
SERVICE COMPUTATION 2015

The Seventh International Conferences on Advanced Service Computing

ISBN: 978-1-61208-387-2

March 22 - 27, 2015

Nice, France

SERVICE COMPUTATION 2015 Editors

Marcelo de Barros, Microsoft Corporation, USA

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische

Wilhelms-Universität Münster / North-German Supercomputing Alliance

(HLRN), Germany

 1 / 77

SERVICE COMPUTATION 2015

Forward

The Seventh International Conferences on Advanced Service Computing (SERVICE
COMPUTATION 2015), held between March 22-27, 2015 in Nice, France, continued a series of
events targeting computation on different facets.

The ubiquity and pervasiveness of services, as well as their capability to be context-aware with
(self-) adaptive capacities posse challenging tasks for services orchestration, integration, and
integration. Some services might require energy optimization, some might require special QoS
guarantee in a Web-environment, while others a certain level of trust. The advent of Web
Services raised the issues of self-announcement, dynamic service composition, and third party
recommenders. Society and business services rely more and more on a combination of
ubiquitous and pervasive services under certain constraints and with particular environmental
limitations that require dynamic computation of feasibility, deployment and exploitation.

The conference had the following tracks:

 Web services

 Empirical methods in system and service management

 Service innovation, evaluation and delivery

Similar to the previous edition, this event attracted excellent contributions and active
participation from all over the world. We were very pleased to receive top quality
contributions.

We take here the opportunity to warmly thank all the members of the SERVICE COMPUTATION
2015 technical program committee, as well as the numerous reviewers. The creation of such a
high quality conference program would not have been possible without their involvement. We
also kindly thank all the authors that dedicated much of their time and effort to contribute to
SERVICE COMPUTATION 2015. We truly believe that, thanks to all these efforts, the final
conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the SERVICE
COMPUTATION 2015 organizing committee for their help in handling the logistics and for their
work that made this professional meeting a success.

We hope SERVICE COMPUTATION 2015 was a successful international forum for the exchange
of ideas and results between academia and industry and to promote further progress in the

 2 / 77

area of computation. We also hope that Nice, France provided a pleasant environment during
the conference and everyone saved some time to enjoy the charm of the city.

SERVICE COMPUTATION 2015 Chairs

SERVICE COMPUTATION 2015 Advisory Chairs

Mihhail Matskin, KTH, Sweden
Hideyasu Sasaki, Ritsumeikan University - Kyoto, Japan
Bernhard Hollunder, Hochschule Furtwangen University – Furtwangen, Germany
Paul Humphreys, Ulster Business School/University of Ulster, UK
Arne Koschel, Hochschule Hannover, Germany
Michele Ruta, Politecnico di Bari, Italy
Alfred Zimmermann, Reutlingen University, German
Aida Omerovic, SINTEF, Norway
Martin Wynn, University of Gloucestershire, UK
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Claus Pahl, Dublin City University, Ireland

SERVICE COMPUTATION 2015 Industry/Research Chairs

Ali Beklen, CloudArena, Turkey
Steffen Fries, Siemens Corporate Technology - Munich, Germany
Emmanuel Bertin, Orange Labs, France
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Sergey Boldyrev, HERE Berlin, Germany
Rong N. Chang, IBM T.J. Watson Research Center, USA
Wasif Gilani, SAP Research, UK
Alexander Kipp, Robert Bosch GmbH, Germany
Marcello Coppola, ST Microelectronics - Grenoble, France
Jan Porekar, SETCCE, Slovenia

 3 / 77

SERVICE COMPUTATION 2015

Committee

SERVICE COMPUTATION Advisory Chairs

Mihhail Matskin, KTH, Sweden
Hideyasu Sasaki, Ritsumeikan University - Kyoto, Japan
Bernhard Hollunder, Hochschule Furtwangen University – Furtwangen, Germany
Paul Humphreys, Ulster Business School/University of Ulster, UK
Arne Koschel, Hochschule Hannover, Germany
Michele Ruta, Politecnico di Bari, Italy
Alfred Zimmermann, Reutlingen University, German
Aida Omerovic, SINTEF, Norway
Martin Wynn, University of Gloucestershire, UK
Annett Laube, Bern University of Applied Sciences (BUAS), Switzerland
Claus Pahl, Dublin City University, Ireland

SERVICE COMPUTATION 2015 Industry/Research Chairs

Ali Beklen, CloudArena, Turkey
Steffen Fries, Siemens Corporate Technology - Munich, Germany
Emmanuel Bertin, Orange Labs, France
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Sergey Boldyrev, HERE Berlin, Germany
Rong N. Chang, IBM T.J. Watson Research Center, USA
Wasif Gilani, SAP Research, UK
Alexander Kipp, Robert Bosch GmbH, Germany
Marcello Coppola, ST Microelectronics - Grenoble, France
Jan Porekar, SETCCE, Slovenia

SERVICE COMPUTATION 2015 Technical Program Committee

Witold Abramowicz ,Poznan University of Economics, Poland
Saeed Aghaee, University of Lugano, Switzerland
Antonia Albani, University of St. Gallen, Switzerland
Riyad Alshammari, KSAU-HS University, Saudi Arabia
Dimosthenis S. Anagnostopoulos, Harokopio University of Athens, Greece
Julian Andrés Zúñiga, University of Cauca, Colombia
Ismailcem Budak Arpinar, University of Georgia, USA
Johnnes Arreymbi, School of Architecture, Computing and Engineering - University of East
London, UK

 4 / 77

Irina Astrova, Tallinn University of Technology, Estonia
Jocelyn Aubert, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Benjamin Aziz, School of Computing - University of Portsmouth, UK
Youcef Baghdadi, Department of Computer Science - Sultan Qaboos University, Oman
Ebrahim Bagheri, Ryerson University, Canada
Zubair Baig, Edith Cowan University, Australia
Akhilesh Bajaj, University of Tulsa, USA
Gabriele Bavota, University of Sannio, Italy
Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Ali Beklen, Cloud Arena, Turkey
Oualid Ben Ali, University of Sharjah, UAE
Morad Benyoucef, University of Ottawa, Canada
Emmanuel Bertin, Orange Labs, France
Sergey Boldyrev, HERE Berlin, Germany
Juan Boubeta-Puig, University of Cádiz, Spain
Antonio Brogi, University of Pisa, Italy
Manfred Broy, Technische Universität München, Germany
Massimo Cafaro, University of Salento, Italy
Radu Calinescu, University of York, UK
Juan Carlos Cano, Universitat Politècnica de València, Spain
Wojciech Cellary, Poznan University of Economics, Poland
Allen W. Chang, Tamkang University, Taiwan
Chin-Chen Chang, Feng Chia University, Taiwan
Maiga Chang, Athabasca University, Canada
Rong N. Chang, IBM T.J. Watson Research Center, U.S.A.
Claudia-Melania Chituc, Eindhoven University of Technology, Netherlands
William Cheng-Chung Chu, Tunghai University, Taiwan
Soon Ae Chun, City University of New York, USA
Javier Cubo, University of Malaga, Spain
Giuseppe De Pietro, Institute for High Performance Computing (ICAR) / National Research
Council of Italy (CNR) - Napoli, Italy
Manuel Andrea Delgado, University of the Republica, Uruguay
Leandro Dias da Silva, Federal University of Alagoas, Brazil
Kamil Dimililer, Near East University, Cyprus
Lamia Atma Djoudi, Synchrone Technologies, France
Erdogan Dogdu, TOBB University of Economics and Technology - Ankara, Turkey
Wanchun Dou, Nanjing University, China
Juan Carlos Dueñas López, Universidad Politécnica de Madrid, Spain
Haikal El Abed, Technische Universitaet Braunschweig, Germany
Nancy El Rachkidy, Polytech - Clermont University, France
El-Sayed Mohamed El-Alfy, King Fahd University of Petroleum and Minerals, Saudi Arabia
Vincent C. Emeakaroha, University College Cork, Ireland
Onyeka Ezenwoye, Georgia Regents University, USA
Marvin Ferber, University of Bayreuth, Germany

 5 / 77

Maria João Ferreira, Universidade Portucalense, Portugal
Massimo Ficco, Second University of Naples, Italy
Sew Bun Foong, National University of Singapore, Singapore
Sören Frey, Daimler TSS GmbH, Germany
Steffen Fries, Siemens Corporate Technology - Munich,, Germany
Nadia Gamez, University of Malaga, Spain
G. R. Gangadharan, Institute for Development & Research in Banking Technology [IDRBT] -
Hyderabad, India
Maira Gatti, IBM Research, Brazil
Parisa Ghodous, Claude Bernard University of Lyon, France
Christopher Giblin, IBM Research - Zurich, Switzerland
Wasif Gilani, SAP Research, UK
Sarunas Girdzijauskas, Royal Institute of Technology (KTH), Sweden
Luis Gomes, Universidade Nova de Lisboa / UNINOVA-CTS - Monte de Caparica, Portugal
Andrzej Goscinski, Deakin University, Australia
Gustavo González, Mediapro Research - Barcelona, Spain
Andrzej M. Goscinski, Deakin University - Victoria, Australia
Victor Govindaswamy, Concordia University Chicago, USA
Mohamed Graiet, Institut Supérieur d'Informatique et de Mathématique de Monastir, Tunisie
Maki K. Habib, American University in Cairo, Egypt
Ileana Hamburg, IAT - Westfälische Hochschule Gelsenkirchen, Germany
Takahiro Hara, Osaka University, Japan
Sven Hartmann, Clausthal University of Technology, Germany
Martin Henkel, Department of Computer and Systems Sciences – Stockholm University, Sweden
Bernhard Hollunder, Hochschule Furtwangen University - Furtwangen, Germany
Wladyslaw Homenda, Warsaw University of Technology, Poland
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Samuelson W. Hong, Zhejiang University of Finance & Economics, China
Sun-Yuan Hsieh, National Cheng Kung University, Taiwan
Marc-Philippe Huget, LISTIC/Polytech Annecy Chambery/University of Savoie, France
Paul Humphreys, Ulster Business School/University of Ulster, UK
Hemant Jain, University of Wisconsin- Milwaukee, USA
Jinlei Jiang, Tsinghua University - Beijing, China
Ivan Jelinek, Faculty of Electrical Engineering - Czech Technical University Department of
Computer Science and Engineering, Czech Republic
Alexander Jungmann, University of Paderborn, Germany
Alexandros Kaloxylos, University of Peloponnese, Greece
Tahar Kechadi, University College Dublin, Ireland
Nhien An Le Khac, University College Dublin, Ireland
Hyunsung Kim, Kyungil University, Korea
Alexander Kipp, Robert Bosch GmbH, Germany
Manuele Kirsch Pinheiro, Université Paris 1 - Panthéon Sorbonne, France
Mourad Kmimech, l’Institut Supérieur d’informatique de Mahdia (ISIMA), Tunisia
Kenji Kono, Keio University, Japan

 6 / 77

Arne Koschel, Hochschule Hannover, Germany
Yousri Kouki, ASCOLA - INRIA, France
Natalia Kryvinska, University of Vienna, Austria
Patricia Lago, VU University Amsterdam, Netherlands
Ulrich Lampe, Technische Universität Darmstadt, Germany
Annett Laube-Rosenpflanzer, Bern University of Applied Sciences - Biel/Bienne, Switzerland
Guanling Lee, National Dong Hwa University, Taiwan
Keqin Li, SAP Product Security Research, France
Kuan-Ching Li, Providence University, Taiwan
Noura Limam, University of Waterloo, Canada
Cho-Chin Lin, National Ilan University,Taiwan
Damon Shing-Min Liu, National Chung Cheng University, Taiwan
Qing Liu, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia
Shih-His (Alex) Liu, California State University - Fresno, USA
Welf Löwe, Linnaeus University, Sweden
Hui Ma, Victoria University of Wellington, New Zealand
Khaled Mahbub, City University, UK
Sabri A. Mahmoud, King Fahd University of Petroleum and Minerals, Saudi Arabia
Kurt Maly, Old Dominion University, USA
Lefteris Mamatas, University College London, UK
Gregorio Martinez, University of Murcia, Spain
Mihhail Matskin, KTH, Sweden
Manuel Mazzara, Innopolis University, Russia / ETH Zurich, Switzerland
Viktor Medvedev, Vilnius University, Lithuania
Souham Meshoul, University Constantine 2, Algeria
Lars Mönch, FernUniversität in Hagen, Germany
Fabrizio Montesi, IT University of Copenhagen, Denmark
Fernando Moreira, Universidade Portucalense, Portugal
Debajyoti Mukhopadhyay, Maharashtra Institute of Technology, India
José Neuman De Souza, Federal University of Ceará, Brazil
Francisco Javier Nieto De-Santos, Atos Research and Innovation - Bilbao Spain
Artur Niewiadomski, Institute of Computer Science - Siedlce University of Natural Sciences and
Humanities, Poland
Mara Nikolaidou, Harokopio University of Athens, Greece
Roy Oberhauser, Aalen University, Germany
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Hichem Omrani, CEPS/INSTEAD - GEODE dept., Luxembourg
Claus Pahl, Dublin City University, Ireland
Ingo Pansa, iC Consult, Germany
Namje Park, Jeju National University, Korea
Petra Perner, Institute of Computer Vision and applied Computer Sciences, Germany
Dana Petcu, West University of Timisoara, Romania
Willy Picard, Poznan University of Economics, Poland
J Brian Pickering, IT Innovation Centre, UK

 7 / 77

Pasqualina Potena, University of Alcalá, Spain
Thomas E. Potok, Oak Ridge National Laboratory, USA
David J. Pym, University College London (UCL), UK
Lianyong Qi, Qufu Normal University, China
Juan J. Ramos-Munoz, University of Granada, Spain
José Raúl Romero, University of Córdoba, Spain
Stephan Reiff-Marganiec, University of Leicester, UK
Wolfgang Reisig, Humboldt-Universität zu Berlin, Germany
Feliz Ribeiro Gouveia, Fernando Pessoa University, Portugal
Norbert Ritter, University of Hamburg, Germany
Juha Röning, University of Oulu, Finland
Gustavo Rossi, Universidad Nacional de La Plata, Argentina
Javier Rubio-Loyola, CINVESTAV - Information Technology Laboratory, Mexico
Anna Ruokonen, City University of Hong Kong, Hong Kong
Michele Ruta, Politecnico di Bari, Italy
Ulf Schreier, Furtwangen University, Germany
Dieter Schuller, Technische Universität Darmstadt, Germany
Frank Schulz, SAP Research Karlsruhe, Germany
Nazaraf Shah, Coventry University, UK
Kuei-Ping Shih, Tamkang University, Taiwan
Robert Singer, FH JOANNEUM - University of Applied Sciences, Austria
Masakazu Soshi, Hiroshima City University, Japan
George Spanoudakis, City University London, UK
Dimitrios G. Stratogiannis, University of Western Macedonia/National Technical University of
Athens, Greece
Young-Joo Suh, Pohang University of Science and Technology (POSTECH), Korea
Hung-Min Sun, National Tsing Hua University, Taiwan
Gerson Sunyé, Université de Nantes – INRIA, France
Giordano Tamburrelli, Università della Svizzera Italiana (USI), Swizterland
Anel Tanovic, BH Telecom d.d. Sarajevo, Bosnia and Herzegovina
Orazio Tomarchio, University of Catania, Italy
Georgios I. Tsiropoulos, Technical University of Athens, Greece
Bhekisipho Twala, University of Johannesburg, South Africa
Theodoros Tzouramanis, University of the Aegean, Greece
Roman Vaculin, IBM Research / T.J. Watson Research Center, USA
José Valente de Oliveira, Universidade do Algarve, Portugal
Luis Miguel Vaquero Gonzalez, Hewlett-Packard Labs, UK
Massimo Villari, Universita' di Messina, Italy
Maxime Wack, Université de Technologie de Belfort-Montbéliard, France
Alexander Wahl, Hochschule Furtwangen University - Furtwangen, Germany
David Wallom, University of Oxford, UK
Xiaoling Wang, East China Normal University, China
Ian Warren, University of Auckland, New Zealand
Mandy Weißbach, Martin-Luther-University Halle-Wittenberg, Germany

 8 / 77

Zhengping Wu, University of Bridgeport, USA
Mudasser Wyne, National University - San Diego, USA
Lai Xu, Bournemouth University, UK
Chao-Tung Yang, Tunghai University, Taiwan R.O.C.
Kim Jinhui Yao, University of Sydney, Australia
Qi Yu, Rochester Institute of Technology, USA
Xiaofeng Yu, Nanjing University, China
Zhifeng Yun, Louisiana State University, USA
Anastasiya Yurchyshyna, University of Geneva, Switzerland
Gianluigi Zavattaro, University of Bologna, Italy
Jelena Zdravkovic, Stockholm University, Sweden
Sherali Zeadally, University of Kentucky, USA
Liangzhao Zeng, IBM, USA
Wenbing Zhao, Cleveland State University, USA
Weiliang Zhao, University of Wollongong, Australia
Hong Zhu, Oxford Brookes University, UK
Alfred Zimmermann, Reutlingen University, Germany
Wolf Zimmermann, Martin-Luther-University Halle-Wittenberg, Germany
Christian Zirpins, Karlsruher Institute of Technology (KIT), Germany

 9 / 77

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 10 / 77

Table of Contents

An Application of Stochastic Models To Monitoring of Dynamic Web Services
Marcelo De Barros and Manish Mittal

1

Context Sensitive Web Service Engineering Environment for Product Extensions in Manufacturing Industry
Dragan Stokic and Ana Teresa Correia

9

Developing and Adopting Trust-aware Collaborative Prediction of QoS for Service-based Systems
Feng-Jian Wang, Chen-Yang Chen, and Po-Han Chen

14

Finding Optimal REST Service Oracle Based on Hierarchical REST Chart
Li Li and Wu Chou

21

Robust Interactions under System Crashes and Network Failures of Collaborative Processes with Arbitrary
Control Flows
Lei Wang, Andreas Wombacher, Marten van Sinderen, Luis Pires, and Chi-Hung Chi

27

Hybrid Approach to Abstract Planning of Web Services
Artur Niewiadomski, Wojciech Penczek, and Jaroslaw Skaruz

35

Appropriate Machine Learning Methods for Service Recommendation Based on Measured Consumer Experiences
Within a Service Market
Jens Kirchner, Philipp Karg, Andreas Heberle, and Welf Lowe

41

Towards a Compiler for Business Processes - A Research Agenda
Thomas M. Prinz, Thomas S. Heinze, Wolfram Amme, Johannes Kretzschmar, and Clemens Beckstein

49

An Approach for a Web-based Analysis Solution with MUSTANG
Mirco Josefiok, David Korfkamp, and Jan Witt

55

A Conceptual Model to Evaluate Decisions for Service Profitability
Eng Lieh Ouh and Stan Jarzabek

61

Powered by TCPDF (www.tcpdf.org)

 1 / 1 11 / 77

An Application of Stochastic Models To Monitoring of Dynamic Web Services

Marcelo De Barros, Manish Mittal
Bing Customer Experiences Engineering

Microsoft Corporation

Redmond, USA

marcelod@microsoft.com, manishm@microsoft.com

Abstract - Web search engines are very dynamic in

nature; not only are the backend and data powering the site

evolving, but the frontend is always adapting to different

browsers, devices and form-factors, and experiments are often

running in production. In fact, when it comes to User

Experience (UX), it is likely that users are always falling into

some live experiment in production: variation of colors, fonts,

typography, different Java Scripts and so on. Issues (software

bugs) can occur on the live site for very particular contexts,

where a context is defined as a particular configuration of

browser, market and experiment. As an example, a JavaScript

error can occur on a certain page, for certain types of queries,

against a certain market on a particular browser. The problem

that we’re trying to solve is to devise a probabilistic

methodology to monitor and detect these particular software

bugs in production environments by maximizing the chances of

detecting the most relevant issues from the application users’

standpoint. For this purpose, we at the Microsoft Bing

Experiences Team developed a concept of synthetic

exploratory monitoring that can focus on the important

features on the sites and pages, and use invariants (conditions

that should always hold true, or always hold false, for specific

contexts), such as security-related invariants, to detect

potential anomalies in the current context. We make use of

stochastic models to ensure maximum relevant coverage of

contexts and devices. We use the power of the Selenium testing

framework to drive end-to-end automation on browsers and

devices, the notion of exploratory tests, and a set of heuristics

and invariants (text-based and image-based) that can auto-

detect problems on the live site in very particular contexts. We

compare and contrast two machine–learning models: Markov

Chains and Time-Based Artificial Neural Networks (ANNs).

We implemented the idea explained in this paper to monitor

large-scale web sites such as Bing Search Engine where alerts

are generated automatically whenever the anomaly conditions

are detected. The solution is easily expandable to other sites.

We envision, as future work, moving this technology to the

cloud that would allow easy customization of all parameters

(browsers used, definition of the finite-state machine, heuristics

and invariants). This paper explains the fundamental

principles to create a stochastic monitoring model and

demonstrates how to apply the principles to large-scale web

sites and services. We will utilize Bing Search Engine to

illustrate the techniques explained here.

Keywords-software testing; large-scale services; quality of

services; markov chains; artificial neural networks; selenium;

testing in production; monitoring; stochastic models

I. SCALING SYSTEMS TO DEVICES, BROWSERS AND

MARKETS

In today’s world, whenever a new online system is

launched, it is usually available across several devices

(devices that display web contents), browsers and markets

instantaneously and simultaneously. This poses a significant

development challenge since:

a) Different browsers, devices and markets have

specific requirements and resources that may differ

from each other, and there is no enforced global

standard across them.

b) Support for Cascading Style Sheet (CSS) and

HTML5 compatibility and support vary

significantly from browser to browser.

c) The form-factor for the different devices varies

significantly. Because of smaller screens, code

might need to be optimized to show the user

different data or presentation of the information.

Despite the development and adoption of

responsive web design techniques [10], very often

there is still a need for small code customizations.

For instance, some devices are large enough to

display data into two vertical panes (columns),

where others require the use of a single pane.

d) Markets are also another important dimension

given the differences in language grammars as well

as geo-cultural differences. Large-scale systems

such as Google, Bing and Facebook are always

dealing with such challenges.

Many large-scale web sites are now making use of

“flights” or “experiments”. An experiment is a way to

expose a percentage of the site’s users to a different

treatment of the site (which can be differences in the User

Interface, middle-tier, backend or even data differences) in

order to collect early feedback and then make an informed

decision about the upcoming features for the system. For

example, a search engine might want to expose 2% of its

users to a SEarch Results Page (or SERP) that shows only

eight “blue links” by default instead of ten blue links. The

telemetry for that experiment is then collected and analyzed

against the “control” (the ten blue links) and data analysts

work on distilling the positive and negative aspects of the

experiment, where positive aspects correspond to user

metrics moving towards the expected direction (such as

page load time being reduced, user abandonment reduced,

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 12 / 77

increased dwell time [16], amongst others) and negative

correspond to the converse. Experiments can overlap with

each other. At any point in time, there might be tens or even

hundreds of experiments running in production

environments [15].

The paper is organized as follows: in Section I, we

describe the complexities involved with monitoring large-

scale services. In Section II, we describe the current state of

the art. In Sections III and IV, we introduce the ideas of

Markov Chains and Selenium, respectively. In Sections V,

we define the concept of exploratory runs. In Section VI, we

define the concept of subscription-based validation methods.

In Section VII, we devise the strategy for exploratory runs

utilizing a stochastic model (such as Markov Chains),

Selenium and the pre-defined concept of subscription-based

validation methods to solve the monitoring problem. In

Section VIII, we explore other stochastic models that can be

used to solve the monitoring problem, such as Artificial

Neural Networks. In Section IX, we provide a summary of

the work as well as the direction for future research.

II. MONITORING COMPLEXITIES AND STATE OF THE ART

Since the code is somewhat customized to different user

experiences (experiments, browsers, devices and markets),

there is a possibility of encountering specific issues on any

of these and worst, on combination of these dimensions: a

specific problem may only happen on an experiment, on a

given browser, on a given device and for a particular

market. Some simple lower-bound calculations show the

complexity and the scale of this problem. If we have around

30 experiments, 30 browsers, 30 devices and 200 markets,

the number of possible combinations (assuming no overlaps

on the experiments) becomes 30*30*30*200 = 5,400,000

different permutations. Even using well known monitoring

techniques, such as Gomez [2] or Keynote [3], it becomes

impossible to monitor all these variations. In reality, though,

most of these contexts are either not significantly crucial to

the business or are not valid at all (for example, most of the

time experiments are limited to either a group of markets or

a group of browsers), hence understanding the valid and

important permutations can prune the combinatorial space

considerably. Notice the usage of the terms “testing” and

“monitoring” are interchangeable in this paper, both

indicating the ability to proactively detect anomalies in real

production environments.

