles”, 12th Symposium on Programming Languages
and Software Tools. SPLST'11. Tallinn, Estonia, 5-7 October 2011,
pp. 207-218.

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 57 / 107

Refinement Patterns for an Incremental Construction of Class Diagrams

Boulbaba Ben Ammar* and Mohamed Tahar Bhiri+

Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
*Boulbaba.Benammar@fss.rnu.tn

+Tahar_Bhiri@yahoo.fr

Abstract—Specifying complex systems is a difficult task, which
cannot be done in one step. In the framework of formal
methods, refinement is a key feature to incrementally develop
more and more detailed models, preserving correctness in each
step. Our objective is an incremental development, using the
technique of refinement with proof for UML specifications.
Indeed, UML suffers from two major weaknesses, namely, it is
not based on a simple and rigorous mathematical foundation
and it does not support the concept of refinement with proof of
correction. To achieve this, we advocate a development
framework combining the semi-formal features of UML/OCL
and the formal one from B method. We chose the B formal
language in order to benefit from existing work done on
coupling between UML and B. In addition, we propose and
formalize in B the refinement patterns that promote
incremental development with proof of UML/OCL class
diagrams. We illustrate our purpose by the description of some
development steps of an access control system.

Keywords-UML; OCL; refinement pattern; class diagram

I. INTRODUCTION

Refinement is a process to transform an abstract
specification into a concrete one [17]. It aims to develop
systems incrementally, which are correct by construction
[18]. Refinement is defined in a rigorous way in various
formal languages, such as B [18], Event-B [17],
Communicating Sequential Processes (CSP) [8], Z and
Object-Z [14]. The Unified Modeling Language (UML) [19]
is an object-oriented modeling language widely used. It is a
de-facto standard, allowing graphical visualization of models
facilitating communication inter-actors. But, it does not
support the concept of refinement. It has a dependency
relationship stereotyped «refine» to connect a client (or
refined concrete element) to a provider (abstract element).
This relationship is subject to several interpretations [15] and
does not provide methodological assistance related to how to
refine existing UML models. In addition, UML does not
allow the verification of a refinement relationship between
two models. In a formal language, such as B, Event-B, CSP,
Z and Object-Z, although the refinement relationship is well-
defined and well-supported (generation of proof obligations,
interactive prover, model checker and animator), an
experienced designer finds more or less important difficulties
in identifying the different levels of abstraction (an “optimal”
refinement strategy) for carrying out the process of
refinement. Solutions based on the concept of pattern --like
the design patterns in Object-Oriented (OO) applications-- to
guide the designer during the refinement process begin to
appear covering both the horizontal refinement for

application areas as reactive systems [17][26][27] and the
vertical refinement under B. The horizontal refinement [17]
consists in introducing new details in an existing model.
Each introduction of details to a model leads to a new model,
which must be coherent with the previous one. If it is the
case, we said that the second model refines the first one.
Horizontal refinement aims at the progressive acquisition, by
successive refinement, of a coherent model from abstract
specifications, leading to the abstract formal specification of
future software or system.

The vertical refinement [17] consists in going from an
abstract model to a more concrete one, for example by
reducing the non-determinism. The concrete model is a
realization of the abstract model. For example, the B
Automatic Refinement Tool (BART) [1] tool associated with
B offers refinement rules that can be used in the final stages
of vertical refinement phase of a formal process
development. B and Event-B do not distinguish between
horizontal and vertical refinement. In fact, both refinements
use two types of refinement allowed by B, i.e., data
refinement and algorithms or control refinement [18].

In the following, we briefly present in Section 2 the
existing approach for construction of class diagrams. The
proposed approach is presented in Section 3. In Section 4, we
present our catalog of refinement patterns used in an
incremental specification development process. In Section 5,
we illustrate the use of the proposed approach using an
access control case study. Section 6 concludes this paper and
proposes perspectives.

II. RELATED WORK

UML is a graphical modeling language reference,
offering an important range of diagrams. Class diagram,
which can express the static aspects of a system, are one of
the most used diagrams. At the "heart" of the object
modeling, it shows the classes and interfaces of a system and
the various relationships between them. Approaches to
construction and verification of class diagrams have been
highlighted in several studies [4][7][10][13][20][21].

The decomposition unit of object-oriented systems is the
concept of class. A coarse characterization of classes makes
a distinction between the analysis classes belonging to the
space of problems (external world in modeling course) and
design classes and implementation belonging to the space of
solutions.

Methodological works supporting the identification of
the useful and relevant classes were completed. A method
known as “Underline the names in the document of the
requirements” is proposed in [13]. The results of the
application of this method are very sensitive to the used

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 58 / 107

style. This can lead designers to omit useful classes while
introducing classes, which are not justified.

Class, Responsibility, Collaboration (CRC) cards [20] are
paper cards on which the designers evoke the potential
classes according to their responsibilities and in the way in
which they communicate. This technique promotes
interaction within teams but its contribution to the
identification of quality classes is uncertain.

Meyer [7] provides the general heuristics for classes
discovery, based on the theory of Abstract Data Types
(ADT). He defines different uses of inheritance justifying
their uses.

The Business Object Notation (BON) method [21]
introduces useful advices to identify the classes. It proposes
two structural concepts (cluster and class), two strong
conceptual relations (customer and inheritance) and a simple
language of assertions expressing the semantic properties
attached to the modeled elements.

Many analysts and designers use only the class diagrams.
Others use development process allowing scheduling of
several types of UML diagrams. Some development process
with UML adopts an approach based on use case diagrams in
order to draw class diagrams [28].

The design classes represent the architectural
abstractions, which facilitate the production of elegant and
extensible software structures. Design patterns, including
those of Gang of Four (GoF) [10] promote the identification
of these classes.

Semi-formal graphical notations (such as UML) are
generally intuitive, but do not allow rigorous reasoning. On
contrary, formal notations (such as B) provide mathematical
proofs, but are not easy to understand. Several studies
coupling between semi-formal and formal notations exist.
Among these works, we studied profitably those linking
UML to B [16]. Works of coupling between UML and B go
to the combination of UML and B in a new language named
UML-B [9].

By using the technique of refinement, the approach
described by Ben Ammar et al. [4] allows of a UML/OCL
class diagram showing all the formal properties of the future
system. The obtained class diagram, containing the analysis
classes, represents a coherent abstract model of the future
system. Such a model can be concretized (identification of
design and implementation classes) by applying the
technique of refinement.

III. APPROACH TO DESIGN A SYSTEM IN A STEP-WISE

MANNER

Our approach consists on the proposal of a catalogue of
refinement patterns (see Section IV) for incremental
development of UML class diagrams. These patterns are
built to solve recurrent problems in the development of the
static part of an OO application, such as: introduction of an
intermediate class [3], reification of an attribute, an
enrichment of an association, decomposition of an aggregate
and the introduction of a new entity. These patterns are
characterized by a precise framework composed of six parts
showing the fundamental aspects of a refinement pattern.
These parts are Intention, Motivation, Solution, Verification,

Example and See also. In addition, the proposed refinement
patterns are formalized into B specifications, using
systematic rules of translation of UML into B [11][16]. This
helps to identify precisely the conditions of applicability, the
evolution of a UML class diagram and correctness of the
refinement relationship. Such B formalization can be reused
with advantage when instantiating these patterns by the
designer. Thus, in a joint development UML/B, the designer
selects and applies a refinement pattern on his abstract
specification. Then, he obtains a new specification, which
includes new properties related to the application of the
refinement pattern. Verification of the correctness of the
refinement relation between two specifications is entrusted to
Atelier B tool [30].

In the following, we detail a new approach used for
development of UML class diagrams guided by refinement
patterns. Such development process allows establishing a
UML class diagrams, which models the key concepts of the
application and has properties considered to be coherent
covering the constraints of the application resulting from its
specifications. The process advocated has four steps:
Rewriting of requirements, Refinement strategy, Abstract
specification, and Refinement steps.

A. Rewriting of requirements

Currently, the specifications are often of poor quality.
Abrial [27] criticize these specifications to be directed too
towards a solution and to present mechanisms of realization
to the detriment of the explicitness of the properties of the
system to be conceived. We recommend to rewrite the
specifications in order to put forward the properties of the
future system and to facilitate the development of a suitable
strategy of refinement. For that purpose, we use the
recommendations of Abrial [17][27] for distinguishing the
functional safety and liveness properties.

B. Refinement strategy

Rewriting of requirements facilitates the development of
an adequate strategy of refinement. But, this does not
guarantee obtaining an “optimal” strategy of refinement.
Work making it possible to compare alternative strategies of
refinement for a given scope of application, in case of the
reactive systems, starts to appear [17][27].

C. Abstract specification

This stage aims to establish an abstract UML/OCL model
described by a class diagram based on the refinement
strategy previously defined. The UML/OCL class diagram
product is translated into B in order to formally verify its
coherence.

D. Refinement steps

The refinement process involves several steps. Each
refinement step takes as inputs three parameters: the class
diagram of level i, the proposed catalog of refinement
patterns and the properties resulting from the specifications
to be taken into account and produce as output the class
diagram of level i+1 (see Figure 1).

51Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 59 / 107

Figure 1. Step of refinement

The consideration of the properties, which guide the
process of refinement, can be realized by applying
refinement patterns. The formal verification of the
correctness of the refinement step is entrusted to the AtelierB
tool through the translation of two class diagrams in two B
levels. The gluing invariant in B models making a link
between these two levels (abstract and refined) can be
established by reusing the B formalization of proposed
refinement patterns. The refinement process terminates when
all the explicit properties in the specification are taken into
account in accordance with the adopted refinement strategy.
Thus, ultimate UML/OCL class diagram obtained models the
key concepts of the system to achieve. In addition, it contains
the essential properties deemed formally consistent.

IV. REFINEMENT PATTERNS

Unlike architecture patterns [12], analysis patterns [22]
and design patterns [10] a refinement pattern, has a dynamic
character. Applied to a model of level i, a refinement pattern
produces a model of level i+1. Recently, refinement patterns
begin to appear for formalisms, such as Event-B [26], KAOS
[2] and B [1]. In [3], we offer refinement patterns to solve
recurring problems in incremental development of the static
part of an OO application using UML/OCL. A refinement
pattern has two parts: Specification (1) and Refinement (2).
A specification describes the UML/OCL class diagram of
level i. A refinement describes the UML/OCL class diagram
of level i+1 produced by applying the corresponding
refinement pattern on the model of level i. The proposed
refinement patterns, presented later, are described in the
same framework including six parts: Intention, Motivation,
Solution, Verification, Example and See Also.

In the following, we detail the patterns only by the
Intention, Motivation, Solution and See also.

A. Pattern 1: Class_Helper

1) Intention
It allows introducing a class Class_Helper between two

classes considered important with respect to the refinement
step considered. The direct relationship between the two
major classes is refined by a path connecting these two
classes through the intermediate class introduced.

2) Motivation
UML class diagram consists of four types of inter-class

relationships: generalization (or inheritance), association,
aggregation and dependence. In an incremental OO
modeling, it is advantageous to start with abstract inter-class

relationships. This subsequently facilitates the introduction
of details via intermediate classes to refine these abstract
relations.

3) Solution

(1)

(2)

Figure 2. Class_Helper specification
4) See also
Class_Helper [3] the pattern depends on the nature of the

relationship between two important classes P1 and P2:
generalization, association, aggregation, composition and
dependency. In addition, the intermediate class introduced
Helper can be connected to P1 and P2 using the same kind of
relationship or two relations of different nature.
Class_Helper the pattern can be applied in reverse order of
the concrete to the abstract. This process of abstraction - as
opposed to refinement - can be profitably used in an activity
of reverse engineering.

B. Pattern 2: Class_Attribute

1) Intention
When a class has an attribute modeling a concept

considered interesting and with well-defined operations, this
pattern allows to reify this attribute in a new class called
Class_Attribute. An aggregation relationship is introduced
between the enclosing class --aggregate-- and the class
reifying the concerned attribute --component--.

2) Motivation
For reasons of simplification, at a high level of

abstraction, a concept can be modeled as an attribute. Then,
according to details from the specifications, the same
concept can be retained as a class. This is justified by the
identification of well-defined operations applicable on this
concept by analyzing the introduced details. The type of the
attribute is rather discrete: integer, enumerated or
alphanumeric.

3) Solution

(1)

(2)

Figure 3. Class_Attribute specification

4) See also
The idea of reification of an attribute may be used with

advantage in an activity of restructuring (or refactoring) of
an existing OO models. Moreover, in [5], we proposed a

52Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 60 / 107

refactoring schema based on the reification of an attribute:
introduction of the concept of delegation.

C. Pattern 3: Class_Decomposition

1) Intention
It allows detailing the responsibilities of an original class

by introducing new classes. The original class and the
resulting classes are connected by relations of generalization
(inheritance). The number of the resulting classes is at least
equal to one. This pattern favors a top-down modeling. The
generalization covers mainly the following two cases [7]:
• Heritage subtype: You are an external model

system in which a class of objects (external) can be
decomposed into disjoint sub categories. We urge that
the parent, A, be deferred so that it describes a set of
objects not fully specified. The heir B can be effective
or delayed.

• Restriction inheritance: Inheritance of restriction
applies if the instances of B are among the instances of
A, those that satisfy a constraint expressed in the
invariant B and absent from the invariant A. A and B
should both be deferred or both effective.

2) Motivation
In a top-down modeling approach, it is advantageous to

start with a minimum number of classes. Sometimes we
think that factoring operations can cause problems with
implementation.

3) Solution
(1)

(2)

Figure 4. Class_Decomposition specification

4) See also
The pattern Class_Decomposition introduces the idea of

a decomposition of a class via inheritance relationship. Both
UML relationships: aggregation and composition can be
used for the decomposition of an aggregate entity modeled
by UML class.

D. Pattern 4: Class_NewEntity

1) Intention
It allows the introduction of UML class, which models a

separate entity. The introduced class is related to other
classes from abstract level through association relationships.

2) Motivation
In an incremental OO modeling, it is advantageous to

start with a minimum number of entities called very abstract
entities. This further promotes the introduction of details
through less abstract or concrete entities, called (e.g.,
equipment) to go from the abstract world to the concrete
world.

3) Solution
(1)

(2)

Figure 5. Class_NewEntity specification
4) See also
On the form, the two patterns Class_Helper and

Class_NewEntity produce similar effects. But onthe content,
they differ. In fact, they have two different gluing invariants.
In addition, the pattern Class_NewEntity is oriented towards
the horizontal refinement (specification stage) encouraging
the construction step-by-step of a business model of the
application, while the pattern Class_Helper is oriented
towards the vertical refinement (design stage) promoting the
gradual construction of a conceptual model of the
application.

E. Pattern 5: Refinement_Operation

1) Intention
This pattern provides a passage from an abstract

specification of operation into a more concrete one. It is
inspired by formal development practices used in B method.

2) Motivation
B method allows several types of refinement: data

refinement, control refinement and algorithmic refinement.
In control refinement, the following facts are observed:
• the operation to be refined retains the same

signature,
• its precondition can be strengthened,
• the nondeterministic behavior, described by

substitutions, can be reduced.
In UML framework, we can describe the control

refinement using Object Constraint Language (OCL)
notations for presenting both abstract and concrete
specification of operation to be refined.

3) Solution

(1)

(2)

Figure 6. Refinement_operation specification

4) See also
The pattern Refinement_Operation introduced the idea of

 control refinement. In the same way, we can define a pattern
of data refinement. This allows the introduction of concrete
variables (data). In this case, a gluing invariant, which links
abstract and concrete variables, should be explained. Both
control and data refinement are not mutually exclusive; they
can be operated in the same refinement step. It is obvious

1 1

53Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 61 / 107

that the pattern Refinement_Operation can be applied
combining these two types of refinement.

F. Pattern 6: Class_Abstraction

1) Intention
The pattern Class_Abstraction introduced software

qualities, such as efficiency, reusability and scalability in a
software development guided by successive refinements.
Thus, it allows factoring common properties - attributes,
operations and relationships - of some classes within a
founding class.

2) Motivation
In the development process, each entity is modeled by a

class. But often, classes that are, in fact, variations of the
same concept are encountered. Several classes of a class
diagram have common characteristics. It is said that these
independent classes can be derived from a common ancestor.

The idea is to improve the modeling, a better
representation, facilitate data storage and thus avoiding
redundant features. For that, we can factor these common
features between the different classes into a new founding
class.

3) Solution
(1)

(2)

Figure 7. Class_Abstraction specification

4) See also
The pattern of change introduced by this pattern can be

used with advantage in the process of refactoring to do to
improve the structure (or quality) of an existing OO
software. A refinement process with evidence rather favors
obtaining a correct by construction software. The pattern
Class_Abstraction advocates for the inclusion of other
software qualities, such as efficiency, scalability from the
initial phases of a development process guided by successive
refinements. Besides, the risk of overlooking the efficiency
quality in a process of refinement with proof is mentioned in
[24].

G. Pattern 7: Class_Association

1) Intention
This pattern can increase the power of an association by

considering both as an association relationship and an
association class. This can be justified by the emergence of
the specific details of the association relationship. Indeed,
such details may be attached to extremities of the
association. An association class can only exist if the
association relationship exists.

2) Motivation
Sometimes, an association must own properties. These

properties cannot be attached to the extremities of this
association.

3) Solution

(1)

(2)

Figure 8. Class_Association specification

4) See also
The specification part of Class_Helper pattern is identical

to the pattern Class_Association. However, their refinement
parts are different.

V. EXAMPLE

Our objective is to develop a system to control the access
of person to the various buildings of a workplace, inspired by
[17]. In [17], this application is modeled in Event-B. In this
work, we provide a joint development in UML / OCL and B
of this application by using the proposed refinement patterns.
Proof tools and animation associated with B are used to
perform automated verification of UML /OCL graphical
models. Control is carried out from the authorizations
assigned to the concerned persons. An authorization allows a
person, under the control of the system, to enter in some
buildings and not in others. The authorizations are
permanent, i.e., they cannot be modified during the operation
of the system. When a person is inside a building, his exit
must also be controlled so that it is possible to know, at any
moment, who are in a given building. A person can move
from a building to another only if these two buildings are
interconnected. The communication between the buildings is
done through one-way doors. Each door has an origin
building and a destination building. A person may enter a
building by crossing a door if it is unlocked. The doors
being physically locked, a door unlocked for only one
authorized person requiring entering the building. A green
LED associated with each door is lit when the requested
access is authorized, prerequisite for unlocking the door.
Similarly, a red LED associated with each door is lit when
the requested access is denied to the door. Each person has a
magnetic card. Card readers are installed at each door to read
the information on a card. Near each reader, there is a
turnstile that is normally blocked; no one can cross it without
the control of the system. Each turnstile is equipped with a
clock, which determines in part its behavior.

A. Rewriting of requirements

Rewriting of requirements of the case study aims to
highlight the properties of this application. In order to
classify these requirements, we used the following labels:
• EQU-Equipment to reference the description of

equipment used by the application.

54Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 62 / 107

• FUN-Equipment/Actor to reference an attached
functionality of a device or an actor.

• MODEL-FUN-number to reference an assured by the
application functionality.

• FUN-MODEL to reference the main function of the
application.

In Table I, we will list the different requirements of the
application of building access control. Each property is
described by a relatively short text and a reference.

TABLE I. REWRITING OF REQUIREMENTS OF AN ACCESS CONTROL SYSTEM.

The system is responsible for controlling access of a number of people to several buildings. FUN-MODELE
Each person is allowed to enter certain buildings (and not others). Buildings not recorded in this
authorization are implicitly prohibited. This is a permanent assignment.

MODELE-FUN-1

Any person in a building is allowed to be there. MODELE-FUN-2
The geometry of the building is used to define which buildings can communicate with each other
and in what direction.

MODELE-FUN-3

A building does not communicate with itself. MODELE-FUN-4
A person cannot move from a building where it is to a building where he wants to go if these two
buildings communicate with each other.

MODELE-FUN-5

Any person authorized to be in a building should be allowed to go to another building that
communicates with the first.

MODELE-FUN-6

The buildings are connected together by means of gates, which are one-way. We can therefore
speak of origin and destination buildings for each door.

EQU-DOOR

A door cannot be taken if it is unlocked. A door can be unlocked for only one person at the same
time. Conversely, any person involved in the unlocking of a door cannot be in one another.

FUN-DOOR-1

When a door is unlocked for a certain person, it is in the building behind the door in question. In
addition, this person is allowed to go to the destination building of same door.

FUN-DOOR-2

When a door is unlocked for a certain person, it is in the building behind the door in question. In
addition, this person is allowed to go to the destination building of same door.

FUN-PERSON

A green LED associated with each door. EQU-GREENLIGHT
A green LED is lit when the requested access is allowed (pre requisite for unlocking the door). FUN-GREENLIGHT
A red LED associated with each door EQU-REDLIGHT
The red light of a door whose access has been denied. FUN-REDLIGHT
The red and green lights of the same door cannot be turned on simultaneously. FUN-LIGHT
Each person has a magnetic card that contains his permissions for different buildings. EQU-CARD
Card readers are installed at each door to read the information on a card. EQU-CARDREADER

B. Refinement strategy

Table II specifies the order of consideration of the
properties and requirements of our case study: building
access control. This defines our refinement strategy for
incremental development of this application. The initial
model is limited to the basic abstract properties of the
application. Each refinement step includes a small number of
properties from the abstract to the concrete. The refinement
process ends when all properties from rewriting requirements
were indeed taken into account. Equipment, such as door,
card or LED that the application uses is introduced during
the final stages of the adopted refinement process.

C. Abstract specification

We begin by developing a simple and very abstract class
diagram that takes into account only the properties (FUN-
MODELE, MODELE-FUN-2) (see Figure 9).

Figure 9. Initial class diagram

TABLE II. REFINEMENT STRATEGY

Model Equipment and Function
Initial // First FUN-MODELE, MODELE-FUN-2 // MODELE-FUN-1

Second MODELE-FUN-3, MODELE-FUN-4, MODELE-FUN-5, MODELE-FUN-6
Third // Fourth EQU-DOOR, FUN-DOOR-2 // FUN-DOOR-1, FUN-PERSON

55Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 63 / 107

Fifth EQU-GREENLIGHT, FUN-GREENLIGHT, EQU-REDLIGHT, FUN-REDLIGHT
Sixth // Seventh FUN-LIGHT // EQU-CARD, EQU-CARDREADER

D. Refinement steps

1) First refinement
In this step, we consider only the property (MODELE-

FUN-1). This property indicates that the authorizations
provided by the association "authorization" are permanent.
For that, we applied data refinement based on pattern of
Refinement_Operation. This refinement consists on the
addition of a frozen constraint to the association
"authorization" presented in Figure 9.

2) Second refinement
In this step, we inject into our system the properties

(MODELE-FUN-3, MODELE-FUN-4, MODELE-FUN-5
and MODELE-FUN-6). These properties allow the
introduction of the concept of communication between
buildings. A person cannot move from one building to
another only if the two buildings are interconnected.

The association “communication” is introduced into the
class diagram as a recursive association on the class
Building (see Figure 10). Such refinement requires a
rewriting of the OCL expressions of the operation “pass”.
Thus, we reused the refinement pattern
Refinement_Operation.

Figure 10. Second refinement

5) Third refinement

The third refinement consists in adding new equipment
(EQU-DOOR and FUN-DOOR-2). A door can make the
connection between two buildings. This leads us to define
the concept of door: each door has original building and a
destination building. Indeed, the communication between the
buildings is through a door. Thus, we must remove the
association "communication", introduced in the previous
refinement, and replace it with two associations between
origin Building and Door and between Door and destination
Building. This change can be obtained by applying the
refinement pattern Class_Helper with: communication as
association; origin as association1; destination as

association2; Door as Helper and Building as both P1 and
P2. Finally, the property (FUN-DOOR-2) is that a door is a
component of a building. Thus, we introduce a composition
relationship between Door and Building (see Figure 11).

Figure 11. Third refinement

4) Fourth refinement
The fourth step of refinement consists on the definition of

the functionality of the class Door introduced in the previous
step (FUN-DOOR-1).

Figure 12. Fourth refinement

Such a transformation requires the revision of the
semantics of the operation "pass". Indeed, property (FUN-

56Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 64 / 107

PERSON) is that a person must appear before a door to
move from one building to another. This requires the
introduction of an association "acceptance" between Person
and Door. Thus, the operation "pass" should not take an
instance of the class Building as formal parameter but rather
an instance of the class Door. For this, we apply the
refinement pattern Refinement_Operation to generate the
class diagram presented in Figure 12.

5) Fifth refinement
In this step, we consider the properties (EQU-

GREENLIGHT, FUN-GREENLIGHT, EQU-REDLIGHT
and FUN-REDLIGHT). These properties define two new
classes with their characteristics as components of the class
Door. The application of refinement pattern
Class_Decomposition with composition as a relationship
between Door and RedLight and GreenLight as components
generates the class diagram shown in Figure 13.

Figure 13. Fifth refinement

6) Sixth refinement
In this step, we note the similarity between the two

classes RedLight and GreenLight (FUN-LIGHT). Thus, we
decided to factor the common properties between these two
classes. The application of refinement pattern
Class_Abstraction generates the class diagram shown in
Figure 14. The pattern Class_Abstraction allows introducing
a new class named Light, which groups common properties
between GreenLight and RedLight.

Figure 14. Sixth refinement

7) Seventh refinement
The last properties (EQU-CARD and EQU-

CARDREADER) will be taken into account in this final
stage of refinement.

Figure 15. Seventh refinement

Two intermediate classes can be introduced:
• the class Card associated with each person,

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 65 / 107

• the class CardReader associated with each door of a
building.

These classes are related as follows: Card is connected to
Person, Card is connected to CardReader and CardReader is
connected to Door.

The application of refinement pattern Class_Helper on
the association “acceptance” generates the class diagram of
Figure 15.

E. Verification of the obtained system

Formal verification of such refinements can be exploited
if the language is equipped with formal refinement

machinery, allowing the proof of the correctness of the
refined specification relative to the abstract one. We
proposed to use B for this purpose, using systematic
derivation rules from UML into B. Such a translation of
UML into B uses profitably the B formalization of the
proposed refinement [6]. Indeed, the properties described in
the form of B invariant --including gluing invariant-- are
retrieved and instantiated when translating UML into B. As
an illustration, Figure 16 and 17 shows the B formalization
of pattern Class_Helper introduced in Section 4.

MACHINE

 B_Class_Helper_a
SETS

 OBJECTS = {p11, p12, p13,
 p21, p22, p23, h1, h2, h3}
ABSTRACT_CONSTANTS

 P1, P2
PROPERTIES

P1 ⊆ OBJECTS & P2 ⊆ OBJECTS ∧
 P1 ∩ P2 = Ø ∧ P1 = {p11, p12, p13} ∧
 P2 = {p21, p22, p23}
VARIABLES

p1, p2, association
INVARIANT

p1 ⊆ P1 & p2 ⊆ P2 ∧
 association ∈ p1 ↔p2
INITIALISATION

p1 := {p11,p12, p13} ||
p2 := {p21, p22, p23} ||
association := {p11↦p21, p11↦p22,
 p11↦p23, p12↦p21, p12↦p22,
 p12↦p23, p13↦p21, p13↦p22,
 p13↦p23}
END

Figure 16. B formalization of pattern Class_Helper

Figure 17. B formalization of pattern Class_Helper

The abstract machine B_Class_Helper_a formalizes the
abstract level of Class_Helper pattern using the systematic
translation rules of UML to B [11], while B_Class_Helper_r
machine formalizes the refined level of the same pattern. The
link between these two levels is described by the REFINES
clause. Gluing invariant introduced in B_Class_Helper_r
machine guarantees the correction of the refinement relation
between the two levels of Class_Helper pattern. Formal
verifications on the B models corresponding to UML/OCL
class diagram are related to the coherence of the initial
abstract model and the correction of each refinement step.
They call the generator of proof obligations (conjectures to
prove) and provers in B platform. The correction of B
models, respecting requirements, is forward to the ProB tool
[29], allowing animation and model checking.

TABLE III. TABLE OF THE STATE OF B SPECIFICATIONS

 nPO1 nPRi2 nPRa3 uUn4 %Pr
Initial model 9 1 8 0 100
Second refinement 4 0 4 0 100
Third refinement 7 0 7 0 100
Fourth refinement 12 3 9 0 100
Fifth refinement 12 2 10 0 100
Seventh refinement 26 0 26 0 100
1 Number of Proof Obligations
2 Number of Proof Obligations proved Interactively
3 Number of Proof Obligations proved Automatically
4 Number of Proof Obligations Unproved

REFINEMENT

B_Class_Helper_r
REFINES

B_Class_Helper_a
ABSTRACT_CONSTANTS

HELPER
PROPERTIES

HELPER ⊆ OBJECTS ∧ HELPER ∩ P1 = Ø∧
HELPER ∩ P2 = Ø∧ HELPER = {h1, h2, h3}
ABSTRACT_VARIABLES

p1, p2, helper,
association1, association2
INVARIANT

helper ⊆ HELPER ∧
association1 ∈ p1↔helper ∧
association2 ∈ helper↔p2 ∧

ran(association1) = dom(association2) ∧

/∗Gluing Invariant∗/

dom(association) = dom(association1) ∧

ran(association) = ran(association2) ∧

ran(association1) = dom(association2) ∧

association = (association1;association2)

INITIALISATION

p1:={p11,p12,p13} k p2:={p21,p22,p23} ||
helper := {h1, h2, h3} ||
association1:={p117↦h1,p117↦h2,p117↦h3,
 p127↦h1, p127↦h2, p127↦h3,
 p137↦h1, p137↦h2, p137↦h3} ||
association2:={h17↦p21,h17↦p22,h17↦p23,
 h27↦p21, h27↦p22, h27↦p23,
 h37↦p21, h37↦p22, h37↦p23}
END

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 66 / 107

Table III summarizes the proof obligations associated
with our case study. The seven proposed refinement promote
essentially the development of class diagrams correct by
construction. However, the designer could improve the
structure, without changing the semantic aspects of the class
diagram obtained by refinement using wisely the refactoring
technique [23][25].

VI. CONCLUSION AND FUTURE WORK

The main idea of this work is to propose intuitive
refinements as patterns, providing a basis for tools
supporting the refinement-driven modeling process. In this
paper, we have presented our catalogue of refinement
patterns. Formal verification of such refinements can be
exploited if the language is equipped with formal refinement
machinery, allowing the proof of the correctness of the
refined specification relative to the abstract one. We
proposed to use B for this purpose, using systematic
derivation rules from UML into B. The proposed refinement
patterns promote the identification of analysis classes that
model the key concepts, resulting from requirements.

Currently, we are exploring the following two tracks:
proposal of refinement patterns oriented design by retrieving
and adapting ideas from GoF patterns [10]; proposal of
refinement patterns oriented implementation, using the
object-oriented modeling universal data structures (Eiffel)
[7]. The next step of this work consists of automating
detecting and application of patterns in an appropriate
framework. In addition, we proposed a new approach,
allowing finding a refinement strategy for the development
of UML class diagrams guided by the refinement patterns.
An interesting idea is to preserve the history of pattern
application in development case studies in order to have a
traceability of the development process, allowing to back-
track on previous decisions.

REFERENCES

[1] A. Requet, “BART: A Tool for Automatic Refinement,” ABZ,
London, UK, September, 2008, pp. 345-345.
[2] A. van Lamsweerde, Requirements Engineering - From System
Goals to UML Models to Software Specifications, Wiley, 2009.
[3] B. Ben Ammar, M.T. Bhiri, and A. Benhamadou, “Refinement
Pattern: Introduction of intermediate class Class_Helper,” Conférence
en IngénieriE du Logiciel, CIEL, Rennes, France, Jun, 2012, pp. 1-6.
[4] B. Ben Ammar, M.T. Bhiri, and J. Souquières, “Event modeling for
construction of class diagrams,” RSTI - ISI, vol. 13, no. 3, 2008, pp.
131–155.
[5] B. Ben Ammar, M.T. Bhiri, and J. Souquières, “Refactoring pattern
of class diagrams based on the notion of delegation,” 7éme atelier sur
l'Evolution, Réutilisation et Traçabilité des Systèmes d’Information,
ERTSI, couplé avec le XXVI éme congrès INFORSID, Fontainebleau,
France, May, 2008, pp. 1-12.
[6] B. Ben Ammar, Contribution to the Systems Engineering:
Refinement and Refactoring of UML specifications, Editions
universitaires europeennes, 2012.
[7] B. Meyer, Object-oriented software construction, Prentice Hall,
1997.
[8] C. A. R. Hoare, “Communicating sequential processes,”
Communications of the ACM, vol. 21, no. 8, 1978, p. 666-677.

[9] C. Snook and M. Butler. 2006, “UML-B: Formal modeling and
design aided by UML,” ACM Trans. Softw. Eng. Methodol. vol. 15,
no. 1, January, 2006, pp. 92-122.
[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns, Addison-Wesley, 1995.
[11] E. Meyer and J. Souquières, “A Systematic Approach to
Transform OMT Diagrams to a B Specification,” Proceedings of the
World Congress on Formal Methods in the Development of
Computing Systems, Toulouse, France, September,1999, pp. 875-895.
[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal, Pattern-Oriented Software Architecture: a system of patterns,
John Wiley and Sons, 1996.
[13] G. Booch, “Object-Oriented Development,” IEEE Trans. Software
Eng., vol. 12, no. 2, 1986, pp. 211–221.
[14] G. Smith, The Object-Z Specification Language. Kluwer
Academic Publishers, 2000.
[15] H. Habrias and C. Stoquer, “A formal semantics for UML
refining,” XII Colloque National de la Recherche en IUT, CNRIUT'06,
Brest, France, Jun, 2006.
[16] H. Ledang, “Automatic Translation from UML Specifications to
B,” Proceedings of the 16th IEEE international conference on
Automated software engineering, San Diego, USA, November, 2004,
pp. 436-440.
[17] J. R. Abrial, Modeling in Event-B - System and Software
Engineering, Cambridge University Press, 2010.
[18] J. R. Abrial, The B Book - Assigning Programs to Meanings,
Cambridge University Press, 1996.
[19] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. 2 Boston, MA: Addison-Wesley, 2005.
[20] K. Beck and W. Cunningham, “A laboratory for teaching object-
oriented thinking,” ACM SIGPLAN Not., vol. 24, no. 10, 1989, pp. 1–
6.
[21] K. Waldèn and J. M. Nerson, Seamless object-oriented software
architecture: analysis and design of reliable systems, Prentice-Hall,
Inc., 1995.
[22] M. Fowler, Analysis Patterns: Reusable Object Models, Addison-
Wesley Professional, 1996.
[23] M. Fowler, Refactoring: Improving the Design of Existing
Code.Boston, MA, USA: Addison-Wesley, 1999.
[24] M. Guyomard, “Specification and refinement using B: two
pedagogical examples,” ZB2002 4th International B Conference,
Education Session Proceedings, Grenoble, France, January, 2002.
[25] R. Straeten, V. Jonckers, and T. Mens, “A formal approach to
model refactoring and model refinement,” Software and System
Modeling (2), 2007, pp. 139-162.
[26] T. S. Hoang, A. Furst, and J. R. Abrial, “Event-B Patterns and
Their Tool Support,” Software Engineering and Formal Methods,
International Conference on, Hanoi, Vietnam, November, 2009, pp.
210-219.
[27] W. Su, J. R. Abrial, R. Huang, and H. Zhu, “From Requirements
to Development: Methodology and Example,” The 13th International
Conference on Formal Engineering Methods, ICFEM, Durham, United
Kingdom, October, 2011, pp. 437-455.
[28] X. Castellani,“Cards stages of study of UML diagrams, Payment
orders of these studies,” Technique et Science Informatiques, vol. 21,
no. 8, 2002, pp. 1051–1072.
[29] The ProB Animator and Model Checker, User Manual,
http://www.stups.uni-duesseldorf.de/ProB/index.php5/User_Manual,
2013.
[30] Clearsy System Engineering, Atelier B, User Manual, Version
4.0, http://www.tools.clearsy.com/resources/User_uk.pdf, 2010.

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 67 / 107

Automating Cloud Application Management Using Management Idioms

Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart, Stuttgart, Germany
{breitenbuecher, lastname}@iaas.uni-stuttgart.de

Abstract—Patterns are a well-established concept to document
generic solutions for recurring problems in an abstract manner.
Especially in Information Technology (IT), many pattern lan-
guages exist that ease creating application architectures, designs,
and management processes. Their generic nature provides a
powerful means to describe knowledge in an abstract fashion
that can be reused and refined for concrete use cases. However,
the required manual refinement currently prevents applying the
concept of patterns efficiently in the domain of Cloud Application
Management as automation is one of the most important require-
ments in Cloud Computing. This paper presents an approach
that enables automating both (i) the refinement of management
patterns for individual use cases and (ii) the execution of the
refined solutions: we introduce Automated Management Idioms to
refine patterns automatically and extend an existing management
framework to generate executable management workflows based
on these refinements. We validate the presented approach by a
prototypical implementation to prove its technical feasibility and
evaluate its extensibility, standards compliance, and complexity.

Keywords—Application Management; Automation; Patterns; Id-
ioms; Cloud Computing

I. INTRODUCTION

Patterns are a well-established concept to document reusable
solution expertise for frequently recurring problems. In many
areas, they provide the basis for decision making processes,
design evaluations, and architectural issues. In the domain of
Cloud Computing, patterns are of vital importance to build,
manage, and optimize IT on various levels: Cloud Computing
Architecture and Management Patterns [1], Enterprise Inte-
gration Patterns [2], and Green IT Patterns [3] are a few
examples that provide helpful guides for realizing complex
Cloud applications, their management, and challenging non-
functional requirements. The concept of patterns enables IT
experts to document knowledge about proven solutions for
problems in a certain context in an abstract, structured, and
reusable fashion that supports systems architects, developers,
administrators, and operators in solving concrete problems.
The abstract nature of patterns enables generalizing the core
of problem and solution to a level of abstraction that makes
them applicable to various concrete instances of the general
problem—independently from individual manifestations. Thus,
many IT patterns are applicable to a big set of different settings,
technologies, system architectures, and designs. Applying
patterns to real problems requires, therefore, typically a manual
refinement of the described abstract high-level solution for
adapting it to the concrete use case. To guide this refinement
and ease pattern application, most pattern languages docu-
ment “implementations”, “known uses”, or “examples” for
the described pattern solution—as already done implicitly by
Alexander in his early publications on patterns [4].

However, in some areas, these benefits face difficulties
that decrease the efficiency of using patterns immensely. In
the domain of Cloud Application Management, the immediate,
fast, and correct execution of management tasks is of vital
importance to achieve Cloud properties such as on-demand
self-service and elasticity [5][6]. Thus, management patterns,
e. g., to scale a Cloud application, cannot be applied manually
by human operators when a problem occurs because manual
executions are too slow and error prone [1][7]. Therefore,
to use patterns in Cloud Application Management, their
application must be automated [8]. A common way to automate
the execution of management patterns is creating executable
processes, e. g., workflows [9] or scripts, that implement a
refined pattern solution for a certain application [1]. To achieve
Cloud properties, this must be done in advance, i. e., before the
problem occurs, for being ready to run them immediately when
needed. However, these processes are tightly coupled to a single
application as the refinement of a management pattern depends
mainly on the technical details of the application, its structure,
and the concrete desired solution [10]. For example, the pattern
for scaling a Cloud application results in different processes
depending on the Cloud provider hosting the application: due
to the heterogeneous management APIs offered by different
Cloud providers, different operations have to be executed to
achieve the same conceptual effect [11]. Thus, individual pattern
refinement influences the resulting management processes
fundamentally. As a result, multiple individual processes have to
be implemented in advance to execute one management pattern
on different applications. However, if multiple patterns have to
be implemented for hundreds of applications in advance, this
is not efficient as the required effort is immense. In addition,
as Cloud application structures typically evolve over time, e. g.,
caused by scaling, a pattern may has to be implemented multiple
times for a single application. Ironically, if the implemented
processes are not used during the application’s lifetime, the
spent effort was laborious, costly, but completely unnecessary.

The result of the discussion above is that the gap between a
pattern’s abstract solution and its refined executable implemen-
tation for a certain use case currently prevents applying the con-
cept of patterns efficiently to the domain of Cloud Application
Management—due to the mandatory requirement of automation
and its difficult realization. Thus, we need a means to automate
the refinement of abstract patterns to concrete executable
solutions on demand. In this paper, we tackle these issues
by presenting an approach that enables applying management
patterns fully automatically to individual applications. We show
how the required refinement of a management pattern towards
a concrete use case can be automated by inserting an additional
layer of Automated Management Idioms, which provide a
fine grained refinement of a particular abstract management
pattern. These Automated Management Idioms are able to create

60Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 68 / 107

formal declarative descriptions of the management tasks to be
performed automatically for individual applications that are
used afterwards to generate the corresponding executable man-
agement processes using an existing management framework.
This enables automating the application of abstract patterns to
various concrete applications without human intervention, which
increases the efficiency of using patterns in Cloud Application
Management. Thereby, the presented approach (i) helps IT
experts to capture their management knowledge in an executable
fashion and (ii) enables automating existing management
patterns—both independently from individual applications. To
prove the relevance of our approach, we conduct a detailed
case study that illustrates the high complexity of applying an
abstract migration management pattern to a concrete use case.
We validate the approach through a prototype that extends
an existing management framework by the presented concept
and the implementation of real world migration use cases to
prove its technical feasibility. Furthermore, we evaluate the
concept in terms of automation, technical complexity, standards
compliance, separation of concerns, and extensibility.

The paper is structured as follows: in Section II, we describe
background information and a case study. In Section III, we
describe the management framework which is extended by our
approach presented in Section IV. In Section V, we evaluate the
approach and present related work in Section VI. We conclude
the paper and give an outlook on future work in Section VII.

II. BACKGROUND, MOTIVATION, AND REQUIREMENTS

In this section, we provide background information about
the domain of Cloud Application Management and analyze the
requirements to apply the concept of patterns. Afterwards, we
motivate the presented approach through a case study.

A. Automating Patterns for Cloud Application Management

In this section, we discuss why the concept of patterns
and their automation are of vital importance in the domain
of Cloud Application Management to optimize management
and to reduce the number of errors and downtimes. Due
to the steadily increasing use of IT in enterprises, accurate
operation and management are of crucial importance to align
business and IT. As a consequence, requirements such as
high-availability, elasticity, and cheap operation of IT arise
increasingly. Therefore, more and more enterprises outsource
their IT to external providers to achieve these properties
reliably and to automate IT management—both enabled by
Cloud Computing [12]. However, the fast growing number
of proprietary, mostly heterogeneous, Cloud services offered
by different providers leads to a high complexity of creating
composite Cloud applications and executing management tasks
as the (i) offered services, (ii) non-functional capabilities, and
(iii) application programming interfaces (APIs) of different
Cloud providers differ significantly from each other. As a result,
the actual structure of an application, the involved types of
Cloud services (e. g., platform services), and the management
technologies to be used mainly depend on the providers and
are hardly interoperable with each other due to proprietary
characteristics. This results in completely different management
processes for different Cloud providers implementing the same
conceptual management task. As a consequence, the conceptual
solution implemented in such processes gets obfuscated by

technical details and proprietary idiosyncrasies. It is nearly
impossible to reuse and adapt the implemented knowledge
efficiently for other applications and providers as the required
effort to analyze and transfer the conceptual solution to other use
cases is much too high. This results in continually reinventing
the wheel for problems that were already solved multiple times—
but not documented in a way that enables reusing the conceptual
knowledge. A solution for these issues are management patterns,
which provide a well-established means to document conceptual
solutions for frequently recurring problems in a structured,
reusable, and tailorable way [13]. Therefore, a lot of architec-
tural and management knowledge for Cloud applications and
their integration was captured in the past years using patterns,
e. g., Enterprise Integration Patterns [2] and Cloud Computing
Architecture and Management Patterns [1]. A management
pattern typically documents the general characteristics of a
certain (i) problem, (ii) its context, and (iii) the solution in an
abstract way without getting lost in technical realization details.
Thereby, they help applying proven conceptual management
expertise to individual applications, which typically requires
a manual refinement of the pattern’s abstract solution for the
concrete use case. However, this manual refinement leads to
two challenges that are tackled in this paper to enable applying
the concept of management patterns efficiently in the domain
of Cloud Application Management: (i) technical complexity
and (ii) automation of refinement and solution execution.

1) Technical Complexity of Refinement: The technical layer
of IT management and operation becomes a more and more
difficult challenge as each new technology and its management
issues increase the degree of complexity—especially if different
heterogeneous technologies are integrated in complex sys-
tems [10]. Thus, the required refinement of a pattern’s abstract
solution to fine grained technical management operations as
well as their correct parametrization and execution are complex
tasks that require technical expert management knowledge.

2) Automation of Refinement and Solution Execution: In
Cloud Computing, application management must be automated
as the manual execution of management tasks is too slow and
error-prone since human operator errors account for the largest
fraction of failures in distributed systems [7][14]. Thus, the
refinement of a pattern’s abstract solution to a certain use case
and the execution of the refined solution must be automated.

B. Case Study and Motivating Scenario

In this section, we present a case study that is used
as motivating scenario throughout the paper to explain the
approach and to illustrate the high complexity of applying
abstract management patterns to concrete use cases. Due to
the important issue of vendor lock-in in Cloud Computing, we
choose a migration pattern to show the difficulties of refinement
and the opportunities enabled by our approach. We explain the
important details of the pattern and apply it to the use case
of migrating a Java-based application to the Amazon Cloud.
The selected pattern is called “Stateless Component Swapping
Pattern” [15] and originates from the Cloud Computing pattern
language developed by Fehling et al. [1][13][15]. The question
answered by this pattern is “How can stateless application
components that must not experience downtime be migrated?”.
Its intent is extracting stateless application components from
one environment and deploying them into another while they are

61Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 69 / 107

Decommission
Component

Configure
Load Balancing

Provision
Component

Recreate
Application Stack

Extract
Component

Stateless Component Swapping Process Origin
Environment

Target
Environment

application
files

application
files

stack
config

Figure 1. Abstract Stateless Component Swapping Process (adapted from [15]).

active in both environments during the migration. Afterwards,
the old components are decommissioned. The context observed
by this pattern is that, in many business cases, the downtime
of an application is unacceptable, e. g., for customer-facing
services. A stateless application shall, therefore, be migrated
transparently to the accessing human users or applications. Here,
“stateless” means that the application does not handle internal
session state: the state is provided with each request or kept in
provider-supplied storage. Figure 1 depicts the pattern’s solution
as Business Process Model and Notation (BPMN) [16] diagram:
the component to be migrated is first extracted from the origin
environment while the required application stack is provisioned
concurrently in the target environment. Then, the component is
deployed on this stack in the target environment while the old
component is still active. Finally, after the new component is
provisioned, the reference to the migrated component is updated
(load balancing) and the old component is decommissioned.

This pattern shall be applied to the following concrete use
case. A stateless Webservice implemented in Java, packaged as
Web Archive (WAR), is currently hosted on the local physical IT
infrastructure of an enterprise. Therefore, a Tomcat 7 Servlet
Container is employed that runs this WAR. The Tomcat is
deployed on an Ubuntu Linux operating system that is hosted
on a physical server. The Webservice is publicly reachable under
a domain, which is registered at the domain provider “United
Domains”. This service shall be migrated to Amazon’s public
Cloud to relieve the enterprise’s physical servers. Therefore,
Amazon’s public Cloud offering “Elastic Compute Cloud (EC2)”
is selected as target environment. On EC2, a virtual machine
with the same Ubuntu operating system and Tomcat version
shall be provisioned to run the Webservice in the Cloud.

Provider: uniteddomains
Name: myservice.org
Account: myUser
Password: myPassword

(hostedOn)

(Domain)

File: serviceimpl.war
URL: 92.68.1.1:8080/service

(StatelessWAR)

HTTP-Port: 8080
Username: TomcatAdmin
Password: jfwf?jowwßj

(Tomcat7)

SSHCredentials: ….

(Ubuntu12.04)

IP-Address: 92.68.1.1
…

(Server)

(hostedOn)

(hostedOn)

(refersTo) (refersTo)

(hostedOn)

File: serviceimpl.war
URL: 54.73.142.190:8080/service

(StatelessWAR)

HTTP-Port: 8080
Username: TomcatAdmin
Password: jfwf?jowwßj

(Tomcat7)

IP-Address: 54.73.142.190
SSHCredentials: …

(Ubuntu12.04VM)

Account: MyAccount
Password: fw9aa2fr

(AmazonEC2)

(hostedOn)

(hostedOn)

Figure 2. Use case for applying the Stateless Component Swapping Pattern.

Figure 2 shows the technical details of this migration. On the
left, the current Enterprise Topology Graph (ETG) [17] of the
application is shown. An ETG is a formal model that captures
the current state of an application in the form of a topology,
which describes all components and relations including their
types, configuration, and runtime information. ETGs of running
applications can be discovered fully automatically using the
“ETG Discovery Framework” [18]. We use the visual notation
Vino4TOSCA [19] to render ETGs graphically: components
are depicted as rounded rectangles containing their runtime
properties below, relationships as arrows. Element types are
enclosed by parentheses. On the right, the goal of the migration
is shown: all components and relationships drawn with dotted
lines belong to the goal state, i. e., the refined pattern solution.

To refine the pattern’s abstract solution process shown in
Figure 1 to this use case, the following tasks have to be
performed: (i) the WAR to be migrated must be extracted
from the origin environment, (ii) a virtual machine (VM) must
be provisioned on EC2, (iii) a Tomcat 7 Servlet Container must
be installed on this VM, (iv) the WAR must be deployed on
the Tomcat, (v) the domain must be updated, and (vi) the old
WAR must be decommissioned. The technical complexity of
this migration is quite high as four different heterogeneous
management APIs and technologies have to be combined and
one workaround is required to achieve these goals: the extraction
of the WAR deployed on the local Tomcat is not supported by
Tomcat’s management API [20]. Thus, a workaround is needed
that extracts the WAR file directly from the underlying Ubuntu
operating system. However, this is technically not trivial: an
SSH connection to the operating system must be established, the
respective directory must be found in which Tomcat stores the

62Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 70 / 107

Management
Workflow

Management
Planlet Library

Plan
Generator

Desired Application
State Model

x

Figure 3. Management Planlet Framework Overview (adapted from [8]).

deployed WAR files, and the correct WAR must be transferred
from the remote host to a local host using protocols such
as Secure Copy (SCP). To provision a new virtual machine,
EC2’s HTTP-based management API [21] has to be invoked.
However, an important security detail has to be considered
here: per default, a virtual machine on EC2 is not accessible
from the internet. Amazon employs so-called “Security Groups”
to define firewall rules for accessing virtual machines. Thus,
as the Webservice should be accessible from the internet, a
Security Group must be defined to allow access. To install
Tomcat 7, script-centric configuration management technologies
such as Chef can be used. To deploy the WAR on Tomcat,
Tomcat’s HTTP-based management API has to be invoked. The
domain can be updated using the management API of United
Domains [22]. However, to avoid downtime, the old WAR
must not be decommissioned until the Domain Name System
(DNS) servers were updated with the new URL. Therefore, a
DNS Propagation Checker must be employed. To summarize,
the required technical knowledge to refine and implement the
pattern’s abstract solution for this concrete use case is immense.
In addition, automating this process and orchestrating several
management APIs that provide neither a uniform interface nor
compatible data formats is complex, time-consuming, and costly
as the process must be created by experts to avoid errors [10].
As a consequence, (i) handling the technical complexity and
(ii) automating this process are difficult challenges.

III. EMPLOYED MANAGEMENT FRAMEWORK

The approach we present in this paper tackles these issues
by extending the “Management Planlet Framework” [8][10][23].
This framework enables describing management tasks to be
performed in an abstract and declarative manner using Desired
Application State Models, which can be transformed fully
automatically into executable workflows by a Plan Generator
through orchestrating Management Planlets. In this section, we
explain the framework briefly to provide all required informa-
tion to understand the presented approach. The concept of the
management framework is shown in Figure 3. The Desired
Application State Model (DASM) on the left declaratively
describes management tasks that have to be performed on
nodes and relations of an application. It consists of (i) the
application’s ETG, which describes the current structure and
runtime information of the application in the form of properties,
and (ii) Management Annotations, which are declared on nodes
and relations to specify the management tasks to be executed

Provider: uniteddomains
Name: myservice.org
Account: myUser
Password: myPassword

(hostedOn)

(Domain)

File: serviceimpl.war
URL: 92.68.1.1:8080/service

(StatelessWAR)

HTTP-Port : 8080
Username: TomcatAdmin
Password: jfwf?jowwßj

(Tomcat7)

SSHCredentials: ….

(Ubuntu12.04)

IP-Address: 92.68.1.1
…

(Server)

(hostedOn)

(hostedOn)

(refersTo) (refersTo)

= Create-Annotation

= Destroy-Annotation

= SetSecurityGroup-Annotation

= ExtractApplication-Annotation

(hostedOn)

File: $extractedWAR
URL:

(StatelessWAR)

HTTP-Port: 8080
Username: TomcatAdmin
Password: jfwf?jowwßj

(Tomcat7)

IP-Address:
SSHCredentials: ….

(Ubuntu12.04VM)

Account: MyAccount
Password: fw9aa2fr

(AmazonEC2)

(hostedOn)

(hostedOn)

Figure 4. DASM describing the management tasks of the refined pattern.

on the associated element, e. g., to create, update, or destroy
the corresponding node or relation. A Management Annotation
(depicted as coloured circle) defines only the abstract semantics
of the task, e. g., that a node should be created, but not its
technical realization. Thus, in contrast to executable imperative
management descriptions such as management workflows that
define all technical details, a DASM describes the management
tasks to be performed only declaratively, i. e., only the what
is described, but not the how. As a consequence, DASMs are
not executable and are, therefore, transformed into executable
Management Workflows by the framework’s Plan Generator.

Figure 4 shows a DASM that realizes the motivating
scenario of Section II-B. The DASM describes the required
additional nodes and relations as well as Management Annota-
tions that declare the tasks to be performed: the green Create-
Annotations with the star inside declare that the corresponding
node or relation shall be created while the red circles with the
“X” inside represent Destroy-Annotations, which declare that the
associated element shall be destroyed. The magenta coloured
ExtractApplication-Annotation is used to extract the application
files of the WAR node, the blue coloured SetSecurityGroup-
Annotation configures the Security Group to allow accessing
the node from the internet. This DASM specifies the tasks
described by the abstract solution of the Stateless Component
Swapping Pattern refined to the concrete use case of migrating a
Java Webservice to EC2. As Management Annotations describe
tasks only declaratively, the model contains no technical details
about management APIs, data formats, or the control flow.

63Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 71 / 107

Create Ubuntu 12.04 VM on Amazon EC2 Planlet

(AmazonEC2)

Account: *

Password: *

(Ubuntu12.04VM)

(hostedOn)

Annotated Topology Fragment Workflow

P

SSHCredentials: *

 IP-Address: *

Figure 5. Management Planlet that creates an Ubuntu VM on Amazon EC2.