The current state of the art for monitoring strategies consists

basically of three approaches:

a) Synthetic Transactions [2]: market tools such as

Keynote and Gomez give the capability of building custom,

synthetic transactions to monitor particular features of web

services and sites. However, synthetic transactions only

target very limited set of features that need to be known a-

priori which limits its effectviness when monitoring

complex and dynamic systems. They are very inefective for

highly dynamic services.

b) Performance Counters [14]: web services

developers have the ability to implement performance

counters on the server side which can give indications of

potential system malfunctions. For example, a performance

counter that tracks “75%tile server side latency” can be the

initial lead to investigate real user issues with the service (in

case of spikes or drops, for example). However,

performance counters have the disadvantages that they

usually fail to track client-only problems (such as javascript

errors) and since they aggregate data across all the users, it

only detects problems when a signficant number of users are

affected by the problem – issues that affect only a very

small percentage of users usually go undetected by

performance counters.

c) Telemetry: telemetry consists of analysis of time

series of logs from user activity as well as system probes in

order to detect anomalies in production [12]. Although

telemetry analysis has the capability of detecting widespread

issues with one’s service, it is not a real-time monitoring

system since the collection, aggregation and availability of

the data are tasks that usually take signficant time to be

performed, limiting its ability in detecting anomalies in a

timely manner.

 None of the current state of the art methoodologies hence

is comprehensive enough to actually model the user’s

behavior and detect in real-time relevant anomalies based on

the true users’ patterns observed in production

environments. The work described in this paper is an

attempt to address this gap.

III. MARKOV CHAINS

We use Markov Chains [4] to model the behavior of the

system, limiting the monitoring space to the most probable

paths. A Markov Chain is a type of stochastic model based

on the concept of Finite-State Machines [17]) that

undergoes transitions from one state to another on a state

space. It is a random process usually characterized as

memory-less: the next state depends only on the current

state and not on the sequence of events that preceded it. For

search engines, the states in a Markov Chain are web site

landing pages, such as: the search engine Home Page, the

search engine Web Results Page, Videos Results Page,

Images Results Page, Settings Page, and any the other page

type included in the search engine substrate.
The actions that lead to a state transition are the different

actions that can be performed by the end user, mainly
Searches, Clicks, Tabs, Hovers, and so on. With enough
anonymous log-based information about the different states
and actions, one can build a comprehensive Markov Chain
diagram modelling the proper behavior of the average user of
the web system in questions. The assumption is that most
web sites nowadays log information about their users’
iterations with the page (in an anonymized manner). The
picture below (Figure 1) gives an example of a state
transition, and the table below (Table I) gives an example of
a simple Markov Chain. Notice that the key aspect here is

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 13 / 77

that each action is associated with a certain probability (the
“Probability Weightings” column in Table I), calculated
based on the number (percentage) of users who triggered that
respective action based on captured data. For example, the
second row in Table I shows the state as being the “home
page” and the probability weighting as being “20%”. The
semantics of such information is that when a user lands (or
is) in the “Home Page” state, there is a probability of 20%
that the user will perform the action of “typing a query” and
hitting enter. The third row tells us that if the user is in the
same state (“Home Page”) there is also a probability of 15%
that the user will perform the action of clicking on the “Top
News” link. The table only shows a partial view of the
probability weighting distribution.

Figure 1. Example of state transitions

TABLE I. EXAMPLE OF MARKOV CHAINS STATES AND

WEIGHTED TRANSITIONS
Initial State Final State Action Probability

Weightings

Home Page Search Results

Page

Typed Query 20%

Home Page Search Results

Page

Clicked on

“Top News”

15%

Home Page Home Page Refresh the

Page

5%

Search

Results Page

Search Results

Page

Typed Query 60%

Search

Results Page

Non-Search

Page

Clicked on

Ads

15%

Search

Results Page

Non-Search

Page

Clicked on

Algo Result

33%

Images

Results Page

Videos Results

Page

Click on the

Videos link

10%

Images

Results Page

Images Results

Page

Click on

Related
Images

25%

Images

Results Page

Images Results

Page

Click on

Related

Entities

7%

Images

Results Page

Images Results

Page

Refresh the

Page

13%

The granularity of the states and the actions is

something that varies depending on the applications. In the

example above, the Typed Query action could certainly be

further refined by specifying the category/class of query

being typed, such as “Local Query”, “Adult Query” or

“Electronics”. Likewise the “clicked on” event can be

grouped into categories (such as “clicked on Algo Results”)

or further refined down to the domain of the link being

clicked (such as “clicked on an amazon.com link”). The

important aspect is to create the chain in such a way that it

truly encompasses the users’ behavior but keeping it concise

enough to prune the overall search space. For our project,

we also added some random aspects to our testing in order

to provide extra coverage. For example, when the action is

“Send a new query” we take a random query from a pool of

pre-defined queries, usually a combination of head and tail

queries (See “Web Search Queries” [9]).

Some states are outside the scope of the pages being

tested. For example, if the scope being tested is all the pages

under the bing.com domain, any site outside that domain

would be considered an out-of-scope state. It is important to

model the chain in such a way that once out of the scope,

actions will lead to in-scope states (such as clicking the back

button, or navigating back to the initial state).

With the Markov Chain created, the monitoring approach

can be tweaked to randomly follow the paths and

probabilities specified by the chain. Notice that the approach

will necessarily focus on the most probable paths (assuming

a random distribution), which is the desired approach.

In addition to using a Markov Chain for transitions, another

important aspect that needs to be taken into consideration is

the overall distribution of browsers, devices, markets and

flights (experiments).

There are two different approaches to integrating

Markov Chains for these additional dimensions into the

monitoring system:

1) Create the Markov Chain to take into account

browsers, devices, markets and flights

(experiments). In such cases, there can be multiple

Markov Chains for each dimension, or combination

of dimensions, or one Chain where states and

transitions take into account these dimensions; or,

alternatively

2) Create the Markov Chain without the particular

data about browsers, devices, markets and flights,

and use an orthogonal table with the distribution of

the population across these dimensions, and

randomly switch to a certain dimension as you

navigate the chain.

The approach we have taken is the second one. The
Markov Chain is created with the overall usage pattern
across all the users in the system. At the same time we get
the distribution of users across all browsers, devices, markets
and experiments. In the following hypothetical example
(Table II), we see several user context distributions across
browsers, devices, markets and experiments. We then
combine these two sources of data (the Markov Chain and
the User Context Distributions) in order to come up with the
proper stochastic model for the exploratory tests. Section VII
explains the details of how these two data sources come
together. Section VIII explains how the User Context

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 14 / 77

Distribution can be used as input into an Artificial Neural
Network.
 TABLE II. EXAMPLE OF USER CONTEXT DISTRIBUTIONS

Browser Percentage of users

Internet Explorer 7 6%

Internet Explorer 8 8%

Internet Explorer 11 15%

Firefox 9%

Others 62%

Device Percentage of users

Windows Phone 34%

iPhone 17%

Kindle Fire 17%

Android 9%

Others 23%

Market Percentage of users

United States 52%

China 17%

Brazil 4.5%

Canada 7%

Others 19.5%

Experiment Percentage of users

Experiment #1: light-blue
background color

2%

Experiment #2: larger font size

for titles

3%

Experiment #3: larger images 20%

Experiment #4: new relevance

ranker

1%

A potential limitation of the Markov Chains is the fact

that transitions from one state to the other do not depend on

the path taken to get to the current state. This might be seem

as a limitation of the model if there is a need to build more

complex, “state-full” scenarios. That can easily be overcome

by developing more detailed states inside the Markov Chain

(adding complexity to it). For example, if there is a need to

model a scenario where users come from page A through

page B, we can build a state named “AB” that reflects that

path.

IV. SELENIUM

Selenium [6] is a portable software testing framework for
web applications that provides a record/playback tool for
authoring tests without learning a test scripting language
(Selenium IDE). It also provides a test domain-specific
language (Selenese) to write tests in a number of popular
programming languages, including Java, C#, Groovy, Perl,
PHP, Python and Ruby. The tests can then be run against
most modern web browsers. Selenium deploys on Windows,
Linux, and Macintosh platforms. The way we use Selenium
for exploratory tests and monitoring is through Selenium
WebDrivers. Selenium WebDriver accepts commands and
sends them to a browser. This is implemented through a
browser-specific browser driver, which sends commands to a
browser, and retrieves results. Most browser drivers actually
launch and access a browser application (such as Firefox or
Internet Explorer). Selenium WebDriver does not need a

special server to execute tests. Instead, the WebDriver
directly starts a browser instance and controls it. There is an
ongoing effort by the inventors of Selenium to make it an
internet standard.

Selenium provides an easy interface to interact with the
browser, and the same test scripts can be used against many
supported browsers. The ability to perform clicks, hovers,
navigation manipulation, simulate different keyboard
commands to the browser, scroll, change the browser
settings and even detect and manipulate pop-up windows
make it ideal for web automation.

In order to provide extra reliability, one can make use of a
Selenium Grid. Selenium Grid is a server that allows tests to
use web browser instances running on remote machines.
With Selenium Grid, one server acts as the hub. Tests contact
the hub to obtain access to browser instances. The hub has a
list of servers that provides access to browser instances
(WebDriver nodes), and lets tests use these instances.
Selenium Grid allows running tests in parallel on multiple
machines, and to manage different browser versions and
browser configurations centrally (instead of in each
individual test).

V. EXPLORATORY RUNS

The term Exploratory Runs here is loosely used to define
the process of semi-randomly exploring different parts of a
system while performing different verifications and
validations that are pertinent to the current part of the system
in question. The semi-random nature is accomplished via
two methods: walking the generated Markov Chain, and
modifying the context based on the users’ distribution of
markets, browsers, devices and experiments. The process
usually starts at the initial page of the system, such as the
user’s home page. At that point a frequency-weighted
random set of actions gets triggered based on the weight
(probability) of the actions in the Markov Chain. It continues
from that point on following the same approach indefinitely
or until a certain time amount elapses. The transition of the
states is implemented via commands in Selenium. Figure 2
below illustrates a simple Markov Chain being walked
probabilistically:

Figure 2. Schema depicting a simple Markov Chain

Orthogonally to the walk of the Markov Chain, we make

use of the contexts distribution in the following manner:

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 15 / 77

a) Markov Chain traversal keeps happening randomly

for a period of time (say N minutes)

b) After that period of time elapses, a change of

context happens based on the distribution table

We use N = 30 minutes, which is based on our
observations with real Bing user data, 30 minutes is the
average time for a user web session. After 30 minutes, the
contexts in which the tool is running may change: browser,
device, market or experiment. The change is random but
weighted based on the distribution tables. We utilize a
number of Selenium Grids, one for each type of Internet
Explorer (IE) browsers (from version 7 to the latest version),
and all the grids also contain other browsers, such as Chrome
and Firefox. Markets also change based on a set of pre-
defined markets (around 200 in our case). The device is
simulated on the desktop browsers by manipulating the user-
agent. This simulation isn’t ideal as some issues only appear
or repro on the actual devices, but it is a good stopgap
solution to catch some types of issues (like features being
under/over triggered). We also force the exploratory run to
fall into one (or combination of) experiments by using test
hooks (in our case query-string parameters that are only
enabled/visible inside the Microsoft corporate network). The
automation keeps running indefinitely as a monitoring
mechanism against production.

VI. SUBSCRIPTION-BASED VALIDATION MODULES

It is common to see the schema of a validation module

(or test case) as a self-contained unit that performs all the

steps necessary to set up the proper pre-validation before the

validation takes place, followed by the validation itself,

culminating with the post-validation (or teardown).

Schematically we have:

SampleTestCase()

{

 Pre-ValidationSetup();

 Validation();

 Post-ValidationSetup(); //Teardown

}

There are many advantages of such scheme: simplicity,

standard pattern, readability, reproducibility, determinism, to

name a few. However, such a model does not fit well into the

exploratory runs mentioned previously. Instead, what we

want is a subscription-based model where the test case

subscribes to the current state (or action) if the current state

(or action) meets certain criteria pertinent to that test.

Schematically, subscription-based test cases have the

following format:

SubscriptionBasedSampleTestCase()

{

 If(IsRelevantState(this.CurrentState))

 Validation();

}

In essence, we are proposing a separation of the validation

method from the configuration. The test becomes

opportunistic rather than deterministic: if we reach a

situation during the traversal of the Markov Chain where the

test is applicable, then it runs; otherwise it ignores the

current state.

An example of a subscription-based test case would be

the following: suppose that we want to write a test case to

validate behaviors for a certain segment of queries called

navigational queries, which are queries that seek a single

website or web page of a single entity. A query such as

“sales force” is a navigational query. There are several types

of validation that can be performed for navigational queries.

As per the example in Figure 3, when searching on “sales

force”, we can base validation on:

a) Correctness of the algorithmic first result returned

b) Proper attribution for “Official Site”

c) Proper number, format, truncation for deep-links

d) Proper placement and usage of inner-search boxes

The picture below (Figure 3) depicts the items that can
be subjected to validation:

Figure 3. Validation aspects for web-search deep-links

There are two types of tests that can be used in this

model:

1) Custom Tests are specific for only certain states (or

actions). For instance, the deep-links validation

shown above is an example of custom test since it

only applies to pages originated from navigational

queries

2) Invariant Tests verify general invariants that

should always be true (or always be false) no

matter what state we are

Invariant Tests are very powerful since they apply to all

states (or actions). It is important and recommended that the

product being tested be properly instrumented with test

hooks in order to enable invariant conditions that can then

be tested through invariant tests. An example of an invariant

test would be a test that looks for java script errors. No state

(or action) should lead to a Java script error on the page. We

instrumented some of the Bing pages so that whenever

inside the Microsoft corporate network and when a certain

query string parameter is passed in the URL, any Java script

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 16 / 77

error is caught via a global try/catch and written into a

hidden HTML div tag [5]. With such instrumentation

implemented, the invariant test for java script errors

becomes trivial – basically checking for the presence of the

java script error div tag. Other types of invariant tests are:

a) Links: no links should lead to 404 pages

b) Server Error: no state/action should lead to server

errors

c) Security: no state/action should expose any

security flaw (such as cross-site scripting [13])

d) Overlapping: no state/action should contain

overlapped elements
Security invariants for instance are implemented by

scanning the page and attempting to exploit potential

vulnerabilities. An example would be cross-site scripting

[13]: all the links and JavaScripts on the page are exercised

with custom parameters handcrafted in order to exploit

cross-site scripting vulnerabilities. Since Selenium allows

the test to actually open and run the browser, if a cross-site

scripting vulnerability is found the monitoring validation

can then detect it based on the handcrafted parameter passed

to the link or JavaScript.

Selenium also provides a capability of taking the

screenshot of the current page. This allows the engineers to

implement image-based test methods, some of which can be

custom methods (such as the rendering and placement of

some objects on the page specific to certain contexts) or

invariants (such as the space between blocks on the page).

Also, it is important to notice that some of the methods only

apply to certain contexts (browsers, devices, markets or

experiments). In such cases, the test needs to verify that the

current context is relevant for the test in question to be

executed.

VII. METHODOLOGY

Combining all the approaches described in this paper, we

come up with the following methodology for synthetic

exploratory testing or monitoring of large-scale web

systems:

1) Mine the logs to create the user’s profile Markov

Chain. A user profile reprsents the states, actions and states

transitions based upon mining of the logs

2) Retrieve the percentage distribution of different

contexts (browsers, devices, markets and experiments)

3) Create custom and invariant tests that adhere to the

subscription-based model

4) Stochastically run through the Markov Chain using

Selenium or Selenium Grid. When testing search engines a

key aspect is the generation of relevant queries to be used. It

can be a combination of top queries based on frequency as

well as segment-specific queries (such as queries that trigger

local results or movie results)

5) Sporadically (time-based) switch contexts based on

the distribution from #2

6) At each state (and action), apply the subscription-

based tests from the library (#3). Alert in case of failures.

We differentiate monitoring from testing in terms of

running the tests post-production and pre-production,

respectively. The approach can be used for either one.

However, we prefer to have deterministic tests as a pre-

production mechanism, leaving the non-deterministic ones

(such as the stochastic ones based on Markov Chains) as a

monitoring mechanism (post-production). Also, the

different tests have different priorities, so not all the tests

will lead to an escalation (usually the invariant ones are

deemed higher priority than the custom ones).

As the approach above executes, over time the critical

monitoring paths will certainly be covered. Given that the

approach follows a weighted-probability model, the critical

paths will be covered more often than the non-critical ones.

That is desirable since in today’s fast-pace development

environment of large-scale web systems, only the critical

problems (the ones affecting the vast majority of users) get

real attention; others are treated as low priority. The

stochastic model is an elegant way to ensure highly-

probable coverage of critical scenarios, and yet also cover

some low-key scenarios.

Below are two examples of invariant failures when the

model was applied to Bing.com. We used a set of 5 high-

end servers executing around 1,000,000 state transitions per

day, and running over 100 validation methods (of which

15% were invariant ones). The first example (Figure 4) is an

invariant that looks for HTTP 500 server errors, in this case,

generated by a combination of experiment and different

interactions with the site:

Figure 4. Issue discovered through an invariant test method

The second one is a low-priority invariant test based on

image processing. In this case, the area to the right of the

end of the search box should always contain background

color only. But in the case of the German market, whenever

search filters are present due to the long words in German,

the placement of the filters (bottom left inside the top right

rectangle) are going beyond the limits of the search box,

breaking the pre-specified requirement (the requirements

consist of User Interface principles and rules determined by

designers that the code should always adhere to. In this

particular case the specification clearly calls out that only

background color can show up at the right side of the search

box. Such a rule is violated in the case of German strings

given that strings in the German language are usually longer

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 17 / 77

than the ones in English). Figure 5 shows an example of

such an issue:

Figure 5. Example of an image-based error related to markets

Notice that the use of Markov Chains and context
distributions allows the monitoring system to be highly
adaptive: as the user patterns and context distributions
change over time, the system will adapt itself based on the
new data. The other important aspect is that the validation
and monitoring mechanisms can certainly be extended to
more than functional use, such as covering security concerns.
At each step during the traversal of the Chain, we can also
plug-in penetration tests which would be characterized as
invariant methods.

VIII. TIME-BASED NEURAL NETWORKS

One of the limitations of Markov Chains is the fact that

there is a need to introduce into the chains specific

weighted-random events in order to account for the different

contexts [11]. An alternative to overcome such limitation is

to use a prediction model to, given a particular state and

time for a user, predict the next state that the user is going to

be based on the training data. The model that we selected

was Artificial Neural Networks (ANNs [7]). The idea is to

use features related to the current and previous states

(pages), current and previous actions, current context, and

generate the next most probable state, action and contexts.

However, since the execution will have a temporal factor,

there was an attempt to introduce a time-based feature into

the ANN: the information about the user is segmented on a

per-time unit, in our case every second. Such approach is

similar to a Time Delay Neural Network (TDNN [8]).

Mathematically speaking, the function F that the ANN will

implement would then be:

F(States, Actions, Context, Time) = {State’, Action’, Context’)

Here, we use the previous three states that the user has

been previously (three previous pages visited), the

corresponding three previous actions, the current context

(which is a tuple consisting of browser, device, market and

experiment) and the current time unit of the day in seconds

(from 0 to 86,399). Figure 6 below depicts the ANN used.

Figure 6. Time-based ANN

We decided to try the feed the network with the three

previous pages and actions in order to have more accurate

prediction. Trying with further states and actions did not

improve its precision numbers (around 65% precision, see

Table III below). We obtained the maximum precision

numbers with the schema aforementioned: 12 input nodes

where we split the time feature into two features: hour of the

day (0-23) and seconds of the hour (0-59), 36 nodes in the

middle (hidden) layer and 6 output nodes consisting of the

state, actions, browser, device, market and experiment that

the user should be in. During the execution, the ANN is fed

with the current information about the user and the new

information is given, changing the current user. Notice that

the benefit of this new model is that it can be expanded to

use other features too, and we do not need to rely on a

weighted-random parallel mechanism to take into account

the user’s context. Also, given that the execution of the

action usually takes over a second, it is very likely that the

next input to the ANN will contain a different time

parameter hence likely leading to a different output (the

concern was that during the execution mode, the input

would be consistently the same, hence producing the same

output. It was not the case since the execution of each step

took longer than 1 second). The learning model utilized was

the error back-propagation [9]. We utilized a data set

consisting of 1.5 million impressions in a 24h timeframe,

proportionally sampled and distributed over the 24h

window. 80% of this data was used as the training set

whereas the remaining 20% was used as a test set.

With the Time-Based ANN fully trained, we swapped

the model in the execution engine (Section VIII.4) with the

Time-Based ANN. everything else in the methodology

remained the same as described in Section VIII. Table III

below depicts some comparative data between the Markov

Chain Model and the Time-Based ANN model:

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 18 / 77

TABLE III. COMPARISON BETWEEN MARKOV CHAINS AND
ANN FOR MONITORING

 Markov
Chains

Time-based
ANN

Training Time ~10min ~60min

Execution
Time

400ms 30ms

Precision N/A 65%

Min-Time-To-
Failure
(MTTF)

30min 108min

As one can see, due to the nature of the error back-

propagation algorithm (with the high number of interactions

for convergence), the time for the function to converge takes

approximately six times longer compared to the training of

the Markov Chain (which consists primarily of creating the

weighted transitions). On the other hand, once the ANN is

properly trained, its execution is significantly faster than the

Markov Chain (likely attributed to the heavy weighted-

random computations on the Markov Chains). The precision

achieved for the ANN was not very high, around 65% for

the test set, likely due to the fact that the time-based concept

does not give a very predictable aspect to the back-

propagation function despite its convergence. The Min-

Time-To-Failure (MTTF) is characterized as the minimum

time during the monitoring aspect to find the first

monitoring failure or potential failure. In this aspect the

Markov Chain converges faster than the Time-Based ANN.

We believe this fact is related to the low precision for the

Time-Based ANN. Our conclusion is that the Time-Based

ANN gives a more elastic and expandable model where

more features can be added in order to improve its

precision; however the Markov Chain still gives the best

outlook in terms of speed of training as well as better

modeling the user’s behavior. The Markov Chains are also

significantly easier to implement compared to ANNs. Future

work will be focused on augmentation of the ANN in order

to improve its precision.

IX. CONCLUSION AND FUTURE WORK

Monitoring large-scale dynamic web sites across multiple
browsers, devices, markets and experiments is a very
complex task. In this paper, we have proposed a way to
model the users’ behavior via two stochastic methods:
Markov Chains and Time-based Artificial Neural Networks.
We compared these two methods in terms of their
complexities, precisions and overall fitness for the problem
of monitoring large-scale services. We combined Markov
Chains and Selenium to recreate the same conditions
experienced by real users in production. In addition, the
validation approach is also changed from self-contained
validation methods to a subscription-based model where the

validation method subscribes to only the applicable states.
Finally, validations can be invariant ones (applicable to all
states) or custom ones (applicable to specific states). Future
work will be focused on the time-based artificial neural
network in order to achieve higher precision and better
suitability for the problem of monitoring of web services. We
presented an instance of the solution to monitor web search
engines, but the same approach can be used to monitor other
types of dynamic web services.

REFERENCES

[1] M. De Barros and C. Alex “Agile quality-centric development

process of large-scale web systems”, Swiss Testing Day 2014,

March. 2014

[2] Gomez Network [Online]. Available from

https://www.gomeznetworks.com/?g=1 2014.12.29

[3] Keynote [Online]. Available from http://www.keynote.com/

2014.12.29

[4] M. De Barros, J. Shiau, C. Shang, K. Gidewall, H. Shi, and J.

Forsmann, “Web Services Wind Tunnel: On Performance Testing

Large-Scale Stateful Web Services”, 37th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks,

2007

[5] The HTML <div> tag [Online]. Available from

http://www.w3schools.com/tags/tag_div.asp 2015.01.12

[6] Selenium HQ Browser Automation [Online]. Available from

http://docs.seleniumhq.org/ 2014.12.29

[7] Neural Networks [Online]. Available from

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.

html 2015.01.12

[8] Neural Network, Component of Measuring Set for Error

Reduction [Online]. Available from

http://www.measurement.sk/2004/S1/Vojtko.pdf 2015.01.12

[9] Error Backpropagation [Online]. Available from

http://www.willamette.edu/~gorr/classes/cs449/backprop.html

2015.01.12

[10] E. Marcotte, "Responsive Web design", A List Apart, May.

2005

[11] M. De Barros, “Automated Synthetic Exploratory Monitoring

of Dynamic Web Sites Using Selenium”, PNSQC 2014, October.

2014

[12] R. Ramakrishnan, “Big Data @ Microsoft” [Online]. Avaiable

from http://research.microsoft.com/en-us/events/fs2013/raghu-

ramakrishnan_bigdataplatforms.pdf 2015.01.15

[13] S. Cook, “A Web Developer’s Guide to Cross-Site Scripting”

[Online]. Available from

https://www.grc.com/sn/files/A_Web_Developers_Guide_to_Cros

s_Site_Scripting.pdf 2014.12.29

[14] Web Service Counters for the WWW Service [Online].

Available from https://technet.microsoft.com/en-

us/library/cc786217(v=WS.10).aspx 2015.01.16

[15] User Experience at Google “Focus on the user and all else will

follow”, CHI 2008 Proceedings, April. 2008

[16] C. Liu, R. W. White, and S. Dumais, “Understanding Web

Browsing Behaviors through Weibull Analysis of Dwell Time

[17] M. Arbib, A. Theories of Abstract Automata (1st ed.).