The framework’s Plan Generator interprets DASMs and gener-
ates the corresponding executable workflows automatically. This
is done by orchestrating so-called Management Planlets, which
are workflows executing Management Annotations on nodes
and relations such as deploying a WAR on Tomcat or updating a
domain with a new URL. Planlets are developed by technology
experts and provide the low-level imperative management
logic to execute the declarative Management Annotations used
in DASMs. Thus, they are reusable management building
blocks implementing the how of the declaratively described
abstract management tasks in DASMs. Management Planlets
express their functionality through an Annotated Topology
Fragment, which describes (i) the Planlet’s effects in the form
of Management Annotations it executes on elements and (ii)
preconditions that must be fulfilled to execute the Planlet.
The Plan Generator orchestrates suitable Planlets to process
all Management Annotations in the DASM. The order of
Management Planlets is determined based on their preconditions
and effects: all preconditions of a Planlet must be fulfilled by
the DASM itself or by another Planlet that is executed before.

Figure 5 shows a Planlet that creates a new Ubuntu 12.04
virtual machine on Amazon EC2. The Annotated Topology Frag-
ment exposes the Planlet’s functionality by a Create-Annotation
attached to the node of type “Ubuntu12.04VM” which has a
“hostedOn” relation to a node of type “AmazonEC2”. The
Planlet’s preconditions are expressed by all properties that have
no Create-Annotation attached: the desired “SSHCredentials”
of the VM node as well as “Account” and “Password” of the
Amazon EC2 node must exist to execute the Planlet, which
takes this information to create the new VM (we omit other
properties to simplify). The Planlet’s effects on elements are
expressed by Create-Annotations on their properties, i. e., the
Create-Annotation on the “IP-Address” of the VM node means
that the Planlet sets this property. The existence of this property
and the “SSHCredentials” are typical preconditions of Planlets
that install software on virtual machines. Thus, Planlets can be
ordered based on such properties. The strength of Management
Planlets is hiding the technical complexity completely [8]:
the Plan Generator orchestrates Planlets based only on their
Topology Fragments and the abstract Management Annotations
declared in the DASM, i. e., without considering technical
details implemented by the Planlet’s workflow. This provides
an abstraction layer to integrate management technologies.

IV. AUTOMATED REFINEMENT OF MANAGEMENT
PATTERNS TO EXECUTABLE MANAGEMENT WORKFLOWS

In the previous section, we explained how DASMs can
be used to describe management tasks in an abstract manner
and how they are transformed automatically into executable
workflows by the Management Planlet Framework. Thereby, the
framework provides a powerful basis for automating patterns
and handling the technical complexity of pattern refinement.

Stateless Component Swapping SAMP

Transformation Topology Fragment

(StatelessApplication)

(RuntimeEnvironment)

(hostedOn)

 Textual Description
ABC

Figure 6. Stateless Component Swapping SAMP.

In a former work [8], we presented an approach to generate
DASMs automatically by applying management patterns to
ETGs of running applications. However, as patterns should not
capture use case-specific information, the approach provides
only a semi-automated means and requires a manual refinement
of the resulting DASM. Consequently, we call these patterns
Semi-Automated Management Patterns (SAMP). In this paper,
we extend the concept of SAMPs. Therefore, we introduce
them briefly to provide required information. The input of a
SAMP is the current Enterprise Topology Graph (ETG) of the
application to which the pattern shall be applied, its output is
a DASM that declaratively describes the pattern’s solution
in the form of Management Annotations to be performed.
A SAMP consists of three parts, as shown in Figure 6:
(i) Topology Fragment, (ii) Transformation, and (iii) textual
description. The Topology Fragment is a small topology that
defines the pattern’s context, i. e., it is used to determine if a
pattern is applicable to a certain ETG. Therefore, it describes
the nodes and relations that must match elements in the
ETG to apply the pattern to these matching elements. For
example, the Stateless Component Swapping SAMP shown
in Figure 6 is applicable to ETGs that contain a component of
type “StatelessApplication” that is hosted on a component of
type “RuntimeEnvironment”. As the type “StatelessWAR” is
a subtype of “StatelessApplication” and “Tomcat7” a subtype
of “RuntimeEnvironment”, the shown SAMP is applicable to
the motivating scenario (cf. Figure 2). The second part is a
Transformation that implements the pattern’s solution logic,
i. e., how to transform the input ETG to the output DASM that
describes the tasks to be performed. However, SAMPs provide
only a semi-automated means as the resulting DASM requires
further manual refinement—similar to the required refinement
of normal patterns for concrete use cases. Figure 7 shows
the DASM resulting from applying the Stateless Component
Swapping SAMP to the ETG described in the motivating
scenario. As the pattern’s transformation can not be aware of
the desired refinement for this use case, it is only able to apply
the abstract solution: (i) the stateless application is extracted,

64Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 72 / 107

Provider: uniteddomains
Name: myservice.org
Account: myUser
Password: myPassword

(hostedOn)

(Domain)

File: serviceimpl.war
URL: 92.68.1.1:8080/service

(StatelessWAR)

HTTP-Port: 8080
Username: TomcatAdmin
Password: jfwf?jowwßj

(Tomcat7)

SSHCredentials: ….

(Ubuntu12.04)

IP-Address: 92.68.1.1
…

(Server)

(hostedOn)

(hostedOn)

(refersTo) (refersTo)

(hostedOn)

File: $extractedWAR
URL:

(StatelessWAR)

HTTP-Port: 8080
Username: TomcatAdmin
Password: jfwf?jowwßj

(Tomcat7)

SSHCredentials: ….

(Ubuntu12.04)

IP-Address:
…

(Server)

(hostedOn)

(hostedOn)

= Create-Annotation

= Destroy-Annotation

= ExtractApplication-Annotation

Figure 7. DASM after applying the Stateless Component Swapping SAMP.

(ii) the stack is copied, and (iii) all incoming relations of the
application to be migrated are switched to the new deployment.
To refine this DASM for the motivating scenario, the “Server”
node type must be replaced by “AmazonEC2”, the operating
system must be a virtual machine of type “Ubuntu12.04VM”,
and a Management Annotation must be added to configure the
Security Group (cf. Figure 4). However, manual refinement
violates the two requirements analyzed in Section II-A as (i) the
technical complexity remains (e. g., operator has to be aware
of Security Groups) and (ii) human intervention is required,
which breaks the required full automation. Of course, Semi-
Automated Management Patterns could be created for concrete
use cases as also shown in Breitenbücher et al. [8]. However,
this violates the abstract nature of patterns and causes confusing
dependencies between patterns and use cases, which decreases
usability. In addition, with the increasing number of such use
case-specific management patterns, the conceptual part of the
abstract solution gets obfuscated. Therefore, we add an explicit
refinement layer to separate the different layers of abstraction.

A. Overview of the Approach

In this and the next section, we present the main contribution
of this paper. The approach enables applying patterns fully
automatically to concrete use cases and solves the two problems
analyzed in Section II-A: (i) handling the technical complexity
of refinement and (ii) automating refinement and solution exe-
cution. The goal is to automate the whole process of applying a
pattern selected by a human operator to a concrete use case. The
reason that Semi-Automated Management Patterns can not be

Refinement Layer

Management Pattern

Management Idiom 1 Management Idiom n

refines refines

…

… Use Case 1 Use Case n

considers considers

Figure 8. Additional refinement layer below management patterns.

applied fully automatically results from the generative nature of
patterns since they describe only the general core of solutions.
Consequently, they must be refined manually to individual use
cases. Therefore, we need a more specific means below patterns
to document concrete management problems and already refined
solutions. According to Buschmann et al. [24], who consider
design issues of software, so-called “idioms” represent low-
level patterns that deal with the implementation of particular
design issues in a certain programming language. They address
aspects of both design and implementation and provide, thus,
already refined pattern solutions. For example, an idiom may
describe concretely how to implement the abstract Model-View-
Controller Pattern (MVC) in Java. Thus, this concept solves a
similar kind of refinement problem in the domain of software
architecture and design. Therefore, we adapt this refinement
concept to the domain of Cloud Application Management.

We insert an additional refinement layer below management
patterns in the form of Application Management Idioms, which
are a tailored incarnation of a certain abstract management
pattern refined for a concrete problem, context, and solution
of a certain use case. Figure 8 shows the conceptual approach:
a management pattern is refined by one or more Management
Idioms that consider each a concrete use case of the pattern and
provide an already refined solution. Thus, instead of refining
an abstract management pattern manually to a certain use
case, the pattern to be applied can be refined automatically by
selecting the appropriate Management Idiom directly. Applying
this concept to our motivating scenario, the refinement of the
Stateless Component Swapping Pattern to our concrete use
case of migrating a stateless Java Webservice packaged as
WAR to Amazon EC2 (see Section II-B) can be captured by
a “Stateless WAR from Tomcat 7 to Amazon EC2 Swapping
Idiom”, which describes the refined problem, context, and
solution. Thus, instead of providing only the generic solution,
this idiom is able to describe the tasks in detail tailored to this
concrete context. Thereby, management tasks such as defining
the Security Group can be described while the link to the
conceptual solution captured by the actual pattern is preserved.

The additional refinement layer enables separating concerns:
on the management pattern layer, the generic abstract problem,
context, and solution are described to capture the conceptual
core. On the Management Idiom layer, a concrete refinement
is described that possibly obfuscates the conceptual solution
partially to tackle concrete issues of individual use cases. As a
consequence, the presented approach enables both (i) capturing
generic management knowledge and (ii) providing tailored

65Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 73 / 107

System System System System

Automatic
Workflow
Execution

Handling technical complexity of refinement

Automating refinement and solution execution

Automatic
Workflow

Generation

Automatic
Management Idiom

Application

Manual
Management Pattern
and Idiom Selection

Automatic ETG
Discovery

2 3 4 5 1

Figure 9. Process that describes how to apply a management pattern fully automatically to a running application using Automated Management Idioms.

refinements linking to the actual pattern. In the next section, we
extend the concept of Semi-Automated Management Patterns
by Automated Management Idioms following this concept.

B. Automated Management Idioms

To automate the new refinement layer, we introduce Auto-
mated Management Idioms (AMIs) in this section. Automated
Management Idioms refine Semi-Automated Management
Patterns through (i) providing a refined Topology Fragment
that formalizes the particular context to which the idiom is
applicable and (ii) implementing a more specific transformation
tailored to the refined context for transforming the input ETG
directly into an already refined DASM. Each AMI additionally
defines a Pattern Reference (PR) linking to its original pattern.

Stateless WAR from Tomcat 7 to
Amazon EC2 Swapping AMI

Transformation

 Textual Description
ABC

PR

Topology Fragment

(StatelessWAR)

(Tomcat7)

(hostedOn)

Figure 10. Stateless WAR from Tomcat 7 to Amazon EC2 Swapping AMI.

Figure 10 shows the AMI that refines the Stateless Com-
ponent Swapping SAMP for our motivating scenario. The
refinement of the context, to which this idiom is applicable, is
expressed by the refined Topology Fragment: while the pattern
is applicable to topologies that contain an abstract “StatelessAp-
plication” that is hosted on an abstract “RuntimeEnvironment”,
the shown idiom refines this fragment and is only applicable
to a node of type “StatelessWAR” that is hosted on a node
of type “Tomcat7”. The refinement of the Topology Fragment
restricts the idiom’s applicability and enables to implement
a transformation that considers exclusively this concrete use
case. Therefore, the idiom’s transformation differs from the
pattern’s transformation by adding more details to the output
DASM: it refines the “Server” node directly to “AmazonEC2”
and adds the required Management Annotation that configures
the Security Group accordingly in order to enable accessing
the migrated WAR from the internet. The operating system is
exchanged by “Ubtuntu12.04VM” while the “Tomcat7” and
“StatelessWAR” nodes are simply copied from the ETG of the

origin environment. Similar to the transformation of the pattern,
all incoming relations of the old WAR node are redirected to
the new WAR. Thus, the resulting DASM corresponds exactly
to the DASM shown in Figure 4, which would be created
manually by an expert to refine the pattern to this use case.
As a result, applying this Automated Management Idiom to
the motivating scenario’s ETG results in a completely refined
DASM which can be transformed directly into an executable
workflow by the Management Planlet Framework. Thus, no
further manual refinement is required to apply the pattern to
this use case. Nevertheless, the Management Planlet Framework
enables implementing this Automated Management Idiom on
a high level of abstraction due to Management Annotations.

C. Fully Automated Pattern-based Management System

In this section, we explain the process of applying a manage-
ment pattern in the form of an Automated Management Idiom
automatically to a running application using the Management
Planlet Framework. This process provides the basis for a Fully
Automated Pattern-based Management System and consists
of the five steps shown in Figure 9. First, the ETG of the
application to be managed has to be discovered. This step
is automated by using the ETG Discovery Framework [18],
which gets an entry node of the application as input, e. g., the
URL pointing to a deployed Webservice, and discovers the
complete ETG of this application fully automatically including
all runtime properties. In the second step, the user selects the
pattern to be applied in the form of an Automated Management
Idiom. This is the only manual step of the whole process. In the
third step, the selected idiom is applied by the framework fully
automatically to the discovered ETG. Therefore, the idiom’s
transformation is executed on the ETG. The output of this
step is a Desired Application State Model that is based on
the discovered ETG but additionally contains all management
tasks to be executed in the form of Management Annotations.
This DASM is used in Step 4 by the Management Planlet
Framework to generate an executable management workflow, as
described in Section III. In the last step, the generated workflow
is executed using a workflow engine. The overall process fulfills
the two requirements analyzed in Section II-A: (i) handling
technical complexity and (ii) automating refinement and so-
lution execution. The technical complexity is hidden by the
framework’s declarative nature: management tasks are described
only as abstract Management Annotations. All implementation
details are inferred automatically by Management Planlets.
Thus, the user only selects the idiom to be applied, the technical
realization is invisible and automated. The second requirement
of automation is achieved through executable transformations
of idioms and the employed Management Planlet Framework.

66Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 74 / 107

D. Automatic Refinement Filtering and Pattern Configuration

To apply a pattern automatically using this system, the user
first triggers the automatic ETG discovery of the application to
be managed, searches the Semi-Automated Management Pattern
(SAMP) to be applied, and selects the desired refinement in
the form of an Automated Management Idiom. Based on their
Topology Fragments, non-applicable Automated Management
Idioms are filtered automatically by the system. For example,
if the Stateless Component Swapping SAMP is refined by
two different Automated Management Idioms—one is able to
migrate a PHP application hosted on an Apache HTTP Server to
Amazon EC2, the other is the described WAR migration idiom
shown in Figure 10—the system offers only the idioms whose
Topology Fragments match the elements in the ETG. Thus, in
case of our motivating scenario, only the idiom for migrating
the WAR application is offered as exclusively its Topology
Fragment matches the ETG. Based on this matchmaking, the
system is able to offer only applicable management patterns
and refinements in the form of Automated Management Idioms.
Therefore, we call this concept Automatic Refinement Filtering.

If multiple idioms of a selected SAMP match the ETG
after filtering, e. g., one idiom migrates the WAR application
to Amazon EC2, another to Microsoft’s public Cloud “Azure”,
the user is able to configure the refinement of the pattern by
a simple manual idiom selection while its actual application
and execution are automated completely. Therefore, we call
this concept Configurable Automated Pattern Refinement. The
combination of these two concepts automates the refinement in
two dimensions: first, Automatic Refinement Filtering preselects
applicable refinements automatically, which relieves the user
from finding applicable idioms. Second, the remaining filtered
idioms can be applied directly without human intervention.
Thus, the only manual step in this process is selecting the
pattern and the desired configuration in the form of an idiom.

V. VALIDATION AND EVALUATION

In this section, we validate the presented approach by a (i)
prototypical implementation and evaluate the concept in terms
of (ii) standards compliance, (iii) automation, (iv) technical
complexity, (v) separation of concerns, and (vi) extensibility.

A. Prototype

To validate the technical feasibility of the approach, we
extended the Java prototype presented in our former work [8]
by Automated Management Idioms. The system’s architecture
is shown in Figure 11. The Web-based user interface is
implemented in HTML5 using Java Servlets. Therefore, the
prototype runs on a Tomcat 7 Servlet Container. The UI calls
the Application Management API to apply a pattern to a running
application. Therefore, it discovers the application’s ETG by
integrating the ETG Discovery Framework [18] and employs
a Pattern and Idiom Manager to select the pattern / idiom
to be applied. The manager is connected to a local library
which stores deployable SAMPs and AMIs in the form of Java-
based Webservices and implements a matchmaking facility to
analyze which patterns / idioms are applicable to a certain
ETG. To add new patterns or idioms to the system, the library
provides an interface to register additional implementations.
After selection, the discovered ETG and the SAMP / AMI to

User Interface

Pattern and
Idiom Manager

Pattern and
Idiom Applier

ETG Discovery
Framework

Application Management API

Plan
Generator

Workflow
Engine

Pattern & Idiom
Library

Planlet
Library

TOSCA
Importer

Figure 11. Fully Automated Pattern-based Management System Architecture.

be applied are passed to the Pattern and Idiom Applier, which
executes the pattern’s / idiom’s transformation on the ETG
and passes the resulting DASM to the Plan Generator. The
generator is connected to a local Management Planlet Library
that contains all available Planlets, which are implemented
using the standardized Business Process Execution Language
(BPEL) [25]. It generates the corresponding management
workflow also in BPEL, which is deployed and executed
afterwards on the employed workflow engine “WSO2 Business
Process Server 2.0”. We implemented several Semi-Automated
Management Patterns and corresponding refinements in the
form of Automated Management Idioms, e. g., for migration
scenarios similar to the one used in this paper.

The Topology and Orchestration Specification for Cloud
Applications (TOSCA) [26] is an OASIS standard to describe
Cloud applications and their management in a portable way.
Therefore, it provides a specification to model application
topologies that can be linked with management workflows.
As our approach is based on the same concepts, our prototype
supports importing and deploying TOSCA-based applications,
which can be managed afterwards using the presented approach.

B. Standards Compliance and Interoperability

Standards are a means to enable reusability, interoperability,
and maintainability of software and hardware, which leads to
higher productivity and helps aligning the enterprise’s IT to its
business. However, most available management approaches are
based on non-standardized APIs or domain-specific languages
(DSLs) which makes it difficult to provide and transfer the
required knowledge. The presented approach tackles this issue
by supporting two existing standards: (i) TOSCA is used
to import standardized application descriptions that can be
managed using SAMPs and AMIs while the (ii) BPEL standard
is used to implement and execute the generated Management
Workflows. In addition, Management Planlets and the generated
workflows are implemented in BPEL, which is a standard
to describe executable workflows. Thus, they are portable
across standard-compliant BPEL engines. In addition, Planlets
allow integrating different kinds of management technologies
seamlessly [8][10]. As a result, the presented approach is
agnostic to individual management technologies and Cloud
providers, which supports interoperability and eases integration.

C. Automation

In Cloud Application Management, automation is of vital
importance. Workflow technology enables automating the execu-

67Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 75 / 107

tion of management tasks and provides powerful features such
as automated recoverability and compensation [9]. However,
if these processes that implement a refined solution of the
respective management pattern have to be created manually,
it is not efficient and, in addition, error-prone. The presented
approach automates the creation of workflows that implement
a pattern’s refined solution through the introduced Automated
Management Idiom layer and the employed framework. Thus,
only the choice when to trigger a management pattern is left
to the human operator. This automation decreases the risk
of human errors, which account for the largest fraction of
failures and system downtimes in distributed systems [7][14].
In addition, the required technical knowledge to understand the
different management technologies is not required at all as the
whole process of determining the tasks to be performed and
orchestrating the required technologies is fully automated.

D. Technical Complexity

Manually handling the technical complexity of pattern
refinement for composite Cloud applications is a major issue
due to heterogeneous and proprietary management technologies
(cf. Section II). The presented approach tackles this issue
by automating the whole refinement process from a pattern’s
abstract solution to the final executable workflow on two
layers: (i) automating refinement by Automated Management
Idioms and (ii) automated workflow generation using the
Management Planlet Framework. The automated refinement
removes the two manual tasks to specify concrete node and
relationship types for abstract types and to add refinement-
specific Management Annotations (cf. Figure 4 and Figure 7).
Hence, the formerly required technical expertise on proprietary
management idiosyncrasies such as Security Groups is no longer
a mandatory prerequisite. Secondly, the orchestration of the
different management technologies is completely handled by
the Plan Generator that transforms the refined DASM fully
automatically into an executable Management Workflow. Thus,
this removes all manual steps and the only task that is left
to the human user is choosing the AMI to be applied. This
eliminates potential sources of errors on the technical layer [1].

E. Separation of Concerns

The presented approach separates concerns through splitting
the process of selecting, creating, and automating a pattern, its
refinement, and execution. Our approach enables IT experts to
capture generic management knowledge in patterns that can be
refined through Automated Management Idioms developed
by specialists of certain areas. Thus, pattern creators and
AMI developers are separate roles that are responsible for
different kinds of knowledge: SAMP creators capture generic
management knowledge, AMI creators refine this through
implementing concrete technology-specific management knowl-
edge. In addition, experts of low-level API orchestration that
understand the different management technologies are able to
automate their knowledge through implementing Management
Planlets. Thus, even AMI creators do not have to deal with
complex technology-specific details such as API invocations
or parametrization: they only implement their knowledge
declaratively, i. e., without defining the final API calls etc. This
enables separating different responsibilities and concerns as
well as a seamless integration of different kinds of knowledge.

F. Extensibility

The presented approach is extensible on multiple layers as it
provides an explicit integration framework for patterns, idioms,
and Planlets through using libraries. New Semi-Automated
Management Patterns and Automated Management Idioms can
be created based on a uniform Java interface and integrated into
the system seamlessly by a simple registration at the library. All
patterns and idioms in the library are considered automatically
when an application shall be managed by comparing their
Topology Fragments with the application’s ETG. To extend
the system in terms of management technologies, Planlets can
be implemented for new node types, relationship types, or
Management Annotations and stored in the Planlet Library.
The framework’s Plan Generator integrates new Management
Planlets without further manual effort when processing DASMs.

VI. RELATED WORK

Several works focus on automating application management
in terms of application provisioning and deployment. Eilam et
al. [27], Arnold et al. [28], and Lu et al. [29] consider pattern-
based approaches to automate the deployment of applications.
However, their model-based patterns are completely different
from the abstract kind of patterns we consider in this paper. In
their works, patterns are topology models which are used to as-
sociate or derive the corresponding logic required to deploy the
combination of nodes and relations described by the topology,
similarly to the Annotated Topology Fragments of Management
Planlets. Mietzner [30] presents an approach for generating
provisioning workflows by orchestrating “Component Flows”,
which implement a uniform interface to provision a certain
component. However, these works focus only on provisioning
and deployment and do not support management.

Fehling et al. [1][15] present Cloud Application Manage-
ment Patterns that consider typical management problems,
e. g., the “Stateless Component Swapping Pattern”, which
was automated in this paper. They propose to attach abstract
processes to management patterns that describe the high-level
steps of the solution. However, these abstract processes are not
executable until they are refined manually for individual use
cases. Their management patterns also define requirements in
the form of architectural patterns that must be implemented
by the application. These dependencies result in a uniform
pattern catalog that interrelates abstract management patterns
with architectural patterns. In addition, they propose to annotate
reusable “Implementation Artifacts” to patterns that may assist
applying the pattern, e. g., software artifacts or management
processes. Their work is conceptually equal to our approach
in terms of using processes to automate pattern application.
However, most of the refinement must be done manually, which
leads to the drawbacks discussed in Section I: management
processes must be created in advance to be executable when
needed. In addition, changing application structures caused by
other pattern applications, for example, migration patterns, lead
to outdated processes that possibly result in reimplementation.
In Falkenthal et al. [31], we show how reusable solution
implementations, e. g., Management Workflows, can be linked
with patterns. However, also this approach requires at least
one manual implementation of the concrete solution which
is typically tightly coupled to a certain application structure.

68Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 76 / 107

Fehling et al. [32] also present a step-by-step pattern identifi-
cation process supported by a pattern authoring toolkit. This
authoring toolkit can be combined with our approach to create
patterns and idioms that can be automated afterwards. Thus,
the work of Fehling et al. provides the basis for creating AMIs
out of patterns captured in natural text following this process.

Reiners et al. [33] present an iterative pattern evolution
process for developing patterns. They aim for documenting
and developing application design knowledge from the very
beginning and continuously developing findings further. Non-
validated ideas are documented already in an early stage and
have to pass different phases until they become approved
design patterns. This process can be transferred to the domain
of Cloud Application Management Patterns. Our approach
supports this iterative pattern evolution process as it helps to
apply captured knowledge easily and quickly to new use cases.
Thus, it provides a complementary framework to our approach
that enables validating and capturing knowledge.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the concept of Automated
Management Idioms that enables automating the refinement
and execution of a pattern’s abstract solution automatically
to a certain use case by generating executable management
workflows. We showed that the approach enables (i) applying
the concept of patterns efficiently in the domain of Cloud
Application Management through automation, (ii) abstracting
the technical complexity of refinement, and (iii) reducing human
intervention. The approach enables operators to apply various
management patterns fully automatically to individual use
cases without the need for detailed technical expertise. The
prototypical validation, which extends the Management Planlet
Framework, proves the concept’s technical feasibility. In future
work, we plan to investigate how Automated Management
Idioms can be triggered automatically based on occurring events
and how multiple patterns can be applied together.

ACKNOWLEDGMENT

This work was partially funded by the BMWi project
CloudCycle (01MD11023).

REFERENCES

[1] C. Fehling, F. Leymann, J. Rütschlin, and D. Schumm, “Pattern-based
development and management of cloud applications.” Future Internet,
vol. 4, no. 1, March 2012, pp. 110–141.

[2] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley, 2003.

[3] A. Nowak et al., “Pattern-driven Green Adaptation of Process-based
Applications and their Runtime Infrastructure,” Computing, February
2012, pp. 463–487.

[4] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, 1977.

[5] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
Tech. Rep., July 2009.

[6] M. Armbrust et al., “A view of cloud computing,” Communications of
the ACM, vol. 53, April 2010, pp. 50–58.

[7] A. B. Brown and D. A. Patterson, “To err is human,” in EASY, July
2001, p. 5.

[8] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Pattern-based
runtime management of composite cloud applications,” in CLOSER.
SciTePress, May 2013, pp. 475–482.

[9] F. Leymann and D. Roller, Production workflow: concepts and techniques.
Prentice Hall PTR, 2000.

[10] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and J. Wettinger,
“Integrated cloud application provisioning: Interconnecting service-centric
and script-centric management technologies,” in CoopIS. Springer,
September 2013, pp. 130–148.

[11] S. Leonhardt, “A generic artifact-driven approach for provisioning, con-
figuring, and managing infrastructure resources in the cloud,” Diploma
thesis, University of Stuttgart, Germany, November 2013.

[12] F. Leymann, “Cloud Computing: The Next Revolution in IT,” in Proc.
52th Photogrammetric Week, September 2009, pp. 3–12.

[13] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud
Applications. Springer, January 2014.

[14] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in USITS. USENIX
Association, June 2003, pp. 1–16.

[15] C. Fehling, F. Leymann, S. T. Ruehl, M. Rudek, and S. Verclas,
“Service Migration Patterns - Decision Support and Best Practices
for the Migration of Existing Service-based Applications to Cloud
Environments,” in SOCA. IEEE, December 2013, pp. 9–16.

[16] OMG, Business Process Model and Notation (BPMN), Version 2.0,
Object Management Group Std., Rev. 2.0, January 2011.

[17] T. Binz, C. Fehling, F. Leymann, A. Nowak, and D. Schumm, “For-
malizing the Cloud through Enterprise Topology Graphs,” in CLOUD.
IEEE, June 2012, pp. 742–749.

[18] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “Automated
Discovery and Maintenance of Enterprise Topology Graphs,” in SOCA.
IEEE, December 2013, pp. 126–134.

[19] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and D. Schumm,
“Vino4TOSCA: A visual notation for application topologies based on
TOSCA,” in CoopIS. Springer, September 2012, pp. 416–424.

[20] Apache Software Foundation. Apache Tomcat 7 API. [Online].
Available: http://tomcat.apache.org/tomcat-7.0-doc/

[21] Amazon Web Services. Elastic Compute Cloud API Reference. [Online].
Available: http://docs.aws.amazon.com/AWSEC2/latest/APIReference

[22] United Domains. Reselling API. [Online]. Available: http://www.
ud-reselling.com/api

[23] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and M. Wieland,
“Policy-Aware Provisioning of Cloud Applications,” in SECURWARE.
Xpert Publishing Services, August 2013, pp. 86–95.

[24] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture, Volume 1: A System of Patterns.
Wiley, 1996.

[25] OASIS, Web Services Business Process Execution Language (WS-BPEL)
Version 2.0, OASIS, April 2007.

[26] OASIS, Topology and Orchestration Specification for Cloud Applications
Version 1.0, May 2013.

[27] T. Eilam, M. Elder, A. Konstantinou, and E. Snible, “Pattern-based
composite application deployment,” in IM. IEEE, May 2011, pp.
217–224.

[28] W. Arnold, T. Eilam, M. Kalantar, A. V. Konstantinou, and A. A. Totok,
“Pattern based soa deployment,” in ICSOC. Springer, September 2007,
pp. 1–12.

[29] H. Lu, M. Shtern, B. Simmons, M. Smit, and M. Litoiu, “Pattern-based
deployment service for next generation clouds,” in SERVICES. IEEE,
June 2013, pp. 464–471.

[30] R. Mietzner, “A method and implementation to define and provision
variable composite applications, and its usage in cloud computing,”
Dissertation, University of Stuttgart, Germany, August 2010.

[31] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, and F. Leymann,
“From Pattern Languages to Solution Implementations,” in PATTERNS.
Xpert Publishing Services, May 2014.

[32] C. Fehling, T. Ewald, F. Leymann, M. Pauly, J. Rütschlin, and
D. Schumm, “Capturing cloud computing knowledge and experience in
patterns,” in CLOUD. IEEE, June 2012, pp. 726–733.

[33] R. Reiners, “A pattern evolution process - from ideas to patterns.” in
Informatiktage. GI, September 2012, pp. 115–118.

69Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 77 / 107

A Method for Situational and Guided Information System Design

Dalibor Krleža

Global Business Services

IBM

Miramarska 23, Zagreb, Croatia

dalibor.krleza@hr.ibm.com

Krešimir Fertalj

Department of Applied Computing

Faculty of Electrical Engineering and Computing

University of Zagreb

Unska 3, Zagreb, Croatia

kresimir.fertalj@fer.hr

Abstract—Model Driven Architecture is not highly used in

current information system development practice. One of the

reasons is that modeling languages are mostly used for

documenting of the information system development and

enhancement of communication within project teams. Without

guidance, an information system design results in models of

low quality, which cannot be used for anything more than

documenting pieces of the information system. When it comes

to model transformation, project team members usually reuse

predefined transformations included in a modeling tool.

Models of low quality that are not traceable and not complete

are hard to transform. Model quality cannot be high if

modeling activities are not guided and constrained. Guidance

and constraints can be imposed through project activities led

by a senior designer responsible for model quality. In this

article, a method for situational modeling guidance is

presented. This method is adaptable and situation dependent.

Implemented within a modeling tool, the method should allow

project team members responsible for model quality to give

guidance and constraints, and to ensure model quality through

the modeling tool.

Keywords-modeling; guidance; design; pattern;

transformation.

I. INTRODUCTION

The Model Driven Architecture (MDA), standardized by
the Object Management Group (OMG) [1], is an information
system design approach based on models and model
transformations. Using MDA, an information system is
designed through several models of different abstraction
levels, from business oriented models to technical and
platform specific models. MDA defines three different types
of models having different levels: abstract and business
oriented Computational Independent Model (CIM),
technically oriented Platform Independent Model (PIM), and
very detailed Platform Specific Model (PSM).

Model transformation is a key procedure in MDA.
According to the specification [1], "model transformation is
the process of converting one model to another model".
Model transformation can be done manually or
automatically. Manual model transformation is more
common than we think. It is not unusual for a designer to
start modeling from scratch by using models delivered earlier
in the project. Such an approach is defined within various
design and development methodologies. Chitforoush,
Yazdandoost and Ramsin [2] are giving an overview of
MDA specific methodologies. Most of these methodologies

were developed for specific projects. Some generic design
and development methodologies, such as Rational Unified
Process (RUP) [3][12], also rely on model based design.
However, basic purpose of methodologies is to help organize
projects, giving guidance for project activities and
deliverables, leaving execution to project team members.

When a modeling language is structured and formal
enough, automatic transformation can be used. The Meta
Object Facility (MOF), standardized by the OMG and
described in [5], is a metalanguage for modeling languages
that can be transformed automatically. Automatic
transformation takes artifacts of a source model and converts
them into artifacts of a target model by using transformation
mapping. Transformation can be additionally used to
establish relationships between models, or to check
consistency of artifacts between a source and target model.
Czarnecki and Helsen [4] elaborate a number of model
transformation approaches and basic features of
transformation rules. Most used are graph based
transformations and transformation languages.
Transformation languages can be declarative or imperative.
The OMG standardized group of MOF based transformation
languages named Query/View/Transformation (QVT) [7].
QVT Relational language (QVT-R) is a typical example of a
declarative approach with a graphical notation. QVT
Operational language (QVT-O) is an example of an
imperative approach.

The focus of this article is delivery of the models that are
of high quality. In order to understand what this means, we
can use one of the existing quality models. One example is
the quality model given by Lange and Chaudron [8]. Relying
only on methodology guidance will not necessarily produce
a model of high quality, because it allows designers to focus
on wrong aspects and details within the model. The result
can be a model of poor quality, problems with traceability
and inability to transform or analyze created model. One way
to solve these problems is by appointing a senior designer to
the design lead role. The design lead responsibilities are to
establish modeling guidance and constraints, oversee
modeling work, check delivered models and to ensure model
quality. According to the quality model [8], this means that
all models are traceable, complete, consistent and
correspondent to the information system. Establishing
modeling constraints means imposing patterns that need to
be used during the information system design.

70Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 78 / 107

In this article, a method for automated modeling
guidance and imposing constraints is proposed. The
proposed method utilizes existing specifications such as
MDA, MOF, UML and QVT to achieve a guided process of
an information system design, supported by model
transformation. The proposed method will be extensible in
order to naturally fit existing design and development
methodologies. The purpose of the method is to ease
communication between a design lead and his team members
and to enable management of an information system design
work through usage of a modeling tool.

In Section II, a modeling space is defined. The modeling
space is a way how to combine all models of an information
system together, giving them relationship and defining their
purpose. In the same Section, a relationship between pattern
instances and models is given. In Section III, current
modeling practice in the context of methodologies is
discussed, which helps understand how the pattern instances
are created during the project. In Section IV, an overview of
the pattern instance transformation is given. The pattern
instance transformation is essential for the method proposed
in this article. In Section V, the tracing and transformation
language is defined. This language is used to bind pattern
instances together and help to establish tracing between
model artifacts. In Section VI, an overview of the method for
situational and guided information system design is given.

II. MODELING SPACE

A modeling space can be represented as a three
dimensional space containing all possible models of a
designed information system. The modeling space must
follow MDA philosophy, support different levels of
abstraction given in MDA specification, and classification of
the containing models.

The proposed modeling space presented in Figure 1 is in

three dimensions because it contains different layers
representing respective aspects or viewpoints of the designed

information system. The modeling space contains four
layers. The application layer is comprised of models with the
business logic. The information layer is comprised of
information and data models. Models containing architecture
details and infrastructure nodes are placed in the
infrastructure layer. And finally, there needs to be a specific
layer for transformation and tracing models. Of course, a
number of layers and their purpose depend on a set of
models representing an information system design. One
model can belong to multiple layers. For example, a model
containing requirements can easily be considered for
application, information and infrastructure related. The
proposed modeling space must also support a clear
distinction between abstract and detailed models. Abstract
and computing independent models are placed on top of each
layer. Models with more details are closer to the bottom of
the layer. Figure 1 shows the placement of different MDA
model types in the proposed modeling space.

Each model is a set of artifacts. These artifacts originate

from a modeling language, such as UML. A set of models
together represent a design of an information system.
However, there are building blocks between single artifact
and a whole model that are meaningful for designers. These
building blocks are patterns. Example of repeating patterns
within different models is given in Figure 2. CIM1 contains
repeating sets of model artifacts that can be interpreted as
requirements, CIM2 contains business processes, PIM1 use
cases, PIM2 components, and PSM1 implementation of
components defined in PIM2.

Which patterns will appear in the modeling space
depends on the design of an information system.
Computational independent patterns are usually created early
in the project and they depend on used architecture as well as
how business analysis is performed. These high level
abstract patterns have the biggest impact on the design of an
information system. Platform independent patterns are
derived from architecture and computational independent
patterns. They represent an elaboration of computational
independent patterns within an architectural context. The
most detailed are platform specific patterns that represent the
implementation of platform independent patterns for a
specific infrastructure yielded by the previously determined
architecture.

In order to establish the method proposed in this article, a
library of modeling patterns and transformations must be
established. Modeling patterns can be determined in several
different ways. Gamma, Helm, Johnson and Vlissides [9]

Figure 2. Models and pattern instances placed in the application

layer of the modeling space

Figure 1. Structure of a modeling space

71Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 79 / 107

propose a list of basic object-oriented patterns visualized in
the UML. Hohpe and Woolf [10] propose a list of enterprise
integration patterns. Enterprise integration patterns are more
abstract than object-oriented patterns.

Collecting modeling patterns from existing models of the
already developed information system is another way. It can
be done manually or automatically by detecting repetitions in
existing models. Detection itself can be done by the graph
matching method [11]. However, this is just a part of a
collection process. Rahm et al. [15] propose graph matching
method for detection of cloned fragments in graph based
models. According to their definition, repetitive fragments
that are similar enough can be considered for clones or
patterns. A similar approach can be applied to UML models.

And finally, as already mentioned, modeling patterns can
be a great way how to give a sense of direction and
cooperation to a team of designers. A pattern is a class, a
blueprint that binds one or more modeling artifacts together.
Application of a pattern means his instantiation within at
least one model in the modeling space. Applying the
modeling pattern does not mean that the modeling is
completed. Adding details and further elaboration of the
pattern instance is needed, in order to give it enough details
to fit an information system design.

Figure 3 presents a pattern that is comprised of an empty

interface and a component. After applying this pattern a
pattern instance is created. Further elaboration of the pattern
instance must add interface details, operations and attributes,
subcomponents and additional interfaces.

III. MAPPING BETWEEN METHODOLOGY AND PATTERN

USAGE

CIMs are usually created very early in the project. In the
RUP, business models are created in the Inception phase. It
means that selecting and applying CIM related patterns and
further elaboration can be done very early in the project.
These patterns will be classified as functional requirements,

non-functional requirements, business processes, or business
use cases. Idea is to have these patterns and related
transformations ready for use in the modeling library that is
used for the project. Elaboration of newly created pattern
instances in CIMs can be done in the Inception phase.

PIMs, part of the PSMs, architecture models and
infrastructure models, are created in the Elaboration phase.
In this phase, we do most of an information system design
and take the most important decisions. In the Elaboration
phase, patterns used in CIMs are guidance for choosing
patterns that will be used next. For example, usual patterns
that could be used here contain use cases, components and
nodes.

The PSM is usually the last step in the design of an
information system. The ultimate goal is to get the source
code and deployment units. Therefore, the PSM must contain
pattern instances that define a sufficient level of details for
transformation into the source code, in a way that there is
less work as possible for programmers. Pattern instances in
the PSM are mostly implementation of pattern instances in
the PIM. For example, in the Component Based Modeling
(CBM), the PSM contains platform specific implementations
of components defined in the PIM.

As the design of an information system advances through
the project, designers can create new pattern instances or
elaborate existing ones, as presented in Figure 4. A new
pattern instance can be created to document business need,
reflect already existing functionality that will be reused, or
by transforming from already existing pattern instance in the
modeling space. Transformation between pattern instances
will probably be the most used option. Elaboration of the
existing pattern instances is also very important. Once a new
pattern instance has been created, it must be elaborated in
subsequent project activities.

IV. PATTERN INSTANCE TRANSFORMATION

In the MDA specification [1], various different model-to-
model transformation examples can be found.
Transformation can be done within the same model, between
two different models, for model aggregation, or model
separation. Grunske et al. [6] are presenting important notion
of "horizontal" and "vertical" transformations. Horizontal
transformation is done between models of the same
abstraction level. Typical horizontal transformation is PIM to
PIM, or PSM to PSM. Any transformation within the same
model is also a horizontal transformation. Vertical
transformation is done between models of different

Figure 3. Example of a simple modeling pattern: component and

interface

Figure 4. RUP and advancement through a design of an information system

72Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 80 / 107

abstraction levels, or from a model to the source code. A
transformation from PIM to PSM, or from PSM to the source
code is vertical transformation.

Model transformation is the procedure for translating
source model into target model. A modeling space can be
defined as a finite set of models 𝑀𝑆 = {𝑀1,𝑀2 ,… ,𝑀𝑛} .
Each model is a finite set of artifacts 𝑀𝑖 = {𝑎1 , 𝑎2 ,… , 𝑎𝑚 }.
A transformation is a function 𝑡𝑟:𝑀𝑆 → 𝑀𝑆 that takes a set
of artifacts 𝑎𝑟𝑆𝑜 from a set of source models 𝑆𝑜 ⊆ 𝑀𝑆 such
that 𝑎𝑟𝑆𝑜 ⊆ 𝑆𝑜, analyses this set of artifacts and translates
them into another set of artifacts 𝑎𝑟𝑇𝑎 in a set of target
models 𝑇𝑎 ⊆ 𝑀𝑆 , such that 𝑎𝑟𝑇𝑎 ⊆ 𝑇𝑎 . Transformation
can be done within the same model 𝑆𝑜 = 𝑇𝑎 = 𝑀𝑖 , or
between two disjunctive sets of models 𝑆𝑜 ≠ 𝑇𝑎 . Since a
transformation can have multiple models from source and
target side, these sets do not need to be disjunctive 𝑆𝑜 ∩
𝑇𝑎 ≠ ∅, meaning that the transformation can include same
model 𝑀𝑖 on source and target side, or 𝑀𝑖 ∈ 𝑆𝑜 ∧ 𝑀𝑖 ∈ 𝑇𝑎.
A transformation can use the same source and target
artifacts, meaning that 𝑎𝑟𝑆𝑜 ∩ 𝑎𝑟𝑇𝑎 ≠ ∅ when 𝑆𝑜 ∩ 𝑇𝑎 ≠ ∅,
or it can use two disjunctive sets of artifacts 𝑎𝑟𝑆𝑜 ∩ 𝑎𝑟𝑇𝑎 =
∅.

From a pattern point of view, each pattern instance is a
set of model artifacts. This definition is valid for cross model
pattern instances as well. All pattern instances in the
modeling space 𝑀𝑆 form a finite set of pattern instances
𝑀𝑃 = {𝑃𝑖 : 0 < 𝑖 ≤ 𝑚 ∧ 𝑃𝑖 ⊆ 𝑀𝑆} . In this context,
transformation is a function 𝑡𝑟:𝑀𝑃 → 𝑀𝑝 . Such

transformation takes a set of source pattern instances
𝑝𝑆𝑜 ⊆ 𝑀𝑝 , analyses all artifacts in these instances and

translates them into artifacts that form a set of target pattern
instances 𝑝𝑇𝑎 ⊆ 𝑀𝑝 . Figure 5 shows an example of

transformation application to a cross model pattern instance.

Every transformation can be encapsulated in a black box

implementation. Such an approach is used in [7] along with
the QVT specification. However, taking a step back and
observing the QVT specification as one of the transformation
approaches, every transformation can be defined as a black
box having an interface that depends on the context of
transformation usage.

A. Transformation rules

Czarnecki and Helsen [4] are giving important features of
transformation rules. Since a transformation can be
implemented in many different ways, we must observe it in
more abstract and generic way. No matter if we use a
declarative or imperative approach, each transformation is a
set of rules that creates a relationship between a set of source
artifacts and a set of target artifacts. Features and principles
given in [4] can be applied to these transformation rules.

A transformation written in QVT-R [7] has two different
modes: checking mode and enforcement mode. In the
checking mode, transformation rules can be used to validate
correctness and completeness of involved pattern instances.
In the enforcement mode, transformation rules can be used
for creating, updating, or deleting artifacts in target pattern
instances, in order to reflect all the details found in source
pattern instances.

1) Validation of pattern instances and imposing

constraints
When the transformation is applied, execution of the

transformation must perform several different tasks.
As the first step, transformation must validate that

supplied source pattern instances are matching expected
source side of the transformation. A set of mandatory
transformation rules must validate source pattern instances.
If all mandatory transformation rules are satisfied from the
source side then the transformation can be applied to a
supplied source, i.e., the transformation can be applied to the
source pattern instance that contains all artifacts needed by
the mandatory transformation rules.

The second step is the creation of the target pattern
instances. Transformation rules must create all target pattern
instances and their artifacts. Every pattern is characterized by
the mandatory artifacts that define the essence of the pattern,
or what makes this pattern different from other patterns. Not
all artifacts created by the transformation must be considered
for mandatory. Mandatory artifacts in the target pattern
instances are created by the mandatory transformation rules.
However, not all mandatory transformation rules must create
mandatory artifacts in the target pattern instances.

The last step is to create a set of constraints that will
disallow designers to change some of the artifacts in the
involved pattern instances. Transformation binds involved
pattern instances together by imposing constraints on their
artifacts. Each pattern instance can be bound with other
pattern instances through several different transformations.
Constraints are imposed by the mandatory transformation
rules.

Imposed constraints are used to limit designer changes in
the modeling space to prevent:

1. Violating correctness and completeness of the
pattern instances by changing their mandatory
artifacts. Obviously, all mandatory artifacts must be
constrained.

2. Breaking transformation binding by changing
artifacts that are satisfying source and target side of
the mandatory transformation rules. In this case,
constrained artifacts do not need to be mandatory.

If we observe a target pattern instance made of 𝑙 artifacts
𝑃𝑖 = {𝑎1 , 𝑎2 ,… , 𝑎𝑙}, a subset 𝑀𝑃𝑖 ⊆ 𝑃𝑖 is considered for a
set of mandatory artifacts of the pattern instance 𝑃𝑖 . If we
have a finite set of applied transformations 𝑇𝑃𝑖 =
{𝑡𝑟1 , 𝑡𝑟2 ,… , 𝑡𝑟𝑘} having 𝑃𝑖 as an involved pattern instance,
we can derive a mapping function 𝐶:𝑇𝑃𝑖 → 𝑋, where 𝑋 ⊆ 𝑃𝑖
is a set of artifacts in 𝑃𝑖 constrained by a transformation
𝑡𝑟𝑥 ∈ 𝑇𝑃𝑖 . In the context of the previous definition about

Figure 5. Cross model pattern instance and transformation

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 81 / 107

difference between mandatory and constrained artifacts, we
can conclude that 𝑃𝑖 can be in a situation where 𝐶(𝑡𝑟𝑗) ∩
𝐶 𝑡𝑟𝑘 = ∅ ∧ 𝑗 ≠ 𝑘 , and 𝐶(𝑡𝑟𝑗) = 𝑀𝑃𝑖 ∧ 𝐶 𝑡𝑟𝑘 ∩ 𝑀𝑃𝑖 =

∅. Finally, 𝑀𝑃𝑖 ⊆ 𝐶(𝑡𝑟𝑗)
𝑘
𝑗=1 means that not all constrained

artifacts need to be mandatory, but all mandatory artifacts are
constrained since we want to preserve a pattern definition.

Each pattern instance can be a result of several different
pattern instances done earlier in the same project, or it can be
a reason for creating several new pattern instances later in
the same project. Several good examples can be found in [9]:
a facade associated with a web service client can be used as a
mediator between two different subsystems. In this example,
the mediator is the pattern whose instance is bound by two
different transformations.

2) Pattern instance elaboration
A transformation can be used to perform changes on

involved pattern instances. This approach is used when new
pattern instances are created, or existing instances are
updated or deleted. Even when two pattern instances are
bound with a transformation, the source pattern instance can
be elaborated by adding new details and artifacts. A
transformation can be made so that these newly added details
automatically update target pattern instances. Artifacts that
are not constrained by one of the binding transformations are
handled by optional transformation rules responsible for
spreading of elaboration details. Bidirectionality is a very
important transformation aspect described in [7] and [13].
While transformation might constrain changes of some
artifacts in target pattern instances, changes of unconstrained

artifacts in pattern instances across the modeling space are
encouraged. Such changes must be propagated throughout
the modeling space, wherever transformation between
pattern instances allows it. This propagation must be
automatic and seamless.

3) Top-level pattern instances
Top-level pattern instances do not have predecessors.

These pattern instances can be modeled manually by a
designer without using any transformation, or they can be
created by using a transformation. Such transformation does
not need to have input source pattern instances. In order to
give the transformation some instructions, input parameters
can be used. Transformations that create only target pattern
instances can be used both for validation and enforcement
purposes. All transformation rules in this transformation are
mandatory transformation rules that create an initial version
of target pattern instances and impose constraints on them.
However, these constraints must allow elaboration of newly
created top-level pattern instances in order to allow adding
needed details. Functional or non-functional requirements
are typical examples of top-level patterns. An external
service definition is another example of such pattern.

In the example in Figure 6, pattern instance 𝑃1 is made of

CodebookComponent and related interface. All mandatory
artifacts are marked with red color. Artifacts added in the
elaboration of 𝑃1 are marked with brown color. Mandatory
artifacts within 𝑃1 are all we need to declare a component.
Transformation 𝑡𝑟1 mandatory rules are responsible for
translation of mandatory artifacts from 𝑃1 to 𝑃3. The artifact

Figure 6. Example of pattern instance transformation

74Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 82 / 107

created within 𝑃3 is EJB3 facade as realization of
CodebookComponent. Transformation 𝑡𝑟1 also created
relationships between mandatory artifacts of 𝑃3 and 𝑃1
pattern instances. An information system designer
additionally elaborated 𝑃1 and added
ProductCodebookSubcomponent and
ClientCodebookSubcomponent together with related
interfaces. Transformation 𝑡𝑟1 optional rules translated these
subcomponents from 𝑃1 into classes of 𝑃3 and created new
relationships between optional artifacts of 𝑃3 and 𝑃1. 𝑃1 and
𝑃3 are bound with transaction 𝑡𝑟1. It means that mandatory
artifacts of 𝑃3 are constrained by 𝑡𝑟1 and cannot be changed
unless corresponding artifacts in 𝑃1 are changed. Introducing
relationships between 𝑃3 and 𝑃1 , such as interface
realization, simplifies the propagation of interface changes
between these two pattern instances. Propagation of interface
changes is a matter of transformation 𝑡𝑟1!

The information system designer's final decision was to
reuse the existing service to read product data from a product
catalog information system. 𝑃2 is the pattern instance that
represents the product catalog service provider. This pattern
instance can be created by another transformation from
WSDL. Transformation 𝑡𝑟2 is used to translate mandatory
artifacts from 𝑃2 representing the service provider, into the
set of artifacts for 𝑃3 representing the product catalog service
consumer. 𝑃3 must be further elaborated in order to connect
CodebookComponent realization with the product catalog
service consumer.

4) Transformation applicability
As already defined, a transformation takes a set of

modeling space artifacts and translates them into another set
of artifacts. Earlier definition shows that the transformation
can include pattern instances as artifact containers. The size
of a pattern instance can be one artifact, up to a whole model.
A pattern instance can also be a set of artifacts coming from
different models within the modeling space. In order to use
transformation, source side of it must be satisfied. Precisely,
mandatory transformation rules source side must be satisfied
in order for the transformation to be able to create a set of
target artifacts and impose constraints on them. If the
transformation is applied to a set of pattern instances and a
set of source pattern instances satisfies source side of the
mandatory transformation rules, the transformation is
applicable to this set of pattern instances.

Transformation and related transformation rules,
especially if they are written in a declarative programming
language such as QVT-R, are logic programs [14].
Transformation 𝑡𝑟 can be defined as a logic program 𝑃 ,
comprised of mandatory and optional set of rules on source
and target side. Applicability of a transformation can be
derived only from source mandatory rules. If we take a finite

set of the mandatory source rules
𝑀𝑆𝑅 = {𝑚𝑠𝑟1(𝑋),𝑚𝑠𝑟2(𝑋),… ,𝑚𝑠𝑟𝑛 (𝑋)} , where 𝑋 = 𝑝𝑆𝑜
is a set of terms, then the applicability of the transformation
can be expressed as Α(X) ← 𝑚𝑠𝑟1(X) ∧ 𝑚𝑠𝑟2(X) ∧ …∧
𝑚𝑠𝑟𝑛(X). Each mandatory source rule is comprised of atoms
for checking artifacts within a source pattern instance set
𝑚𝑠𝑟𝑖 𝑋 ← 𝑎1 𝑦1 ,𝑋 ∧ 𝑎2 𝑦2 ,𝑋 ∧ …𝑎𝑚 𝑦𝑚 ,𝑋 , where
𝑦𝑖 ∈ 𝑋 . The applicability defined this way can only
determine whether a transformation can be applied to a set of
source pattern instances or not. Another way is to define a
measure of the applicability by expressing percentage of
mandatory transformation rules that are satisfied. A finite set
of satisfied rules is 𝑀𝑆𝑅𝑆 = {𝑟(𝑋) ∈ 𝑀𝑆𝑅: 𝑟(𝑋) = 𝑡𝑟𝑢𝑒} ⊆
𝑀𝑆𝑅 . The measure of the applicability can be defined as
𝐴𝑚 = 𝑀𝑆𝑅𝑆 𝑀𝑆𝑅 ∗ 100 , or percentage of satisfied
mandatory source transformation rules. This measure can
help a designer to see which transformations in the modeling
library are close to being applicable and what are the
differences. Consulting the measure of the transformation
applicability is one aspect of the design guidance.

Validation of involved pattern instances is a similar
concept to the applicability of the transformation, but it must
involve both source and target pattern instances.

V. TRANSFORMATION AND TRACING LANGUAGE

Relationship between model artifacts and a pattern
instance is not established within the UML. Although there
is the Package element defined within the UML, its purpose
is not the same as "pattern instance" defined earlier in this
article. Also, application of transformation and imposing
constraints on target pattern instances must leave some trail.
Creation of a Transformation and Tracing Model (TTM),
automatically or manually, can help to resolve before
mentioned issues. Every time a new pattern instance is
created, new artifact is added into TTM representing this
pattern instance. All model artifacts belonging to this pattern
instance are automatically bound to it. It can be the result of
the transformation, or it can be done manually meaning that
a modeling tool must have capabilities for it. Also, each time
when a transformation is used, this transformation is added
to TTM including all relationships between pattern instances
and used transformation. Each time a transformation is used,
and this transformation is imposing constraints on involved
pattern instances, these constraints are added to pattern
instances in TTM and bound to the transformation that
created them, since these constraints are the result of the
transformation. In order to do this modeling, a
Transformation and Tracing Language (TTL) must be
defined. The UML and the TTL must be compatible,
meaning that they must have a common M0 ancestor [13].
Therefore, the TTL must be a MOF metamodel. An
overview of the TTL is presented in Figure 7.

75Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 83 / 107

The TTL is having the following elements:

 Pattern - A pattern type. Allows classification of
pattern instances.

 PatternInstance - An element similar to the UML
Package element. Represents a container for model
artifacts. This element is defined by its name and
type. Pattern type (or class) can be very helpful when
constructing transformation rules and it can impact
the transformation applicability since
transformations can be applied to the pattern
instances of specific types.

 Transformation - An element defined by its name
and type, representing applied transformation. It
contains transformation rules used in the
transformation. The transformation must be
connected to a set of source and target pattern
instances, being connected to at least one target
pattern instance. Connector direction is determined
by the TransformationConnectorType enumeration.