Englewood Cliffs, N.J.: Prentice-Hall, Inc. ISBN 0-13-913368-2,

1969

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 19 / 77

Context Sensitive Web Service Engineering Environment for Product Extensions in
Manufacturing Industry

Dragan Stokic, Ana Teresa Correia
Institute for Applied System Technology, ATB-Bremen,

Bremen, Germany
e-mail: dragan@atb-bremen.de, correia@atb-bremen.de

Abstract— Modern industrial companies aim to extend their
products with services as fundamental value-added activities
and reduce the product to be just a part of the offering. Web
based services offer excellent opportunities for such product
extensions. To build such services and to meet requirements of
mass customization, the manufacturers of machines and
equipment for production of mass customized products need
powerful service engineering environments to allow for multi-
directional exchange of knowledge between product design,
service design and manufacturing, as well as customers and
other relevant organizations across the value chain, distributed
all over the globe. Specifically, they need feedback from their
business customers to whom they sell their equipment, as well
as from the final-product customers. The objective of this
research is to create a new context sensitive, product-
(web)service engineering environment based on a combination
of Cloud Manufacturing, Product Data Management system
and social software solutions, as well as a set of tools to support
real time sharing of knowledge among various actors, from the
designer up to the customer, aimed at companies producing
machines for mass product manufacturers. The application of
the environment in a shoe machine producer is presented.

Keywords-product extension services; web services; service
engineering; context sensitivity; cloud manufacturing.

I. INTRODUCTION
To support dynamic building of new web based services

around products, i.e., to build Product Extension Services,
there is a need for strong collaboration among various actors
across the value chain [1][2]. In today’s rapidly changing and
globalizing markets, with new emerging technologies to
support the mass production for manufacturing and service
industries, the new paradigm, called “Mass Customization”,
represents the trend towards the production of highly
customized products/services. Providing customers with the
ability to co-design products/services based on their own
preferences has been considered one of the most distinctive
features of mass customization. However, to meet
requirements of building Product Service Systems (PSS) for
mass customization, the manufacturers of machines and
equipment for production of mass customized products need
feedback from their business customers to whom they sell
their equipment and services, as well as from the final-
product users/customers. Real time exchange of knowledge
between the web service designers, product manufacturers,
maintenance experts, as well product-service users, is
unavoidable for the modern PSS design. This includes

automatic data gathering and exchange along the value chain
(e.g. data on energy consumption), but also tacit knowledge
from various actors (e.g., experience of the maintenance
staff), relevant for building services.

The classical product engineering systems do not meet
their requirements concerning neither effective support of
concurrent web service design, nor facilitating acquisition
and re-use of the tacit knowledge. The industrial companies
require a structured approach offered by such classical
Information and Communication Technology (ICT)
solutions, but, on the other hand, they need high flexibility
from tools to allow capturing of dynamically changing
requirements and experience of various actors [3]. Cloud
Manufacturing (CMfg) provides new possibilities for
collaborative design of PSS within such distributed
enterprise, easily adaptable to highly dynamically changing
conditions under which enterprises are developing and
manufacturing their product-services [4]. On the other hand,
tremendous experiences in social SoftWare (SW) solutions
offer new opportunities for enterprises to capture and share
experienced based knowledge among all actors across the
value chain, highly relevant for design of web services for
product extension. Such social SW solutions include social
networks allowing for mass customers’ feedback (through
opinion mining) on a global market and wiki-like solutions
allowing for flexible organization of knowledge/experience
capturing/documenting by non-IT experts in companies [5],
but such solutions have not been systematically used in a
combination to classical engineering for PSS engineering.

The objective of the research presented, is to build a new
web Service engineering environment for Product
Extensions as a combination of classical product engineering
tools, CMfg and social SW solutions, as such combination is
likely to meet the requirements of distributed enterprises to
allow for utilizing manufacturing intelligence and experience
of all actors in the value chain, including both business
customers / companies and product / service consumers.

The structure of the paper is as follows: In Section II a
brief analysis of the state-of-the-art is provided. In Section
III, the basic proposed concept is described, while in Section
IV the application in industry is indicated. Section V
describes the expected innovations and benefits, as well as
future work.

II. STATE OF THE ART
Product Service Systems (PSS). Based on the analysis of

the research dealing with PSS, it can be concluded that there

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 20 / 77

are no tools to develop SW for designing and managing PSS
appropriate for machine vendors acting at the global market
faced with mass customization requirements, even though
some academic SW has been making breakthroughs,
potentially in relation to collaborative engineering of PSS, in
e.g. the capability to address integration of SW and hardware
[6], or dynamic simulation [7]. Existing commercial SW
mostly addresses the designing of physical products. Some
SW solutions do support some single phases in development
of PSS, but no engineering environment for PSS is provided.
In other words, interchangeability between product and
service has yet to be realized in commercial SW. However,
this is exactly where a new type of SW is required in order to
provide more opportunity to create an offering with higher
value or an innovative solution.

Context sensitivity. With the recent advance of context-
aware computing, an increasing need arises for developing
formal context modelling and reasoning techniques. The
basis for context-aware applications is a well-designed
Context Model (CM). A CM enables applications to
understand the user’s activities in relation to situational
conditions. Typical context modelling techniques include
key-value models, object-oriented models, and ontological
methods [8]. By context modelling, the problem of how to
represent the context information is solved. However, how to
extract context from the knowledge process and how to
manipulate the in-formation to meet the requirement of
knowledge enrichment remains to be solved. Since it is
planned to model context with ontology, context extraction
mainly is issue of context reasoning and context
provisioning: how to inference high level context
information from low level raw context data [9]. The
application of context sensitivity for web service engineering
in manufacturing industry has not been explored.

Analysis of big data volumes as customer feedback. The
rise of social media has enabled citizens to express their
opinions online about everything. Companies want to tap this
source of information to understand reviews, ratings,
recommendations, in order to identify new marketing
opportunities, and manage their reputations. As businesses
look to automate the process of filtering out the noise,
understanding the conversations, and identifying the relevant
content, many are now looking to the field of sentiment
analysis (also known as opinion mining). Sentiment analysis
can be separated in two categories: manual or human
sentiment analysis and automated sentiment analysis. Many
companies will need a combination of these methods to
combine the capabilities of human interpretation witch
computational capability of automatic search and analysis.
Automated sentiment analysis of digital texts can be
performed combining elements from machine learning, e.g.
support vector machines, and semantic orientation, e.g.
ontology. This research is interested in understanding the
polarity of a given text or document, i.e. if the author has a
positive, negative or neutral opinion [10]. The use of such
technique for web service engineering in manufacturing
industry has not been sufficiently examined.

III. OBJECTIVE AND BASIC CONCEPT
The objectives of the research are to develop:
• New Service Oriented Architecture (SOA) - based

engineering environment for design of web services around
products based on real time sharing of knowledge among
product design, service design and manufacturing within
distributed enterprises based on a combination of CMfg and
Social SW solutions, allowing for involvement of customers
on the global market, both business and final-product, where
a novel PSS ontology is a key bonding element.

• Set of SW services to support context sensitive
capturing and searching of knowledge for service design
functionality and reusability, as well as for context sensitive
analysis of big volumes of data gathered over the globally
distributed customers, design, manufacturing and suppliers.

Concretely, the envisioned developments include: a) an
open and extensible environment built on the foundations of
Product Data Management/Product Lifecycle Management
(PDM/PLM), and b) a methodology and accompanying tools
to support the collaborative product-service design. The
environment is specifically focusing on conceptual product-
service design, but, to a large extent, it will be applicable for
detailed web services design.

A new engineering environment for real time sharing of
knowledge among various actors involved in service design
within distributed enterprises is under development. The
conceptual architecture of the environment is presented in
Fig. 1. For many manufacturing companies services
development starts to be or will be in a near future a core,
value-generating process. To satisfy the need to differentiate
them in the market place, nearly every company’s
development processes have unique properties. The diversity
and spectrum of methods and skills required to perform web
service development processes is huge. Engineers from
different disciplines and specialists with various backgrounds
have to address a part or an aspect of PSS by having a partial
model and collaborating with other experts. It is necessary to
define common concepts and language used to interface
between these models. However, it is not reasonable to
totally integrate those models into a complete, holistic view
of PSS, covering each and every aspect of all the methods
used to define PSS. Furthermore, it is sensible that every
discipline uses the best available tools to perform their tasks.

The new engineering environment is therefore built as an
open solution with loose coupling of different tools. The
requirements of several industrial companies in different
sectors (all proving equipment for the manufacturing of mass
customized products) concerning PSS development have
been analyzed and serve as a basis for the definition of new
engineering environments and set of tools. The aim is to
provide an environment for supporting web services
development with ICT solution that embraces the diversity
of users, methods, tools in use. The backbone of the environ-
ment are (PDM/PLM) solutions (e.g. open enterprise ARAS
[11]) and social SW solutions. The advantages of the
PDM/PLM systems are well defined structures of data
corresponding to the well-organized industrial processes
[12]. However, such systems, due to their often “rigid”

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 21 / 77

structures, may restrict possibilities to collect experience
from various actors in the value chain, especially in
dynamically changing conditions in highly flexible
manufacturing. Especially experience from shop-floor (e.g.,
in adding sensors), and customers, is very difficult to be
captured using classical PDM/PLM systems. Social SW
allows for flexible capturing and presentation of experience
of different actors, but often suffers from missing structures
limiting reuse of these experiences.

Fig.1. Concept of web service engineering environment

These solutions allow non-IT experts to provide their
experiences in any form it fits them, e.g. problems in
manufacturing of parts or assembly can be documented by
the shop floor in a form which best suits specific
manufacturing line/machine (each group can define its own
‘form’). The feedback from customers on the PSS use can be
also provided in any form which suits specific customer

and/or service experts (maintenance staff, etc.). On the other
hand, social media networks such as LinkedIn, Facebook,
Twitter, Pinterest, Instagram, etc. allow gathering
experiences of mass customers in very “free” forms.

The environment is a SOA-based open environment
which combines open PDM/PLM and engineering systems
and social SW, both wiki based solution for knowledge
capturing of knowledge/experience of experts from
manufacturing area, maintenance / service providers and
business customers, and social networks/multimedia. The
experience - based knowledge capturing via social SW is
directly interrelated with the structured knowledge, collected
within classical tools and by automatic monitoring of
manufacturing processes, the product itself (e.g., sensors at
machines) and usage (e.g., manufacturing processes where
machines are used). The environment includes powerful
visualization of knowledge, as well as a middleware to
interface to various systems for automatic data gathering
(e.g. Manufacturing Execution Systems - MES, Supervisory
Control and Data Acquisition - SCADA, equipment, etc.)
and Security, Trust & Privacy framework (for the sake of
simplicity, middleware and security framework are not
depicted in Fig. 1).

The objective is to allow engineers/designers, when using
various engineering tools and/or PDM/PLM solutions to re-
design/document/reconfigure product parts and service
components, to have direct access to the experience from
manufacturing area and business customers related to the
corresponding part/service, but also to opinion/feedback of
customers of final-product (e.g., features of shoes produced
by the machine /component); see Fig. 2. The collaborative
features allowing for real time sharing of knowledge
between design teams and other actors are included.

Fig. 2. Mockup of new engineering environment

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 22 / 77

The whole environment is made in CMfg, i.e., in order to
allow for product–service co-design, the manufacturing
environment (both manufacturing of machines/equipment
and use of machines/equipment at the business customers) is
virtually represented [4][13]. This PDM/PLM system is
embedded in a cloud where all the actors in the value chain
plus the machines and processes are able to provide
data/knowledge and access the knowledge that is both saved
in the PDM/PLM systems, as well as in the social SW
solutions in the cloud. By this, dynamic feedback among
various actors can be established, as well as life cycle aspects
can be efficiently taken into account. The social SW is
extended with a number of plugs-ins and additional function-
ality to allow for effective capturing of the unstructured
knowledge. Security aspects, especially critical for CMfg,
are analyzed, and appropriate mechanisms will be integrated.

As explained above, the bonding element between the
classical engineering tools, PDM/PLM and social SW is a
common ontology for product-service. Research on product-
service has been carried out for many years and in various
disciplines; however, even a consolidated set of
terminologies has not been established [14]. A common
ontology has not been released in industrial practice. Thus,
one of the goals of the research lies in developing flexible,
open engineering environment and ontology to realize the
environment and interconnect various SW approaches and
tools. An overall ontology will be built starting from [14].

In order to support designers to easily obtain
information/knowledge relevant for her/his current task
within the enormous amount of data gathered by automatic
data collection, knowledge within PDM/PLM and different
engineering tools, knowledge /experience collected within
social SW from manufacturing end customers, etc., a context
sensitive search functionality is developed to support all
other tools in the environment. Therefore, the whole solution
is context sensitive. The context sensitivity includes four key
elements: CM, context monitoring services, context
extraction services and search [9]. CM represents an abstract
description of collaborative work relevant for PSS design
activities in general. To enable its direct use by context-
sensitive services, CM is formally expressed as ontology. Its
concepts, attributes and relations are directly derived from
the collaborative situations in building web services in
dynamic industrial settings. CM is based on the collaboration
patterns, i.e., typically occurring forms of collaborative work
relevant for PSS and extended with scenario specific
concepts (processes, products, technology).

A set of generic context monitoring services provide
basic monitoring functionalities to monitor processes in
which data/knowledge is acquired (e.g. design,
manufacturing area both were machines are produced and
where they are used), needed to identify/extract context. The
Context Extraction Services observe activities within the
new environment using Monitoring services. Context
Extraction Services analyze structured and unstructured data
to determine the context of the current situation and to
identify what activity the users are currently involved in. The
Context Extractor uses Context Association Network and
Context Hierarchy Tree approaches. By using an appropriate

CM and unstructured information provided by users or
devices, the context extraction services process this
unstructured information, to automatically annotate it.

Tools for analysis of stakeholder feedback enable context
sensitive analysis of the knowledge gathered in wiki, social
media networks and classical engineering tools. Specifically,
the feedback from final-product customers, where mass
customization plays central role, needs to be analyzed and
provided to machine/equipment vendors in order that they
can improve design of their services to accommodate mass
customization requirements. Information sources on social
networks are continuously mined to identify opinions about
products, services and specific features. Using opinion
mining, keywords identify products and features and
associate the opinion expressed by customers.

IV. APPLICATION
The new environment is aimed at manufacturing

companies producing equipment and delivering them at the
global market in various mass production sectors (shoe, food
packaging, etc.), which require new solutions for effective
collaboration among various actors, as a most critical aspect
of the PSS design process.

The environment is currently tested and applied at a
German company producing machines for the shoe industry,
which needs to combine feedback from their business partner
(shoe manufacturers) and feedback from the shoe buyers in
order to improve their machines and various services around
these machines and allow for mass customization of shoes,
which is one of the key requirement in today’s global shoe
market. They intend to improve the design of their machines
and web services around their products (e.g. maintenance
and monitoring of their machines/systems). They also intend
to use these web services (e.g., service for remote
diagnostics) to automatically collect, in real time,
data/knowledge on performance of their machines at their
business customers, aiming to further enhance design of the
machines and services. In order to allow for effective
building of services by adding sensors at their machines, they
need to establish feedback from their manufacturing area of
their machines to design processes. Besides data which can
be collected by automatic measuring in processes and over
services, it is important to gather experience of people
involved in these processes. Of special importance is to
collect knowledge/experience of their service teams and
business customers (shoe manufacturers) distributed all over
the world. Therefore, they need to allow different actors to
easily document their experience using web services, taking
into account cultural differences in different world regions
and highly variable conditions under which the machines are
used (e.g., low education levels of the machine operators,
etc.). The social SW solution proposed will allow collecting
experience from maintenance, while the stakeholder
feedback tool will analyze feedback from shoe buyers. Both
types of knowledge will be correlated with the PDM/PLM
solution and support building of various web services, i.e. the
proposed combination of CMfg and social SW allows
collecting of the experience of actors in an easy and less
formalized way but structured enough to be re-usable for

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 23 / 77

improved web services around machines (e.g., for improved
diagnostics). By this, they will build a unique system where
knowledge from both machine manufacturers and customers
are collected to be re-used for optimization of service design.

V. CONCLUSION AND FUTURE WORK
The main innovation lies in solving the crucial problem

of how to support PSS design process at machine/equipment
vendors, faced with the challenge of mass customization of
final-products produced by their machines/equipment, by
provision of appropriate knowledge, both formalized and
experience based knowledge, based on combination of
classical engineering tools, PDM/PLM systems and social
SW solutions. This includes data mining of high volume of
data provided by the shop-floor experts (manufacturers of the
machines), business customers and final-product customers,
as well as the context extraction from the content
created/used within dynamic collaborative work and
manufacturing processes and/or the data provided by
different services. In order to achieve such a solution, the
research provides several innovations: (a) It brings a step
towards development of an engineering environment
supporting development of PSS. As indicated in Section II,
to date, there have been insufficient attempts to provide such
an environment. However, the research in recent years has
created a number of methods and SW useful for the
development of such PSS engineering environment [15]. The
research will focus on the development of ontology for PSS
[12]. (b) This is one of the first attempts to combine classical
engineering tools, PDM/PLM solutions with CMfg and
social SW to efficiently provide experience and knowledge
from shop-floor and user feedback from the global market to
the web service designers’ desks. (c) The new solutions are
context sensitive, in order to support the user to cope with
enormous amount of knowledge to be managed and allow for
higher re-usability of components and services [16]. (d) The
research contributes to bringing data mining algorithms to
higher maturity level applicable in (manufacturing) industry
by enhancing existing and developing novel ones to meet the
application requirements. The proposed combination of
advanced technological solutions will bring considerable
benefits to the manufacturing companies in terms of re-
ducing time to market in building new and/or upgrading
existing machines with web services as different manufactur-
ability, environmental and final-product mass customization
aspects will be effectively taken into account already in
conceptual service design. The approach will allow for
improvements in knowledge sharing across product-service
lifecycle, as well as better product-service offerings
addressing customer needs. It will also allow for better
addressing sustainability across the entire service lifecycle.

The new environment and tools are currently under
development and first testing trials by the users are going on.

ACKNOWLEDGMENT
This work is partly supported by the DIVERSITY (Cloud

Manufacturing and Social Software Based Context Sensitive

Product-Service Engineering Environment for Globally
Distributed Enterprise) project of EU’s H2020 framework,
under the grant agreement no. 636692. This document does
not represent the opinion of the European Community, and
the Community is not responsible for any use that might be
made of its content.

REFERENCES
[1] F. H. Beuren, M. G. Gomes Ferreira, and P. A. Cauchick

Miguel, “Product-service systems: a literature review on
integrated products and services,” J. Clean. Prod., vol. 47,
May 2013, pp. 222–231.

[2] M. Boehm and O. Thomas, “Looking beyond the rim of one’s
teacup: a multidisciplinary literature review of Product-
Service Systems in Information Systems, Business Manage-
ment, and Engineering & Design,” J. Clean. Prod., vol. 51, ,
Jul. 2013, pp. 245–260.

[3] M.P. Sorli, and D. M. Stokic, Innovating in Product/Process
Development, Springer-Verlag, Heidelberg, 2009.

[4] X. V. Wang and X. W. Xu, “ICMS: A Cloud-Based
Manufacturing System,” in Cloud Manufacturing, W. Li and
J. Mehnen, Eds. Springer London, 2013, pp. 1–22.

[5] D. Ortiz-arroyo, “Chapter 2: Discovering Sets of Key Players
in Social Networks,” in Computational Social Network
Analysis, A. Abraham, A.-E. Hassanien, and V. Snágel, Eds.
London: Springer London, 2010.

[6] H. Meier, R. Roy, G. Seliger , Industrial Product-Service
Systems - IPS2. In: CIRP Annals - Manufacturing
Technology 59 (2), 2010, pp. 607–627.

[7] L. Pesonen, S. J. Salminen, J-P Ylén, P. Riihimäki, Dynamic
simulation of product process, in Journal Simulation Model-
ling Practice and Theory Vol. 16 No. 8., 2008, pp. 1091-1102.

[8] Strang, T. and C. Linnhoff-Popien. A Context Modeling
Survey. in Workshop on Advanced Context Modelling, Rea-
soning and Management as part of the Conference on
Ubiquitous Computing - The Sixth International Conference
on Ubiquitous Computing. 2004. Nottingham, England.

[9] D. M. Stokic, S. Scholze, and O. Kotte, “Generic Self-Learn-
ing Context Sensitive Solution for Adaptive Manufacturing
and Decision Making Systems”, ICONS 2014, Nice, 2014.

[10] B. Snyder, R. Barzilay. "Multiple Aspect Ranking using the
Good Grief Algorithm". Proceedings of the Joint Human
Language Technology/North American Chapter of the ACL
Conference (HLT-NAACL), 2007, pp. 300–307.

[11] ARAS PDM Software [Online], Available from:
http://www.aras.com/standards/standard.aspx?name=PDM-
Software, last accessed on 19.02.2015

[12] A. Saaksvuori, and A. Immonen, Product Lifecycle
Management, 2nd ed., Springer, Berlin, 2008.

[13] A. Weiss, Computing in the clouds, Networker, vol. 11, 2007,
pp. 16-25.

[14] G. Annamalai, et.al. An Ontoloogy for PSS, Chapter in
Functional Thinking for Value Creation, Springer-Verlag,
2010, pp. 231-236.

[15] J. Lee, and M. AbuAli, “Innovative Product Advanced
Service Systems (I-PASS): meth-odology, tools, and
applications for dominant service design,” Int. J. Adv. Manuf.
Technol., vol. 52, no. 9–12, , Feb. 2011, pp. 1161–1173 .

[16] Y. Geum and Y. Park, “Development of technology roadmap
for Product-Service System (TRPSS),” in 2010 IEEE
International Conference on Industrial Engineering and
Engineering Management (IEEM), 2010, pp. 410–414.

13Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 24 / 77

Developing and Adopting Trust-aware Collaborative Prediction of QoS
for Service-based Systems

Feng-Jian Wang, Chen-Yang Chen, Po-Han Chen
Dept. of Computer Science

National Chiao Tung University
Hsinchu, Taiwan

Email: {fjwang@cs.nctu.edu.tw, admachen@gmail.com, sihalon@gmail.com}

Abstract—An application (service) can be composed of existing
services. Generally, an appropriate service might be selected
according to the predicted Quality of Service (QoS) values,
and the most common approach for service selection is using
collaborative filtering for prediction. In this paper, we present a
trust-aware QoS prediction method for service selection, which is
inspired by trust relationships in social networks. We use direct
and indirect similarities of opinion among users, each of which are
combinations of belief, disbelief, and uncertainty. Then, we can
derive similarities among users, select similar users, and predict
the QoS value of a service. The experimental results show that the
accuracy of QoS values determined using our method is better
than that using other methods.

Keywords–Trust-aware; QoS Prediction; Service-Based Systems;
Opinion.

I. INTRODUCTION

Web services are widely adopted to provide various func-
tions in fields such as scientific research, e-commerce, health-
care, and aerospace. Developers can create applications with
low costs and short development times by adopting exist-
ing services. However, individual services to be adopted for
composition must meet not only functional but also non-
functional requirements such as response time, reliability, and
cost constraints. For better service selection, quality-of-service
(QoS) values can be used. Several approaches have been
presented to determine the QoS values of services [1]-[2].
Liang et al. [1] proposed a framework to predict QoS values
by extracting service features. Zhen et al. [3] adopted matrix
factorization to predict QoS. Zheng et al. [4] applied collab-
orative filtering (CF) to predict unknown QoS values. Their
approach selects similar users based on the Pearson Correlation
Coefficient (PCC). Moreover, two studies have been conducted
for improving their CF-based approach by applying factors:
neighborhood [2] and time-aware [5]. However, the predicted
results are inaccurate when the number of invocation records
is too low.

In general, similarity has propagative characteristics, so
similarity exploitation of users that reside at longer distances
is reasonable. To improve QoS prediction value accuracy,
we propose an approach based on the concept "the more
similar the users selected for prediction, the more accurate the
predicted QoS value". For example, consider three users having
the following properties: the first two users are not similar to
each other, but both are similar to the third. With a two-hop
distance [6], the first user may have some similarity to the
second; in other words, there is an indirect similar relationship
between them.

In our approach, prediction accuracy is improved based
on a social trust network. For example, we might be able
to know with certainty whether a proposition will be true
or false [7]. Both direct and indirect similarities comprise
the kernel adopted in our work. User can be trusted more

with higher direct similarity. Also, inspired by Josang’s paper
[8], "Opinion" has been introduced to express the extent of
belief in some events, and direct opinion can be defined to be
composed of three factors: uncertainty, belief, and disbelief. An
indirect opinion can be determined from the recommendation
of other users based on their direct opinion [8]. Finally, the
value for representing the indirect similarity of two users, can
be estimated according to other users' indirect opinions.

We then present an algorithm to select users based on direct
(i.e., PCC) and indirect similarity, and adopt their opinion to
help improve QoS prediction by modifying QoS values using
Resnick’s formula correspondingly. The experimental results
indicate that our approach is better than other approaches when
the number of invocation records is small [4].

The rest of the paper is organized as follows. Section II de-
scribes the background and related work. Section III introduces
our trust-aware approach. Section IV presents the experiments
and makes comparisons. Finally, Section V concludes the
whole paper and future work.