 TransformationConnector,
TransformationConnectorEnd,
PatternConnectorEnd - A connector is a directed
relationship between a pattern instance and a
transformation. Connector direction must have a
visual notation. If the connector is directed from the
pattern instance to the transformation, it represents
the source pattern instance in the context of the
transformation. If the connector is directed from the
transformation to the pattern instance, it represents
the target pattern instance in the context of the
transformation. Connector end elements represent
the point of touch between the connector and the
pattern instance, or the connector and the
transformation.

 TransformationConstraint - An element defined by
its name, representing a constraint on members of a
pattern instance imposed by used transformation.
This element is contained by the pattern instance and
connected to the transformation responsible for the
creation of the constraint. This element is the result
of the transformation and can be used to validate the
pattern instance correctness and completeness.

 TransformationConstraintConnector - A relationship
between resulting constraint and the transformation
that created it, directed from the transformation to
the constraint. Each constraint can be imposed by
only one transformation, but one transformation can
impose multiple constraints within multiple pattern
instances.

In the TTM example in Figure 8, brown artifacts were

created before 𝑡𝑟1 was applied. We can say that pattern
instances 𝑝1 and 𝑝2 were designed manually. Green artifacts
are produced by the transformation 𝑡𝑟1 . Actions taken
during an information system design are automatically stored
in a TTM for multiple purposes: preserving correctness and
completeness of the modeling space, reconstruction of
activities in the design process, and analysis of the resulting
design work.

VI. GUIDANCE

So far, this article gave only insights into elements
needed to establish the method for situational information
system design guidance. How to explain designers what is
preferred designing practice and how an information system
design should look alike? Many companies have well
established design practices, from methodology, project
activities and modeling point of view. Selection of
architectures, technology and practical experience gives a

Figure 7. TTL definition

76Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 84 / 107

company starting point. The method proposed in this article
simply takes this experience and allows the company to
document their design practices within a modeling tool.

A. Guidance given through a modeling library

We already mentioned that a modeling library is
comprised of patterns and transformations. Since
transformation binds two patterns instances together (as
described in the section III), selection of a transformation
imposes a selection of involved patterns. Similarly, selection
of patterns imposes a selection of potentially applicable
transformations.

Applicability and measure of applicability are important
transformation features that can be used to give guidance. A
designer can elaborate a model or pattern instance and
occasionally check for transformations that are applicable to
the model or pattern instance he is working on. If there is no
transformation currently applicable, the designer can check
transformations that are nearly applicable and the gap that
needs to be closed in the model or pattern instance in order
for this nearly applicable transformation to become
applicable. Of course, many designers have enough
experience to know which transformation would need to be
used next even before modeling of the pattern instance is
finished. If there is a problem with selected transformation,
and rules in the transformation are not correct, meaning that
the transformation will never become applicable, this
particular transformation can be changed as part of
company's design practice evolution.

As already stated before, some transformations can be
used exclusively to create new top-level pattern instances.
Such transformations are used to create mandatory and
optional artifacts in the target pattern instances. Optional
artifacts initially created in the target pattern instance can
fulfill requirements for the next transformation to become

applicable. Further elaboration of this pattern instance can
add needed details. It means that applying a transformation
can result in a chain of transformations and creation of new
pattern instances if a modeling tool is permitted to execute
applicable transformations automatically.

Another way is a selection of transformations from the
modeling library used in the project. A design lead can
manage a set of allowed transformations for his project,
limiting designer's choice of applicable or nearly applicable
transformations. For example, the architectural decision to
use JAX-WS web services will influence the choice of
transformations for the project. Similarly, the design lead can
manage a set of allowed patterns implicitly by imposing a set
of allowed transformations.

B. Guidance given through a model

More specific guidance can be given through a specific
model that predetermines patterns and transformations used
in an information system design process. Such model is
created a priori, before the start of the design activities.
Creation of the guidance model is an ongoing activity
through the whole project. The TTL can be used for this
purpose. This model must represent a selection of allowed
pattern types and related transformations. Such model can be
used by the designer to check guidance, or directly by a
modeling tool for selection of allowed transformation list for
particular pattern type. It is the same approach as in the
previous Section, with additional visualization of selected
design practice for the ongoing project.

VII. CONCLUSION AND FUTURE WORK

MDA is having two major practical problems: designers
have too much freedom while creating information system
design models and transformation scope can be very

Figure 8. TTM example

77Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 85 / 107

ambiguous. Usage of a pattern as the main building block for
an information system design is a well known approach. In
the context of this article, design of an information system is
done block by block, allowing the design lead to choose
blocks to be used. Such approach allows the design team to
use past positive experience to select or define best patterns
for the information system they are designing. Another very
important element of this method is the usage of
transformations to create pattern instances. Transformations
must be perceived as the behavioral part of the method.
Applicability and measure of the applicability are very
important features of the transformation given in this article.
They enable controlled application of transformations, which
represents guidance for the design team.

Of course, designers are still free to model according to
their preferences, as long as they are within boundaries
imposed by the proposed method, which is assured by an
optional part of each transformation helping team to keep
artifacts of bound pattern instances synchronized.
Bidirectionality feature of the transformation helps to reflect
changes in both directions. Chain of pattern instances can be
easily updated through transformations used to form the
chain. Since a pattern instance is supposed to have
significantly smaller scope than a model, keeping several
pattern instances synchronized during elaboration should be
much easier than with big models.

Current modeling tools are introducing a high level of
automation. This automation is mostly related to elements of
the modeling languages supported by a modeling tool.
Changing the modeling tool behavior to follow the model in
a modeling space is needed feature.

This article is giving only the main idea that can be
significantly improved and extended. There are still
opportunities for improvement of the mapping between
proposed method and methodologies. Also, the TTL defined
in this article can be extended with elements for interaction
with modeling tool, model analysis capabilities and model
quality assessment. Interaction between a TMM and a
modeling tool can be extended with modeling events,
allowing a design lead to define modeling tool actions
associated with patterns and transformations. For example, a
TTM can include an event handler on a pattern that can be
triggered by the modeling tool when a new subcomponent is
added into a pattern instance. The event handler initiates
execution of a specific transformation that automatically
adds interface and interface realization relationship for this
newly added subcomponent.

REFERENCES

[1] OMG, MDA. "Guide, Version 1.0.1, 2003." Object Management

Group.

[2] F. Chitforoush, M. Yazdandoost, and R. Ramsin, "Methodology
support for the model driven architecture." Proceedings of the 14th
Asia-Pacific Software Engineering Conference, IEEE, Dec. 2007, pp.
454-461, doi: 10.1109/ASPEC.2007.58.

[3] I. Jacobson, G. Booch, and J. E. Rumbaugh, "The unified software
development process-the complete guide to the unified process from
the original designers." Addison-Wesley, 1999.

[4] K. Czarnecki and S. Helsen, "Classification of model transformation
approaches." Proceedings of the 2nd OOPSLA Workshop on
Generative Techniques in the Context of the Model Driven
Architecture, vol. 45, no. 3, Oct. 2003, pp. 1-17.

[5] OMG, "Core Specification, Version 2.4.1, 2011." Object
Management Group.

[6] L. Grunske, L. Geiger, A. Zündorf, N. Van Eetvelde, P. Van Gorp,
and D. Varro, "Using graph transformation for practical model-driven
software engineering." Model-driven Software Development,
Springer Berlin Heidelberg, 2005, pp. 91-117, doi: 10.1007/3-540-
28554-7_5.

[7] OMG, "Meta Object Facility (MOF) 2.0 Query/View/Transformation
(QVT), Version 1.1, 2011." Object Management Group.

[8] C. F. J. Lange and M. R. V. Chaudron, "Managing model quality in
UML-based software development." 13th IEEE International
Workshop on Software Technology and Engineering Practice, IEEE,
Sep. 2005, pp. 7-16, doi: 10.1109/STEP.2005.16.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, "Design patterns:
Elements of reusable object-oriented software." Addison-Wesley,
28th edition, 2004.

[10] G. Hohpe and B. Woolf, "Enterprise Integration Patterns." Addison
Wesley, 2004.

[11] M. Gupta, R. Singh Rao, and A. Kumar Tripathi, "Design pattern
detection using inexact graph matching." 2010 International
Conference on Communication and Computational Intelligence,
IEEE, Dec. 2010, pp. 211-217.

[12] P. Kroll and P. Kruchten, "The rational unified process made easy: a
practitioner's guide to the RUP." Addison-Wesley, 2003.

[13] A. G. Kleppe, J. B. Warmer, and W. Bast, "MDA explained, the
model driven architecture: Practice and promise." Addison-Wesley,
2003.

[14] A. Van Gelder, K. A. Ross, and J. S. Schlipf, "The well-founded
semantics for general logic programs." Journal of the ACM (JACM),
ACM, vol. 38, no. 3, Jul. 1991, pp. 619-649, doi:
10.1145/116825.116838.

[15] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N.
Nguyen, "Complete and accurate clone detection in graph-based
models." Proceedings of the 31st International Conference on
Software Engineering, IEEE, May 2009, pp. 276-286, doi:
10.1109/ICSE.2009.5070528.

78Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 86 / 107

An Analytic Evaluation of the SaCS Pattern
Language – Including Explanations of Major Design

Choices

André Alexandersen Hauge
Institute for energy technology, Halden, Norway

University of Oslo, Norway
andre.hauge@hrp.no

Ketil Stølen
SINTEF ICT, Oslo, Norway
University of Oslo, Norway

ketil.stolen@sintef.no

Abstract—In this paper, we present an analytic evaluation of the
Safe Control Systems (SaCS) pattern language for the develop-
ment of conceptual safety designs. By a conceptual safety design
we mean an early stage specification of system requirements,
system design, and safety case for a safety critical system. The
SaCS pattern language may express basic patterns on different
aspects of relevance for conceptual safety designs. SaCS may
also be used to combine basic patterns into composite patterns.
A composite pattern may be instantiated into a conceptual safety
design. A framework for evaluating modelling languages is used
to conduct the evaluation. The quality of a language is within
the framework expressed by six appropriateness factors. A set
of requirements is associated with each appropriateness factor.
The extent to which these requirements are fulfilled are used to
judge the quality. We discuss the fulfilment of the requirements
formulated for the SaCS language on the basis of the theoretical,
technical, and practical considerations that were taken into
account and shaped the SaCS language.

Keywords–pattern language, analytic evaluation, design concep-
tualisation, safety.

I. INTRODUCTION

A pattern describes a particular recurring problem that
arises in a specific context and presents a well-proven generic
scheme for its solution [1]. A pattern language is a language for
specifying patterns making use of patterns from a vocabulary
of existing patterns and defined rules for combining these
[2]. A safety critical system [3] is a system “whose failure
could result in loss of life, significant property damage, or
damage to the environment”. With a conceptual safety design
we mean an early stage specification of system requirements,
system design, and safety case for a safety critical system.
The Safe Control Systems (SaCS) pattern language has been
designed to facilitate the specification of patterns to support the
development of conceptual safety designs. The intended users
of SaCS are system engineers, safety engineers, hardware and
software engineers.

This paper conducts an analytic evaluation of the suit-
ability of the SaCS pattern language for its intended task.
A framework for analysing languages known as the semiotic
quality framework (SEQUAL) [4] is used as a basis for the
evaluation. The appropriateness of a language for its intended
task is in the framework characterised by six appropriateness
factors [4]: domain, modeller, participant, comprehensibility,

tool, and organisational. A set of requirements is presented
for each appropriateness factor in order to characterise more
precisely what is expected from our language in order to be
appropriate. The requirements represent the criteria for judging
what is appropriate of a language for conceptual safety design,
independent of SaCS being appropriate or not. We motivate
our choices and discuss to what extent the requirements are
fulfilled.

The remainder of this article is structured as follows:
Section II provides a short introduction to the SaCS pattern
language. Section III discusses evaluation approaches and
motivates the selection of SEQUAL. Section IV motivates the
selection of requirements and conducts an evaluation of the
SaCS language with respect to these requirements for each
appropriateness factor. Section V presents related work on
pattern-based development. Section VI draws the conclusions.

II. BACKGROUND ON THE SACS PATTERN LANGUAGE

Fig. 1 defines a composite pattern according to the syntax
of SaCS [5]. The composite described in Fig. 1 is named Safety
Requirements and consists of the basic patterns Hazard Anal-
ysis, Risk Analysis, and Establish System Safety Requirements.
The basic patterns are specified separately in a structured
manner comparable to what can be found in the literature
[1][2][6][7][8][9][10][11] on patterns.

In Fig. 1, the horizontal line separates the declaration part
of the composite pattern from its content. The icon placed
below the identifier Safety Requirements signals that this is
a composite pattern. Every pattern in SaCS is parametrised.
An input parameter represents the information expected to be
provided when applying a pattern in a context. An output
parameter represents the expected outcome of applying a
pattern in a given context. The inputs to Safety Requirements
are listed inside square brackets to the left of the icon, i.e., ToA
and Haz. The arrow pointing towards the brackets symbolises
input. The output of the pattern is also listed inside square
brackets, but on the right-hand side of the icon, i.e., Req. The
arrow pointing away from the brackets symbolises output. An
icon placed adjacent to a parameter identifier denotes its type.
The parameters ToA, Haz, HzLg, and Risks in Fig. 1 are of type
documentation, while Req is of type requirement. The inputs
and outputs of a composite are always publicly accessible.

79Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 87 / 107

[Risks][HzLg] [Req]

[ToA]

Establish)
System)Safety)
Requirements

Hazard)
Analysis

[ToA,1Haz]

Risk)
Analysis

[Risks][Haz]

[ToA]

Safety
Requirements

[1ToA,1Haz1] [1Req1]

Safety'Requirements'
Specifica3on

System'and'Context'
Descrip3on

System'Hazards
Descrip3on

Hazard'Log Risk'Assessment

Figure 1. A composite pattern named Safety Requirements

A particular instantiation of a parameter is documented
by a relation that connects a parameter with its associated
development artefact. In Fig. 1, a grey icon placed adjacent
to an identifier of a development artefact classifies what kind
of artefact that is referenced. A dotted drawn line connecting a
parameter with an artefact represents an instantiates relation.
Instantiations of parameters expressed in Fig. 1 are:

• the document artefact System and Context Description
instantiates ToA.

• the document artefact System Hazards Description
instantiates Haz.

• the requirement artefact Safety Requirements Specifi-
cation instantiates Req.

• the document artefact Hazard Log instantiates HzLg.

• the document artefact Risk Assessment instantiates
Risks.

A one-to-many relationship exists between inputs in the
declaration part of a composite and similarly named inputs
with public accessibility (those pointed at by fat arrows) in
the content part. The relationship is such that when ToA
of Safety Requirements is instantiated (i.e., given its value
by the defined relation to System and Context Description)
then every correspondingly named input parameter contained
in the composite is also similarly instantiated. A one-to-
one relationship exists between an output parameter in the
declaration part of a composite and a correspondingly named
output parameter with public accessibility (those followed by
a fat arrow) in the content part. The relationship is such that
when Req of Establish System Safety Requirements is produced
then Req of Safety Requirements is similarly produced.

The arrows (thin arrows) connecting basic patterns in the
content part of Safety Requirements represent two instances of
an operator known as the assigns relation. The assigns relations
within Safety Requirements express that:

• The output HzLg of the pattern Hazard Analysis is
assigned to the input Haz of the pattern Risk Analysis.

• The output Risks of the pattern Risk Analysis is
assigned to the input Risks of the pattern Establish
System Safety Requirements.

That the three basic patterns are process patterns follows
from the icon below their respective identifiers. There are six
different kinds of basic patterns in SaCS, each represented by
a specific icon.

III. EVALUATION FRAMEWORK

Mendling et al. [12] describe two dominant approaches
in the literature for evaluating the quality of modelling ap-
proaches: (1) top-down quality frameworks; (2) bottom-up
metrics that relate to quality aspects. The most prominent
top-down quality framework according to [12] is SEQUAL
[4][13][14]. The framework is based on semiotic theory (the
theory of signs) and is developed for evaluating the quality
of conceptual models and languages of all kinds. Moody et
al. [15] report on an empiric study involving 194 participants
on the use of SEQUAL and concludes that the study provides
strong support for the validity of the framework. Becker et
al. [16] present a guideline-based approach as an alternative
to SEQUAL. It addresses the six factors: correctness, clarity,
relevance, comparability, economic efficiency, and systematic
design. Mendling et al. [12] also discuss a number of bottom-
up metrics approaches. Several of these contributions are
theoretic without empirical validation according to the authors.

We have chosen to apply the SEQUAL framework for our
evaluation as it is a general framework applicable to different
kinds of languages [4] whose usefulness has been confirmed in
experiments [15]. Furthermore, an analytic evaluation is pre-
ferred over a metric-based approach due to project limitations.
An analytic evaluation is also a suitable complement to the
experience-based evaluations of SaCS presented in [17][18].

The appropriateness of a modelling language for a specific
task is in SEQUAL related to the definition of the following
sets: the set of goals G for the modelling task; its domain D in
the form of the set of all statements that can be stated about the
situation at hand; the relevant knowledge of the modeller Km
and other participants Ks involved in the modelling task; what
persons involved interpret the models to say I; the language L
in the form of the set of all statements that can be expressed
in the language; relevant tool interpretation T of the models;
and what is expressed in the models M.

Fig. 2 is adopted from [13] and illustrates the relationships
between the different sets in SEQUAL. The quality of a
language L is expressed by six appropriateness factors. The
quality of a model M is expressed by nine quality aspects.

In the following, we will not address the different quality
aspects of a model M but rather address the quality of the
SaCS pattern language.

The appropriateness factors indicated in Fig. 2 are related
to different properties of the language under evaluation. The
appropriateness factors are [4]:

• Domain appropriateness: the language should be able
to represent all concepts in the domain.

80Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 88 / 107

Technical actor
interpretation

T

Model
externalization

M

Modeling
domain

D

Language
extension

L

Modeling
goal
G

Sosial actor´s
interpretation

I
Sosial actor´s
explicit
knowledge
 Ks

Modellers´s
explicit

knowledge
Km

Technical)
quality Seman0c)

quality Syntac0c)
quality

Social)
pragma0c)

quality

Physical)
quality

Organisa0onal)
quality

Perceived
seman0c)
quality

Sosial)
quality

Domain)
appropriateness

Tool)appropriateness)

Organisa0onal)appropriateness

Modeller)appropriateness

Par0cipant))appropriateness

Comprehensibility)appropriateness

Empirical)quality

Figure 2. The quality framework (adopted from [19])

• Modeller appropriateness: there should be no state-
ments in the explicit knowledge of the modeller that
cannot be expressed in the language.

• Participant appropriateness: the conceptual basis
should correspond as much as possible to the way
individuals who partake in modelling perceive reality.

• Comprehensibility appropriateness: participants in the
modelling should be able to understand all the possible
statements of the language.

• Tool appropriateness: the language should have a
syntax and semantics that a computerised tool can
understand.

• Organisational appropriateness: the language should
be usable within the organisation it targets such that
it fits with the work processes and the modelling
required to be performed.

A set of requirements is associated with each appropriate-
ness factor. The extent to which the requirements are fulfilled
are used to judge the quality of the SaCS pattern language for
its intended task. The requirements are defined on the basis of
requirements found in the literature on SEQUAL [4].

IV. THE EVALUATION

A necessary step in the application of SEQUAL [4][13]
is to adapt the evaluation to account for the modelling needs.
This amounts to expressing what the different appropriateness
factors of the framework represent in the particular context of
the evaluation in question. In particular, the modelling needs
are detailed by the definition of a set of criteria for each of
the appropriateness factors.

Table I introduces the criteria for evaluating the suitability
of the SaCS pattern language for its intended task. In the
first column of Table I, the two letters of each requirement
identifier identify the appropriateness factor addressed by the
requirement, e.g., DA for Domain Appropriateness.

TABLE I. OVERVIEW OF EVALUATION CRITERIA

ID Requirement
DA.1 The language must include the concepts representing best practices within

conceptual safety design.
DA.2 The language must support the application of best practices within concep-

tual safety design.
MA.1 The language must facilitate tacit knowledge externalisation within concep-

tual safety design.
MA.2 The language must support the modelling needs within conceptual safety

design.
PA.1 The terms used for concepts in the language must be the same terms used

within safety engineering.
PA.2 The symbols used to illustrate the meaning of concepts in the language

must reflect these meanings.
PA.3 The language must be understandable for people familiar with safety

engineering without specific training.
CA.1 The concepts and symbols of the language should differ to the extent they

are different.
CA.2 It must be possible to group related statements in the language in a natural

manner.
CA.3 It must be possible to reduce model complexity with the language.
CA.4 The symbols of the language should be as simple as possible with

appropriate use of colour and emphasis.
TA.1 The language must have a precise syntax.
TA.2 The language must have a precise semantics.
OA.1 The language must be able to express the desired conceptual safety design

when applied in a safety context.
OA.2 The language must ease the comprehensibility of best practices within

conceptual safety design for relevant target groups like system engineers,
safety engineers, hardware and software engineers.

OA.3 The language must be usable without the need of costly tools.

The different appropriateness factors are addressed succes-
sively in Section IV-A to Section IV-F according to the order
in Table I. Each requirement from Table I is discussed. A
requirement identifier is presented in a bold font when first
introduced in the text followed by the associated requirement
and an evaluation of the extent to which the requirement is
fulfilled by SaCS.

A. Domain appropriateness

DA.1 The language must include the concepts representing
best practices within conceptual safety design.

In the SaCS language, there are currently 26 basic patterns
[17][18] on different concepts within conceptual safety design.

81Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 89 / 107

Each pattern may be referenced by its unique name. Three of
the currently available basic patterns are referenced in Fig. 1
and are named Hazard Analysis, Risk Analysis and Establish
System Safety Requirements.

Fig. 3 presents the icons used for basic SaCS patterns and
indicates a categorisation. The three icons to the left are used
for categorising patterns providing development guidance with
a strong processual focus. The three icons to the right are used
for categorising patterns providing development guidance with
a strong product focus. Different kinds of patterns express dif-
ferent concepts and best practices within development of safety
critical systems. The combined use of patterns from different
categories facilitates development of conceptual safety designs.

Process'Assurance
Requirement'Pa1ern'Reference'

Process'Assurance
Solu5on'Pa1ern'Reference

Process'Assurance
Safety'Case'Pa1ern'Reference

Product'Assurance
Requirement'Pa1ern'Reference

Product'Assurance
Solu5on'Pa1ern'Reference

Product'Assurance
Safety'Case'Pa1ern'Reference

Figure 3. Icons for the different kinds of basic pattern references

Habli and Kelly [20] describe the two dominant approaches
in safety standards for providing assurance of safety objectives
being met. These are: (1) the process-based approach; (2) the
product-based approach. Within the process-based approach,
safety assurance is achieved on the basis of evidence from
the application of recommended or mandatory development
practices in the development life cycle. Within the product-
based approach, safety assurance is achieved on the basis
of product specific evidences that meet safety requirements
derived from hazard analysis. The practice within safety stan-
dards as described above motivate our categorisation into the
process assurance and the product assurance pattern groups.

The safety property of a system is addressed on the basis
of a demonstration of the fulfilment of safety objectives. Seven
nuclear regulators [21] define a safety demonstration as “a set
of arguments and evidence elements that support a selected
set of dependability claims - in particular the safety - of the
operation of a system important to safety used in a given plant
environment”. Although it is the end system that is put into
operation, evidences supporting safety claims are produced
throughout the system life cycle and need to be systematically
gathered from the very beginning of a development project
[21]. The safety case approach represents a means for explicitly
presenting the structure of claims, arguments, and evidences
in a manner that facilitates evaluation of the rationale and
basis for claiming that safety objectives are met. The safety
case approach is supported by several authors [10][20][21][22].
What is described above motivates the need for patterns
supporting safety case specification in addition to patterns on
requirements elicitation and system design specification.

As indicated above, in the design of the SaCS pattern
language we have as much as possible selected keywords and
icons in the spirit of leading literature within the area. This
indicates that we at least are able to represent a significant
part of the concepts of relevance for conceptual safety design.

DA.2 The language must support the application of best
practices within conceptual safety design.

Safety standards [23] may demand a number of activities
to be performed in which certain activities must be applied in a
specific sequence. Safety standards [23] may also describe the
expected inputs and outputs of different activities and in this
sense state what is the expected content of deliverables that
allows a transition from one activity to the next. According
to Krogstie [4], the main phenomena in languages that ac-
commodate a behavioural modelling perspective are states and
transitions between states. In this sense, the language should
support the modelling of the application of best practices
according to a behavioural modelling perspective.

Fig. 4 presents the icons for the different kinds of pa-
rameters and artefact references in SaCS. The documentation
parameter and the documentation artefact reference types
(represented visually by the icons presented in Fig. 4) are
defined in order to allow a generic classification of parameters
and artefacts that may not be classified as requirement, design,
or safety case. An example may be the result of risk analysis
that is an intermediate result in conceptual safety design and an
input to an activity on the specification of safety requirements
[23][24]. The process of deriving safety requirements on the
basis of an assessment of hazards is expressed by a chain of
patterns as presented in Fig. 1. The outcome of applying the
last pattern in the chain is a requirements specification. The
last pattern cannot be applied before the required inputs are
produced.

Documenta*on+Artefact+Reference

Design+Artefact+Reference

Safety+Case+Artefact+Reference

Requirement+Artefact+Reference

Documenta*on+Parameter

Requirement+Parameter

Design+Parameter

Safety+Case+Parameter

Figure 4. Icons for the different kinds of parameters and artefact references

Fig. 5 presents the symbolic representation of the different
relations in SaCS. Relations define transitions between patterns
or dependencies between elements within a composite pattern
definition. The reports [17][18] define the concepts behind the
different relations and exemplify the practical use of all the
concepts in different scenarios. Fig. 1 is explained in Section
II and exemplify a composite pattern containing five instances
of the instantiates relation and two instances of the assigns
relation.

assigns

combines

details

sa.sfies

demonstrates

instan.ates

Figure 5. Symbols for the different kinds of relations

The need for the different relations presented in Fig. 5
is motivated by the practices described in different standards
and guidelines, e.g., IEC 61508 [23], where activities like
hazard identification and hazard analysis are required to be
performed sequentially and where the output of one activity
is assigned as input to another activity. Thus, we need a
concept of assignment. In SaCS, this is defined by an assigns

82Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 90 / 107

relation between patterns. When performing an activity like
hazard analysis, the results from the application of a number
of methods may be combined and used as input. Two widely
known methods captured in two different basic SaCS patterns
are Failure Modes and Effects Analysis (FMEA) and Fault
Tree Analysis (FTA). A concept for combining results is
needed in order to model that the results from applying
several patterns as FMEA and FTA are combined into a union
consisting of every individual result. In SaCS, this is defined
by a combines relation between patterns. A details relation
is used to express that the result of applying one pattern
is further detailed by the application of a second pattern.
Functional safety is an important concept in IEC 61508 [23].
Functional safety is a part of the overall safety that depends
on a system or equipment operating correctly in response to
its inputs. Furthermore, functional safety is achieved when
every specified safety function is carried out and the level
of performance required of each safety function is met. A
satisfies relation between a pattern for requirements elicitation
and a pattern for system design expresses that the derived
system satisfies the derived requirements. Safety case patterns
supports documenting the safety argument. A demonstrates
relation between a safety case pattern and a design pattern
expresses that the derived safety argument represents a safety
demonstration for the derived system.

Fig. 6 and Fig. 7 illustrate how the intended instantiation
order of patterns may be visualised. The direction of the arrow
indicates the pattern instantiation order; patterns (or more
precisely the patterns referred to graphically) placed closer to
the starting point of the arrow are instantiated prior to patterns
placed close to the tip of the arrow. Patterns may be instantiated
in parallel and thus have no specific order; this is visualised
by placing pattern references on separate arrows.