II. BACKGROUND

In this section, we describe service-based systems (SBS),
QoS calculations, social trust, and related QoS evaluation and
prediction approaches. Part A presents a review of QoS eval-
uation and prediction approaches for an application (service).
Part B introduces trust and related work in recommendation
systems.
A. QoS Evaluation and Prediction for SBS

SBSs are applications composed of individual services in
more than one website. From the viewpoint of a composition
workflow, a service can be treated as a process. During
SBS development, it is better to select the most appropriate
one from among web service candidates. For example, some
consumers prefer cheap services, while others prefer highly
reliable ones. It might be better to select a cheaper service if
budget is a major consideration. Moreover, functionality might
be quantified based on the values of necessary quality factors.
With the rising popularity of SBSs, an increasing number
of services with similar functions are supported by different
service providers. Therefore, it is better to adopt an effective
approach to evaluate Web services for selection, composition,
and so on [9].

Collaborative filtering approaches [4][10] are widely
adopted for predicting attribute values in recommendation
systems. QoS values can be predicted using QoS records of
different Web services from similar users, including failure
probability, performance, and cost. Usually, similarities be-
tween users are defined in terms of PCC [11], which is a
measure of the linear correlation between two variables X and
Y, as expressed by (1), where X is the mean of X, Y is the
mean of Y, and the coefficient value is between -1 and 1.

14Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 25 / 77

r =

∑n
i=1(Xi −X)(Yi − Y)√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y)2
(1)

Data sparsity is one of the main challenges for current
CF-based approaches [6]. When both numbers of users and
services increase quickly, the user-service matrix (which will
be explained later) commonly used in CF approaches could
become very large and sparse. The cold-start problem is
encountered because a new user invokes only a few services,
which may lead to insufficiency of QoS values. To alleviate
the cold-start problem, factors such as location [12] and time
[7][11] have been adopted to improve prediction.

In conventional CF approaches, similar users are located
within a distance of one hop. Similarity has propagative
characteristics, so information exploitation of users located at
longer distances would be reasonable. An example in Figure 1
shows that User 1 is similar to User 2, User 2 is similar to User
3, and both similarities are of one distance. It is reasonable to
treat both User 1 and User 3 as indirectly similar, and there is
a similarity of two-hop propagations between them [13].

Figure 1. Example of similarity propagation.

B. Social Trust in Cloud Computing and Recommendation
system

Social networks are used to reflect real-world relationships,
allow users to share information, and form connections among
users [14]. Chard et al. [14] designed a social cloud system and
implemented it. In the social cloud system, users can discover
storage services contributed by their friends based on existing
trust relationships. In the study of recommendation systems,
Singla et al. [15] applied data mining techniques to study the
relationships among users, and observed that users are more
likely to share interests with similar users. Pitsilis et al. [16]
announced that the performance of a recommendation system
can be enhanced based on potential trust among users.

Each of above trust models is adopted to solve one or
more specific problems in social cloud systems or recom-
mendation systems. In contrast, Subjective Logic [8] is a
general trust model for representation and reasoning of trust.
It operates on subjective beliefs and uses "opinion" to denote
the representation of a subjective belief. Pitsilis et al. [13] and
O’Donovan et al. [17] used subjective logic for reasoning the
trustworthiness among users, and their experiments indicate
that the accuracy of recommendation values can be improved
with trustworthiness.

Because of the incompleteness and inconsistency of knowl-
edge, it is impossible to know for sure whether a proposition
would be true or false [7]. Thus, opinion [8] has been defined
to express the extent of belief in some events, and the definition
includes three factors: belief (b), disbelief (d), and uncertainty
(u). The mathematical definition and computation of direct
opinion are described below.

Let ωi
e, useri’s opinion about an event e, be a three tuple,

where bie is useri’s belief in event e, die is useri’s disbelief
in event e, ui

e is useri’s uncertainty in event e and ωi
e =

{bie, die, ui
e}. Figure 2 indicates the profile of (2).

bie + die + ui
e = 1, {bie, die, ui

e} ∈ [0, 1]3 (2)

Figure 2. Opinion triangle.

Two operators are provided by Subjective Logic: recom-
mendation ⊗ in (3) and consensus ⊕ in (4) [8]. Both can
be used for deriving opinions regarding other users' opinions.
Based on recommendation ⊗, useri’s opinion about event e
due to userj is derived from userj’s recommendation. In (4),
let the degree of trust of useri to userj be bij . Then, bije ,
dije and uij

e are the belief, disbelief, and uncertainty values,
respectively, about e of useri being persuaded by userj and
can be determined as bij×bje. dije is determined by multiplying
bij and dje. userj’s certainty can be defined as 1 − uj

e (i.e.,
bje+dje). Let ωij

e be useri’s opinion about e recommended by
userj , and let ωi

j be useri’s opinion about the degree of trust
in userj . Mathematically, ωij

e can be defined as follows:
ωij
e = ωi

j ⊗ ωj
e = {bije , dije , uij

e },

where

bije = bij × bje
dije = bij × dje
uij
e = 1− bij × (1− uj

e)

(3)

The effect of the consensus operator ⊕ can help reduce
uncertainty by applying opinions from both useri and userj .
The consensus opinion ωi,j

e between useri and userj on event
e can be defined as follows [8]:

ωi,j
e = ωi

e ⊕ ωj
e = {bi,je , di,je , ui,j

e },

where

bi,je = (bieu

j
e + bjeu

i
e)/(u

i
e + uj

e − ui
eu

j
e)

di,je = (dieu
j
e + djeu

i
e)/(u

i
e + uj

e − ui
eu

j
e)

ui,j
e = (ui

eu
j
e)/(u

i
e + uj

e − ui
eu

j
e)

(4)

A consensus operator combines evidences for different
users, and several approaches [13][16][18][19] provide dif-
ferent methods to combine opinions based on the consensus
operator.

III. PROPOSED METHODOLOGY

This section presents an approach to provide a trust-aware
QoS method for predicting the QoS values of web services.
Figure 3 shows a global viewpoint of our approach, including
both input and output of two functions: 1) to help service
selection with QoS prediction 2) to help evaluate a new
composite service. Our work in this paper is focused on
function one (prediction part), which involves three stages: In
Stage 1, indirect similarity between two users is determined by
applying Subjective Logic [8]. In Stage 2, a set of similar users
is selected according to their direct and indirect similarities to

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 26 / 77

Figure 3. Workflow of trust-aware collaborative QoS prediction and evaluation.

the designated user. In Stage 3, QoS values are predicted by
employing the QoS values of similar users. The three stages
are described below.

A. Stage 1: Indirect Similarity Computation
The first stage introduces the user-service matrix, for cal-

culating direct similarity and subjective logic [8] to determine
indirect similarity between users in our approach.

1) Direct Similarity Calculation
A user-service matrix is a 2-dimensional matrix, where

each row represents a distinct service to be invoked and each
column represents a distinct user. Each entry in the matrix
contains some recorded QoS values, which are usually called
invocation records.

In our work, such entries in a user-service matrix are de-
fined to contain three tuples, where the first tuple is reliability
value, second is response time, and third is throughput for the
corresponding service and invoker (user). The entry is called
null when all values inside it are zero. For example, user1 has
never invoked service2, and entry E1,2 is null. service1 has
been invoked by user1, and E1,1 contains (90%, 100ms, 24),
i.e., the reliability of service1 is 90%, response time is 100
ms, and throughput is 24 kbps.

By applying PCC [11], direct similarity between useri and
userj is computed by employing (5) according to QoS values
of the services invoked by both of them.

Sim(i, j) =

∑
s∈Si

⋂
Sj

(Ei,s−Ei)
T (Ej,s−Ej)√∑

s∈Si

⋂
Sj

(|Ei,s−Ei|)2
√∑

s∈Si

⋂
Sj

(|Ej,s−Ej |)2

(5)

Ei =
1

|si|
∑
s∈Si

Ei,s (6)

where i and j represent useri and userj separately,
Si and Sj are two sets of services invoked by useri
and userj separately, Si

⋂
Sj is a set of services

invoked by both of them and Ei is the average QoS
value of all services invoked by useri shown in (6).

2) Indirect Similarity Calculation
In general, the greater the number of services invoked

by both users, the greater is the number of common invo-
cation records owned by them. Consider two users useri and
userj . To determine useri’s uncertainty toward the notion that
"applying userj’s invocation records to predict QoS might
be useful," the number of services invoked by both users
may be adopted as evidence. When the number of common
invocation records is larger, useri might be more sure that
applying userj’s invocation records to predict QoS is useful.

Furthermore, the uncertainty can be determined using (7), a
formula derived from [6]:

u(i, j) = (ni,j + 1)−m (7)

where ni,j denotes the number of services invoked
by useri and userj . m is a positive number.

Practically, the number of services invoked is very small
[4]. If m increases (e.g., to be greater than 2), the uncertainty
determined using (7) decreases dramatically. Moreover, this
indicates the lower uncertainty is achieved when fewer services
are invoked by both users. Such an uncertainty value is
impractical, and it is better and reasonable to assign m as
1 in our experience.

In the case that two users have high similarity values (e.g.,
high PCC value), the invocation records of one user might be
useful for predicting the QoS value of the other user. To derive
useri’s belief value for "Applying userj’s invocation records
to predict QoS is useful," direct similarity (i.e., PCC value)
between useri and userj may be adopted as evidence. Such
a volume for useri can be defined according to (8), which is
derived from [6]:

b(i, j) =
1

2
(1− u(i, j))(1 + Sim(i, j)) (8)

In (8), the certainty value is 1 − u(i, j). When useri and
userj have a higher PCC value, they might have higher belief
as well. Thus, 1+Sim(i, j) is adopted to compute the weight
for deciding the ratio of belief to disbelief. Moreover, equation
(8) includes a one-half operation to restrict b(i, j) within the
interval [0,1]. Correspondingly, the disbelief of useri to such
an application can be determined according to (2) (i.e., b(i, j)+
d(i, j) + u(i, j) = 1).

An opinion can be direct or indirect. The value of a
direct opinion can be derived by (7) and (8), which compute
uncertainty and belief values [20]. The value of an indirect
opinion can be derived from the recommendations of other
users using the recommendation operator [8]. In (1), the PCC
value between useri and userj is assigned as zero when
neither of them invokes a service. In this case, userj is not
put into the set of similar users for predicting the QoS value of
useri. However, when both users are similar to a third user, the
invocation records of userj may be helpful for predicting the
QoS value of useri because the similarity can be propagated
via the third user [13]. To introduce the effect of indirect
similarity, indirect opinion may be adopted.

An example in Figure 4 shows how to derive an indirect
opinion. In the example, the belief values of trust degree for
Useri to (Userk, Userl and Userm) and (Userk, Userl
and Userm) to Userj are both larger than a threshold. Thus,

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 27 / 77

indirect opinion between Useri and Userj , ωi(k,l,m)
j , can be

determined using the recommendations of Userk, Userl, and
Userm [8].

Figure 4. Example for Determining Indirect Opinion.

The indirect opinion of two users useri and userj can be
defined as the consensus of direct opinions of users who have
direct opinions about both aforementioned users. According to
the example shown in Figure 4, ωi(k,l,m)

j can thus represent
the indirect opinion from Userj to Userj . The indirect simi-
larity between useri and userj can determined using indirect
opinion by applying (9). Figure 5 shows the distribution of
indirect similarity values and indicates that the growth rate of
belief to indirect similarity value depends on the uncertainty
value.

Sim′(i, j) = 2× (1− ui
j)× bij − 1 (9)

1) where ui
j is the uncertainty value and bij is the

belief value for useri to userj . 2) direct opinions are
obtained from users selected following the process
described in the next paragraph. 1 − ui

j is useri’ s
certainty, employed to be a weighting value for ad-
justing the growth rate of belief to indirect similarity
by multiplying bij and (1−ui

j). Then, we define Sim′
as multiplication by 2 and subtraction of 1 to restrict
its value to [-1,1].

To select appropriate users to recommend the opinion,
we define an opinion threshold (OThreshold) between 0 to
1 in order to determine the users whose opinions can affect
the designated user effectively. OThreshold is helpful for
predicting QoS.

Figure 5. Distribution of (9).

Algorithm 1 details the procedure for deriving indirect
similarity. Lines 3-7 select the users whose belief values from
Useri to them and from them to Userj are larger than
OThreshold and place them into TrustUserSet. Indirect
opinion between Useri and Userj is initialized by their
direct opinion. Lines 8-11 represent a loop that considers all
recommendations from the users in the trust user set and
determines indirect opinion of each user for Useri to Userj .
At each turn of the loop, the indirect opinion value due to
or via recommendation of Userl is determined using the
recommendation operator at line 9. Each indirect opinion is

combined with the consensus operator at line 10. Because ui
j

and bij are two attributes in ωi
j , Sim′(i, j) is computed after

ωi
j is computed.

Algorithm 1 Deriving Indirect Similarity

Input: Useri, Userj and OThreshold
Output: Indirect similarity Sim′(i, j) between users

1: function CALC_INDIRECTSIMILARITY()
2: TrustUserSet← ∅ ,wi

l ← ∅, wi
j ← ∅ ;

3: for each user Userk do
4: if both b(i, k), b(k, j) > OThreshold then
5: TrustUserSet← TrustUserSet

⋃
{Userk}

6: end if
7: end for
8: for each user IN TrustUserSet named as Userl do
9: ωi

l ← ωi
l ⊗ ωl

j
. recommended by Userl with recommendation operator

10: ωi
j ← ωi

j ⊕ ωi
l . ωi

l is added to ωi
j by consensus operator

11: end for
12: return Sim′(i, j) . defined in (9)
13: end function

Figure 6. Deriving Indirect Similarity

B. Stage 2: Similar Users Selection

To select similar users who may help predict QoS values
for the designated user, the first step is to divide users into
two groups according to a given number k, where the PCC
values between the first-group users (i.e., similar users) and
the designated user are larger than those between the second-
group users and the designated user. In general, QoS value
predictions are inaccurate when k is unsuitable. For example,
if the value of k is too large, users not similar to the designated
user might be selected. Because there is no effective method
to determine a suitable k value for division currently, an
eigenvalue k can be adopted to be the number of first-group
users instead. We study the influence of k and find that QoS
values are more accurate and suitable when k is set to be
within a specific range (set as 15 here). Besides, in a cold-start
situation, PCC may not be able to find an adequate number of
similar users. Our approach adopts indirect similarity values to
improve user selection in the case there are less than k users
selected owing to direct similarities. The selection approach
associated with indirect similarity is the same as the first one
except 1) the users are those who were not selected before,
2) selection data is indirect similarity, and 3) amount being
selected is equal to k–the number of users selected in the first
stage.

Algorithm 2 is designed for this selection. Each user in
AllUsers contains PCC values and indirect similarity values,
determined using (5) and Algorithm 1, respectively, and the
calculations are set in lines 2-5 of said algorithm. Lines 7-14
constitute a while loop for selecting similar users according
to their PCC values to Useri. Lines 16-23 perform selection
based on indirect similarity if the first while loop cannot get
k users.
C. Stage 3: QoS Prediction

The QoS value predictions are determined according to
(10) based on Resnicks's formula [11][21]. Let Êi,s be useri’s
QoS value prediction for services, Ei and Ej represent the
mean QoS values of all services invoked by Useri and Userj

17Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 28 / 77

Algorithm 2 Selecting Similar Users

Input: Useri, an eigenvalue k, and AllUsers
Output: a set of similar users to Useri

1: function SIMILAR_USER_SELECTION()
2: for each user named Userj in AllUsers do
3: Userj .Similarity ← Sim(Useri, Userj)
4: Userj .IndirectSimilarity ←

Calc_IndirectSimilarity(Useri, Userj , OThreshold)
5: end for
6: select_count = 0
7: while select_count < k do
8: Fetch a user from AllUsers who has the greatest

PCC value and is not in SimilarUsers, and
name it as Userj

9: if Userj .Similarity ≤ 0 then
10: break
11: end if
12: SimilarUsers ← SimilarUsers

⋃
{Userj}

13: select_count = select_count+ 1
14: end while
15: if select_count < k then
16: while select_count < k do
17: Fetch a user from AllUsers who has the

greatest indirect similarity value and is not
in SimilarUsers, and name it as Userj

18: if Userj .IndirectSimilarity ≤ 0 then
19: break
20: end if
21: SimilarUsers ← SimilarUsers

⋃
{Userj}

22: select_count = select_count+ 1
23: end while
24: end if
25: return SimilarUsers

26: end function
Figure 7. Selecting Similar Users

respectively, and S(i) be a set of users similar to useri gen-
erated by Algorithm 2 and Wi,j be a weight value indicating
the similarity between useri and userj . Here Similarityi,j
refers to the similarity between useri and userj .

Êi,s = Ei +
∑

j∈S(i),Ej,s 6=null

Wi,j × (Ej,s − Ej) (10)

Wi,j =
Similarityi,j∑

k∈S(i) Similarityi,k
(11)

Algorithm 3 is designed to predict the QoS value of useri.
In the algorithm, a set of similar users is selected at line 2 by
applying Algorithm 2. The predictive QoS value is initialized
with the average QoS value of all services invoked by Useri in
line 3. Lines 4-9 constitute a loop for updating the predictive
QoS value according to the QoS values of all similar users for
Services. Finally, line 10 returns the predicted QoS values of
Services invoked by useri.

IV. EXPERIMENTS FOR QOS PREDICTION

In this section, we introduce our experiments and results,
and compare the results with those from existing works. Part A
describes the technique for comparing the evaluation results of
QoS prediction. Then, we discuss the influence of parameters
such as the number of invoked services, eigenvalue k, and
opinion threshold in Part B.

Algorithm 3 Predicting QoS values of a service

Input: Useri, and Services
Output: predicted QoS values of Services for Useri

1: function QOS_PREDICTION()
2: similar_users← Similar_User_Selection(Useri, k)

3: Êi,s ← Ei

4: for Userj in similar_users do
5: if Ej,s 6= null then
6: Wi,j ← Similarityi,j∑

k∈S(i)
Similarityi,k

. by (11)

7: Êi,s ← Êi,s +Wi,j × (Ej,s − Ej)
8: end if
9: end for

10: return Êi,s

11: end function
Figure 8. Predicting QoS values of a service

A. Comparison of Prediction Accuracy
To evaluate the accuracy of a QoS prediction technique,

Mean Absolute Error (MAE) [4] is adopted for calculating the
difference between real and predicted QoS values. In general,
the smaller the calculated MAE value, the more accurate is the
QoS prediction for a service. MAE is defined as follows [22]:

MAE =

∑
S∈PSi

|Êi,s − Ei,s|
|PSi|

(12)

where PSi is a set of services whose QoS values are
derived by the prediction for useri, and Ei,s and
Êi,s is a pair of real and predicted QoS values of
Services for useri respectively.

In our evaluation work, the calculation of real QoS values
is based on the invocation records collected in [23], and widely
adopted as real QoS values for evaluation of QoS prediction
methods [4][12][20]. The data in [23] were obtained from
www.wsdream.net, a service broker website, and they represent
100 real-world Web services. To monitor the QoS values of
these services, the system deployed 150 service consumers
on Planet-Lab [24] distributed across 20 countries to invoke
the services, and recorded 1,500,000 Web service invocations
executed a hundred times by 150 distributed users on 100 Web
services. Each invocation record indicates the QoS values of a
service invoked by a user, and includes three items: response
time, throughput, and execution state (i.e., failure or success).

The computation methods for QoS values are quality
dependent. For example, reliability can be determined based
on execution state. To minimize errors in our experiments,
the response time of a service for a user was defined as the
average of the response time from all invocation records of
the service for the user. So does throughput, which is defined
as the average of all throughput value. The reliability value of
servicej for useri is calculated according to (13):

Ri,j =
Si,j

Ni,j
(13)

where Si,j is the successful invoking times of
servicej , and Ni,j is the invoking times of servicej .
That is, a smaller Ri,j means higher reliability.

Given that each user invokes some services only in the real
world, the user-service matrix is sparse. However, it is difficult

18Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 29 / 77

TABLE I. PREDICTION ACCURACY COMPARISON

to derive appropriate sparse matrixes (e.g., in different density)
to carry out the experiments from real world databases. In
our experiment, the QoS values of 100 Web services invoked
by 150 users calculated according to the invocation records
are stored in a 150 × 100 user-service matrix called answer
matrix and we define an experimental sparse matrix, a 150×
100 user-service matrix. The QoS values in the experimental
sparse matrix are constructed based on the answer matrix. For
example, if the density of the sparse matrix is 5%, 5% of the
entries in the experimental sparse matrix are filled with real
QoS values from the answer matrix and the others are filled
with NULL. The experimental sparse matrix is built in steps:

1) A new user-service matrix is built and all entries are
set to NULL.

2) Let NE be the number of entries (e.g., 15,000 in our
experimental sparse matrix), density be the density
of the experimental sparse matrix, and NS be the
number of selected entries given as multiplication of
NE and density. A set of numbers SN is derived
randomly by selecting NS non-repetitive numbers
within the interval [1,NE].

3) The indexes of selected entries according to the
number RN in SN can be derived by (14) and (15)

4) The selected entries the of experimental sparse matrix
are filled with the QoS values contained in the
corresponding entries of the answer matrix.

indexservice = (RN ÷ columns of the matrix) + 1 (14)

indexuser = RN % rows of the matrix (15)

To compare the accuracy of our approach with other
approaches, we implemented a sequence of methods based
on 1) user-based CF approach using PCC (UPCC) [22], 2)
item-based CF approach using PCC (IPCC) [25], 3) hybrid
PCC (HPCC) [26], 4) user-mean (UMEAN), 5) item-mean
(IMEAN), 6) matrix factorization (MF) [3] and 7) our trust-
aware QoS prediction approach to predict the QoS values of
services. MAE values were calculated based on the predicted
QoS values and QoS values from the answer matrix. To study
the accuracy under different densities, experimental sparse
matrixes of 5%, 10%, and 15% were adopted as the training
matrices. To minimize errors, each approach was looped 50
times for 10 randomly selected users, and the average MAE
was calculated. Table I summarizes the contributions of our
work:

1) Our QoS prediction approach obtains better pre-
diction accuracy in terms of reliability values and
response time for densities of 5%-15%. However,

MAE values of reliability are accurate and so close
in these applied methods because the calculation of
service reliability are really high in our dataset.

2) The prediction accuracy in terms of throughput was
also better than that of other methods under 5% den-
sity. However, when the number of invocation records
is large (i.e., density is 10% or 15%), the matrix
factorization [3] and hybrid PCC [26] approaches
obtained better prediction accuracy for QoS attributes
with values close to each other for different users
(e.g., throughput).

3) A few previous studies [3][26] dealt with the predic-
tion of one or two distinct QoS attributes. However,
our approach is suitable for three QoS attributes.

B. Impacts Observed for Interval Factors
Table I also shows that the MAE values of each QoS

attribute are in a distinct range in our approach (e.g., the
MAE values of reliability and response time are 0.035-0.0371
and 794-1363, respectively). Observation on line charts with
the MAE values in a graph is difficult because the range
differences are large. We adopted Normalization Mean Ab-
solute Error (NMAE) [2] to depict the line chars for studying
the influence of number of invoked services, k, and opinion
threshold, as follows [2]:

NMAE =
MAE∑

S∈PSi

Êi,s

|PSi|

(16)

The number of services invoked by a user may change
the prediction accuracy in our approach. To study this effect,
the number of services was varied from 5 to 50, and the data
were incremented by 5. Figure 9 shows the NMAE values
of response time, throughput, and reliability in our approach.
Their values declined from 0.449 to 0.288, 0.24 to 0.01, and
0.020 to 0.015, respectively, thus indicating that our approach
can be improved when a (designated) user invokes a greater
number of services.

To study the influence of eigenvalue k on the prediction
accuracy, k was varied from 2 to 20. Figure 10 shows that the
NMAE value of our approach is the smallest when k was 12
or 14. This indicates that the predicted QoS values were more
accurate when eigenvalue k was within a specific range.

To study the influence of opinion threshold (OThreshold)
on the prediction accuracy, the data were detected in the
opinion threshold at increments of 0.1 from 0.1 to 0.9. Figure
11 shows that the NMAE value obtained using our approach
is the smallest when the opinion threshold is 0.2-0.4. This
indicates that the predicted QoS values were more accurate
when the opinion threshold was within a specific range.

19Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 30 / 77

Figure 9. Influence of invoked services. Figure 10. Influence of eigenvalue k. Figure 11. Influence of opinion threshold.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a trust-aware approach to predict
QoS values of services more accurately. In our approach, the
opinions of selected users are used to improve PCC values.
These opinions are selected based on three factors, namely,
belief, disbelief, and uncertainty, of the designated users who
share a greater number of common services. Moreover, we
introduce the indirect similar property to help select users for
cold-start services. The experiments indicate that our approach
provides better prediction for service selection.

There are at least two issues that warrant further study:
1) Only three QoS attributes were adopted in our approach.
The accuracy of QoS values might be improved by applying
a greater number of QoS attributes. 2) Indirect similarity
might improve with the use of additional features such as user
location, reputation of provider, and user preferences.

REFERENCES
[1] Z. Liang, H. Zou, J. Guo, F. Yang, and R. Lin, “Selecting web service

for multi-user based on multi-qos prediction,” in Services Computing,
2013 IEEE International Conference on, June 2013, pp. 551–558.