A B

Figure 6. Serial instantiation

B

A

Figure 7. Parallel instantiation

As argued above, the SaCS language facilitates the ap-
plication of best practices within safety design and mirrors
leading international standards within the area; in particular
IEC 61508. We therefore think it is fair to say that the language
to a large extent fulfils DA.2.

B. Modeller appropriateness

MA.1 The language must facilitate tacit knowledge exter-
nalisation within conceptual safety design.

As already mentioned, the current version of the language
contains 26 basic patterns. The basic patterns are documented
in [17] and [18]. The patterns are defined on the basis of

safety engineering best practices as defined in international
standards and guidelines [21][23][24][25][26][27] and other
sources on safety engineering. The limited number of basic
patterns currently available delimit what can be modelled in a
composite pattern. Defining more basic patterns will provide a
better coverage of the tacit knowledge that can be externalised.
A user may easily extend the language. A basic pattern, e.g.,
the pattern Hazard Analysis [17] referenced in Fig. 1, is defined
in a simple structure of named sections containing text and
illustrations according to a common format. The format is
thoroughly detailed in [5].

Table II compares the overall format of basic SaCS patterns
to pattern formats in the literature. We have chosen a format
that resembles that of Alexander et al. [2] with the addition
of the sections “Pattern signature”, “Intent”, “Applicability”,
and “Instantiation rule”. The signature, intent, and applicability
sections of basic patterns are documented in such a manner
that the context section provided in [2] is not needed. The
format in [2] is a suitable basis as it is simple, well-known, and
generally applicable for specifying patterns of different kinds.
The format provided by Gamma et al. [8] is also simple and
well-known, but tailored specifically for capturing patterns for
software design.

All in all, we admit that there may be relevant tacit
knowledge that is not easily externalised as the SaCS language
is today. However, the opportunity of increasing the number
of basic patterns makes it possible to at least reduce the gap.

MA.2 The language must support the modelling needs
within conceptual safety design.

IEC 61508 [23] is defined to be applicable across all in-
dustrial domains developing safety-related systems. As already
mentioned, a key concept within IEC 61508 is functional
safety. Functional safety is achieved according to [23] by
adopting a broad range of principles, techniques and measures.

A key concept within SaCS is that principles, techniques,
methods, activities, and technical solutions of different kinds
are defined within the format of basic patterns. A limited
number of concerns are addressed by each basic pattern. A

TABLE II. PATTERN FORMATS IN THE LITERATURE
COMPARED TO BASIC SACS PATTERNS [5]

[6] [2] [8] [9] [10] [28] [29] [30] [5]
Name 3 3 3 3 3 3 3 3 3
Also known as 3 3
Pattern signature 3
Intent 3 3 3
Motivation 3 3
Applicability 3 3 3
Purpose 3
Context 3 3 3 3
Problem 3 3 3 3 3 3
Forces 3 3
Solution 3 3 3 3 3 3 3
Structure 3 3
Participants 3 3
Collaborations 3 3
Consequences 3 3
Implementation 3 3
Sample code 3
Example 3
Compare 3
Instantiation rule 3
Related patterns 3 3 3 3 3 3
Known uses 3 3 3 3 3

83Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 91 / 107

specific combination of patterns is defined within a compos-
ite pattern. A composite pattern is intended to address the
overall challenges that appear in a given development context.
Individual patterns within a composite only address a subset
of the challenges that need to be solved in the context. A
composite may be defined prior to work initiation in order to
define a plan for the application of patterns. Another use may
be to refine a composite throughout the work process. This is
exemplified in [17] and [18]. A composite may also be defined
once patterns have been applied in order to document the
work process. A composite representing a plan may be easily
reused for documentation purposes by adding information on
the instantiation of parameters.

C. Participants appropriateness

PA.1 The terms used for concepts in the language must be
the same terms used within safety engineering.

Activities such as hazard identification and hazard analysis
[26], methods such as fault tree analysis [31] and failure
mode effects analysis [32], system design solutions including
redundant modules and voting mechanisms [33], and prac-
tices like arguing safety on the basis of arguing that safety
requirements are satisfied [21], are all well known safety
engineering practices that may be found in different standards
and guidelines [23][24][27]. The different concepts mentioned
above are all reflected in basic SaCS patterns. Moreover,
as already pointed out, keywords such as process assurance,
product assurance, requirement, solution, safety case, etc. have
all been selected based on leading terminology within safety
engineering.

PA.2 The symbols used to illustrate the meaning of con-
cepts in the language must reflect these meanings.

One commonly cited and influential article within psychol-
ogy is that of Miller [34], on the limit of human capacity to
process information. The limit, according to Miller, is seven
plus or minus two elements. When the number of elements
increases past seven, the mind may be confused in correctly
interpreting the information. Thus, the number of symbols
should be kept low in order to facilitate effective human
information processing.

Lidwell et al. [35] describe iconic representation as “the
use of pictorial images to make actions, objects, and concepts
in a display easier to find, recognize, learn, and remember”.
The authors describe four forms for representation of informa-
tion with icons: similar, example, symbolic, and arbitrary. We
have primarily applied the symbolic form to identify a concept
at a higher level of abstraction than what may be achieved
with the similar and example forms. We have also tried to
avoid the arbitrary form where there is little or no relationship
between a concept and its associated icon. Fig. 3, Fig. 4, Fig.
5, and Fig. 6 present the main icons in SaCS. In order to
allow a flexible use of icons and keep the number of icons
low, we have chosen to not define a dedicated icon for each
concept but rather define icons that categorises several related
concepts. A relatively small number of icons was designed in a
uniform manner in order to capture intuitive representations of
related concepts. As an example, the referenced basic patterns
in Fig. 1 have the same icons linking them by category, but
unique identifiers separating them by name.

PA.3 The language must be understandable for people
familiar with safety engineering without specific training.

The SaCS language is simple in the sense that a small set
of icons and symbols are used for modelling the application of
patterns, basically: pattern references as in Fig. 3, parameters
and artefact references as in Fig. 4, relations as in Fig. 5, and
instantiation order as in Fig. 6. Guidance to the understanding
of the language is provided in [5], where the syntax and the
semantics of SaCS patterns are described in detail. The SaCS
language comes with a structured semantics [5] that offers
a schematic mapping from syntactical elements into text in
English. Guidance to the application of SaCS is provided by
the examples detailed in [17][18]. Although we have not tested
SaCS on people unfamiliar with the language, we expect that
users familiar with safety engineering may comprehend the
concepts and the modelling on the basis of [5][17][18] within
2-3 working days.

D. Comprehensibility appropriateness

CA.1 The concepts and symbols of the language should
differ to the extent they are different.

The purpose of the graphical notation is to represent a
structure of patterns in a manner that is intuitive, compre-
hensible, and that allows efficient visual perception. The key
activities performed by a reader in order to draw conclusion
from a diagram are according to Larkin and Simon [36]:
searching and recognising relevant information.

Lidwell et al. [35] present 125 patterns of good design
based on theory and empirical research on visualisation. The
patterns describe principles of designing visual information for
effective human perception. The patterns are defined on the ba-
sis of extensive research on human cognitive processes. Some
of the patterns are commonly known as Gestalt principles of
perception. Ellis [37] provides an extensive overview of the
Gestalt principles of perception building upon classic work
from Wertheimer [38] and others. Gestalt principles capture
the tendency of the human mind to naturally perceive whole
objects on the basis of object groups and parts.

One of several Gestalt principles applied in the SaCS
language is the principle of similarity. According to Lidwell
et al. [35], the principle of similarity is such that similar
elements are perceived to be more related than elements that
are dissimilar.

The use of the similarity principle is illustrated by the
composite pattern in Fig. 1. Although each referenced pattern
has a unique name, their identical icons indicate relatedness.
Different kinds of patterns are symbolised by the icons in
Fig. 3. The icons are of the same size with some aspects of
similarity and some aspects of dissimilarity such that a degree
of relatedness may be perceived. An icon for pattern reference
is different in shape and shading compared to an icon used for
artefact reference (see Fig. 3 and Fig. 4). Thus, an artefact and
a pattern should be perceived as representing quite different
concepts.

CA.2 It must be possible to group related statements in the
language in a natural manner.

There are five ways to organise information according to
Lidwell et al. [35]: category, time, location, alphabet, and

84Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 92 / 107

continuum. The category refers to the organisation of elements
by similarity and relatedness. An example of the application
of the principle of categorisation [35] in SaCS is seen in the
possibility to reduce the number of relations drawn between
patterns when these are similar. Patterns in SaCS may have
multiple inputs and multiple outputs as indicated in Fig. 1.
Relations between patterns operate on the parameters. The
brackets [] placed adjacent to a pattern reference denotes an
ordered list of parameters. In order to avoid drawing multiple
relations between two patterns, relations operate on the ordered
parameter lists of the patterns by list-matching of parameters.

Fig. 8 exemplifies two different ways for expressing vi-
sually the same relationships between the composite patterns
named A and B. The list-matching mechanism is used to reduce
the number of relation symbols drawn between patterns to
one, even though the phenomena modelled represents multiple
similar relations. This reduces the visual complexity and
preserves the semantics of the relationships modelled.

["Out1,"Out2,"Out3"] ["In1,"In2,"In3"]

A
["Out1"] ["In1"]
["Out2"] ["In2"]
["Out3"] ["In3"]

A

B

B

Figure 8. Alternative ways for visualising multiple similar relations

CA.3 It must be possible to reduce model complexity with
the language.

Hierarchical organisation is the simplest structure for visu-
alising and understanding complexity according to Lidwell et
al. [35]. The SaCS language allows concepts to be organised
hierarchically by specifying that one pattern is detailed by
another or by defining composite patterns that reference other
composite patterns in the content part.

Fig. 9 presents a composite pattern named Requirements
that reference other composites as part of its definition. The
contained pattern Safety Requirements is defined in Fig. 1.
The contained pattern Functional Requirements is not defined
and is referenced within Fig. 9 for illustration purposes.
Requirements may be easily extended by defining composites
supporting the elicitation of, e.g., performance requirements
and security requirements, and later model the use of such
patterns in Fig. 9. In Fig. 9, the output of applying the
Requirements pattern is represented by the parameter ReqSpec.
The ReqSpec parameter represents the result of applying the
combines relation on the output Req of the composite Safety
Requirements and the output Req of the composite Functional
Requirements.

CA.4 The symbols of the language should be as simple as
possible with appropriate use of colour and emphasis.

A general principle within visualisation according to Lid-
well et al. [35] is to use colour with care as it may lead
to misconceptions if used inappropriately. The authors points
out that there is no universal symbolism for different colours.

Requirements

[ToA,&Haz] [&ReqSpec&]

&&[Req]

[Req]

Func-onal
Requirements

[ToA]

[ToA,&Haz]

Safety
Requirements

[ReqSpec]

Figure 9. Composition of composites

As colour blindness is common the SaCS language applies
different shades of grey in visualisations.

Fig. 10 illustrates how the SaCS language makes use of
the three Gestalt principles of perception [35][39][38] known
as: Figure-Ground; Proximity; and Uniform Connectedness.
The Gestalt principles express mechanisms for efficient human
perception from groups of visual objects.

Figure'Ground:!Figures!are!the!objects!of!focus!(i.e.,!icons,!
arrows,!brackets,!and!iden8fiers),!ground!compose!
undifferen8ated!background!(i.e.!the!white!background)

[Risks][HzLg] [Req]

Establish4
System4Safety4
Requirements

Hazard4
Analysis

[ToA,!Haz]

Risk4
Analysis

[Risks][Haz]

Uniform4Connectedness:!connected!
elements!are!perceived!as!more!related!
than!elements!that!are!not!connected

Proximity:!elements!close!to!each!
other!are!perceived!as!forming!a!
group

Figure 10. A fragment of Fig. 1 illustrating the use of Gestalt principles

E. Tool appropriateness

TA.1 The language must have a precise syntax.

The syntax of the SaCS language (see [5]) is defined in
the EBNF [40] notation. EBNF is a meta-syntax that is widely
used for describing context-free grammars.

TA.2 The language must have a precise semantics.

A structured semantics for SaCS patterns is defined in [5]
in the form of a schematic mapping from pattern definitions,
via its textual syntax in EBNF [40], to English. The non-
formal representation of the semantics supports human inter-
pretation rather than tools, although the translation procedure
as described in [5] may be automated. The presentation of the
semantics of patterns as a text in English was chosen in order
to aid communication between users, possibly with different
technical background, on how to interpret patterns.

F. Organisational appropriateness

OA.1 The language must be able to express the desired
conceptual safety design when applied in a safety context.

85Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 93 / 107

The application of the SaCS pattern language produces
composite patterns that are instantiated into conceptual safety
designs. A composite pattern expresses a combination of basic
patterns. The basic patterns express safety engineering best
practices and concepts inspired by international safety stan-
dards and guidelines, e.g., [23][24][27]. International safety
standards and guidelines describe concepts and practices for
development of safety critical systems that may be perceived
as commonly accepted. The SaCS pattern language is tested
out in two cases. The first concerned the conceptualisation of a
nuclear power plant control system, while the second addressed
the conceptualisation of a railway interlocking system, fully
detailed in [17] and [18], respectively. In both cases it was
possible to derive a conceptual safety design using the SaCS
language as support as well as model how patterns were
applied as support.

OA.2 The language must ease the comprehensibility of best
practices within conceptual safety design for relevant target
groups like system engineers, safety engineers, hardware and
software engineers.

We have already explained how basic patterns represent
concepts and best practices inspired by safety standards and
guidelines. Each basic pattern addresses a limited number of
phenomena. Basic patterns are combined into a composite
pattern where the composite addresses all relevant challenges
that occur in a specific context. A composite pattern as the
one presented in Fig. 1 ease the explanation of how several
concepts within conceptual safety design are combined and
applied.

Wong et al. [41] reviewed several large development
projects and software safety standards from different domains
with respect to cost effectiveness and concludes that although
standards provide useful and effective guidance, safety and
cost effectiveness objectives are successfully met by effective
planning and by applying safety engineering best practices ev-
idenced in company best practices throughout the development
life cycle. Compared to a standard or a guideline, a composite
pattern in the SaCS language may be used to capture such
a company specific best practice. In order to accommodate
different situations, different compositions of patterns may be
defined.

OA.3 The language must be usable without the need of
costly tools.

Every pattern used in the cases described in [17][18] was
interpreted and applied in its context by a single researcher
with background from safety engineering. A conceptual safety
design was produced for each case. Every illustration in
[5][17][18] and in this paper is created with a standard drawing
tool.

V. RELATED WORK

In the literature, pattern approaches supporting develop-
ment of safety critical systems are poorly represented. In the
following we shortly discuss some different pattern approaches
and their relevancy to the development of conceptual safety
designs.

Jackson [42] presents the problem frames approach for
requirements analysis and elicitation. Although the problem

frames approach is useful for detailing and analysing a problem
and thereby detailing requirements, the problem classes pre-
sented in [42] are defined on a very high level of abstraction.

The use of boilerplates [43][44] for requirement specifica-
tion is a form of requirement templates but nonetheless touches
upon the concept of patterns. The boilerplate approach helps
the user phrase requirements in a uniform manner and to detail
these sufficiently. Although boilerplates may be useful for
requirement specification, the focus in SaCS is more towards
supporting requirement elicitation and the understanding of the
challenges that appear in a specific context.

Withall [45] describes 37 requirements patterns for as-
sisting the specification of different types of requirements.
The patterns are defined at a low level; the level of a single
requirement. The patterns of Withall may be useful, but as
with the boilerplates approach, the patterns support more the
specification of requirements rather than requirements elicita-
tion.

Patterns on design and architecture of software-based sys-
tems are presented in several pattern collections. One of the
well-known pattern collections is the one of Gamma et al.
[8] on recurring patterns in design of software based systems.
Without doubt, the different pattern collections and languages
on system design and architecture represent deep insight into
effective solutions. However, design choices should be founded
on requirements, and otherwise follow well established prin-
ciples of good design. The choice of applying one design
pattern over another should be based on a systematic process
of establishing the need in order to avoid design choices being
left unmotivated.

The motivations for a specific design choice are founded
on the knowledge gained during the development activities
applied prior to system design. Gnatz et al. [46] outline the
concept of process patterns as a means to address the recurring
problems and known solutions to challenges arising during
the development process. The patterns of Gnatz et al. are not
tailored for development of safety critical systems and thus do
not necessarily reflect relevant safety practices. Fowler presents
[7] a catalogue of 63 analysis patterns. The patterns do not
follow a strict format but represent a body of knowledge on
analysis described textually and by supplementary sketches.

While process patterns and analysis patterns may be rel-
evant for assuring that the development process applied is
suitable and leads to well informed design choices, Kelly
[10] defines patterns supporting safety demonstration in the
form of reusable safety case patterns. The patterns expressed
are representative for how we want to address the safety
demonstration concern.

A challenge is to effectively combine and apply the knowl-
edge on diverse topics captured in different pattern collections
and languages. Henninger and Corrêa [47] survey different
software pattern practices and states “software patterns and
collections tend to be written to solve specific problems with
little to no regard about how the pattern could or should be
used with other patterns”.

Zimmer [48] identifies the need to define relationships
between system design patterns in order to efficiently combine
them. Noble [49] builds upon the ideas of Zimmer and defines

86Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 94 / 107

a number of relationships such as uses, refines, used by,
combine, and sequence of as a means to define relationships
between system design patterns. A challenge with the relations
defined by Noble is that they only specify relations on a very
high level. The relations do not have the expressiveness for
detailing what part of a pattern is used, refined, or combined.
Thus, the approach does not facilitate a precise modelling of
relationships.

Bayley and Zhu [50] define a formal language for pattern
composition. The authors argue that design patterns are almost
always to be found composed with each other and that the
correct applications of patterns thus relies on precise definition
of the compositions. A set of six operators is defined for
the purpose of defining pattern compositions. The language is
exemplified on the formalisation of the relationships expressed
between software design patterns described by Gamma et al.
[8]. As we want the patterns expressed in the SaCS language
to be understandable to a large community of potential users,
we find this approach a bit too rigid.

Smith [51] presents a catalogue of elementary software
design patterns in the tradition of Gamma et al. [8] and
proposes the Pattern Instance Notation (PIN) for expressing
compositions of patterns graphically. The notation uses simple
rounded rectangles for abstractly representing a pattern and its
associated roles. Connectors define the relationships between
patterns. The connectors operate on the defined roles of
patterns. The notation is comparable to the UML collaboration
notation [52].

UML collaborations [52] are not directly instantiable. In-
stances of the roles defined in a collaboration that cooperates
as defined creates the collaboration. The main purpose is to
express how a system of communicating entities collectively
accomplishes a task. The notation is particularly suitable for
expressing system design patterns.

Several notations [53][54][55] for expressing patterns
graphically use UML [52] as its basis. The notations are
simple, but target the specification of software.

VI. CONCLUSION

We have presented an analytical evaluation of the SaCS
pattern language with respect to six different appropriateness
factors. We arrived at the following conclusions:

• Domain: In the design of the SaCS language we have
as much as possible selected keywords and icons
in the spirit of leading literature within the area.
This indicates that we at least are able to represent
a significant part of the concepts of relevance for
conceptual safety design.

• Modeller: There may be relevant tacit knowledge that
is not easily externalised as the SaCS language is
today. However, the opportunity of increasing the
number of basic patterns makes it possible to at least
reduce the gap.

• Participants: The terms used for concepts have been
carefully selected based on leading terminology within
safety engineering. The SaCS language facilitates rep-
resenting the application of best practices within safety

design and mirror leading international standards; in
particular IEC 61508.

• Comprehensibility: The comprehension of individual
patterns and pattern compositions is supported by the
use of terms commonly applied within the relevant
industrial domains as well as by the application of
principles of good design in visualisations, such as
the Gestalt principles of perception [35][38].

• Tool: Tool support may be provided on the basis of
the syntax and semantics of the SaCS language [5].

• Organisational: Organisations developing safety crit-
ical systems are assumed to follow a development
process in accordance to what is required by standards.
Wong et al. [41] reviewed several large development
projects and software safety standards from differ-
ent domains with respect to cost effectiveness and
concludes that although standards provide useful and
effective guidance, safety and cost effectiveness objec-
tives are successfully met by effective planning and by
applying safety engineering best practices evidenced
in company best practices throughout the development
life cycle. SaCS patterns may be defined, applied, and
combined in a flexible manner to support company
best practices and domain specific best practices.

ACKNOWLEDGMENT

This work has been conducted and funded within the
OECD Halden Reactor Project, Institute for energy technology
(IFE), Halden, Norway. The second author has partly been
funded by the ARTEMIS project CONCERTO.

REFERENCES

[1] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Soft-
ware Architecture: On Patterns and Pattern Languages. Wiley, 2007,
vol. 5.

[2] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, 1977, vol. 2.

[3] J. C. Knight, “Safety Critical Systems: Challenges and Directions,” in
Proceedings of the 24th International Conference on Software Engi-
neering (ICSE’02). ACM, 2002, pp. 547–550.

[4] J. Krogstie, Model-based Development and Evolution of Information
Systems: A Quality Approach. Springer, 2012.

[5] A. A. Hauge and K. Stølen, “Syntax & Semantics of the SaCS Pattern
Language,” Institute for energy technology, OECD Halden Reactor
Project, Halden, Norway, Tech. Rep. HWR-1052, 2013.

[6] A. Aguiar and G. David, “Patterns for Effectively Documenting Frame-
works,” in Transactions on Pattern Languages of Programming II, ser.
LNCS, J. Noble, R. Johnson, P. Avgeriou, N. Harrison, and U. Zdun,
Eds. Springer, 2011, vol. 6510, pp. 79–124.

[7] M. Fowler, Analysis Patterns: Reusable Object Models. Addison-
Wesley, 1996.

[8] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[9] R. S. Hanmer, Patterns for Fault Tolerant Software. Wiley, 2007.
[10] T. P. Kelly, “Arguing Safety – A Systematic Approach to Managing

Safety Cases,” Ph.D. dissertation, University of York, United Kingdom,
1998.

[11] B. Rubel, “Patterns for Generating a Layered Architecture,” in Pattern
Languages of Program Design, J. Coplien and D. Schmidt, Eds.
Addison-Wesley, 1995, pp. 119–128.

87Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 95 / 107

[12] J. Mendling, G. Neumann, and W. van der Aalst, “On the Correlation
between Process Model Metrics and Errors,” in Proceedings of 26th
International Conference on Conceptual Modeling, vol. 83, 2007, pp.
173–178.

[13] A. G. Nysetvold and J. Krogstie, “Assessing Business Process Modeling
Languages Using a Generic Quality Framework,” in Proceedings of
the 17th Conference on Advanced Information Systems Engineering
(CAiSE’05) Workshops. Idea Group, 2005, pp. 545–556.

[14] J. Krogstie and S. D. F. Arnesen, “Assessing Enterprise Modeling Lan-
guages Using a Generic Quality Framework,” in Information Modeling
Methods and Methodologies. Idea Group, 2005, pp. 63–79.

[15] D. L. Moody, G. Sindre, T. Brasethvik, and A. Sølvberg, “Evaluating the
Quality of Process Models: Empirical Testing of a Quality Framework,”
in Proceedings of the 21st International Conference on Conceptual
Modeling, ser. LNCS. Springer, 2013, vol. 2503, pp. 380–396.

[16] J. Becker, M. Rosemann, and C. von Uthmann, “Guidelines of Business
Process Modeling,” in Business Process Management, ser. LNCS, vol.
1806. Springer, 2000, pp. 30–49.

[17] A. A. Hauge and K. Stølen, “A Pattern-based Method for Safe Control
Conceptualisation – Exemplified Within Nuclear Power Production,”
Institute for energy technology, OECD Halden Reactor Project, Halden,
Norway, Tech. Rep. HWR-1029, 2013.

[18] ——, “A Pattern-based Method for Safe Control Conceptualisation –
Exemplified Within Railway Signalling,” Institute for energy technol-
ogy, OECD Halden Reactor Project, Halden, Norway, Tech. Rep. HWR-
1037, 2013.

[19] I. Hogganvik, “A Graphical Approach to Security Risk Analysis,” Ph.D.
dissertation, Faculty of Mathematics and Natural Sciences, University
of Oslo, 2007.

[20] I. Habli and T. Kelly, “Process and Product Certification Arguments –
Getting the Balance Right,” SIGBED Review, vol. 3, no. 4, 2006, pp.
1–8.

[21] The members of the Task Force on Safety Critical Software, “Licensing
of safety critical software for nuclear reactors: Common position of
seven european nuclear regulators and authorised technical support
organisations,” http://www.belv.be/, 2013, [accessed: 2014-04-10].

[22] C. Haddon-Cave, “The Nimrod Review: An independent review into the
broader issues surrounding the loss of the RAF Nimrod MR2 aircraft
XV230 in Afghanistan in 2006,” The Stationery Office (TSO), Tech.
Rep. 1025 2008-09, 2009.

[23] IEC, “IEC 61508 Functional safety of electrical/electronic/programmble
electronic safety-related systems, 2nd edition,” International Elec-
trotechnical Commission, 2010.

[24] CENELEC, “EN 50129 Railway applications – Communications, sig-
nalling and processing systems – Safety related electronic systems for
signalling,” European Committee for Electrotechnical Standardization,
2003.

[25] European Commission, “Commission Regulation (EC) No 352/2009
on the Adoption of Common Safety Method on Risk Evaluation and
Assessment,” Official Journal of the European Union, 2009.

[26] ERA, “Guide for the Application of the Commission Regulation on
the Adoption of a Common Safety Method on Risk Evaluation and
Assessment as Referred to in Article 6(3)(a) of the Railway Safety
Directive,” European Railway Agency, 2009.

[27] IEC, “IEC 61513 Nuclear power plants – Instrumentation and control
systems important to safety – General requirements for systems, 2nd
edition,” International Electrotechnical Commission, 2001.

[28] A. Ratzka, “User Interface Patterns for Multimodal Interaction,” in
Transactions on Pattern Languages of Programming III, ser. LNCS,
J. Noble, R. Johnson, U. Zdun, and E. Wallingford, Eds. Springer,
2013, vol. 7840, pp. 111–167.

[29] D. Riehle and H. Züllinghoven, “A Pattern Language for Tool Con-
struction and Integration Based on the Tools and Materials Metaphor,”
in Pattern Languages of Program Design, J. Coplien and D. Schmidt,
Eds. Addison-Wesley, 1995, pp. 9–42.

[30] K. Wolf and C. Liu, “New Client with Old Servers: A Pattern Language
for Client/Server Frameworks,” in Pattern Languages of Program De-
sign, J. Coplien and D. Schmidt, Eds. Addison-Wesley, 1995, pp.
51–64.

[31] IEC, “IEC 61025 Fault Tree Analysis (FTA), 2nd edition,” International
Electrotechnical Commission, 2006.

[32] ——, “IEC 60812 Analysis techniques for system reliability – Pro-
cedure for failure mode and effects analysis (FMEA), 2nd edition,”
International Electrotechnical Commission, 2006.

[33] N. Storey, Safety-critical Computer Systems. Prentice Hall, 1996.
[34] G. A. Miller, “The Magical Number Seven, Plus or Minus Two: Some

Limits on Our Capacity for Processing Information,” Psychological
Review, vol. 63, no. 2, 1956, pp. 81–97.

[35] W. Lidwell, K. Holden, and J. Butler, Universal Principles of Design,
2nd ed. Rockport Publishers, 2010.

[36] J. H. Larkin and H. A. Simon, “Why a Diagram is (Sometimes) Worth
Ten Thousand Words,” Cognitive Science, vol. 11, no. 1, 1987, pp.
65–100.

[37] W. D. Ellis, A Source Book of Gestalt Psychology. The Gestalt Journal
Press, 1997.