[2] J. Wu, L. Chen, Y. Feng, Z. Zheng, M. C. Zhou, and Z. Wu, “Predicting
quality of service for selection by neighborhood-based collaborative
filtering,” Systems, Man, and Cybernetics: Systems, IEEE Transactions
on, vol. 43, no. 2, March 2013, pp. 428–439.

[3] Z. Zheng, H. Ma, M. Lyu, and I. King, “Collaborative web service qos
prediction via neighborhood integrated matrix factorization,” Services
Computing, IEEE Transactions on, July 2013, pp. 289–299.

[4] Z. Zheng and M. Lyu, “Collaborative reliability prediction of service-
oriented systems,” in Software Engineering, 2010 ACM/IEEE 32nd
International Conference on, vol. 1, May 2010, pp. 35–44.

[5] Z. Liu, Z. Liu, and T. Lu, “A location and time related web service
distributed selection approach for composition,” in Grid and Cooperative
Computing, 9th International Conference on, Nov 2010, pp. 296–301.

[6] G. Pitsilis and S. J. Knapskog, “Social trust as a solution to address
sparsity-inherent problems of recommender systems,” Recommender
Systems and the Social Web, 2009, pp. 33–40.

[7] A. JÃÿsang, “Reliability analysis with uncertain probabilities,” in Pro-
ceedings of the 4th International Conference on Probabilistic Safety
Assessment and Management (PSAM4). Springer, Heidelberg, 1998.

[8] A. Jøsang, “A logic for uncertain probabilities,” Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., vol. 9, no. 3, Jun. 2001, pp. 279–311.
[Online]. Available: http://dl.acm.org/citation.cfm?id=565980.565981

[9] Z. Zheng, Y. Zhang, and M. Lyu, “Investigating qos of real-world web
services,” Services Computing, IEEE Transactions on, vol. 7, no. 1, Jan
2014, pp. 32–39.

[10] R. Burke, “Hybrid recommender systems: Survey and experiments,”
User Modeling and User-Adapted Interaction, vol. 12, no. 4, Nov. 2002,
pp. 331–370.

[11] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“Grouplens: An open architecture for collaborative filtering of netnews,”
in Proceedings of the 1994 ACM Conference on Computer Supported
Cooperative Work, ser. CSCW ’94. ACM, 1994, pp. 175–186.

[12] J. Zhu, Y. Kang, Z. Zheng, and M. Lyu, “Wsp: A network coordinate
based web service positioning framework for response time prediction,”
in Web Services (ICWS), 2012 IEEE 19th International Conference on,
June 2012, pp. 90–97.

[13] G. Pitsilis and S. J. Knapskog, “Social trust as a solution to address
sparsity-inherent problems of recommender systems,” in Proceedings of
2009 ACM Conference on Recommender Systems, 2009, pp. 33–40.

[14] K. Chard, S. Caton, O. Rana, and K. Bubendorfer, “Social cloud: Cloud
computing in social networks,” in Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, July 2010, pp. 99–106.

[15] P. Singla and M. Richardson, “Yes, there is a correlation: - from social
networks to personal behavior on the web,” in Proceedings of the
17th International Conference on World Wide Web, ser. WWW ’08.
New York, NY, USA: ACM, 2008, pp. 655–664. [Online]. Available:
http://doi.acm.org/10.1145/1367497.1367586

[16] G. Pitsilis and L. Marshall, “Modeling trust for recommender systems
using similarity metrics,” in Trust Management II, ser. The International
Federation for Information Processing, Y. Karabulut, J. Mitchell, P. Her-
rmann, and C. Jensen, Eds. Springer, 2008, vol. 263, pp. 103–118.

[17] J. O’Donovan and B. Smyth, “Trust in recommender systems,” in
Proceedings of the 10th International Conference on Intelligent User
Interfaces, ser. IUI ’05. New York, NY, USA: ACM, 2005, pp. 167–
174. [Online]. Available: http://doi.acm.org/10.1145/1040830.1040870

[18] A. Jøsang, R. Hayward, and S. Pope, “Trust network
analysis with subjective logic,” in Proceedings of the 29th
Australasian Computer Science Conference - Volume 48,
ser. ACSC ’06. Darlinghurst, Australia, Australia: Australian
Computer Society, Inc., 2006, pp. 85–94. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1151699.1151710

[19] A. Josang and T. Bhuiyan, “Optimal trust network analysis with
subjective logic,” in Emerging Security Information, Systems and Tech-
nologies, 2008. SECURWARE ’08. Second International Conference
on, Aug 2008, pp. 179–184.

[20] Y. Zhang, Z. Zheng, and M. Lyu, “Wspred: A time-aware personalized
qos prediction framework for web services,” in Software Reliability
Engineering, IEEE International Symposium, Nov 2011, pp. 210–219.

[21] P. Resnick and H. R. Varian, “Recommender systems,” Commun.
ACM, vol. 40, no. 3, Mar. 1997, pp. 56–58. [Online]. Available:
http://doi.acm.org/10.1145/245108.245121

[22] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proceedings
of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, ser. UAI’98. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998, pp. 43–52. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2074094.2074100

[23] Z. Zheng, Y. Zhang, and M. Lyu, “Distributed qos evaluation for real-
world web services,” in Web Services (ICWS), 2010 IEEE International
Conference on, July 2010, pp. 83–90.

[24] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “Planetlab: An overlay
testbed for broad-coverage services,” SIGCOMM Comput. Commun.
Rev., vol. 33, no. 3, Jul. 2003, pp. 3–12. [Online]. Available:
http://doi.acm.org/10.1145/956993.956995

[25] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based
collaborative filtering recommendation algorithms,” in Proceedings of
the 10th International Conference on World Wide Web, ser. WWW
’01. New York, NY, USA: ACM, 2001, pp. 285–295. [Online].
Available: http://doi.acm.org/10.1145/371920.372071

[26] Z. Zheng, H. Ma, M. Lyu, and I. King, “Wsrec: A collaborative filtering
based web service recommender system,” in Web Services, 2009. ICWS
2009. IEEE International Conference on, July 2009, pp. 437–444.

20Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 31 / 77

Finding Optimal REST Service Oracle Based on Hierarchical REST Chart

Li Li, Wu Chou

Shannon IT Lab

Huawei

Bridgewater, New Jersey, USA

{li.nj.li, wu.chou}@huawei.com

Abstract—Based on the hypertext-driven nature of REST API,

this paper presents a structural approach for REST client

design and implementation, in which a REST client is

decomposed into two reusable functional modules: a client

oracle that selects hyperlinks to follow for a given goal, and a

client agent that carries out the interaction as instructed by the

oracle. This decomposition has several advantages over a

monolithic REST client where the two functions are

intertwined and inseparable. To automatically find an optimal

client oracle from a machine-readable description of a REST

API, we introduce the path selection framework and apply

Dijkstra’s Shortest Path algorithm to Hierarchical REST

Chart, which is an enhancement and extension to the original

REST Chart that describes REST API based on Colored Petri-

Net. The proposed method has been implemented in Java and

tested on two sets of Hierarchical REST Charts. Experimental

results indicate that the proposed approach is effective and

promising.

Keywords—REST API; Hierarchical REST Chart; REST

Oracle; Petri-Net; Shortest Path

I. INTRODUCTION

In recent years, the REST architectural style [1] has
become increasingly popular, and it has been applied widely
to API designs in various areas, including Real-Time
Communications [2][3], Cloud Computing [4], and
Software-Defined Networking [5]. It provides an efficient
and flexible way to access and integrate large-scale complex
systems and distributed applications. REST is based on the
principle that any client of a REST API should be driven by
nothing but hypertext. This principle seems abstract but it is
easy to understand if we treat a REST API as a distributed
finite state machine, where the states are resource
representations and the transitions are the links between the
representations. In this model, hypertext-driven means that a
client should enter a REST API from an entry point, and
then be guided by the hypertext from the resources to reach
a final representation.

This principle makes it possible for a user without any
technical background to use the Web by following the
hyperlinks on the pages until the desired page is retrieved.
In this process, the user decides which links to follow based
on the information on the page, and the user agent carries
out these decisions by interacting with the resources
identified by the links. This separation of users from the
user agents make both of them “reusable” in the sense that a

user can use any user agent, and a user agent can use any
user, to navigate the Web.

To mirror this process for a REST client that navigates a
REST API without user involvement, it would be beneficial
to decompose the REST client into two functional
components: a client oracle responsible to select links to
follow from the resource representations, and a client agent
responsible to interact with the resources based on the
selected links. This decomposition of a REST client has
several advantages over a monolithic REST client where
these two functions are intertwined and inseparable:

 a client oracle can be reused with different versions
of a REST API, especially if a REST API version
update changes some resource representations and
identifications, but does not change the link relations
in the representations;

 a client oracle can be reused across different service
description languages of the same REST API;

 a client oracle can drive client agents in different
programming languages to achieve consistent
behavior;

 a client agent can be driven by different client oracle
to accomplish different tasks;

 a client oracle can significantly reduce the size of a
client agent if only a small portion of the resource
representations are selected by the client oracle.

To realize these benefits for a given REST API, a client
oracle and client agent can be written by developers
manually. But this can be difficult, time consuming, and
error prone. A better approach is to generate a REST oracle
and agent automatically from a machine-readable service
description of a REST API, such as REST Chart [6]. If the
manual programming process becomes unnecessary or
greatly reduced, we can significantly speed up the REST
client development process. To tackle REST client
generation in two phases, this paper describes a method to
find optimal client oracles based on the Hierarchical REST
Chart, an extension to REST Chart [6], and client agent
generation will be our future work.

The rest of this paper is organized as follows. Section II
reviews related work in REST service description
languages. Section III describes the Hierarchical REST
Chart. Section IV introduces the optimal REST oracle
framework. Section V discusses the implementation and
experimental results, and our findings are concluded with
Section VI.

21Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 32 / 77

II. RELATED WORK

Since 2009, several new service description languages,
including WADL [7], RAML [8], Swagger [9], RSDL [10],
API-Blueprint [11], SA-REST [12], ReLL [13], REST Chart
[6], RADL [14], and RDF-REST [15] have been developed
independently for REST API, but none of them is yet
standardized. All these description languages are encoded in
some machine-readable languages, such as XML, and most
of them are standalone documents, except a few of them,
such as SA-REST, are intended to be embedded within a
host language, such as HTML.

RAML is a YAML language that organizes a REST API
as a tree rooted at a base URI (template or reference) that
denotes a REST API entry point. Underneath the root are a
set of URI (templates or references) that identify available
resources. Each URI may be associated with the access
methods that define the input and output representations.
While RAML offers a minimalist structure and several
interesting mechanisms, such as inline documentation,
resource traits and types, it could lead to inadvertent
violation of the REST constraints [6] by exposing a list of
fixed resource locations. Also, RAML does not seem to
have a way to tie the hyperlinks in hypertext representations
with the URI templates in the REST API description tree.
Without these ties, it would be difficult for a REST client to
know the method to access a hyperlink and the response
representation.

Swagger has bindings to both YAML and JSON, and its
REST API descriptive structure is very similar to RAML,
except using a different set of vocabularies. For this reason,
it has the same problems as RAML.

RSDL is a XML language that organizes a REST API
around a list of <resource> elements, each of which may
contain elements <location> that define its URI, <link> that
links it to other resources, and <method> that define the
access. As a result, RSDL could also inadvertently violate
the REST constraints [6] by exposing a fixed set of resource
locations to the clients. Moreover, there are no ties between
the <link> elements, the <method> elements, and the actual
resource representations, such that a hyperlink in a
representation can point to its access method and response
representation.

RADL is a XML language that organizes a REST API
around the <resource> element that defines the resource
location in the child element <uri> and resource methods in
the child <interface> element. The request and response of a
method are defined by <document> elements, which may
contain <link> elements pointing to other <document>
elements. Like RSDL, this resource centric design could
lead to fixed resource locations. Moreover, even if a client
knows the interface of a resource, it may not know the
method in the interface to access a hyperlink of a document,
if two or more methods exist in the interface.

Some open source toolkits are available for some service
description languages [8][9][11] to generate client and
server skeleton code in Java and node.js, such that the
developers can edit the generated source code to complete
the implementation. However, when generating the client

code, these toolkits do not separate client oracle and client
agent, as far as we know.

In addition, none of these service description languages
supports nested REST API descriptions, such that a
complete REST API description can be incrementally
refined or composed seamlessly with the same mechanism.
Breaking a large service description file into small parts can
be helpful but it is still not sufficient, since the large service
description is incomplete without the parts.

III. HIERARCHICAL REST CHART

We adopt the REST Chart model [6] as the basis for
finding optimal client oracles. A major feature of REST
Chart is the ability to combine the static aspects of a REST
API, e.g. media types and link relations, with the dynamics
of the REST API, e.g. the hypertext driven client-server
interactions, into one coherent model. The REST Chart
models a REST API as a Colored Petri Net where the places
are “colored” by types. A typed place denotes a media type
schema that defines valid resource representations. A
transition denotes a valid resource interaction following a
hyperlink in a schema. A token in a typed place denotes a
valid resource representation defined by the schema. In this
model, the connected schemas collectively define the
hypertext media types of a REST API without creating any
out-of-band dependences to the resource organization of the
REST API.

Figure 1. Example of a basic REST Chart

A basic REST Chart defines the contract between the
server and client for a single interaction. This contract
consists of two server places and a client place connected by
a transition, as illustrated in Figure 1. This REST Chart
indicates that a client can transfer its representational state
from the login place (server place) to the account place
(server place) if the client can create a token for the
credential place (client place). To make the transition, the
server first puts a token x1 in the login place (i.e. returns a
valid login page), to provide a login hyperlink to the client.
Then the client selects that link and puts a token x2 in the
credential place (i.e. enters valid username and password).
At this point, the transition (solid bar) fires and the user
credential is sent to the login resource identified by the
hyperlink. On success, the server deposits a token x3 in the
account place (i.e. returns the valid account information).

login

(x1)

resource

credential

(x2)

account

(x3)

input output

22Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 33 / 77

These token markings capture the essential interaction
procedure as sanctioned by the REST Chart.

The resource involved in the interaction is identified by
a URI template, and there is no fixed resource location,
relation, or interface that could lead to violations of the
REST constraints R3-R5 [6]. A REST API with more than
one interaction can be described by connecting appropriate
places to form a large Petri-Net with a single entry place,
which is the designated entry point of the REST API.

Figure 2. Hierarchical REST Chart C1 that nests REST Chart C2

Figure 3. XML of REST Chart C1 that nests C2 by its interface

Figure 4. XML of REST Chart C2’s interface places

To promote reusability and modularization of REST
API, this paper extends the REST Chart to Hierarchical
REST Chart based on Hierarchical Petri-Net. In
Hierarchical REST Chart, a typed place can contain another
REST Chart, as shown in Figure 2 where place P of REST

Chart C1 contains REST Chart C2. The REST Charts C1
and C2 communicate as follows: 1) when place P receives a
token of type P1, it is moved to place P1 of C2; 2) C2 will
fire as usual; 3) when place P2 or P3 has a token, then the
token is moved back to place P; 4) C1 will continue to fire
as usual. In general, Hierarchical REST Chart can be nested
to any number of levels.

Figure 5. Top-level REST Chart for the network REST API with nested

representations in double framed boxes

Figure 6. REST Chart nested inside at the Network place of the top-level

REST Chart

To represent Hierarchical REST Chart, the XML of C1
is modified but there is no modification to the XML of C2.
In C1, we modify place P and its outgoing transitions in
REST Chart C1 to point at C2. The relevant modifications
to C1 XML are illustrated in Figure 3 in bold font, where
the <representation> element has an attribute “href” that
points to the location of REST Chart C2, and the two
<transition> elements “P_t1” and “P_t2” use notations
“P/P2” and “P/P3” to reference the places P2 and P3
respectively in C2 that is nested in place P. The places P1,
P2, and P3 of Chart REST C2 act as its interface to hide the
topology of C2 as shown in Figure 4, such that the internal
changes in C2 will not impact C1.

C2

 C1

P

P1

P2

P3

P1

P2

P3

P_t1

P_t2

<rest_chart id="C2">

<representation id="P1" initial="true">…</representation>

…internal topology…

<representation id="P2">…</representation>

<representation id="P3">…</representation>

</rest_chart>

<rest_chart id=”C1”>

…

<representation id="P" href="URI_to_C2" />

<transition id="P_t1">

 <input>

 <representation ref="P/P2" link="P2_k1" />

 </input>

 …

</transition>

<transition id="P_t2">

 <input>

 <representation ref="P/P3" link="P3_k1" />

 </input>

 …

</transition>

…

</rest_chart>

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 34 / 77

We have successfully applied Hierarchical REST Chart
to describe several practical REST APIs, including the
Network Management REST API of OpenStack [16]. Figure
5 depicts a top-level REST Chart with three nesting
representations: Port, Network and Subnet, and the nested
REST Chart for the Network is depicted in Figure 6, whose
interface place Port and Subnet are used by C1 in transition
t4 and t5 respectively. In both figures, the empty places
indicate the client requests to dereference the hyperlinks.

IV. OPTIMAL REST ORACLE

REST Oracle is based on the idea that a REST client can
be divided into two reusable functional modules: a client
oracle that decides the resources to interact with, and a
client agent that carries out the resource interactions
instructed by the client oracle. The decisions made by a
client oracle obviously depend on what goal the client is
trying to achieve with the REST API. For example, a client
oracle that tries to check bank account balance probably
should select different resources than a client oracle that
tries to deposit a paper check to an account.

If a REST API is described by Hierarchical REST Chart,
the goal of a client can be defined in terms of the places it
needs to visit. For instance, when a client wants to deposit a
check to an account, it must reach these places in the correct
order: login place to authenticate itself, the place to deposit
a check, the place to scan the check, the place to upload the
check, the place to verify the information, and the place for
the positive acknowledgement of the entire process.

If there is more than one sequence of places to reach a
goal, as most REST API does, a REST client needs to
consider which path is optimal. For this purpose, we map
each transition in a Hierarchical REST Chart to a positive
real number that represents the cost for a REST client to
take that transition. The cost can be related to network
latency, the message size, the processing time, or a
combination of such factors that can be measured based on
the environment in which the REST API operates. With the
cost factor, an optimal path can be defined as the shortest
path from the initial place to a goal place in a Hierarchical
REST Chart. A uniform cost of 1.0 at every transition would
produce an optimal oracle that takes the smallest number of
messages to reach the goal place.

 It is possible to find such shortest paths in REST Chart
based on Petri-Net reachability algorithms [18] or
coverability algorithms [19]. However, these algorithms are
usually complex or may take exponential space as they
compute all possible token markings in arbitrary Petri-Net.
For this reason, we decide to use graph search algorithm,
whose time complexity is not dependent on token markings
and is polynomial to the number of places and transitions of
a Petri-Net.

To apply this approach, we convert the Hierarchical
REST Chart to a nested directed graph. The server places
become the vertices, and each edge is labeled with
corresponding transition including the client place and a
cost as illustrated in Figure 7. This process is recursively
applied to the nested REST Charts.

Figure 7. Transforming a REST Chart to a directed graph with cost

It is often useful to direct a REST client to not just one,
but a series of goal places when interacting with a
workflow. To realize this requirement, we adapt Dijkstra’s
Shortest Path algorithm [17] to the nested directed graph to
find the shortest path from the initial place to the first goal
place, and then repeat the algorithm from current goal place
to the next goal place in the series, until the last goal place is
reached. If a goal place is not reachable, then the process
will stop. The shortest path found by this process is an
oracle that reaches these goals in the given order.

Figure 8. Client Oracle algorithm adapted from Dijkstra’s Shortest Path
Algorithm

The Client Oracle algorithm is outlined in Figure 8. The
core of the algorithm (lines 2-17) uses Dijkstra’s Shortest
Path algorithm on the directed graph A, which is converted
from the REST Chart C, to find a shortest path from an
initial place Pi to a final place Pj and record the transitions
on the path (e.g. s[X] = transition(Pk)). The rest of the
algorithm (lines 18-24) reconstructs from the recorded

server

place Si

client

place Ci

Tij

server

place Sj

vertex

Si

vertex

Sj

Tij, Ci, cost

1. Client_Oracle(C, A, Pi, Pj): Oracle

2. C: REST Chart

3. A: adjacency matrix for C

4. Pi: source place

5. Pj: target place

6. IN = {Pi}

7. For each Pk in P of C do d[Pk] = A[Pi,Pk]

8. While Pj not in IN do

9. Pk = a place X in P–IN with minimum d[X]

10. s[Pk] = C.transition(Pi)

11. IN += Pk

12. For each place X in P–IN do

13. dist = d[X]

14. d[X] = min(d[X], d[Pk] + A[Pk, X])

15. if (d[X] < dist) then s[X] = C.transition(Pk)

16. End

17. End

18. T = s[Pj]

19. Oracle = (C.server_place(T), T, C.client_place(Y))

20. While C.server_place(T) ≠ Pi do

21. T = s[T]

22. Oracle += (C.server_place(T), T, C.client_place(T))

23. End

24. Return reverse(Oracle)

25. End

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 35 / 77

transitions of the oracle as a sequence of triples
(Server_Place, Transition, Client_Place).

If a vertex Si contains a nested directed graph, then we
will find the shortest paths from the initial vertex of the
nested graph to all its final vertices, and add the total cost of
each shortest path to the cost of the corresponding edge
from Si. For example in Figure 2, the cost of the shortest
path from P1 to P2 will be added to edge P_t1 of P, and the
cost of the shortest path from P1 to P3 will be added to edge
P_t2 of P.

The following diagram (Figure 9) illustrates 3 shortest
paths (oracles) superimposed on an automated coffee
service REST Chart with uniform cost 1 labeled on the
edges, and the corresponding oracles are summarized in
Table I.

Figure 9. Three client oracles (shortest paths) for three goal series

TABLE I. ORACLES FOUND FOR DIFFERENT GOALS

 Goal Series Oracle

1 {confirmation}
(initial, T0, coffee_order)

(order_payment, T1, payment)

2
{confirmation,

order_deleted}

(initial, T0, coffee_order)
(order_payment, T1, payment)

(confirmation, T4, delete_2)

3 {notification}

(initial, T0, coffee_order)

(order_payment, T1, payment)
(confirmation, T6, subscription)

The oracle triples in Table I contain the crucial
information to implement a fully functional oracle program.
The server place in a triple specifies the representations that
a REST client must understand to select a hyperlink. The
transition in a triple specifies the interaction with the

selected hyperlink. The client place specifies the
representations, e.g. a form definition, that the REST client
must supply for that interaction. The only missing
information is the actual representation, e.g. the form data,
for the client place, which can be saved statically with the
client oracle, or input to the client oracle dynamically when
it is needed. Alternative optimal paths to a goal can also be
included in a client oracle for fail over or load balancing
purposes.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have developed a Java implementation of the Client
Oracle algorithm in Figure 8. The overall flow of the
implementation is illustrated in Figure 10. Only the top-
level REST Chart is need by the tool, which will
automatically load any nested REST Chart. Our Java tool
implementation accepts a single or a series of goals. In
addition to finding a client oracle for a given set of goals, it
can also find all the client oracles from the entry place to all
other places in a Hierarchical REST Chart. The output of the
tool includes the oracles found for the top-level and the
nested REST Charts.

Figure 10. Java implementation of Client Oracle

We ran our Java tool on two sets of Hierarchical REST
Charts with randomly generated costs to find all possible
client oracles from the initial place. The first set contains 4
Hierarchical REST Charts nested in three levels, where the
numbers in the parentheses indicate the number of places
and transitions in the REST Chart:
 Chart1 (8,7)

 Chart3 (4,3)
 Chart2 (6,5)
 Chart4 (4,3)

 The second set contains 4 REST Charts nested in 3
levels as follows:

ABC1 (8,14)
 ABC2 (6,8)
 ABC3 (5,7)
 ABC4 (4,5)

The execution time (in millisecond) includes parsing the
multiple XML files into the internal data structure, finding
all client oracles based on the data structure, and saving
them to a log file. The times measured by Java function
System.currentTimeMillis() averaged over 5 runs on

Main (I/O)

Hierarchical

REST Chart
XML Files

Parse REST

Chart XML

SAXParser

Internal

Data

Structure

Compute

Client Oracle

Source

Targets

Client

Oracle

Transition

Cost File

25Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 36 / 77

a 32-bit Windows 7 machine (Intel i5 M560 dual core at
2.67 GHz and 4.00 GB memory) are summarized in Table
II, where the numbers in the parentheses indicate the total
number of places (V) and transitions (E) in each REST
Chart.

TABLE II. PERFORMANCE SUMMARY

 average (ms) std

Set 1 (22, 18) 59 6.8

Set 2 (23, 34) 66 6.7

Since the Dijkstra’s Shortest Path algorithm has

O(E+V*log(V)) time complexity for a graph with E edges

and V vertices, the time ratio of these two sets are very close

to the time complexity ratio: 66/59=1.1 while

(34+23*log(23))/(18+22*log(22))=1.3. For this reason, the

the performance is satisfactory and consistent. More

important than the performance measurements that can be

improved in many ways, the results demonstrate that the

approach is feasible in finding optimal client oracles with

any Hierarchical REST Chart in polynomial time.

VI. CONCLUSION

The three main contributions of this paper are: 1) a
structural approach to REST client design based on two
reusable functional modules, i.e. a client oracle that selects
hyperlink to follow for a given goal, and a client agent that
carries out the interaction as instructed by the oracle; 2) the
new modeling mechanism and XML language to support
Hierarchical REST Chart, which is a significant
improvement over the original REST Chart for REST
service modeling; and 3) a path selection framework for
finding the optimal REST oracle and the implementation of
the path selection framework based on Dijkstra’s Shortest
Path algorithm to Hierarchical REST Chart. Our approach
has several advantages over a monolithic REST client
design approach. Experimental results indicated that this
approach is feasible and promising.

For future work, we plan to continue improving the
framework of the Hierarchical REST Chart and apply the
REST oracle approach in automated goal-driven generation
of fully functional REST clients based on the REST Chart
description of REST API.

ACKNOWLEDGMENT

The authors would like to thank Anita Kurni for
implementing the Java Client Oracle tool while working as a
contractor for Huawei.

REFERENCES

[1] R. T. Fielding, Architectural Styles and the Design of Network-based
Software Architectures, Dissertation, University Of California, Irvine,
2000.

[2] Twilio REST API, http://www.twilio.com/docs/api, retrieved:
February, 2015.

[3] GSMA OneAPI, http://www.gsma.com/oneapi/voice-call-control-
restful-api/, retrieved: February, 2015.

[4] Amazon Simple Storage Service REST API,
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html,
retrieved: February, 2015.

[5] Floodlight REST API,
http://www.openflowhub.org/display/floodlightcontroller/Floodlight+
REST+API, retrieved: February, 2015.

[6] L. Li and W. Chou, “Design and Describe REST API without
Violating REST: a Petri Net Based Approach,” ICWS 2011, July 4-9,
2011, pp. 508-515.

[7] M. Hadley, Web Application Description Language, W3C member
Submission, 31, August 2009, http://www.w3.org/Submission/wadl/,
retrieved: February, 2015.

[8] RAML Version 0.8, http://raml.org/spec.html, retrieved: February,
2015.

[9] Swagger 2.0, https://github.com/swagger-api/swagger-spec, retrieved
February, 2015.

[10] J. Robie, R. Cavicchio, R. Sinnema, and E. Wilde, “RESTful Service
Description Language (RSDL), Describing RESTful Services
Without Tight Coupling, Balisage,” The Markup Conference 2013,
http://www.balisage.net/Proceedings/vol10/html/Robie01/BalisageVo
l10-Robie01.html, retrieved: February, 2015.

[11] API Blueprint Format 1A revision 7, https://github.com/apiaryio/api-
blueprint/blob/master/API%20Blueprint%20Specification.md,
retrieved: February, 2015.

[12] K. Gomadam, A. Ranabahu, and A. Sheth, SA-REST: Semantic
Annotation of Web Resources, W3C Member Submission 05 April
2010, http://www.w3.org/Submission/SA-REST/, retrieved: February,
2015.

[13] R. Alarcon and E. Wilde, “Linking Data from RESTful Services,”
LDOW 2010, April 27, 2010, pp 100-107.

[14] J. Robie, RESTful API Description Language (RADL),
https://github.com/restful-api-description-language/RADL, 2014,
retrieved: February, 2015.

[15] P.-A. Champin, “RDF-REST, A Unifying Framework for Web APIs
and Linked Data,” Services and Applications over Linked APIs and
Data (SALAD) workshop at ESWC, May 2013, pp.10-19.

[16] OpenStack API References, http://developer.openstack.org/api-
ref.html, retrieved: February, 2015.

[17] J. L. Gersting: Mathmatical Structures for Computer Science, third
edition, 1993, pp. 422-423.

[18] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Processing, 2nd edition, Springer, 2008, pp. 246-246.

[19] J. Esparza and M. Nielsen: Decidability Issues for Petri Nets, BRICS
Report Series, RS-94-8, ISSN 0909-0878, May 1994.

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 37 / 77

Robust Interactions under System Crashes and Network Failures
of Collaborative Processes with Arbitrary Control Flows

Lei Wang,
Luı́s Ferreira Pires

and Marten J. van Sinderen

CTIT, University of Twente,
the Netherlands

Emails: {l.wang-1, l.ferreirapires, m.j.vansinderen}@utwente.nl

Andreas Wombacher

Achmea, the Netherlands
Postbus 866

3700 AW Zeist
Email: andreas.wombacher@achmea.nl

Chi-Hung Chi

CSIRO, Australia
3-4 Castray Esplanade,
Hobart, Tasmania, 7000

Email: chihungchi@gmail.com

Abstract—Due to the possibility of system crashes and network
failures, the design of robust interactions for collaborative busi-
ness processes is a challenge. If a process changes state, it sends
messages to other relevant processes to inform them about this
change. However, server crashes and network failures may result
in a loss of messages. In this case, the state change is performed by
only one process, resulting in global state/behavior inconsistencies
and possibly deadlocks. Our idea to solve this problem is to
(automatically) transform the original processes into their robust
counterparts. We illustrate our solution using a subset of WS-
BPEL. A WS-BPEL process is modeled using a so called Nested
Word Automata (NWA), to which we apply our transformation
solution and on which we perform correctness proof. We have
also analyzed the performance of our prototype implementation.
In our previous work, we assumed that a certain pre-defined
interaction follows the failed interaction. In this work, we lift this
limitation by allowing an arbitrary behavior to follow the failed
interaction, making our solution more generally applicable.

Keywords–robust, collaborative processes, WS-BPEL, interac-
tions, system crash, network failure, automata

I. INTRODUCTION

The electronic collaboration of business organizations has
grown significantly in the last decade. Often data interchange
is based on processes run by different parties exchanging
messages to synchronize their states. If a process changes
state, it sends messages to other relevant processes to inform
them about this change. However, server crashes and network
failures may result in a loss of messages. In this case, the
state change is performed by one process, resulting in global
state/behavior inconsistencies and possible deadlocks. In gen-
eral, a state inconsistency is not recovered by the process
engine that executes the process. This can be seen from a
screen dump of errors from the Oracle process engine 12c
which sends message to an unavailable server (see Figure 1).

Figure 2a shows that normally, a business process is
deployed to a process engine, which runs on the infrastructure
services (OS, database, networks, etc.), where system crashes
and network failures may happen. Our solution to recover
from failures is to transform business processes into their
robust counterparts, as shown in Figure 2b. The robust process
is deployed on the unmodified infrastructure services and is
recoverable from some interaction failures caused by system
crashes and network failures. Our solution has the following
properties: (1) the application protocols are not modified. We
do not modify the message format nor message sequence, e.g.,
by adding message fields that are irrelevant for the application
logic or adding acknowledge messages to the original message
sequence. The service autonomy is kept in that if one party
transforms the process according to our approach and the other
party does not, they can still interact with each other, although
without being able to recover from system crashes and net-
work failures. (2) the process transformation is transparent
for process designers. In this paper, we illustrate our solution
using WS-BPEL [1]. However, other process languages may
be applicable as long as they support similar workflow patterns
[2].

This paper is an extension of our previous work
[3][4][5][6], where we assumed that a certain pre-defined
interaction follows the failed interaction, i.e., the only sequence
control is assumed that the further interaction is sequentially
following the failed interaction. A technical report [7] is pro-
vided as an online version with more details on the formalism
used and the transformation methods of our approach. In
this paper, we lift this limitation by allowing an arbitrary
behavior to follow the failed interaction, making our solution
more generally applicable. We support conditional control
flow and loops and their arbitrary combination as possible
further interaction after interaction failure. The structure of the
paper is the following: Section II analyzes possible interaction

27Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 38 / 77

Figure 1. Oracle SOA engine interaction errors.

N
e

tw
o

rks

Operating
System

Process
Engine

Business
Processes

(a) Interaction failures

N
e

tw
o

rks

Operating
System

Process
Engine

Business
Processes

Robust
Processes

Processes
Transform

(b) Robust process transformation

Figure 2. Our idea to cope with failures.

Initiator responder

(a) send and receive

Initiator responder

(b) send-receive case I

Initiator responder

XSU
XSU

XREQ XRESP
XRESP

(c) send-receive case II

Figure 3. Process interaction patterns.

failures. Section III proposed our process transformation-based
solution. Section IV validates our solution. Section V discusses
related work and Section VI concludes our paper.

II. INTERACTION FAILURE ANALYSIS

This section analyzes possible interaction failures of col-
laborative processes caused by system crashes and network
failures.

A. Process Interaction Patterns

Process interaction failures are specific to interaction pat-
terns. In [8], 13 interaction patterns are identified. In this paper,
we focus on the send, receive and send-receive patterns. This
limitation is not severe because more complex patterns can
be composed using these basic interaction patterns. Figure 3a
shows an initiator that sends a one-way message to a responder.
The initiator behavior corresponds to the send pattern, while
the responder behavior corresponds to the receive pattern. In
pattern send-receive in Figure 3b the initiator combines one
send and one receive pattern. We call this pattern asynchronous
interaction in the sequel of the paper. In Figure 3c, the initiator
starts a synchronous interaction by sending a request and
getting a response, which characterize the send-receive pattern.

B. Process Interaction Failures

Interaction failures caused by system crashes and network
failures are pending request failure, pending response failure
and service unavailable [4]. As all failures possible in the
interaction patterns of Figure 3a and Figure 3b are covered
by Figure 3c, we look only into the interaction failures of the
interaction pattern in Figure 3c. Service unavailable (marked
as XSU) is caused by a responder system crash or a network
failure of the request message delivery. At process level, the
initiator is aware of the failure through a catchable exception of
the process implementation language. Pending request failure
(marked as XREQ) is caused by initiator system crashes
after sending a request message. The initiator is informed
of the failure after restart, e.g., through catchable exceptions.
However, the responder is not aware of the failure, so that
it replies with the response message and continues execution.
Pending response failure (marked as XRESP) is caused by a
responder system crash or a network failure of the response
message delivery. In both cases, the responder replies with
the response message (after a restart if the responder system
crashes) and continues execution. However, the connection gets
lost and the initiator cannot receive the response message. The
initiator is aware of this failure after a timeout.

Due to the heterogeneous infrastructure, e.g., different
process engine implementations or network environments, we
have to make the following assumptions concerning the failure
behavior of the infrastructure: 1) Persistent execution state. The
state of a business process (e.g., values of process variables)
are kept persistent and survive system crashes. 2) Atomic
activity execution (e.g., invoke, receive, reply). A system crash
means that the execution is stopped only after the previous
activity is finished and the next activity has not started.
A restart means that execution resumes from the previous
stopped activity. These assumptions correspond with the de-
fault behavior of the most popular process engines, such as
Apache ODE or Oracle BPEL Process Manager (released as a
component of Oracle SOA Suite). In Apache ODE’s term, this
is named as persistent processes in their default configuration.
Otherwise this configuration can be modified to “in-memory”
at deployment time [9]. For Oracle BPEL Process Manager,
this is named as “durable” processes, otherwise is named as
“transient” processes. By default all the WS-BPEL processes
are durable processes and their instances are stored in the
so called dehydration tables, which survives system crashes
[10]. 3) Network Failures interrupt the established network
connections and the messages that are in transit get lost.

III. PROCESS TRANSFORMATION BASED SOLUTION

A. Business Processes

We choose WS-BPEL as process specification language
in our work. A WS-BPEL process is a container where
relationships to external partners, process data and handlers
for various purposes and, most importantly, the activities to
be executed are declared. As an OASIS standard, it is widely
used by enterprises. We use Nested Word Automata (NWA)
[11] to describe the underlying semantics of WS-BPEL and use
them as a basis for our formal evaluation. We choose NWA
because we need to model the nested structure of WS-BPEL
syntax. While traditional finite state automata can be used for

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 39 / 77

<process> </process>
NWA(act)q0 q1 q2 q3

Figure 4. NWA model of a process.

<if> true
end_true

NWA(act)

NWA(act)

false
end_false

</if>

(a) if

<pick>

<?m1> </onMsg>

NWA(act)

NWA(act)

<?mn>
</onMsg>

</pick>
.
.
.

(b) pick

false </while>

true end_true

NWA(scope)

<while>

(c) while

<seq>
NWA(act)

</seq>
NWA(act)

next

(d) sequence

Figure 5. NWA model of WS-BPEL structured activities.

describing all possible states of messages, and their sending
and receiving sequences, they lack the capability of describing
nested structures of activities.

An NWA is an automaton that has hierarchical nesting
structures. Formally, an NWA A over an alphabet Σ is a
structure (Q, q0, Qf , P, p0, Pf , δc, δi, δr) consisting of
• a finite set of (linear) states Q,
• an initial (linear) state q0 ∈ Q,
• a set of (linear) final states Qf ⊆ Q,
• a finite set of hierarchical states P ,
• an initial hierarchical state p0 ∈ P ,
• a set of hierarchical final states Pf ⊆ P ,
• a call-transition function δc : Q× Σ 7→ Q× P ,
• an internal-transition function δi : Q× Σ 7→ Q, and
• a return-transition function δr: Q× P × Σ 7→ Q.

The definition of Q, q0, Qf , δi corresponds to the definition
of a finite state automata over an alphabet Σ [12]. The alphabet
Σ represents all possible process behaviors, e.g., <process>
∈ Σ represents the starting of a business process, ?mi ∈ Σ
represents receiving a message while !mj ∈ Σ represents
sending a message. An internal transition δi(qi, !mi) = qj
represents that the process replies a message !mi at the state qi
and then enters the state qj . The hierarchical states P, p0, Pf
are used to describe the nesting structure of an NWA. A
call transition δc enters the nested automaton while a return
transition δr leaves the nested automaton. A nested structure
is graphically represented as dashed box. The NWA model of
a WS-BPEL process is shown in Figure 4. A call transition
δc(q0, <process>) = (q1, pa) starts from the initial state and
a return transition δr(q2, pa, </process>) = q3 leads to the
accepted state. The NWA model of an activity NWA(act) is
nested within the NWA of the process. This is described by
the hierarchical state pa.

WS-BPEL activities are divided into two categories,
namely basic and structured activities. The currently supported
structured activities are if, pick, while and sequence, as shown
in Figure 5. The flow (concurrent execution) or the other forms
of loops (RepeatUntil, ForEach) are not considered now and

<sequence>
 <receive variable="m1" ... />
 <!-- some process -->
 <reply variable="m2" ... />
 <pick>
 <onMessage variable="m3".../>
 <onMessage variable="m4".../>
 </pick>
</sequence>

(a) example WS-BPEL snippet

<sequence>
 <receive variable="m1" ... />
 <!-- some process -->
 <reply variable="m2" ... />
 <assign>$copy := $m2</assign>
 <pick>
 <onMessage variable="m3".../>
 <onMessage variable="m4".../>
 <onMessage variable="m1" >
 <reply variable="copy" />
 </onMessage>
 </pick>
</sequence>

(b) transformation, step I

Figure 6. WS-BPEL example of our solution.

will be considered in future work. Each structured activity
model has exactly one call transition and one return transition
to enter and leave its nested structure(s), which is represented
as a dash box. The detailed explanation of our formalization
is presented in [7].

B. Transformation Method

An operation that can be safely repeated is called idem-
potent [13]. Idempotent operations can be recovered by re-
sending the request message. However, a request resent to
non-idempotent operations (such as bank transfer operations)
triggers potentially incorrect executions. Our solution for non-
idempotent operation is that when a failure happens, a resent
message is replied with a copy of the previous processing
result.

In the example of Figure 6a, the WS-BPEL snippet receives
a message m1, performs some (non-idempotent) processing,
then replies with a message m2. The next incoming messages
could be m3 or m4. If the initiator sends request m3 or
m4, this implies that the initiator has successfully received
the response message m2. If due to an interaction failure, for
example, the initiator crashes and fails to receive the response
message m2, the initiator can recover by resending request
message m1. We then transform the responder process to use
a copy of the previous result as response. Figure 6b shows
that in order to make a copy of the response message, we
use an assign activity to keep the result value in a process
variable $copy. In the pick activity, we add an onMessage
branch to accept the resent message m1 and use the variable
$copy as the response. However, a resent message could be
sent multiple times before the response is ultimately received.
We nest the pick activity in a while to cope with the duplicate
resent message. A detailed discussion is in [7]. Our process
transformation algorithm is presented as follows.

1) Responder Transformation Algorithm: For a WS-BPEL
process, given its NWA model (Q, q0, Qf , P, p0.Pf , δc, δi, δr)
over the alphabet Σ, we assume that the alphabet that rep-
resents the response messages is Σresp and the alphabet that
represents the request messages is Σreq, thus Σreq ⊆ Σ and
Σresp ⊆ Σ. The transformation algorithm is as Figure 7.

The algorithm iterates through all combinations of a state
q, a request message ?mreq and a response message !mresp.
In line 2, we check if the message pair (?mreq, !mresp)
corresponds to the request and response for a synchronous
operation and at state q, the response message !mresp is sent,

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 40 / 77

1: for all q ∈ Q, ?mreq ∈ Σreq and !mresp ∈ Σresp do
2: if (mreq,mresp) is a synchronous message pair and

δi(q, !mresp) is defined in NWA then
3: save reply(q, !mresp)
4: N ← next receive(q, !mresp)
5: for all ?mnext ∈ N and qnext ∈ Q do
6: if δi(qnext, ?mnext) is defined in NWA then
7: transform receive(qnext, ?mnext)
8: else if δc(qnext, ?mnext) is defined in NWA then
9: transform pick(qnext, ?mnext)

10: end if
11: end for
12: end if
13: end for

Figure 7. Responder process transformation algorithm

represented by a transition δi(q, !mresp). This is the failure
point that the response message may be lost due to interaction
failures and where our transformation method applies. As
defined in line 3, we first make a copy of the response message,
as shown in Figure 8. The NWA model of reply activity in
Figure 8a is replaced by an NWA model of a sequence activity
in Figure 8b, in which a reply activity model and an assign
activity model are nested. The assign activity model represents
the copy of the reply message into the variable mcopy . In order
to process the possible resent request message ?mreq due to
the lost of the message !mresp sent at state q, we calculate the
set of all possible next incoming messages, which is defined as
next receive(q, !mresp) in line 4. We construct an automaton
A(!mresp, ?mnext) as in Figure 9 to describe that a process
replies with a message !mresp and waits for some possible
next incoming message ?mnext. δ(q0, !mresp) = q1 models
the reply of the response message !mresp. δ(q1,Σ/Σreq) = q1
represents some process execution in which no messages
are received. δ(q1, ?mnext) = q2 represents that the process
receives an incoming message ?mnext. δ(q2,Σ) = q2 models
any process execution. For the process NWA model, at some
state q, a reply of a message !mresp is represented by an
internal transition δi(q,mresp). We change the initial state
of the process NWA model to from q0 to q, and call this
automaton NWA(q). Starting at q, after replying the message
!mresp, if one possible next incoming message is ?mnext, then
NWA(q) ∩ A(!mresp, ?mnext) 6= ∅, i.e., the process modeled
by NWA has the behavior described by A(!mresp, ?mnext).

The intersection operation ∩ between an NWA and an
finite state automaton is defined to check whether the busi-
ness process modeled by the NWA has the message send-
ing and receiving behavior modeled by the automaton. The
intersection operation is based on finite state automata. We
“flatten” an NWA to a finite state automaton by skipping
hierarchical information, described as follows. Given a NWA
(Q, q0, Qf , P, p0, Pf , δc, δi, δr) over the alphabet Σ, the “flat-
tened” automaton is A(Q, q0, Qf ,Σ, δ), where Q, q0, Qf and
Σ are the same as the NWA, the transition function δ is defined
as

1) δ(qi1, a) = qi2, if the NWA has an internal transition
δi(qi1, a) = qi2.

2) δ(qc1, a) = qc2, if the NWA has a call transition
δc(qc1, a) = (p, qc2).

!m_resp .

(a) reply activity

<seq> !m_resp
assg
mcopy:=m_resp </seq>

(b) Transformed reply activity

Figure 8. Responder process transformation, reply activity.

?mnext!mresp
q0 q1 q2

Σ/Σrec Σ

Figure 9. The automaton A(!mi, ?mnext).

?mnext

(a) Responder, receive activity

<pick> <?mreq>
</onMsg>

<?mnext>
</onMsg>

</pick>

!mcopy

assg
(success := true)

(b) Transformed responder, part I

false </while>
assign
(success:=false)

<while>
(success==false)

true
<pick>

</pick>

NWA(pick)

(c) Transformed responder, part II

Figure 10. Responder process transformation, receive activity.

3) δ(qr1, a) = qr2, if the NWA has a return transition
δr(qr1, p, a) = qr2.

Both call transitions and return transition are treated as flat
transitions that the hierarchical state p is not considered. The
intersection operation can be done between two finite state
automata, as defined in [12].

We define the set of all possible next incoming messages
as next receive(q, !mresp) = {?mnext|?mnext ∈ Σreq∧
NWA(q) ∩A(!mresp, ?mnext) 6= ∅}.

For all ?mnext ∈ next receive(q, !mresp) and qnext ∈ Q,
if at the state qnext the next incoming message ?mnext

is received, two cases of transition may be defined in
NWA: in a model of a receive activity as an internal tran-
sition δi(qnext, ?mnext) or in the model of a pick ac-
tivity as a call transition δc(qnext, ?mnext). For the first
case (line 6), as shown in Figure 10a, the procedure
transform receive(qnext, ?mnext) is introduced as follows.
We replace the transition with a pick activity with two
branches, as shown in Figure 10b. One onMessage branch
models the receive of the resent message ?mreq and the reply
of the result message mcopy . The other onMessage branch
models the receive of the message ?mnext, and after that
we set the flag success to true to indicate that the previous
interaction is finished successfully. However, a possible loss
of the response message mcopy triggers multiple resending of
the request mreq. Therefore, the pick activity is defined in a
while iteration so that multiple requests ?mreq can be accepted.
Figure 10c shows that the while iteration ends when the flag
success is set to true.

For the second case (line 8), as shown in Figure 11a, the
message ?mnext is one of the messages in m1, ...,mn. Figure

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 41 / 77

<pick>

<?m1> </onMsg>

NWA(act)

NWA(act)

<?mn>
</onMsg>

</pick>
.
.
.

(a) Responder, pick activity

<pick>

<?m1> </onMsg>

NWA(act)

<?mn>
</onMsg>

</pick>
.
.
.

<?mreq>

<seq>
assg
(success := true) </seq>

NWA(act)
<seq>

assg
(success := true) </seq>

</onMsg>

!mcopy

(b) Transformed responder, part I

Figure 11. Responder process transformation, pick activity.

11b shows that we then add a call transition <?mreq > to
model that the process accepts the resent message, and an
internal transition !mcopy to represent the reply using a copy
of the previously cached result mcopy . In the other branches,
the nested NWA(act) is replaced by the model of a sequence
activity, in which we model the assignment of the flag variable
success to true, followed by the original NWA(act). Similarly,
in order to cope with a possible loss of the response message
mcopy , the pick activity model is nested in a while iteration
to handle multiple resent messages, as shown in Figure 10c.
We do not directly prove the correntness of this algorithm,
however, the correctness of the transformed processes by this
algorithm have been proved in section IV.

After the transformation, at some states the responder can
receive more messages than the original process, because the
resent message can be accepted and be replied. However, the
request is not processed again. In this sense, we do not give
malicious initiators any chance of jeopardizing the process by
changing the sequence of requests or sending the same request
multiple times.

2) Initiator Transformation: The initiator transformation
makes it resend the request message whenever a failure hap-
pens. The detailed transformation method is presented in [7].

3) Recoverable Assumption: Assume that (?mreq, !mresp)
is a pair of synchronous request and response messages,
the process receives request message ?mreq, then at state q,
the process sends the response message !mresp. However, if
?mreq ∈ next receive(q,mresp), then one of the next possi-
ble messages is still ?mreq , in this case, the responder cannot
distinguish a resent message due to a failure from a normal
request message. Thus we have to require that in the process
design the condition ?mreq /∈ next receive(q, !mresp) can be
met. However, by following a few process design principles
during the design of the original process, this condition can
be met. An example is, a split of message ?mreq into two
different messages, ?mreq1 and ?mreq2 (for example, one
message is used to send request, the other asks for results). The
initiator sends the two messages back to back. If a responder
receives ?mreq1, then it waits for ?mreq2, rather than waiting

Robust BPEL
Processes

Original BPEL
Test Set

Transform

Validate Fail

Validate Success

Correctness
Criteria

Figure 12. The setup of the correctness proof.

for ?mreq1 again.

IV. EVALUATION

This section presents the correctness validation of our
solution. We also evaluate the performance overhead of our
prototype under different workloads.

A. Correctness Validation

The correctness proof shows that the solution introduced
in Section III provides a robust process. The core of the
proof is to define the correctness criteria for asynchronous and
synchronous interactions and represent them such that they can
be automatically evaluated.