[38] M. Wertheimer, “Laws of Organization in Perceptual Forms,” in A
sourcebook of Gestalt Psychology, W. D. Ellis, Ed. Routledge and
Kegan Paul, 1938, pp. 71–88.

[39] J. Wagemans, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson,
M. Singh, and R. von der Heydt, “A Century of Gestalt Psychology in
Visual Perception: I. Perceptual Grouping and Figure-Ground Organi-
zation,” Psychological Bulletin, vol. 138, no. 6, 2012, pp. 1172–1217.

[40] ISO/IEC, “14977:1996(E) Information technology - Syntactic metalan-
guage - Extended BNF,” International Organization for Standardization
/ International Electrotechnical Commission, 1996.

[41] W. E. Wong, A. Demel, V. Debroy, and M. F. Siok, “Safe Software:
Does It Cost More to Develop?” in Fifth International Conference on
Secure Software Integration and Reliability Improvement (SSIRI’11),
2011, pp. 198–207.

[42] M. Jackson, Problem Frames: Analysing and Structuring Software
Development Problems. Addison-Wesley, 2001.

[43] E. Hull, K. Jackson, and J. Dick, Requirements Engineering, 3rd ed.
Springer, 2010.

[44] G. Sindre, “Boilerplates for application interoperability requirements,”
in Proceedings of 19th Norsk konferanse for organisasjoners bruk av
IT (NOKOBIT’12). Tapir, 2012.

[45] S. Withall, Software Requirement Patterns (Best Practices), 1st ed.
Microsoft Press, 2007.

[46] M. Gnatz, F. Marschall, G. Popp, A. Rausch, and W. Schwerin,
“Towards a Living Software Development Process based on Process
Patterns,” in Proceedings of the 8th European Workshop on Software
Process Technology (EWSPT’01), ser. LNCS, vol. 2077. Springer,
2001, pp. 182–202.

[47] S. Henninger and V. Corrêa, “Software Pattern Communities: Current
Practices and Challenges,” in Proceedings of the 14th Conference on
Pattern Languages of Programs (PLOP’07). ACM, 2007, pp. 14:1–
14:19, article No. 14.

[48] W. Zimmer, “Relationships between Design Patterns,” in Pattern Lan-
guages of Program Design. Addison-Wesley, 1994, pp. 345–364.

[49] J. Noble, “Classifying Relationships between Object-Oriented Design
Patterns,” in Proceedings of Australian Software Engineering Confer-
ence (ASWEC’98), 1998, pp. 98–107.

[50] I. Bayley and H. Zhu, “A Formal Language for the Expression of Pattern
Compositions,” International Journal on Advances in Software, vol. 4,
no. 3, 2012, pp. 354–366.

[51] J. M. Smith, Elemental Design Patterns. Addison-Wesley, 2012.
[52] OMG, “Unified Modeling Language Specification, Version 2.4.1,” Ob-

ject Management Group, 2012.
[53] H. Byelas and A. Telea, “Visualization of Areas of Interest in Software

Architecture Diagrams,” in Proceedings of the 2006 ACM Symposium
on Software Visualization (SoftVis’06), 2006, pp. 105–114.

[54] J. Dong, S. Yang, and K. Zhang, “Visualizing Design Patterns in
Their Applications and Compositions,” IEEE Transactions on Software
Engineering, vol. 33, no. 7, 2007, pp. 433–453.

[55] J. M. Vlissides, “Notation, Notation, Notation,” C++ Report, 1998, pp.
48–51.

88Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 96 / 107

Privacy by Design Permission System for Mobile Applications

Karina Sokolova∗†, Marc Lemercier∗

∗University of Technology of Troyes
Troyes, France

{karina.sokolova, marc.lemercier}@utt.fr

Jean-Baptiste Boisseau†

†EUTECH SSII
La Chapelle Sain Luc, France

{k.sokolova, jb.boisseau}@eutech-ssii.com

Abstract—The Privacy by Design concept proposes to integrate
the respect of user privacy into systems managing user data from
the design stage. This concept has increased in popularity and
the European Union (EU) is enforcing it with a Data Protection
Directive. Mobile applications have emerged onto the market
and the current law and future directive is applicable to all
mobile applications designed for EU users. By now it has been
shown that mobile applications do not suit the Privacy by Design
concept and lack for transparency, consent and security. The
actual permission systems is judged as unclear for users. In this
paper, we introduce a novel permission model suitable for mobile
application that respects Privacy by Design. We show that such
adapted permission system can improve the transparency and
consent but also the security of mobile applications. Finally,
we propose an example of the use of our system on mobile
application.

Keywords–permission, permission system, mobile, privacy by
design, privacy, transparency, control, Android, iOS, application,
development, software design, pattern, mobility, design, modelling,
trust

I. INTRODUCTION

Mobile devices gain in popularity. Thousands of services
and applications are proposed on mobile markets and down-
loaded every day. Smart devices have a high data flow pro-
cessing and storing large amounts of data including private
and sensitive data. Most applications propose personalized
services but simultaneously collect user data even without
the user’s awareness or consent. More and more users feel
concerned about their privacy and care about services they
use. The TRUSTe survey conducted in February 2011 shows
that smartphone users are concerned about privacy even more
than about the security (the second in the survey results) [1].

Nowadays, people realize the lack of privacy especially
while using new technological devices where information is
massively collected, used and stored (Big Data notion). The
privacy regulation aiming to control personal data use is set
up in many countries. European Union privacy regulation
includes the European Data Protection Directive (Directive
95/46/EC) and the ePrivacy Directive. United States regulation
includes Children’s Online Privacy Protection Act (COPPA)
and The California Online Privacy Protection Act of 2003
(OPPA). Canada is under the Personal Information Protection
and Electronic Documents Act (PIPEDA) concerning privacy.

The Privacy by Design (PbD) notion proposes to integrate
privacy from the system design stage [2] to build privacy-
respecting systems. PbD proves systems can embed privacy
without sacrificing either security or functionality. Some PbD

concepts are already included in European data legislation;
the notion is considered to be enforced in European Data
Protection Regulation, therefore systems made with PbD are
compliant with the law. An application made with PbD notion
is not only a benefit for users, along with the opportunity to
provide a truly personalized service, but also a legal obligation
for developers.

The PbD concept was firstly presented by Dr. Ann
Cavoukian. She proposes seven key principles of PbD enabling
the development of privacy-respective systems. The system
should be proactive, not reactive, embed privacy feature from
the design, integrate Privacy by Default, respect user privacy,
data usage should be transparent to the end user and the
user should have access to the mechanism of control of his
data. Full functionality and the end-to-end security should be
preserved without any sacrifice. [2]

Mobile privacy was discussed in ’Opinion 02/2013 on apps
on smart devices’ by the Article 29 Data Protection Working
Party [3], where the opinion on mobile privacy and some
general recommendations were given. The article states that
both the Data Protection Directive and the ePrivacy Directive
are applicable to mobile systems and to all applications made
for EU users. Data Protection Regulation is also applicable
to mobile systems. The article defines four main problems of
mobile privacy: lack of transparency, lack of consent, poor
security and disregard for purpose limitation.

Many reports propose recommendations about mobile pri-
vacy improvement repeating basic privacy notions (e.g., data
minimization, clear notices) but the exact patterns or a techni-
cal solutions are missing [4].

The permission system is embedded in the mobile systems
and is a crucial part of mobile security and privacy. Nowadays,
permission systems do not follow Privacy by Design notions.
Many works are concentrated on analysing and modelling
the actual permission systems [5][6][7], on improving actual
permission systems to give more control to the user [8][9][10]
or to add additional transfer permissions [11], on visual rep-
resentation of permissions [12], on user perceptions of current
permission systems [13][14][15], on the data flow analyses
(possible data leakage detection) and the actual permissions en-
forcement and verifications [16][17][18][19][20][21][22][23].
To our knowledge no work has been conducted on redefining
the permission system to fit the Privacy by Design notion.

The remainder of the paper is organized as follows: Section
2 describes current permission systems of iOS and Android

89Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 97 / 107

and points out problems regarding Privacy by Design. Sec-
tion 3 introduces our proposal: the pattern of the privacy-
respecting permission system. We show that it can cope with
the transparency, consent and purpose disregard problems and
also improve the security. Section 4 shows the application of
our novel permission system to the real mobile application.
The paper ends with a conclusion and future works.

II. EXISTING MOBILE PERMISSION SYSTEMS

In this section, we present current iOS and Android per-
mission systems and evaluate those systems regarding the PbD
notion. We take into account the full functionality allowed by
the permission system, privacy by default, transparency and
the control notions.

• Full functionality: possibility to use all functionalities
available on the platform.

• Privacy by Default: the default configurations of the
system are privacy protective.

• Transparency: user should clearly understand what
data is used, how and for what purpose.

• Control: user should have a full control over his
personal data usage.

We consider the privacy policy to be very important for the
proactive and transparent system therefore we present the state
of application privacy policy in both systems.

A. Permissions

iOS and Android have different strategies concerning the
access to the device data. The iOS platform gives to non-
native applications access only to the functionalities listed in
privacy settings: location services, contacts, calendar, reminder,
photos, microphone and Bluetooth (sensitive data, such as SMS
and e-mails are not shared at all). Recently, the connection to
Facebook, Twitter, Flickr and Vimeo was added to the platform
(iOS7). Full functionality is given up for privacy reasons as
applications cannot use the full power of the platform but only
a limited number of functionalities.

An iOS application should have permission to access
information listed above. By default, the installed application
has no permission granted. The application displays a pop-
up explaining what sensitive data it needs before to access
it. The user can accept or decline permission. If permission
is declined, the corresponding action is not executed. If the
permission is accepted, the application obtains access to the
corresponding data. The user is asked to grant permission only
once, but he/she can activate or deactivate such permission
for each application in privacy settings integrated by default
into the iOS. Thereby iOS maintains transparency, control and
privacy by default.

The Android system remains on the sharing principle.
Full functionality is preserved: applications have access to all
native applications’ data and can expose the data themselves.
Applications need permission to access the data, but differently
from iOS, users should accept the full list of permissions
before installing an application. While all permissions are
granted, an application has full access to the related data. Some
Android permissions tagged as ’dangerous’ can be prompted

TABLE I
ANDROID AND IOS PERMISSION SYSTEMS COMPARISON

Full Func-
tionality

Default
Settings

Transpa-
rency Control

Android + - - -
iOS - + -/+ +

to the user every time the data is going to be accessed, but it
is rarely the case. Users see the list of dangerous permissions
on the screen before installing the application.

Android proposes more than 100 default permissions and
developers can add supplementary permissions. Multiple works
show that users do not understand many of default permissions
and fail to judge the application privacy and security correctly
using the full permission list [13][15]. Permissions do not
clearly show what data is used for and how. Moreover, some
other studies show the abusive usage of android permissions
by developers [24].

Some users do not check the Android permission list
because they need a service and they know that all permis-
sions should be accepted to obtain it. Android permission
list looks like a license agreement on a desktop application
that everybody accepts but very few actually read [25]. An
Android user does not have any control over permissions once
the application is installed: permissions cannot be revoked.
Android does not include an iOS-like system permission
manager (privacy settings) by default, therefore the user has
to activate or deactivate the entire functionality to disable
the access to related data (e.g., Wi-Fi or 3G for Internet
connection; GPS for geolocation) or to use additional privacy
enhancing applications.

Both iOS and Android default permission systems mostly
inform about data access, but not about any other action that
can be completed with the data. For example, no permission
is needed to transfer the data. Android and iOS include
permissions for functionalities that can be related to personal
data transfer, such as Bluetooth and Internet. Permissions can
be harmless to users, but there is no indication of whether
personal data is involved in a transaction. This decreases the
transparency of both platforms.

Android and iOS permissions do not include purpose ex-
planation. An iOS application helps to understand the purpose
by asking permission while in use, but if an application has
a granted permission once for one functionality it could use
it again for a different purpose without informing the user.
Android users can only guess what permission is used for and
whether the use is legitimate.

Table I shows the system differences regarding four main
privacy notions: full functionality, transparency, control and
privacy by default. One can see that the current Android
permission system is missing in transparency, control and
default privacy; iOS sacrifices the functionality and also lack
of transparency. Permissions are often functionality-related and
users fail to understand and to judge them. Personal data usage
is unclear and the purpose is missing.

B. Privacy Policy

Users should choose applications they can trust. Apple
ensures that applications available on the market are potentially

90Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 98 / 107

harmless, although Android users should judge the application
for themselves with the help of information available on
the market. The AppStore and Google Play provide similar
information: name, description, screenshots, rating and user
reviews.

The transparency and the proactivity of the system can be
improved by including the privacy policy in the store. A user
can be informed about the information collected and stored
before he downloads the application. Without any privacy pol-
icy, the user can hardly evaluate the security and privacy of the
application, only the functionality and stability of the system.
In their feedback, users often evaluate the functionalities and
user interfaces and report bugs, but they rarely indicate privacy
and security problems.

iOS does not require developers to include the privacy
policy in the application but only in applications directed at
children younger than 13 years old. Apple encourages the use
of privacy policy in the App Store Review Guidelines and iOS
Developer Program License Agreement. Apple specify that
developers should insure the application is compliant with all
laws of the country the application is distributed in. On viewing
the App Store Review Guidelines one can see that all Privacy
by Design fundamental principles and data violation possibil-
ities are covered by Apple verification. However, the exact
evaluation process used by Apple remains secret and some
privacy-intrusive applications may appear in the store. Until
recently, Apple authorized the use of device identification.
This identification number was not considered private. Many
applications used this number to uniquely identify their users
therefore many applications were considered privacy intrusive
[26].

Google Play Terms of Service do not require any pri-
vacy policy to be added to the Android applications. Google
provides an option to include the privacy policy but does
not verify or enforce it. Google Developers Documentation
provides recommendations and warns that the developer has a
responsibility to ensure the application is compliant with the
laws of the countries in which the application is distributed.

Some developers include license agreement and privacy
policy. According to [27] only 48% of the top 25 Android paid
applications, 76% of the top 25 Android free applications, 64%
of iOS paid applications and 84% of iOS free applications have
included the privacy policy. Android includes the permission
list in the store and this can be considered a privacy policy,
but, as previously discussed, the list is unclear to the final user.

III. PRIVACY RESPECTING PERMISSION SYSTEM

Mobile phones have significant data flow: information can
be received, stored, accessed and sent by the application. Data
can be entered by the user, retrieved from the system sensors
or applications, come from another mobile application, arrive
from the server or from other devices. Data can be shared on
the phone with another application, with the server or another
device.

We propose to focus permissions on data and the action that
can be carried out on this data, rather than on the technology
used. The definition of purpose of the data usage is included
in our permission system.

Privacy Policy should be short and clear. Users should have
a global vision of the data usage and functionalities before
they install an application. Users rarely read long involved
policies, especially when they want a service and feel they
have no choice but to accept all permissions. Our permission
system enables a simple policy to be generated with a list of
permissions.

A. Privacy by Design Permission System

The permission system is integrated into the mobile op-
erating system; well designed, it makes a proactive privacy-
respecting tool embedded into the system.

We model our permission system with an access control
model. We choose discretionary access control where only data
owner can grant access. The user should be able to control the
data, therefore we consider the user is a unique owner of all
information related to him.

Rapp is a set of rules assigned to the application. We define
a rule as an assignment of the Right over an Object to the
Subject.

∀rule ∈ Rapp, rule = (s, r, o) (1)
where s ∈ Subject, r ∈ Right, o ∈ Object
We define the mobile application as a Subject. Objects

are the user-related data, such as e-mail, contact list, name and
surname, phone number, address, social networks friend list,
etc.

Subject = MobileApplication (2)

Object = {Phone#, Name, Contacts, · · · } (3)

To define Right we have to introduce Acation and
Ppurpose.

We define a set of actions denoted Action as all actions
can be carried out on user private data by the application: load,
access, process, store and transfer of the data. We define the
Action as follows:

Action = {Load,Access, Process, Store, Transfer} (4)
Purpose is assigned by the application and depends on

the service. For example, purpose could be ’retrieve forgotten
password’, ’display on the screen’, ’calculate the trust score’,
’send news’, ’automatically retrieve nearest restaurant’ and
’automatically attach location to the message’.

Purpose = {Retrieve forgotten password, · · · } (5)

We define the set of rights denoted Right for all actions
except the Store action as follows.

∀r ∈ Right, ∀a ∈ Action− {Store} , r = (a, p) (6)
where p ∈ Purpose.
We define the set of rights denoted Right with the action

equal to Store having an additional parameter T ime inform-
ing about the time storage. We define the period [0, T] as an
application lifetime.

∀r ∈ Right, if a = {Store} , r = (a, p, t) (7)

where p ∈ Purpose, a ∈ Action, t ∈ [0, T]

91Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 99 / 107

Figure 1. Example of state modification diagram for a given permission

The time storage can indicate the number of days, hours
or months data is stored or the time regarding the application
lifecycle: until the application is closed, until the application is
stopped, until the application is uninstalled. All personal data
available during the deinstallation of the application is deleted
regardless of defined period, as it cannot exceed the application
lifetime.

Each rule should be explicitly asked of the user to be
assigned. Thus each rule has a State: granted or revoked. To
respect the Privacy by Default notion the default State of the
permission in installed applications is Revoked. We propose
to define the State as follows:

∀rule ∈ Rapp, ∀t ∈]0, T]

State(rule, t) =
{
Granted, user accepts the rule

Revoked, user declines the rule
(8)

∀rule ∈ Rapp, State(rule, 0) = Revoked (9)

The State of a rule r1 ∈ Rapp changes over the application
lifetime. The diagram in Figure 1 shows an example of the
state modification.

A given user should be informed about the use of the
permission: the rule should be defined and displayed for
each o ∈ Object. The Figure 2 shows the recapitulative
schema of the rule definition.

Figure 2. Activity diagram for the rule definition

Figure 3. Sequence diagram: first use of one permission

Users should be able to grant or revoke the displayed
permission. Finally, user should dispose the settings with all
rule ∈ Rapp to be able to Grant or to Revoke individual
permissions in later use.

The sequence diagram in Figure 3 shows the pattern in
action when the permission is used for the first time.

Thus, we obtain the pattern the developer can follow to
design the permission system. The developer should define
the permission for all personal data (Object) used in the
application (Subject).

The permission (rule) is stored inside the application with
its current State. The default State is Revoked. Developers
should verify that the permission is displayed and requested
at least once and that it is available in settings for modifica-
tion. The simple privacy policy can be generated from the list
of defined rules and added to the store.

IV. APPLICATION

In this section, we propose an example of permission
system made for the application of trust evaluation of friends
on social networks named Socializer 1.0 [28]. We choose this
application because its service is based on private information
and cannot be anonymous, the PbD notion should be integrated
into this application. This application needs user friend lists of
different social networks (Facebook, Twitter, LinkedIn) and the
contact list to view friends and common friends to calculate
the overlap of friends in different social networks and contact
list and to evaluate the trust of Facebook friends.

Contact list is found on the smartphone, therefore the
application needs an Access right.

r1 = (s, (Access,Pr1), ContactList) (10)

where s is a Subject defined as the application Socializer
1.0; Pr1 is a purpose defined as a set of p1, p2 and p3: Pr1 =
{p1, p2, p3}; p1= view the list of contacts on the screen; p2=
calculate the overlap; p3= calculate the trust.

Social networking friends lists should usually be retrieved
from the server of a given social network thereby the load
and store actions should be defined. The Facebook friends list

92Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 100 / 107

with the contact list is essential to assure the overlap and trust
functionality.

r2 = (s, (Load,Pr2), FacebookFriendList) (11)

r3 = (s, (Store,Pr2, t1), FacebookFriendList) (12)
where t1 is a storage time defined as: while the application

is installed; Pr2 is a purpose defined as a set of p2, p3 and p4:
Pr1 = {p2, p3, p4}; p4= view the Facebook friend list on the
screen.

For each Facebook friend, the list of common friends with
the user is necessary for trust calculation.

r4 = (s, (Load, p3),

FacebookCommonFriendLists) (13)
A list of friends from other social networks improves the

scores of overlap and trust.

r5 = (s, (Load,Pr5), TwitterFriendList) (14)

r6 = (s, (Store,Pr5, t1), TwitterFriendList) (15)

where Pr5 is a purpose defined as a set of p5 and p6:
Pr5 = {p5, p6}; p5= view the Twitter friend list on the screen;
p6= improve the overlap and trust score with Twitter friends;

r7 = (s, (Load,Pr7), LinkedInFriendList) (16)

r8 = (s, (Store,Pr7, t2), LinkedInFriendList) (17)

where Pr7 is a purpose defined as a set of p6 and p7:
Pr7 = {p6′ , p7}; p6′= improve the overlap and trust score
with LinkedIn friends; p7= view the LinkedIn friend list on
the screen.

The second functionality of the application is to evaluate
the behaviour of Facebook and Twitter friends to indicate
potentially dangerous contacts. The behaviour evaluation is
calculated by analysing the messages published by the given
friend over time. The application needs a permission to load
messages.

r9 = (s, (Load, p8), TwitterFriendMessages) (18)

where p8 is a purpose defined as ’calculate the Twitter
friends behavior’.

r10 = (s, (Load, p9), FacebookFriendMessages) (19)

where p9 is a purpose defined as ’calculate the Facebook
friends behaviour’.

The third functionality proposes to view today Facebook
and Twitter messages on the screen for the user.

r11 = (s, (Store, p10, t2),

T odayTwitterFriendMessages) (20)

where p10 is a purpose defined as ’view today Twitter
messages’; t2 is a storage time defined as: one day.

r12 = (s, (Store, p11, t2),

T odayFacebookFriendMessages) (21)

where p11 is a purpose defined as ’view today Facebook
messages’.

The user has the option to share the scores by posting
new messages on Facebook and Twitter. The user can also
contribute to the research by sending the trust and behaviour

anonymized statistics to the developer. Those actions should
be taken with the user’s express consent.

r13 = (s, (Transfer, p12),

FacebookFriendTrustScore) (22)

where p12 is a purpose defined as ’share results on Face-
book’.

r14 = (s, (Transfer, p13),

FacebookFriendTrustScore) (23)

where p13 is a purpose defined as ’share results on Twitter’.

r15 = (s, (Transfer, p14), T rustAndBehavior) (24)

where p14 is a purpose defined as ’contribute to the
improvement of the methodology’.

The final application has 15 rules that should be accepted
by the user.

Rapp = {r1, r2, r3, · · · , r14, r15} (25)

The rules r1, r2, r3 and r4 have a common purpose, all
rules should be accepted to achieve the functionality mentioned
in the purpose: ’calculate the trust’. Similarly, r5 should be
grouped with r6 and r7 with r8. The rules from r9 to r15 should
be accepted one by one to achieve the aforementioned purpose
(to get the functionality). Finally, we obtain 10 permissions to
be added to the application to propose control to the user. The
Table II recapitulates permissions.

To compare with actual permission systems, (a) iOS
requires contact list, Facebook and Twitter access permis-
sions. (b) Android requires ’internet’, ’read contacts’ and
’get accounts’ access permissions. Facebook and Twitter con-
nections are managed with APIs that requires permissions to
be declared on the platform but the permission management
will not be available for users in the mobile application by
default. iOS permissions give certain transparency to the user
but Android permissions are vague.

We obtained more fine-grained control of the application
and the data including permissions to all necessary personal
data, actions carried out on this data and corresponding pur-
poses. The recapitulation table (Table II) clearly shows what
data are used for what purpose. This kind of table can be added
to the privacy policy to improve transparency.

V. CONCLUSION AND FUTURE WORK

We modelled a permission system for mobile application
regarding Privacy by Design. This permission system is data-
oriented, thus the final user can easily understand what per-
sonal data is involved. We include the action that is missing
from current iOS and Android permission systems, such as
load and transfer, that improves transparency of the application.

The novelty is to include the purpose of the data usage
into the permission system. The clear purpose will help users
to understand better why the data is used and to judge whether
this permission is needed. Purpose in permission also forces
developers to apply the minimization principle: a developer
cannot use the data if he cannot define the clear purpose of
usage. The compulsory purpose definition should help guard
against the abusive permission declaration ’in case’. Finally,
purpose gives the user more fine-grained control, as the same

93Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 101 / 107

TABLE II
TABLE RECAPITULATING PERMISSIONS NEEDED FOR THE APPLICATION

(LAST COLUMN IS A PERMISSION NUMBER)

Object Action Purpose #
Contacts list Load View; Calculate

Overlap and
Trust

1Facebook friends
list

Load;
Store

Facebook
common friends Load

Twitter friends
list Load;

Store

View; Improve
Overlap and
Trust

2

LinkedIn friends
list

View; Improve
Overlap and
Trust

3

Twitter messages Load
Tw. friends
behaviour 4

Facebook
messages

Fb. friends
behaviour 5

Today Tw.
messages Store

View Tw.
messages 6

Today Fb.
messages

View Fb.
messages 7

Trust score Transfer
Publish to
Twitter 8

Publish to
Facebook 9

Trust and
behaviour Transfer Contribute to

research 10

data can be allowed to be used for one functionality but
not for another. It is important for our system to integrate
clear purpose and not a vague explanation (e.g., ’measure the
frequency of application utilization’ instead of ’improve user
experience’).

PbD states that the user should have a control over his data
and be Privacy by Default, therefore permissions used in the
application are revoked by default. Users should be clearly
informed and asked to grant permission. Moreover, users
should keep control of permissions during all the application
use-time, therefore the permission setting must be available.

Our permission system helps developers to be compliant
with the law; it defines what permissions the developer should
add to the application, but in the current state it cannot ensure
that all necessary permissions are really added. Our pattern
indicates to the developer what should be added to the appli-
cation to be more transparent, but if he decides to transfer data
without asking permission, the pattern allows this (even if it
goes against European law). The generated privacy policy can
give the first indication permitting evaluation if the data usage
is reasonable and the purpose is clear. Manual verification of
an application can show the anomaly in permission system
usage.

We aim to build a framework for the automatic manage-
ment of a new permission system to simplify the developers
work. We target the Android system first as it is more crucial
due to the more open communication and data sharing and the
vagueness of the current permission system.

The impact of new privacy-respective permission systems

on users and developers could be measured by conducting the
real-life experience. We aim to measure the impact of integra-
tion of the new permission system on design and development
time, as well as particular situations and difficulties in applying
the pattern. We also aim to evaluate user perceptions. We have
an additional hypothesis that the explicative application with
high transparency improves the user experience and leads to
more positive perception of the same application, therefore the
use of our permission system gives benefits to the application
owner.

This work can be continued by developing an enforcement
system automatically verifying whether all necessary permis-
sions are properly defined. Many works propose systems mon-
itoring mobile data flow, therefore the permission verification
system can be based on one of the already proposed systems.
Another important aspect for the developer is to be able to
prove the application is compliant with the law. The system
generating on-demand reports on the data, including the private
data usage, can be developed.

REFERENCES

[1] TRUSTe. Consumer Mobile Privacy Insights Report. [retrieved: Apr.,
2011]

[2] A. Cavoukian, “Privacy by design: The 7 foundational principles,” 2009.
[3] E. data protection regulators, “Opinion 02/2013 on apps on smart

devices,” EU, Tech. Rep., Feb. 2013.
[4] K. D. Harris, “Privacy on the go,” California Department of Justice,

Jan. 2013, pp. 1–27.
[5] W. Shin, S. Kiyomoto, K. Fukushima, and T. Tanaka, “Towards For-

mal Analysis of the Permission-Based Security Model for Android,”
in Wireless and Mobile Communications, 2009. ICWMC ’09. Fifth
International Conference on. IEEE Computer Society, 2009, pp. 87–92.

[6] K. W. Y. Au, Y. F. Zhou, Z. Huang, P. Gill, and D. Lie, “Short paper:
a look at smartphone permission models,” in SPSM ’11 Proceedings
of the 1st ACM workshop on Security and privacy in smartphones and
mobile devices. ACM Request Permissions, Oct. 2011, pp. 63–67.