Figure 12 shows the setup of our correctness proof. We
take the test set of 726 example WS-BPEL processes which
implement all possible Internet Open Trading Protocol (IOTP)
interactions [14], and we transform them into the NWA model
of the corresponding robust business process. The proof is
finished by checking that the NWA process model is a subset of
the correctness criteria, which are modeled as automata. Given
an automaton A(Q,Σ, δ, q0, F), each state in Q represents
a state of the messages sending and receiving status. Set Σ
models of all possible process behaviors, e.g., sending and
receiving messages. δ is transition function: Q× Σ→ Q that
models the state transition triggered by process execution, e.g.,
for states qi, qj ∈ Q and !m ∈ Σ, δ(qi, !m) → qj represents
that at state qi, the process replies with message !m and then
enters state qj . The correctness criteria automata models the
set of correct message sending and receiving sequences. We
present the correctness criteria as follows.

1) Initiator Side Correctness Criteria: There are two cri-
teria due to the interaction patterns: the criteria for a single
message sending and the criteria for synchronous request and
response message pair. In this paper, we discuss only the latter
due to the page limitations. The automaton is visualized as
Figure 13a. A correct interaction is regarded as, a request
message ?m1 can be sent at state q0 and can be resent multiple
times at state q1 until a response message !m2 is received at
state q2.

2) Responder Side Correctness Criteria: The property we
want to validate is that any resent message can be accepted
by the transformed process and replied. Given a process,
assume that the synchronous request and response messages
are mj and mi. If the transformed robust process model
is NWA’, for state qi and transition !mi, we have ?mj ∈
next receive(qi, !mi). The idea behind it is that after the reply
message !mi is sent, the robust process can accept possible
resent messages due to failures. In this case, the response
should be sent without reprocessing. The criteria are shown

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 42 / 77

!m2?m1
q0 q1 q2

?m1 Σ

(a) Initiator

?mj!mi
q0 q1 q2

Σ/next_receive(qi, !mi)Σ/!mi

!mi

next_receive(qi, !mi)/?mj

q3
Σ

(b) Responder

Figure 13. Correctness criteria of process transformation.

<pick>
<?m3>

</onMsg>

<?m4>
</onMsg>

</pick>!m2?m1<seq> </seq>
q0 q1 q2 q3

(a) Automaton model of the original process

<pick>

<?m1> </onMsg>

<?m4>
</onMsg>

</pick>

end_true

q3

!m2?m1<seq>

q0 q1 q2

assign
$copy:=m2 <while> false </while></seq>

true

<?m3>

assign
$success:=
true </onMsg>

assign
$success:=
true

!m2

(b) Automaton model of the transformed process

Figure 14. Illustration of the correctness validation, robust
NWA model of Figure 6.

as Figure 13b. We omit the detailed discussion of this criteria
due to page limitations.

The process control flows can be designed in arbitrary
ways, and since we cannot exhaust all possibilities, we use
a WS-BPEL test set that implements all possible IOTP inter-
actions, which is a total of 726 BPEL processes. After the
transformation of the test processes into automata, we apply
the subset check to evaluate the correctness of the WS-BPEL
test processes, i.e., we prove that for all processes and their
NWA model and criteria automaton A, NWA ∈ A, i.e., all
messages sending and receiving sequences are correct.

We take the process in Figure 6 to illustrate the correctness
validation. An original WS-BPEL snippet shown in Figure 6a
is transformed into the robust counterpart, and their automata
models are shown as Figures 14a and 14b, respectively. At
state q2, where the message !m2 is to be replied, the set
of the possible next incoming messages of the responder is
next receive(q2, !m2) = {?m1, ?m3, ?m4}. The criteria for
the synchronous request ?m1 and the response !m2 is shown as
Figure 15. First, we do a subset check to prove that the original
is not a subset of the criteria. Actually, we can see that the
message sequence (.., ?m1, !m2, .., ?m1, !m2, ..?m3, ..) can be
accepted by the criteria automaton. However, this sequence
cannot be accepted by the model of the original process, since
there is no transition defined for the second ?m1. Second, we
do a subset check to prove the transformed automata model is
a subset of the criteria, i.e., all sending and receiving message
sequences are correct.

?m1!m1
q0 q1 q2

Σ/{?m1,?m3,?m4}Σ/!m1

!m2
{?m3,?m4}

q3
Σ

Figure 15. Correctness criteria for the illustrative process.

Initiator

Responder

Performance
Data Collector

Figure 16. Setup of Performance Test.

TABLE I. PERFORMANCE OVERHEAD.

Origin Trans Overhead Origin Trans Overhead
Workload λ = 5 Workload λ = 10

287 ms 379 ms 92 ms 322 ms 452 ms 130 ms

B. Performance Evaluation

In Figure 2 of the whole setup, if the infrastruc-
ture (OS, process engine, hardware and network configu-
ration) is the same, performance depends mainly on the
process design and the workload, i.e., performance =
Test(ProcessDesign,workload).

We use similar setup of our performance test with our
previous performance tests [15], which is shown in Figure 16.
We use the cloud infrastructure from Amazon EC2. The ini-
tiator and responder processes are deployed on two computing
instances and we use a local client to collect the performance
data.

We evaluated the performance overhead of our transformed
process under different workloads. The number of requests
sent per minute by the local client complies with a Poisson
distribution with parameters λ = 5 and λ = 10 requests per
minute. We used these workloads because according to our
tests under the available hardware and software configurations,
higher workloads would exhaust the server resources. We
use the open source Apache ODE process engine where an
embedded Derby [16] database is used. The Amazon EC2
instance type is t1.micro with 1 vCPU and 0.594GiB memory.
Each test run lasted for 60 minutes, but only the response
times in the 30 minutes in the middle of this period have been
considered (steady state).

The performance data is shown as Table I. Under the
workload of λ = 5, the average performance overhead of our
transformation mechanism is 92 ms. Under the workload of
λ = 10, the average overhead is 130 ms. We conclude then
that the performance overhead increases with the workload.
However, we expect lower performance overhead when the
infrastructure is scalable, like in a cloud environment.

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 43 / 77

V. RELATED WORK

Solutions based on exception handling [17][18] is process-
specific. WS-BPEL supports compensations of well-defined
exceptions using exception handlers. However, elaborate pro-
cess handler design requires process-specific knowledge of
failure types and their related recover strategies. Alternatively,
we try to ease the process designers from dealing with synchro-
nization failures by a transparent process transformation from
a given business process to its recovery-enabled counterpart.

A fault tolerant system can be built by coping with the
occurrence of failures by applying redundancy [13]. Three
kinds of redundancy are possible: information redundancy,
time redundancy and physical redundancy. However, the exist-
ing solution either require more effort of the business process
designers, or additional infrastructure support, or both.

On physical layer, the robust solutions on process engine
level [19][20] dependend on a specific process engine. We
defined our solution based on the WS-BPEL building blocks
without requiring extensions at the engine level. However, the
transformed process can still be migrated to other standard pro-
cess engines. Reliable network protocols such as HTTPR have
been proposed to provide reliable synchronization. However,
the deployment of these solutions increases the complexity
of the network infrastructure. We assume that system crashes
and network failures are rare events, thus extending the in-
frastructure may introduce too much overhead. Further, the
solutions are not applicable in some outsourced deployment
environments. For example, in some cloud computing envi-
ronments, user-specific infrastructure configuration to enhance
synchronization is not possible. Dynamic service substitution
[21][22] is a way to perform recovery by replacing the target
services by equivalent services. In [23][24], the QoS aspects
of dynamic service substitution are considered. In our work,
we do not change the business partners at runtime.

Information redundancy recovery is based on replication.
Our cache-based process transformation is information redun-
dant because a cache is a kind of replication. Time redundancy
solutions include web services transactions. The WS-AT [25]
standard specifies atomic web services transactions, while
WS-BA [26] standard specifies relaxed transactions so that
the participant can choose to leave the transaction before
it commits. However, if a transaction rolls back, a process-
specific compensation is required. Actually, transactions can
deal with well-defined failures. The 2-phase commit distributed
transaction protocol can not deal with system crash (referred
to as cite failure in [27]). However, in a special case of process
in which all participants send vote results to a coordinator, if
the coordinator crashes before sending the vote results to any
participant, all the participants are blocked and the final results
of the transaction remain unknown.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have identified three types of interaction
failures caused by system crashes and network failures and we
have proposed a process interaction failure recovery method
to cope with system crashes and network failures. This paper
is an extension of our previous work [3][4][5][6], where we
assumed that a certain pre-defined interaction follows the failed
interaction. In this paper, we lift this limitation by allowing

an arbitrary behavior to follow the failed interaction, making
our solution more generally applicable. The challenge is to
accept the resent message due to failures with the arbitrary
control flow of the responder process. We transformed the
business process design into nested word automata model. At
a state that models the reception of an incoming message,
we add an additional transition to accept the resent message
due to failure. We have proved the correctness of our process
transformations and we implemented a prototype to test the
runtime performance of our method. Currently, the transfor-
mation process is semi-automatic. We have implemented the
automatic transformation from a WS-BPEL process to the
NWA model, however, the transformation of the NWA model
to the robust counter part is manually. In future, we will
automate the transformation process and we will investigate
more complex process interaction patterns.

REFERENCES

[1] OASIS, Web Services Business Process Execution Language,
2nd ed., OASIS, http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html, [retrieved: Feb., 2015], Apr. 2007.

[2] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and
A.P. Barros, “Workflow patterns,” Distributed and Parallel Databases,
vol. 14, no. 1, Jul. 2003, pp. 5–51.

[3] L. Wang, A. Wombacher, L. Ferreira Pires, M. J. van Sinderen, and C.-
H. Chi, “An illustrative recovery approach for stateful interaction failure
of orchestrated processes,” in IEEE 16th EDOC Workshops, 2012, pp.
38–41.

[4] ——, “A state synchronization mechanism for orchestrated processes,”
in IEEE 16th Intl. EDOC Conf., 2012, pp. 51–60.

[5] ——, “Robust client/server shared state interactions of collaborative
process with system crash and network failures,” in 10th IEEE Intl.
Conf. on Services Computing (SCC), 2013.

[6] ——, “Robust collaborative process interactions under system crash
and network failures,” Intl. J. of Business Process Integration and
Management, vol. 6, no. 4, 2013, pp. 326–340.

[7] ——, “Robust interactions under system crashes and network failures
of collaborative processes with arbitrary control flows,” CTIT,
University of Twente, Tech. Rep., 2014. [Online]. Available:
http://documentations123.appspot.com/sc2015/techrep.pdf, [retrieved:
Feb., 2015]

[8] A. Barros, M. Dumas, and A. Hofstede, “Service interaction patterns,”
in Business Process Management, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2005, vol. 3649, pp. 302–318.

[9] Apache ODE, “Create a process,” https://ode.apache.org/creating-a-
process.html#in-memory-execution.

[10] SOA Technology for beginners and learners, “Transient vs. durable
bpel processes,” http://ofmxperts.blogspot.nl/2012/11/transient-vs-
durable-bpel-processes.html, Nov. 2012.

[11] R. Alur and P. Madhusudan, “Adding nesting structure to words,” J.
ACM, vol. 56, no. 3, May 2009, pp. 16:1–16:43.

[12] J. E. Hopcroft, Introduction to Automata Theory, Languages, and
Computation, 3rd ed. Pearson Addison Wesley, 2007.

[13] A. S. Tanenbaum and M. van Steen, Distributed Systems: Principles
and Paradigms, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall,
2006, ch. 8, pp. 321–375.

[14] J. Schiedung, “Analysing and modelling of IOTP transactions by CPNs
and BPEL,” Master’s thesis, Darmstadt University of Technology, 2004.

[15] L. Wang, A. Wombacher, L. Ferreira Pires, M. J. van Sinderen, and C.-
H. Chi, “A colloborative processes synchronization method with regards
to system crashes and network failures,” in the 29th Symp. on Applied
Computing (SAC), 2014.

[16] Apache Software Foundation, “Ode database setup,”
http://ode.apache.org/databases.html.

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 44 / 77

[17] N. Russell, W. Aalst, and A. Hofstede, “Workflow exception patterns,”
in Advanced Information Systems Engineering, ser. Lecture Notes in
Computer Science, E. Dubois and K. Pohl, Eds. Springer Berlin
Heidelberg, 2006, vol. 4001, pp. 288–302.

[18] B. S. Lerner, S. Christov, L. J. Osterweil, R. Bendraou, U. Kan-
nengiesser, and A. E. Wise, “Exception handling patterns for process
modeling,” IEEE Transactions on Software Engineering, vol. 36, no. 2,
2010, pp. 162–183.

[19] S. Modafferi, E. Mussi, and B. Pernici, “Sh-bpel: a self-healing plug-in
for ws-bpel engines,” in the 1st workshop on Middleware for Service
Oriented Computing. NY, USA: ACM, 2006, pp. 48–53.

[20] A. Charfi, T. Dinkelaker, and M. Mezini, “A plug-in architecture for
self-adaptive web service compositions,” in IEEE Intl. Conf. on Web
Services, Jul. 2009, pp. 35–42.

[21] M. Fredj, N. Georgantas, V. Issarny, and A. Zarras, “Dynamic service
substitution in service-oriented architectures,” in IEEE Congress on
Services - Part I, Jul. 2008, pp. 101–104.

[22] L. Cavallaro, E. Nitto, and M. Pradella, “An automatic approach to
enable replacement of conversational services,” in Service-Oriented
Computing, L. Baresi, C.-H. Chi, and J. Suzuki, Eds. Springer Berlin
Heidelberg, 2009, vol. 5900, pp. 159–174.

[23] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive monitoring and
service adaptation for ws-bpel,” in the 17th intl. conf. on World Wide
Web. NY, USA: ACM, 2008, pp. 815–824.

[24] F. Moo-Mena, J. Garcilazo-Ortiz, L. Basto-Diaz, F. Curi-Quintal,
S. Medina-Peralta, and F. Alonzo-Canul, “A diagnosis module based
on statistic and qos techniques for self-healing architectures supporting
ws based applications,” in Intl. Conf. on Cyber-Enabled Distributed
Computing and Knowledge Discovery, Oct. 2009, pp. 163 –169.

[25] OASIS Web Services Transaction (WS-TX) TC, Web Services Atomic
Transaction (WS-AtomicTransaction), http://docs.oasis-open.org/ws-
tx/wstx-wsat-1.2-spec.html, [retrieved: Feb., 2015], OASIS Standard,
Rev. 1.2, Feb. 2009.

[26] ——, Web Services Business Activity (WS-BusinessActivity),
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os/wstx-wsba-1.2-
spec-os.html, [retrieved: Feb., 2015], OASIS Standard, Rev. 1.2, Feb.
2009.

[27] M. T. Ozsu, Principles of Distributed Database Systems, 3rd ed. Upper
Saddle River, NJ, USA: Prentice Hall Press, 2007, ch. 12.

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 45 / 77

Hybrid Approach to Abstract Planning of Web Services

Artur Niewiadomski
Institute of Computer Science

Siedlce UPH
Siedlce, Poland

e-mail: artur.niewiadomski@uph.edu.pl

Wojciech Penczek
Institute of Computer Science

Polish Academy of Science and UPH
Warsaw, Poland

e-mail: penczek@ipipan.waw.pl

Jaroslaw Skaruz
Institute of Computer Science

Siedlce UPH
Siedlce, Poland

e-mail: jaroslaw.skaruz@uph.edu.pl

Abstract—The paper deals with the abstract planning problem
– the first stage of the Web Service Composition in the PlanICS
framework. Abstract planning consists in finding (multisets of)
service types which can potentially satisfy the user query. We
introduce a novel planning technique based on a combination of
Genetic Algorithm with a Satisfiability Modulo Theories Solver,
which allows to improve the efficiency of each separate method.
The paper presents also some experimental results which show
the advantages of the hybrid method when applied to large search
spaces with many alternative solutions.

Keywords-Web Service Composition; Abstract Planning; Genetic
Algorithm; Satisfiability Modulo Theories; Hybrid Algorithm

I. INTRODUCTION

The Web Service Composition (WSC) problem [1][2][3]
consists in composing simple functionalities, accessible via
well-defined interfaces, in order to achieve more complex
objectives. This is one of the main ideas of Service-Oriented
Architecture (SOA) [1]. Unfortunately, WSC is a complex and
hard problem and therefore requires an application of quite
sophisticated methods and tools.

PlanICS [4] is a framework aimed at WSC, easily adapting
existing real-world services. The main assumption in PlanICS

is that all the Web services in the domain of interest as well as
the objects that are processed by the services, can be strictly
classified in a hierarchy of classes, organised in an ontology.
Another key idea is to divide the planning into several stages.
The first phase deals with classes of services, where each class
represents a set of real-world services, while the other phases
work in the space of concrete services. The first stage produces
an abstract plan composed of service classes [5]. Then, the
Offer Collector (OC), i.e., a module of PlanICS, interacts with
instances of the service types constituting the abstract plan
and retrieves data used in the concrete planning (CP) phase.
As a result of CP, a concrete plan, i.e., a sequence of offers
satisfying the predefined optimization criteria is obtained. Such
a multiphase approach enables to reduce dramatically the
number of Web services to be considered and inquired for
offers.

This paper deals with the Abstract Planning Problem
(APP), which is known to be NP-hard [5]. Our previous works
employed several heuristic methods to solve APP: Genetic
Algorithm (GA) [6][7], a translation to Petri nets [8], and
Satisfiability Modulo Theories (SMT) Solvers [5]. The results

of the extensive experiments show that the proposed methods
are complementary, but every single one suffers from some
disadvantages.

The main disadvantage of an SMT-based solution is often a
long computation time, which is not acceptable in the case of
a real-world interactive planning tool. The translation to Petri
nets seems to be an efficient planning method, but only for
some specific types of ontologies. On the other hand, a GA-
based approach is relatively fast, but the probability of finding
a solution, as well as the number of solutions found, decrease
with the increase of the plan lengths.

Thus, our aim consists in exploiting the advantages of the
two abstract planning methods – based on GA and SMT – by
combining them into one hybrid algorithm. The main idea of
our hybrid approach involves a modification of the standard
GA in such a way that after every iteration of GA several
individuals are processed by the SMT-based procedure, which
aims at modifying them in order to obtain solutions of APP.

In our previous papers [9][10], we showed several variants
of hybrid algorithms for solving the Concrete Planning Prob-
lem (CPP). However, in the case of CPP we dealt with the
constrained optimisation problem. The main goal was to find
a concrete plan satisfying all the constraints and maximizing
the quality function. Here, in case of APP, the main aim is to
find all abstract plans with a fixed number of service types.
In practice, this means finding as many alternative plans as
possible, using available resources (e.g., computer memory and
computation time). Therefore, the main contribution of this
paper is a new version of a hybrid algorithm combining GA
with SMT, which finds abstract plans. Since we build upon our
previous work, the general idea is somehow similar to the one
applied in [9]. However, due to the fundamental differences
between CPP and APP, the realisation of the hybrid abstract
planner is substantially different than the hybrid concrete ones.
The details are discussed at the end of the next subsection.

A. Related Work

The existing solutions to the WSC problem are divided into
several groups. Following [11] our hybrid algorithm belongs to
the AI planning methods. Other approaches include: automata
theory [12], situation calculus [13], Petri nets [14], theorem
proving [15], and model checking [16]. In what follows, we

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 46 / 77

shortly review the literature on composition methods related
to our non-hybrid and hybrid algorithms.

A composition method closest to our SMT-based method
[5] is presented in [17], where the authors reduce WSCP
to a reachability problem of a state-transition system. The
problem is encoded as a propositional formula and tested
for satisfiability using a SAT-solver. This approach makes
use of ontologies describing a hierarchy of types and deals
with an inheritance relation. However, we consider also the
states of the objects, while [17] deals with their types only.
Moreover, among other differences, we use a multiset-based
SMT encoding instead of Propositional Satisfiability Problem
(SAT).

As far as our GA-based solution of APP is concerned, the
approach closest to ours is given in [18], where GA is used to
one phase planning, which combines an abstract and a concrete
one. The idea of a multiset representation of a GA individual
has been also used in [19]. However, contrary to our approach,
no linearization of a multiset is generated in order to compute
the fitness value.

Hybrid algorithms for WSC are also known in the litera-
ture. Jang et al. [20] use a combination of Ant Colony Algo-
rithm with GA to find a concrete plan. While the experimental
results are better than these obtained using a simple GA, the
number of service types and offers used are not sufficient to
draw general conclusions about efficiency of this approach. A
combination [21] of two evolutionary algorithms, Tabu Search
and GA, was also used to CP. Although this method allowed to
find good quality concrete plans, our hybrid algorithm allows
for dealing with much larger search spaces.

In our previous papers [9][10], we presented several vari-
ants of hybrid algorithms combining GA and SMT. One of
them exploits an SMT-solver in order to (partially) generate
the initial populations for GA. The other versions of hybrid
algorithms are sightly modified GAs using an SMT-solver as
a local search engine. That is, given an individual with a
relatively high fitness value, an SMT-based procedure tries
to change values of several genes in order to improve the
individual. This approach is the closest to the method proposed
in the present paper. Here, we also exploit an SMT-solver to
improve some individuals of a population maintained by GA,
but that is where the similarities end. The main differences
result from various domains and the definitions of the abstract
and concrete planning. Another difference is in what “the
improvement” means in each case. In the case of CPP one is
searching for such values of genes that satisfy the (predefined)
constraints. However, satisfiability of the constraints is just
one of the fitness function components, so such an improved
individual is usually helpful for GA, but it is unlikely a final
solution. On the other hand, in the case of the hybrid method
applied to solve APP, if the SMT-based procedure returns
an improved individual, then it already represents an abstract
plan. The next group of differences are the technical details of
the algorithms, like, e.g., the strategies regarding when, how
often, and how many times SMT-solver should be run, which
and how many genes are to be changed, and how to choose
the individuals being good candidates to an improvement.
Moreover, according to our best knowledge, there are no other
approaches combining symbolic and evolutionary methods into
hybrid algorithms.

abstract
planner

ontology
provider

concrete
planner

service registry

user interface:

ontology browser

service registration
 module

query creator

expression parser

plan viewer

plan executor etc.

web services interfaces

offers

service selection

abstract
plans

service registration

source
of semantics

execution
of plans

a user
query

ontology browsing

offer
collector

offer
plans

Figure 1. A simplified diagram of the PlanICS system architecture

The rest of the paper is structured as follows. In Section II,
the PlanICS framework is introduced and APP is formulated.
Section III presents the main ideas of our hybrid approach
as well as some technical solutions. Next, the preliminary
experimental results are given and discussed. The paper ends
with some conclusions.

II. PLANICS FRAMEWORK

This section sketches the main ideas behind the PlanICS

framework and gives all the intuitions necessary to formulate
the abstract planning problem. The formal definitions can be
found in [5].

An ontology contains a system of classes describing the
types of the services as well as the types of the objects they
process. A class consists of a unique name and a set of the
attributes. By an object, we mean an instance of a class. By a
state of an object, we mean a valuation of its attributes. A set
of objects in a certain state is called a world.

The main goal of the system is to find a composition of
services that satisfies a user query. The query interpretation is
defined by two sets of worlds: the initial and the expected one.
Moreover, the query may include several additional constraint
sets used at different planning stages. Figure 1 shows the
general PlanICS architecture. The bold arrows correspond to
computation of a plan while the thin arrows model the planner
infrastructure. While this paper concerns APP, in what follows
we focus on the abstract planning phase.

A. Abstract Planning Problem

The first stage of the composition in the PlanICS framework
is the abstract planning. It consists in matching services at
the level of input/output types and the abstract values. That
is, because at this stage it is sufficient to know if an attribute
does have a value, or it does not, we abstract from the concrete
values of the object attributes, and use two special values set
and null.

Thus, for a given ontology and a user query, the goal of the
abstract planning is to find such a (multi)set of service types
that allows to build a sequence of service types transforming
an initial world of the user query into some final world, which
has to be consistent with an expected world, also defined as a
part of the query. The consistency between a final world and an
expected one is expressed using the notion of the compatibility
relation, formally defined in [5]. Intuitively, a final world Wf

is compatible with an expected world We if the following

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 47 / 77

conditions are met: (i) for every object oe ∈We there exists a
unique object of ∈ Wf , such that both the objects are of the
same type or the type of of is a subtype of oe; (ii) both the
objects agree on the (abstract) values of the common attributes.

The result of the abstract planning stage is called a Context
Abstract Plan (CAP). It consists of a multiset of service types
(defined by a representative transformation sequence), contexts
(mappings between services and the objects being processed),
and a set of final worlds. However, our aim is to find not
only a single plan, but many (significantly different, and all
if possible) abstract plans, in order to provide a number of
alternative ways to satisfy the query. We distinguish between
abstract plans built over different multisets of service types.
See [5] for more details.

III. HYBRID APPROACH TO SOLVE APP

In this section, we recall some details of our GA-based
abstract planner, as a base of the new hybrid algorithm. Then,
an analysis of our previous experimental results obtained using
GA and SMT is provided. Finally, basing on this analysis, the
hybrid algorithm is proposed.

A. Application of GA to solving APP

The base of our hybrid approach is the standard GA
aimed at solving APP. GA is a non deterministic algorithm
maintaining a population of potential solutions during an
evolutionary process. A potential solution is encoded in a form
of a GA individual, which, in case of APP, is a sequence of
natural values representing service types. However, since each
abstract plan makes use of the multiset concept, the individuals
differing only in the genes ordering are indistinguishable. In
each iteration of GA, a set of individuals is selected for
applications of genetic operations, such as the standard one-
point crossover and mutation, which leads to obtaining a new
population passed to the next iteration of GA. The selection
of an individual and thus the promotion of its offspring to the
next generation depends on the value of the fitness function.