[7] R. Stevens, J. Ganz, V. Filkov, P. T. Devanbu, and H. Chen, “Asking
for (and about) permissions used by Android apps.” MSR, 2013, pp.
31–40.

[8] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “MockDroid: trad-
ing privacy for application functionality on smartphones,” in HotMobile
’11: Proceedings of the 12th Workshop on Mobile Computing Systems
and Applications, ser. HotMobile ’11. ACM Request Permissions, Mar.
2011, pp. 49–54.

[9] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: retrofitting android to protect
data from imperious applications,” in Proceedings of the 18th ACM
conference on Computer and communications security, ser. CCS ’11.
ACM Request Permissions, Oct. 2011, pp. 639–652.

[10] M. Nauman, S. Khan, and X. Zhang, “Apex: extending Android
permission model and enforcement with user-defined runtime con-
straints,” in ASIACCS ’10: Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security. ACM Request
Permissions, Apr. 2010, pp. 328–332.

[11] S. Holavanalli et al., “Flow Permissions for Android,” in Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International Con-
ference on, 2013, pp. 652–657.

[12] J. Tam, R. W. Reeder, and S. Schechter, “Disclosing the authority
applications demand of users as a condition of installation,” Microsoft
Research, 2010.

[13] S. Egelman, A. P. Felt, and D. Wagner, “Choice Architecture and
Smartphone Privacy: There’s a Price for That,” in Proceedings of the
11th Annual Workshop on the Economics of Information Security
(WEIS), 2012.

94Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 102 / 107

[14] M. Lane, “Does the android permission system provide adequate
information privacy protection for end-users of mobile apps? ,” in 10th
Australian Information Security Management Conference, Dec. 2012,
pp. 65–73.

[15] P. G. Kelley et al., “A conundrum of permissions: Installing applications
on an android smartphone,” in Proceedings of the 16th International
Conference on Financial Cryptography and Data Security, ser. FC’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 68–79.

[16] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in CCS ’11: Proceedings of the 18th ACM
conference on Computer and communications security. ACM Request
Permissions, Oct. 2011, pp. 627–638.

[17] P. Berthomé and J.-F. Lalande, “Comment ajouter de la privacy after
design pour les applications Android? (How to add privacy after design
to Android applications?),” Jun. 2012.

[18] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS: Detecting Privacy
Leaks in iOS Applications.” 2011.

[19] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks: Auto-
matically Detecting Potential Privacy Leaks in Android Applications
on a Large Scale,” in Trust and Trustworthy Computing. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 291–307.

[20] T. Vidas, N. Christin, and L. Cranor, “Curbing android permission
creep,” in In W2SP, 2011.

[21] Y. Zhang et al., “Vetting undesirable behaviors in android apps with
permission use analysis,” in CCS ’13: Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. ACM,
Nov. 2013, pp. 611–622.

[22] W. Xu, F. Zhang, and S. Zhu, “Permlyzer: Analyzing permission usage
in Android applications,” Software Reliability Engineering (ISSRE),
2013 IEEE 24th International Symposium on, 2013, pp. 400–410.

[23] W. Luo, S. Xu, and X. Jiang, “Real-time detection and prevention
of android SMS permission abuses,” in SESP ’13: Proceedings of
the first international workshop on Security in embedded systems and
smartphones. ACM Request Permissions, May 2013, pp. 11–18.

[24] A. P. Felt, K. Greenwood, and D. Wagner, “The effectiveness of appli-
cation permissions,” in WebApps’11: Proceedings of the 2nd USENIX
conference on Web application development. USENIX Association,
Jun. 2011, pp. 7–7.

[25] R. Böhme and S. Köpsell, “Trained to accept?: a field experiment on
consent dialogs,” in CHI ’10: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM Request Permissions,
Apr. 2010, pp. 2403–2406.

[26] E. Smith, “iPhone applications and privacy issues: An analysis of
application transmission of iPhone unique device identifiers UDIDs,”
October 2010.

[27] “Mobile Apps Study,” Future of Privacy Forum (FPF), pp. 1–16, Jun.
2012.

[28] C. Perez, B. Birregah, and M. Lemercier, “A smartphone-based online
social network trust evaluation system,” Social Network Analysis and
Mining, vol. 3, no. 4, 2013, pp. 1293–1310.

95Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 103 / 107

Effectively Updating Co-location Patterns in Evolving Spatial Databases

Jin Soung Yoo and Hima Vasudevan

Computer Science Department
Indiana University-Purdue University Fort Wayne

Indiana, USA 46805
Email: yooj,vasuh02@ipfw.edu

Abstract—Spatial co-location mining has been used for dis-
covering spatial event sets which show frequent association
relationships based on the spatial neighborhood. This paper
presents a problem of finding co-location patterns on evolving
spatial databases which are constantly updated with fresh data.
Maintaining discovered spatial patterns is a complicated process
when a large spatial database is changed because new data
points make spatial relationships with existing data points on
the continuous space as well as among themselves. The change
of neighbor relations can affect co-location mining results with
invalidating existing patterns and introducing new patterns. This
paper presents an algorithm for effectively updating co-location
analysis results and its experimental evaluation.

Keywords–Spatial association mining; Co-location pattern; In-
cremental update

I. I NTRODUCTION

As one of the spatial data mining tasks, spatial association
mining is often used for discovering spatial dependencies
among objects [1]–[4]. A spatial co-location represents a set
of spatial features which are frequently observed together
in a nearby area [3]. Examples of frequently co-located
features/events include symbiotic species such as West Nile
incidents and stagnant water sources in epidemiology, and
interdependent events such as a car accident, traffic jam,
policemen and ambulances in transportation. In business, co-
location patterns can be used for finding relationships among
services requested by mobile users in geographic proximity.

Most of the spatial association mining works [3]–[10]
assume that all data is available at the start of data analy-
sis. However, many application domains including location-
based services, public safety, transportation and environmental
monitoring collect their data periodically or continuously. For
example, a police department accumulates, on average, 10,000
crime incidents per month [11]. For Earth observation, daily
climate measurement values are collected at every 0.5 degree
grid of the globe [12]. For keeping the analysis result coherent
with respect to the most recent database status, discovered
patterns should be updated.

The problem of updating spatial co-location patterns
presents more challenges than updating frequent itemsets in
a traditional transaction database. In the classical association
analysis, the database update means the simple addition of
new transaction records, or the deletion of existing records.
Newly added transaction records are separately handled from
existing records because the database is a collection of disjoint
transaction records. In contrast, when a spatial database is

updated, a new data point can make neighbor relationships
with existing data points as well as other new data points
on the continuous space. Thus, all neighbor relationships in
the updated database should be examined for the maintenance
of co-location patterns. The spatial pattern mining process
is a computational and data intensive task, therefore simply
re-executing a state-of-the-art co-location mining algorithm,
whenever the database is updated, can result in an explosionof
required computational and I/O resources. This paper proposes
an algorithm for effectively updating discovered co-location
patterns with the addition of spatial data points.

The remainder of this paper is organized as follows. Section
II presents the basic concept of co-location pattern miningand
the related work. Section III describes our algorithmic design
concept for incremental co-location mining and the proposed
algorithm. Its experimental evaluation is presented in Section
IV. This paper will conclude in Section V.

II. BASIC CONCEPT ANDRELATED WORK

The preliminary knowledge of spatial co-location pattern
mining and the related work are presented in this section.

A. Basic concept of spatial co-location mining

Let E = {e1, . . . , em} be a set of event types, and
S = {o1, . . . , on} be a set of their objects with geographic
location. When the Euclidean metric is used for the neighbor
relationshipR, two objectsoi and oj are neighbors of each
other if the ordinary distance between them is not greater than
a neighbor distance thresholdd. A co-location X is a set of
event types,{e1, . . . , ek} ⊆ E, whose objects are frequently
neighbors to each other on space. Theco-location instance
I of X is defined as a set of event objects,I ⊆ S, which
includes all types inX and makes a clique underR.

The prevalence strength of a co-location is often measured
by participation index value [3]. Theparticipation index
PI(X) of X = {e1, . . . , ek} is defined as

PI(X) = min
ei∈X
{PR(X, ei)}, (1)

where1 ≤ i ≤ k, andPR(X, ei) is the participation ratio
of event typeei in X, which is the fraction of objects of
event ei in the neighborhood of instances ofX − {ei}, i.e.
PR(X, ei) = |distinct objects of ei in instances of X|

|objects of ei|
. If PI(X)

is greater than a given minimum prevalence threshold, we say
X is a prevalent co-located event setor a co-location.

96Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 104 / 107

B. Related work

The problem of mining association rules based on spa-
tial relationships (e.g., proximity and adjacency) was first
discussed by Koperski et al. [1]. Shekhar, et al. [3] defines
the co-location pattern and proposes a join-based co-location
mining algorithm. Morimoto [2] studies the same problem
to discover frequent neighboring service class sets. A space
partitioning and non-overlap grouping scheme is used for
finding neighboring objects. Yoo et al. [4], [10] propose join
less algorithms to reduce the number of expensive spatial join
operations in finding co-location instances. Celik et al. [8]
extends the notion of co-location to a local zone-scale pattern.
Eick et al. [13] proposes a framework for mining regional co-
location patterns and Mohan et al. [14] presents a graph based
approach for regional co-location discovery. Recognizingthe
dynamic nature of database, much effort has been devoted
to the problem of incrementally mining frequent itemsets in
classical association rule mining literature [15]–[19]. However,
to find the problem to update co-location patterns in spatial
data mining literature is rare. The most similar work with
ours is He et al. [20] which is compared in our experimental
evaluation.

III. I NCREMENTAL CO-LOCATION M INING

Let Sold = {o1, . . . , on} be a set of old data points in a
spatial database andSin = {on+1, . . . , on+h} be a set of new
data points added in the database. LetS be all data points in
the updated database, i.e.,S=Sold∪Sin. There are two types of
co-location in the update. Theretained co-locationis an event
set prevalent in bothSold andS. Theemerged co-locationis an
event set not prevalent inSold but prevalent inS. We propose
an algorithm of Effective Update of COLOCation patterns
(EUCOLOC). The proposed algorithm has two update stages.
The first update stage examines only neighbor relationshipsof
new data points, and finds all retained co-locations and some
emerged co-locations. If an emerged set is found from the first
update, the second update stage is triggered for finding other
emerged co-location patterns in the updated database. Figure 3
shows the pseudo code of EUCOLOC algorithm.

A. Neighborhood Process

Directly finding all co-location instances forming clique
neighbor relationships from spatial data is computationally ex-
pensive. Instead, we process the neighbor relationships related
to the new data pointsSin.

Definition 1: The neighborhood of a new objecto ∈ Sin,
new neighborhoodnnew(o), is defined to{o, o2, . . . , op|oi ∈
S ∧ R(o, oi)=true∧ o’s event type< oi’s event type}, where
2 ≤ i ≤ p.

We assume there is a total ordering among the event types
(i.e., a lexicographic order�e). R is a neighbor relationship
function. Next, if an existing data point has a neighbor rela-
tionship with at least one new data point, its neighborhood is
changed.

Definition 2: Thechanged neighborhoodof an old object
o ∈ Sold, nchg(o), is defined to{o, o2, . . . , op|oi ∈ S ∧ ∃oi ∈
Sin ∧ R(o, oj)=true ∧ o’s event type< oi’s event type},
where2 ≤ i ≤ p.

{A.5*, B.9*}
{B.7*, C.4*}

{A.5*, B.6*}

*

{A.5*, B.3}
{A.5*, C.1}

{A.1, B.7*}
{A.1, C.4*}
{A.3, B.8*}
{A.3, C.5*}

{B.1, C.4*}
{B.9*, C.1}

(c) Incremental
(changed and new*)
neighbors

:New data points

New neighbors

(b) Incremental data points and their relationships

*
*

*
**

*
* A.1

:Old data point

C.3

B.4

A.2

C.2B.5

B.9

C.5

B.8

A.3

B.3

B.6

A.5B.1

B.7

B.2

C.4

:Old data point having a relationship with a new data point

y .

x

C.1

C.4*

B.1

B.3, B.6*, B.9*, C.1

C.5*

A.4

C.1

C.4*

C.4*

B.9*
B.8*
B.7*
B.6*

Items (Neighbor objects)

B.1, B.7*, C.1, C.4*
B.3, B.8*, C.1, C.5*

A.1
A.3
A.5*.

B.2

E.i: instance i of event type E
: identified neighbor relationship

(a) Old data points and their relationships

C.3

B.4

A.2

C.2B.5

A.3

B.3

B.1

A.1

Add A.5; B.6, B.7, B.8, B.9; C.4, C.5

.

C.1

A.4

x

y

A.3
A.2
A.1

B.3 , C.1
B.4 , C.2
B.1 , C.1

A.4
B.1
B.2
B.3
B.4
B.5

C.1 , C3

C.1
C.2
C.3

C.1

C.2

Neighbor objects

Old neighbors

(d) Updated neighbors

A.3
A.2
A.1

B.3 , B.8 , C.1 , C.5
B.4 , C.2
B.1 , B.7 , C.1 , C.4

A.4
B.3 , B.6 , B.9 , C.1
C.1

A.5

B.1
B.2
B.3
B.4

C.1 , C3
C.2

C.1
C.2
C.3
C.4
C.5

B.6
B.7
B.8
B.9

B.5

Neighbor objects

Figure 1. New, Changed and Updated Neighborhoods

Let Nnew = {nnew(o1), . . . , nnew(oh)} be a set of all new
neighborhoods forSn and Nchg = {nchg(o1), . . . , nchg(oq)}
be a set of all changed neighborhoods where{o1, . . . , oq} ⊆
Sold. We call the union ofNnew and Nchg to incremental
neighborhood set(Ninc).

When an incrementSin is added as shown in Figure 1 (b),
the EUCOLOC algorithm first finds all neighbors (NP) of new
data points inS using a geometric method or a spatial query
method (Algorithm Line 2). The incremental neighborhood set
(Ninc) is prepared by finding new neighborhoods fromNP
and detecting changed neighborhoods from the old neighbor-
hoodsNold (Line 3 & Figure 1 (c)). Figure 1 (d) shows the
entire neighborhood information (N) of the updated database
(Line 4).

B. First update and detection

Let an event set be aborder event setif the event set’s all
proper subsets are prevalent, but not prevalent itself. Thebor-
der sets are used for detecting an emerging co-location without
the generation and testing of many unnecessary candidates.
The candidate event sets for the first update are previous co-
located event sets (Pold) and border event sets (Bold) (Line 7).
The incremental co-location instances of the candidate event
sets are searched from the incremental neighborhoods (Ninc)
without examining the entire neighbor relationships. (Line 8
& Figure 1 (c)). A filter-and-refine search strategy is used
for finding co-location instances. LetSI = {o1, o2, . . . , ok}
be a set of objects of a candidate setc = {e1, e2, . . . , ek}
where e1 < e2 . . . < ek. If the first objecto1 has neighbor
relationships with all other objects in the set,SI is called a
star instanceof c. The start instances of{e1, e2, . . . , ek} are

97Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 105 / 107

 B.1 , C.4*
2
3
4

1

 B.9* , C.1

 B.6*
 B.7* , C.4*

5

transactions

B−incremental
neighborhood

3
2
1

 B.8*

{A.5*,B.9*, C.1}

����
����
����

����
����
����

B C

A

{A.1, B.1, C.1} not incremental instance
{A.1, B.1, C.4*}
{A.1, B.7*, C.1}
{A.1, B.7*, C.4*}
{A.3, B.3, C.1} not incremental instance
{A.3, B.3, C.5 *} not clique instance
{A.3, B.8*, C.1}
{A.3, B.8*, C.5*}
{A.5*,B.3, C.1}
{A.5*,B.6*, C.1}

not clique instance
not clique instance

not clique instance

instance lookup

star instances

{B.1 , C.4*}
{B.7*, C.4*}
{B.9*, C.1}

clique
colocation
instances

C

B C

star instancesC

 A.1 , B.1, B.7* , C.1, C.4*
 A.3 , B.3, B.8* , C.1, C.5*
 A.5* , B.3, B.6*, B.9*, C.1

neighborhood transactions
A−incremental

Figure 2. Event subsets and their instance search space

collected from the neighborhoods ofe1 according to Defini-
tion 1 and 2. The candidate instanceSI = {o1, o2, . . . , ok} of
c = {e1, . . . , ek} becomes a true co-location instance ofc if its
subinstance{o2, . . . , ok} forms a clique. The cliqueness of the
subinstance can be checked by simply querying the co-location
instances ofc’s sub event set{e2, . . . , ek} if the subinstance
has at least one new point, as shown in Figure 2.

The participation index of a candidate is computed with its
incremental co-location instances (CIc) and previousinstance
metadata(old PB info) which has the object information
of its old co-location instances (Line 13). The prevalence of a
candidatec = {e1, . . . , ek} is updated with

incPI(c) = min
ei∈c
{incPR(c, ei)}, (2)

where1 ≤ i ≤ k, andincPR(c, ei) is the updated participation
ratio of event typeei with the incremental co-location instances

of c, incPR(c, ei) =
|Oi

⋃
Ii|

|Soldi
|+|Sini

| , where |Soldi
| is the total

number of old objects ofei, |Sini
| is the total number of new

objects ofei, Oi is a set of distinct objects ofei in the old co-
location instances ofc, andIi is a set of distinct objects ofei in
the incremental co-location instances ofc. If the participation
index is greater thanmin prev, the event set is a co-location
(∈ P) (Line 14-15). If this co-location is from the border set
Bold, it also becomes an emerged co-location (∈ ES) (Line
16-17).

C. Second update stage

If any emerged set is found from the first update stage, there
is a possibility of finding other emerged event sets according
to the following lemma.

Lemma 1:Let X be a co-located event set that is prevalent
in the updated setS = Sold ∪ Sin but not prevalent in the old
setSold. Then there exists a subsetY ⊆ X such thatY is an
emerged event set.

Proof: Let Y be a minimal cardinality subset ofX that is
prevalent inS, not in Sold. SinceY is a prevalent event set in
S, so are all of is proper subsets. However, by the minimality
of Y , none of these subsets are new prevalent sets inS. Thus,
Y is a border set inSold, andY ⊆ X as claimed.

In the second update, a candidate is an event set which
has at least one emerged event set as its subset (Line 29).

1: procedure PREPROCESS
2: NP ← searchneigh pairs(Sin, Sold, R)
3: Ninc ← gen incr neigh trans(NP , Nold)
4: N ← gen upd neigh trans(Nold, Ninc)
5: end procedure

6: procedure FIRSTUPDATEDETECTION
7: C ← Pold ∪Bold
8: SI ← scan incr star inst(C, Ninc)
9: k ← 2

10: while Ck 6= ∅ do
11: for all c ∈ Ck do
12: CIc ← find incr clique inst(SIc, NP)
13: PI← compute incPI(old PB info, CIc)
14: if PI ≥ min prev then
15: P ← P ∪ c
16: if c ∈ Bold then
17: ES ← ES ∪ c
18: end if
19: else
20: B ← B ∪ c
21: end if
22: end for
23: k ← k+1
24: end while
25: end procedure

26: procedure SECONDUPDATE
27: if ES 6= ∅ then
28: k ← 3
29: Ck ← gen sizeK candidates(Pk−1, ESk−1)
30: while Ck 6= ∅ do
31: SI ← scan star instances(Ck, N)
32: for all c ∈ Ck do
33: CIc ← find clique instances(SIc)
34: if computePI(CIc) ≥ min prev then
35: P ← P ∪ c; ES = ES ∪ c
36: elseB ← B ∪ c
37: end if
38: end for
39: k ← k+1
40: Ck ← gen sizeK candidates(Pk−1, ESk−1)
41: end while
42: end if
43: Pold ← P ; Bold ← B; Nold ← N ; Sold ← Sold ∪ Sin
44: return P ;
45: end procedure

Figure 3. EUCOLOC algorithm

The star instances of candidates are collected from the entirely
updated neighborhood transactions (N) (Line 31). The true co-
location instances are filtered from the candidate instances. The
prevalence value of a candidate is calculated using the original
participation index (Equation (1)) because this set is a new
candidate with no previous instance metadata. If the candidate
is prevalent, it becomes an emerged co-location. Otherwise,
the set is included in the border set for future update. The
second update is repeated with the increase of the pattern size
until no more candidate (Line 30-41).

IV. EXPERIMENTAL EVALUATION

We compared the performance of EUCOLOC with two
other co-location mining algorithms. One (denoted as IMCP
in this paper) has an update function [20]. The implementation
of this algorithm is based on our understanding of the work.
The other (denoted as GeneralColoc) does not have an update
function [4]. All the experiments were performed on a Linux
system with 8.0 GB memory, and 2.67 GHz CPU.

98Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

 106 / 107

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1,200 2,400 3,600 4,800

E
xe

cu
tio

n
 t
im

e

Number of incremental data points

min_prev_threshold=0.05, distance=10

EUCOLOC
EUCOLOC-fixed inter relationship(5%)

IMCP

(a)

 0

 100

 200

 300

 400

 500

 0.15 0.2 0.25 0.3 0.35 0.4

E
xe

cu
tio

n
 t
im

e

Mimimum prevalence threshold

Real climate dataset, distance=6,
 # of old points=7,729, # of new points=7,787

EUCOLOC
IMCP

GeneralColoc

(b)

Figure 4. Experiment Result (a) By incremental data size (b) Byprevalence
threshold

In the first experiment, we compared the performance of
EUCOLOC and IMCP by varying the incremental size of
synthetic data. The number of distinct event types was 50. The
number of old data points was 10,020. The first incremental
set has 1,200 data points. The second incremental set is two
times bigger than the first set. The third one was three times
bigger than the first set, and so on. The ratio of old data points
which have relationships with new points was increased with
the increase of new data (i.e., 5%, 10%, 15% and 20%). As
shown in Figure 4 (a), the execution times of both EUCOLOC
and IMCP increased with the incremental data size. The
EUCOLOC showed better performance than IMCP. When the
ratio of relationships with old data points was fixed to 5%, the
execution times of EUCOLOC were stable, or very slowly
increased. The performance of EUCOLOC depends on the
inter-neighbor relationship ratio.

We also conducted the evaluation of EUCOLOC with real
climate measurement data [12]. The total number of processed
event types was 18. 7,728 event records were used for the old
data. 7,787 new event records were added for the incremental
data. We used 6 as a neighborhood distance, which means 6
cells on latitude-longitude spherical grids, where each grid cell
is 1 degree× 1 degree. About half of the old event objects had
neighbor relationships with the new ones. Figure 4 (b) shows
the result. EUCOLOC showed slowly increasing execution
time than other algorithms when the prevalence threshold was
decreased.

V. CONCLUSION

In this paper, we presented an algorithm for efficiently
mining co-location patterns in evolving spatial databases. The
proposed algorithm has two update stages. The first update
stage is 1) to avoid the generation and testing of many unnec-
essary candidates using the border concept, 2) to search only
incremental neighborhoods for the update, and 3) to update the
prevalence value of current co-locations with their incremental
instances and minimal previous co-located object information.
The second update stage is used for only finding new co-
located event sets (emerged ones). The initial experimental
evaluation shows our algorithmic design decision is effective
in updating discovered co-location patterns. The proposed
algorithm can be easily extended to handle the case of deleted
data points. Our approach can be adopted for the cases of
change of important parameters, such as neighbor distance and

prevalence threshold. In the future, we plan to explore these
problems.

REFERENCES

[1] K. Koperski and J. Han, “Discovery of Spatial Association Rules in
Geographic Information Databases,” in Proceedings of the International
Symposium on Large Spatial Data bases, 1995, pp. 47–66.

[2] Y. Morimoto, “Mining Frequent Neighboring Class Sets in Spatial
Databases,” in Proceedings of the ACM SIGKDD InternationalConfer-
ence on Knowledge Discovery and Data Mining, 2001, pp. 353–358.

[3] Y. Huang, S. Shekhar, and H. Xiong, “Discovering Co-location Patterns
from Spatial Datasets: A General Approach,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 12, 2004, pp. 1472–
1485.

[4] J. S. Yoo and S. Shekhar., “A Join-less Approach for Mining Spatial
Co-location Patterns,” IEEE Transactions on Knowledge andData
Engineering, vol. 18, no. 10, 2006, pp. 1323–1337.

[5] J. S. Yoo and S. Shekhar, “A Join-less Approach for Spatial Co-
location Mining: A Summary of Results,” in Proceedings of the IEEE
International Conference on Data Mining, 2005, pp. 813–816.

[6] H. Xiong, S. Shekhar, Y. Huang, V. Kumar, X. Ma, and J. S. Yoo,
“A Framework for Discovering Co-location Patterns in Data Sets with
Extended Spatial Objects,” in Proceedings of the SIAM International
Conference on Data Mining, 2004, pp. 78–89.

[7] J. Yoo and M. Bow, “Finding N-Most Prevalent Colocated Event Sets,”
in Proceedings of the International Conference on Data Warehousing
and Knowledge Discovery, 2009, pp. 415–427.

[8] M. Celik, J. M. Kang, and S. Shekhar, “Zonal Co-location Pattern
Discovery with Dynamic Parameters,” in Proceedings of the IEEE
International Conference on Data Mining, 2007, pp. 433 – 438.

[9] J. S. Yoo and M. Bow, “Mining Spatial Colocation Patterns: A Different
Framework,” Data Mining and Knowledge Discovery, vol. 24, no. 1,
2012, pp. 159–194.

[10] J. S. Yoo and S. Shekhar, “A Partial Join Approach for Mining Co-
location Patterns,” in Proceedings of the ACM International Symposium
on Advances in Geographic Information Systems, 2004, pp. 241–249.

[11] “San Francisco Crime Incidents,” https://data.sfgov.org/.

[12] “Earth Observation Data,” http://data.giss.nasa.gov/.

[13] C. F. Eick, R. Parmar, W. Ding, T. F. Stepinski, and J. Nicot, “Finding
Regional Co-location Patterns for Sets of Continuous Variables in Spa-
tial Datasets,” in Proceedings of the ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, 2008, pp.
1–10.

[14] P. M. et al., “A Neighborhood Graph based Approach to Regional Co-
location Pattern Discovery: A Summary of Results ,” in Proceedings
of the ACM SIGSPATIAL International Conference on Advancesin
Geographic Information Systems, 2011, pp. 122–132.

[15] N. Ayan, A. Tansel, and E. Arkyn, “An Efficient Algorithmto Update
Large Itemsets with Early Pruning,” in Proceedings of the International
Conference on Knowledge Discovery and Data Mining, 1999, pp. 287–
291.

[16] D. Cheung, J. Han, V. Ng, and C. Y. Wong, “Maintenance of Discov-
ered Association Rules in Large Databases: An Incremental Updating
Technique,” in Proceedings of the IEEE International Conference on
Data Engineering, 1996, pp. 106 – 114.

[17] S. Thomas and S. Chakravarthy, “Incremental Mining of Constrained
Associations,” High Performance Computing (HiPC), vol. 1970, 2000,
pp. 547–558.

[18] D. Cheung, S. D. Lee, and D. Kao, “A General Incremental Technique
for Maintaining Discovered Association Rules ,” in Proceedings of
the International Conference on Databases Systems for Advanced
Applications, 1997, pp. 185 – 194.

[19] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka, “An Efficient
Algorithm for the Incremental Updation of Association Rulesin Large
Databases,” in Proceedings of the ACM International Conference on
Knowledge Discovery and Data Mining, 1997, pp. 263–266.

[20] J. He, Q. He, F. Qian, and Q. Chen, “Incremental Maintenance of
Discovered Spatial Colocation Patterns,” in Proceedings of Data Mining
Workshop, 2008, pp. 399 – 407.

99Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

Powered by TCPDF (www.tcpdf.org)

 107 / 107

http://www.tcpdf.org