Before the fitness function is calculated, every individual
is processed by a procedure which is trying to find such an
ordering of genes that an individual starts with a transformation
sequence of a maximal length (see [6] for details). Moreover,
such an executable prefix of an individual consists of good
service types. Intuitively, a service type is good if it produces
or modifies objects that are a part of some expected world, or
they are an input of another good service type. Note that all
the abstract plans are built solely of good service types only.

More details on applying GA to abstract planning can be
found in [6][7].

B. Analysis

Let us begin with an analysis of the GA behaviour. Our
previous works on an application of GA to solve APP show
that a short computation time is certainly its advantage, but on
the negative side the probability of finding a solution decreases
along with the length of an abstract plan. Moreover, GA is
unable to find solutions for instances with more than 6 services
and several abstract plans in a search space.

Figure 2. Hybrid algorithm flowchart.

On the other hand, the computation time of the SMT-
based algorithm applied to APP is longer (comparing to GA),
but all the solutions are found for instances with up to 9
services. Moreover, SMT performs a (symbolic) exploration of
the whole search space to make sure that there is no other plan
up to the given length. However, for instances with 12 services
the SMT-solver is able to finish the computation within the
given time only for search spaces containing one plan. For the
remaining cases it indeed returns at least one solution, but it
does not guarantee that more plans do not exist. The above
discussion together with our previous successful applications
of the hybrid algorithms to CPP [9][10], lead to a conclusion
that a promising approach should consist in a combination of
both approaches exploiting their advantages. To this aim we
have to identify (and encode as an SMT formula) such a sub-
problem of APP, which is solvable for an SMT-solver in a
reasonable short time.

C. Algorithm

The problem we have encountered while solving some hard
APP instances is as follows. Quite frequently GA ends up
with unfeasible solutions containing only a few ’unmatched’
services. This leads to the main idea of our hybrid approach. It
relies upon an application of SMT to improve some number of
the best individuals in each iteration of GA. An improvement
consists in finding such good service types that can replace the
unmatched ones. If such service types exist, then the modified
individual represents an abstract plan. Figure 2 shows the
consecutive steps of the hybrid algorithm.

Our hybrid algorithm mimics the standard steps of GA,
which are modified in the following way. In each iteration of
GA, after an evaluation step, a fixed number of top individuals
(which do not yet constitute a complete abstract plan) are
considered as candidates for an SMT-based improvement. Let
I be an individual consisting of k genes. Let e(I) denote the
length of the maximal executable prefix of I and g(I) denote
the number of good service types of I . Then, the individual I is
passed to the SMT-based procedure if the following conditions
are met:

• dk2 e ≤ e(I) < k, and

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 48 / 77

• g(I) ≥ dk2 e.

Thus, only the individuals consisting at least in a half of good
service types are considered as candidates for an improvement.
Moreover, such a candidate should contain an executable prefix
consisting of at least dk2 e service types, but also having at least
one gene to be changed.

If an optimal solution is found by SMT, then it is passed
back to the GA population. The fixed number of individuals
passed to the SMT procedure assures that only the individuals
that have a real chance to be improved are considered for
passing to SMT. Otherwise, this could result in a too long
computation time of the SMT-based procedure. While an
optimal solution is unknown a priori, it is very difficult to
depict whether an individual is near to an abstract plan in the
search space and thus if it is suitable for an improvement. In
our approach this assessment is based on the two features of
an individual: the length of its maximal executable prefix and
the number of its good service types. Note that in the case of
an abstract plan both the values are equal to k.

D. SMT-based problem encoding

The SMT procedure combined with GA is based on the
encoding exploited in our “pure” SMT-based concrete planner
[5]. However, now the task for an SMT-solver is to check
whether the maximal (non-executable) suffix of an individual
can be modified to make an improved individual a solution of
APP. Thus, in addition to the user query q and the ontology,
the SMT-based procedure takes also as input an individual and
the length of its maximal executable prefix. The general idea
of the SMT task is depicted in Figure 3.

S1 S2 S3 S4 S5 S6

Individual

Initial
worlds

Executable prefix SMT task

Expected
worlds

Final
worlds

Figure 3. SMT role in the hybrid algorithm

Let I denote an individual in the form of a sequence of
service types and Ij be the service type at the j-th position
of the sequence. Let e denote the length of the maximal
executable prefix and let k be the total length of I . Then,
the task of an SMT-solver is reduced to checking satisfiability
of the following formula:

ϕq
k = Iq

∧
j=1..e

(
Cj∧(s = Ij)∧T s

j

) ∧
i=(e+1)..k

(
Ci
∨
s∈S
T s
i

)
∧ Eqk ∧ B

q
k

(1)
where Iq and Eqk are the formulas encoding the initial and the
expected world of the user query, respectively, Ci encodes the
i-th context function, S is the set of all service types from
the ontology, and T s

i encodes the worlds transformation by
a service type s. Bqk stands for a formula preventing from
finding the already known solutions, if there are any. See [5]
for more encoding details. Thus, an SMT-solver tries to find a
sequence of service types of length (k−e), which can replace
the non-executable suffix of I in such a way that the improved
individual is a (previously unknown) solution of APP.

IV. EXPERIMENTAL RESULTS

We have evaluated the efficiency of the hybrid algorithm
against the GA and SMT-based planners using the ontologies
and the user queries generated by our software - Ontology
Generator (OG). All ontologies are generated by OC in a
random manner meeting the semantic rules. Each query is also
generated randomly in such a way that the number of various
abstract plans equals to the value of a special parameter of OG.
This guarantees that we know a priori whether the planners
have found all solutions.

A. Configuration of the Experiments

In order to evaluate the efficiency of our planners, we
have conducted experiments using twenty four instances of
APP generated by OG, with the following parameter values:
the solution length (the number of service types constituting
a plan): k ∈ {6, 9, 12, 15}, the number of the service types
in the ontology: n ∈ {64, 128, 256}, and the number of the
plans in the search space: sol ∈ {1, 10}. Thus, the size of the
search space varies from 646 = 236 for the first and the fourth
experiment, up to 25615 = 2120 in the case of the 21st and the
24th instance.

Each experiment has been repeated 20 times on a standard
PC with 2GHz CPU, 8GB RAM, and Z3 [22] version 4.3 as an
SMT-solving engine. The experiments involving the “pure” GA
and hybrid planner have been performed using the following
parameters: the population size equals 100 for the instances
with one solution only and 500 for the instances with ten
plans in the search space, the number of the iterations equals
100, whereas the probabilities of crossover and mutation are
at levels of 95% and 0.5%, respectively. We impose the 2000
sec. time limit for every experiment.

B. Experimental Results Evaluation

A comparison of the experimental results of all the three
planners is presented in Table I. The best results are marked
with bold. The first four columns from the left contain the
experiment number and the OG parameters used to generate
the instances. The next six columns present the results of our
hybrid planner, such as the time consumed by the SMT-based
procedure calls and consumed by GA, the total computation
time, the average and the maximal number of plans found,
as well as the probability of finding a plan. Note that the
average number of plans found is computed taking into account
only these cases, where at least one solution has been found.
The next four columns contain the results obtained using the
GA-based abstract planner. That is, from left to right: the
computation time, the average and the maximal number of
plans found, and the probability of finding a plan. Finally,
the last two columns display: the time consumed by the
SMT-based abstract planner in order to find the first plan
and the total computation time. Since the SMT-based planner
always finds all the plans (provided it has enough time and
memory), we do not report any other results here. Note that
the memory usage does not exceed 2GB, even during the
experiments with the largest instances and the “pure SMT” as
the planning method. The SMT-based planner seems to be the
most memory-demanding in the last phase of searching, i.e.,
while checking that there is no more plans and (symbolically)

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 49 / 77

TABLE I. EXPERIMENTAL RESULTS

Hybrid Pure GA Pure SMT
Exp k n sol SMT GA Total Avg Max Prob. Time Avg Max Prob. First Total

[s] [s] [s] plans plans [%] [s] plans plans [%] [s] [s]
1 6 64 1 4.05 8.24 12.29 1 1 100 5.71 1 1 100 6.31 12.8
2 128 5.77 8.78 14.55 1 1 100 8.07 1 1 100 7.29 14.8
3 256 10.79 13.29 24.07 1 1 100 13.62 1 1 100 16.66 27.1
4 64 10 3.04 25.74 28.78 3.25 10 100 24.29 5.4 10 100 5.22 18.3
5 128 6.52 32.15 38.67 3.15 8 100 31.21 6.25 10 100 8.54 26.6
6 256 13.85 43.33 57.18 3.65 8 100 45.95 5.55 9 100 11.93 38.1
7 9 64 1 12.08 11.67 23.75 1 1 85 11.83 1 1 95 19.49 58.7
8 128 25.65 15.68 41.33 1 1 90 13.43 1 1 100 41.01 90.1
9 256 43.61 28.88 72.49 1 1 90 26.74 1 1 90 54.99 133
10 64 10 17.54 56.9 74.43 3.15 10 100 57.69 1.77 4 65 21.09 295
11 128 30.64 63.38 94.02 4.16 10 95 69.94 1.54 4 65 49.93 553
12 256 61.64 113.05 174.69 4.32 10 95 113.15 1.33 2 30 113.3 977
13 12 64 1 55.09 21.77 76.86 1 1 45 21.22 1 1 65 156.4 781
14 128 86.48 30.15 116.62 1 1 85 28.12 1 1 60 203.2 1962
15 256 118.7 46.82 165.52 1 1 55 46.31 1 1 60 315.4 1947
16 64 10 78.98 118.56 197.54 2.79 10 95 118.29 0 0 0 113.5 > 2000
17 128 109.89 139.96 249.84 2.38 10 80 148.65 250.5
18 256 193.17 253.22 446.39 1.85 6 65 260.94 325.8
19 15 64 1 119.09 33.68 152.77 1 1 25 34.56 1 1 30 469.7
20 128 185.34 43.17 228.51 1 1 30 40.45 1 1 25 382.1
21 256 247.3 68.26 315.56 1 1 35 68.69 1 1 35 1018
22 64 10 168.46 237.57 406.03 1.67 3 30 216.6 0 0 0 413
23 128 309.53 267.83 577.36 3 5 10 261.21 1850
24 256 304.88 450.63 755.5 3 3 5 437.59 931

exploring the whole search space. The memory usage of the
“pure” GA algorithm remains below several hundred MB, and
in the case of the hybrid method it does not exceed 1GB for
the largest instances.

It is easy to observe that in the case of the instances with
only one plan in the search space the “pure” GA algorithm
is superior to the other algorithms due to its relative low
computation time. However, it is worth noticing that the
probability of finding a solution by GA drops rapidly with
the increase of the lengths of plans. On the other hand,
analysing the experiments where there are ten plans in the
search space, one can notice that the “pure” SMT algorithm is
faster than the other algorithms only for APP instances having
the shortest solutions. In all the other cases the hybrid planner
is clearly superior. Concerning the experiments 10, 11, and
12, the computation time of the hybrid planner is much lower
than the time consumed by the “pure” SMT-based algorithm.
Comparing the results obtained using the hybrid and the “pure”
GA algorithm it is easy to see that admittedly GA is about 30%
faster, but the hybrid one outperforms GA if all other measures
are considered.

The analysis of the remaining experiments, where the
search spaces contain ten solutions is even simpler. These are
the most important results related to the instances which turned
out be hard for the pure GA and SMT planner, as GA does not
yield any result while the SMT-based planner is running out
of time. The hybrid algorithm outperforms the other planners
for the instances, for which the plans consist of more than 6
service types. In case of 12 services, the maximal number of
the abstract plans found equals to 10, while for 15 services
it is 5. Summarizing, the experiments 16, 17, 18, 22, 23, and
24 prove that applying the hybrid algorithm to APP one can
obtain substantially better results.

C. Comparison with Other Approaches

We have done our best to compare efficiency of our tool
with another system. Nam et al. [17] report 7 experiments

performed on a set of 413 concrete Web services, where SAT-
time consumed for every composition varies from 40 to 60
sec. However, the composition consists only in simple type
matching, the plans consist of a few services only, and the
main goal is to find the shortest sequence of services satisfying
the user query. We have repeated these experiments translating
first the input data to the PlanICS ontology. We treated each
concrete service as a service type, and we modelled the service
parameters type hierarchy as the object types. Our results
have appeared to be better. PlanICS is able to find the shortest
solution in just fractions of a second of SAT-time and in several
seconds of the total computation time. Overall, our approach
is more complex and the composition by just types matching
is a special, simplified case of our planning. Moreover, instead
of searching just for the shortest solution, we focus on finding
a number of alternative plans.

For the second comparison we have used the Fast Down-
ward tool [23] that is aimed at solving problems specified
in PDDL (Planning Domain Definition Language) [24]. We
developed a tool which translates PlanICS ontologies and user
queries into PDDL domains and problems, respectively. Then,
we translated the benchmarks described in Sec. IV and we
used them as input for FD. The FD tool was able to find a
solution only for smallest instances with 64 service types. For
these cases an interesting observation can be made. Namely,
the amount of time and memory consumed by FD is not so
strongly related to the length of the plan, like in the case of
PlanICS, but they clearly depend from number of services in the
ontology. For larger benchmarks the whole available memory
has been quickly consumed and the computation had to be
aborted. It shows the advantage of PlanICS while reasoning in
large ontologies.

V. CONCLUSION AND FUTURE WORK

A new hybrid algorithm based on GA and SMT has been
proposed to solve APP. The algorithm has been implemented
and some preliminary experiments have been performed for

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 50 / 77

benchmarks having different sizes of ontologies and solutions
in the search space. The very first results show that using a
combination of the SMT- and GA-based approach, one can
obtain quite good results, especially for problems that are hard
to solve using the “pure” planning methods, i.e., with large
search spaces and many alternative solutions.

We plan to further improve the efficiency of our hybrid
approach in terms of lower computation times and higher
probabilities of finding solutions. The successful application
of the hybrid algorithm to abstract planning problem shows
that the proposed method has a high potential. Thus, another
important task to be addressed in a future work is an applica-
tion of similar algorithms to other hard problems involving an
exploration of huge search spaces.

ACKNOWLEDGMENT

This work has been supported by the National Science
Centre under the grant No. 2011/01/B/ST6/01477.

REFERENCES

[1] M. Bell, Introduction to Service-Oriented Modeling (SOA): Service
Analysis, Design, and Architecture. John Wiley & Sons, 2008, ISBN:
978-0-470-14111-3.

[2] S. Ambroszkiewicz, “Entish: A Language for Describing Data Process-
ing in Open Distributed Systems,” Fundam. Inform., vol. 60, no. 1-4,
2003, pp. 41–66.

[3] J. Rao and X. Su, “A Survey of Automated Web Service Composition
Methods,” in Proc. of SWSWPC’04, ser. LNCS, vol. 3387. Springer,
2005, pp. 43–54.

[4] D. Doliwa et al., “PlanICS - a Web Service Compositon Toolset,”
Fundam. Inform., vol. 112(1), 2011, pp. 47–71. [Online]. Available:
http://dx.doi.org/10.3233/FI-2011-578

[5] A. Niewiadomski and W. Penczek, “Towards SMT-based Abstract
Planning in PlanICS Ontology,” in Proc. of KEOD 2013 International
Conference on Knowledge Engineering and Ontology Development,
September 2013, pp. 123–131.

[6] J. Skaruz, A. Niewiadomski, and W. Penczek, “Evolutionary Algorithms
for Abstract Planning,” in PPAM (1), ser. Lecture Notes in Computer
Science, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Was-
niewski, Eds., vol. 8384. Springer, 2013, pp. 392–401.

[7] ——, “Solving the abstract planning problem using genetic algorithms,”
Studia Informatica, vol. 1-2(17), 2013, pp. 29–48, ISSN: 1731-2264.

[8] A. Niewiadomski and K. Wolf, “LoLA as Abstract Planning Engine
of PlanICS,” in Proceedings of the International Workshop on Petri
Nets and Software Engineering, co-located with 35th International
Conference on Application and Theory of Petri Nets and Concurrency
(PetriNets 2014) and 14th International Conference on Application of
Concurrency to System Design (ACSD 2014), Tunis, Tunisia, June
23-24, 2014, pp. 349–350. [Online]. Available: http://ceur-ws.org/Vol-
1160/paper26.pdf

[9] A. Niewiadomski, W. Penczek, and J. Skaruz, “Genetic Algorithm to
the Power of SMT: a Hybrid Approach to Web Service Composition
Problem,” in Service Computation 2014 : The Sixth International
Conferences on Advanced Service Computing, 2014, pp. 44–48.

[10] ——, “A Hybrid Approach to Web Service Composition Problem in
the PlanICS Framework,” in Mobile Web Information Systems, ser.
Lecture Notes in Computer Science, I. Awan, M. Younas, X. Franch,
and C. Quer, Eds. Springer International Publishing, 2014, vol. 8640,
pp. 17–28. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-
10359-4 2

[11] Z. Li, L. O’Brien, J. Keung, and X. Xu, “Effort-Oriented Classification
Matrix of Web Service Composition,” in Proc. of the Fifth International
Conference on Internet and Web Applications and Services, 2010, pp.
357–362.

[12] S. Mitra, R. Kumar, and S. Basu, “Automated Choreographer Synthesis
for Web Services Composition Using I/O Automata,” in ICWS, 2007,
pp. 364–371.

[13] V. Chifu, I. Salomie, and E. St. Chifu, “Fluent calculus-based Web
service composition - From OWL-S to fluent calculus,” in Proc. of the
4th Int. Conf. on Intelligent Computer Communication and Processing,
2008, pp. 161 –168.

[14] V. Gehlot and K. Edupuganti, “Use of Colored Petri Nets to Model,
Analyze, and Evaluate Service Composition and Orchestration,” in
System Sciences, 2009. HICSS ’09., jan. 2009, pp. 1 –8.

[15] J. Rao, P. Küngas, and M. Matskin, “Composition of semantic web
services using linear logic theorem proving,” Inf. Syst., vol. 31, no. 4,
Jun. 2006, pp. 340–360.

[16] P. Traverso and M. Pistore, “Automated composition of semantic web
services into executable processes,” in The Semantic Web ISWC 2004,
ser. LNCS, 2004, vol. 3298, pp. 380–394.

[17] W. Nam, H. Kil, and D. Lee, “Type-Aware Web Service Composition
Using Boolean Satisfiability Solver,” in Proc. of the CEC’08 and
EEE’08, 2008, pp. 331–334.

[18] F. Lecue, M. D. Penta, R. Esposito, and M. Villani, “Optimizing QoS-
Aware Semantic Web Service Composition.” in Proceedings of the 8th
International Semantic Web Conference, 2009, pp. 375–391.

[19] I. Garibay, A. S. Wu, and O. Garibay, “Emergence of genomic self-
similarity in location independent representations,” Genetic Program-
ming and Evolvable Machines, vol. 7(1), 2006, pp. 55–80.

[20] Z. Jang, C. Shang, Q. Liu, and C. Zhao, “A Dynamic Web Services
Composition Algorithm Based on the Combination of Ant Colony Al-
gorithm and Genetic Algorithm,” Journal of Computational Information
Systems, vol. 6(8), 2010, pp. 2617–2622.

[21] J. A. Parejo, P. Fernandez, and A. R. Cortes, “QoS-Aware Services
composition using Tabu Search and Hybrid Genetic Algorithms,” Actas
de los Talleres de las Jornadas de Ingenieria del Software y Bases de
Datos, vol. 2(1), 2008, pp. 55–66.

[22] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proc. of TACAS’08, ser. LNCS, vol. 4963. Springer-Verlag, 2008, pp.
337–340.

[23] M. Helmert, “The Fast Downward Planning System,” Journal of Arti-
ficial Intelligence Research, vol. 26, 2006, pp. 191–246.

[24] A. E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos,
“Deterministic planning in the fifth international planning competition:
PDDL3 and experimental evaluation of the planners,” Artificial Intelli-
gence, vol. 173, no. 5, 2009, pp. 619–668.

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 51 / 77

Appropriate Machine Learning Methods for Service Recommendation Based on
Measured Consumer Experiences Within a Service Market

Jens Kirchner

Karlsruhe University of Applied Sciences
Linnaeus University

Email: Jens.Kirchner@hs-karlsruhe.de,
Jens.Kirchner@lnu.se

Philipp Karg and Andreas Heberle

Karlsruhe University of Applied Sciences
Moltkestr. 30, 76133 Karlsruhe, Germany

Email: kaph1014@hs-karlsruhe.de,
Andreas.Heberle@hs-karlsruhe.de

Welf Löwe

Linnaeus University
351 06 Växjö, Sweden

Email: Welf.Lowe@lnu.se

Abstract—The actual experience of the performance of services
at consumers’ side is a desirable foundation for service selection.
Considering the knowledge of previous performance experiences
from a consumer’s perspective, a service broker can automatically
select the best-fitting service out of a set of functionally similar
services. In this paper, we present the evaluation of machine
learning methods and frameworks which can be employed for
service recommendation based on shared experiences of previous
consumers. Implemented in a prototype, our approach considers
a consumer’s call context as well as its selection preferences
(expressed in utility functions). The implementation of the frame-
work aims at the time-critical optimisation of service consumption
with focus on runtime aspects and scalability. Therefore, we
evaluated and employed high-performance, online and large scale
machine learning methods and frameworks. Considering the
Internet as a service market with perpetual change, strategies for
concept drift have to be found. The evaluation showed that with
the current approach, the framework recommended the actual
best-fit service instance in 70 % of the validation cases, while in
90 % of the cases, the best or second best-fit was recommended.
Furthermore, within our approach employing the best method,
we achieved 94.5 % of the overall maximum achievable utility
value.

Keywords–Service Selection; Service Recommendation; Ma-
chine Learning; Big Data.

I. INTRODUCTION

Service-Oriented Computing (SOC), Software as a Ser-
vice (SaaS), Cloud Computing and Mobile Computing indicate
that the Internet develops itself to a market of services where
service consumers can dynamically and ubiquitously consume
functionality from services with limited or no knowledge about
the implementation or the system environment of the provided
service. Besides the functionality, service consumers are inter-
ested in the performance of a service, which is expressed in its
non-functional properties (NFPs) such as response time, avail-
ability or monetary charges. Within a service market, service
functionality may be provided by several competing service
instances. Among these similar services, service consumers are
interested in the consumption of the service instance which
fits best towards their preferences. In [1], we described that
service selection has to be based on the actual experience of
NFPs at consumer side. We defined Service Level Achievement
to be the general performance of a service at consumer side
(consumer side measured NFPs). In the case of basing service
selection on Service Level Achievements, a service broker can
automatically select the best-fit service among functionally

similar services. In contrast, when the selection is based on
Service Level Agreements (SLAs), one can only state the fact
that SLAs have not been met; mitigating the issue, however,
requires human action, hence, time. Perpetual change is one
of the major characteristics of service markets such as the
Internet. NFPs of service instances can be volatile (e. g., high
load at certain times and limited resources), new functional
equivalent instances enter the market; others are temporary
or permanently not available. A collaborative knowledge base
of consumption experiences benefits single users and helps
them to optimise service selection towards their needs and
based on their call context. Call contexts consider aspects that
have an influence on NFPs at consumer side such as location,
time, weekday, etc. When recommendation is based on actual
experienced NFPs, their preferred weight from consumer side
and the call context, the knowledge base has to be built on a
potentially high load of measurement data, which needs to
be processed and learned promptly. Within our framework,
we develop a service broker which bases its decisions on
consumption measurements of previous service calls [1]. In
particular, service recommendations are based on a call context
and a user’s preferences which are expressed in a utility func-
tion. Basing service selection on Service Level Achievements
requires measuring the NFPs of services at the moment of the
actual service call. E. g., measuring response time of a service
at a point in time called from a certain location. This can be
easily integrated in SOC/SaaS infrastructures. However, it also
requires the aggregation of individually measured data to turn
it into knowledge about the expected performance of services
in the future. Machine learning is an obvious candidate for this
aggregation. For this task, machine learning methods have to
cope with a high load of data efficiently in real-time or short
periods.

Machine learning cannot be used out of the box until we
find answers to the following questions: 1) Which concrete
machine learning algorithm can be applied effectively, i. e.,
with high accuracy in the prediction of achievements? 2) Are
there differences in the accuracy of different algorithms in the
prediction of achievements? 3) How can we apply effective
machine learning efficiently, i. e., with a minimum impact on
service (selection) time?

In this paper, we seek to answer 1) by selecting reason-
able candidates and experimentally evaluating their prediction
accuracy. Addressing 2), for the selected algorithms, we even
assessed prediction accuracy and its effect on the actual utility

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 52 / 77

of the consumers (here, response time and availability). Finally,
in order to address 3), we defined an architecture that is
split into a foreground and background model. The service
recommendation knowledge in the foreground model is used
for fast service selection. It is asynchronously updated with the
knowledge output of the background model, which, in turn, is
gained by (potentially not quite as fast) machine learning on
service call measurements at consumer side.

For the evaluation of appropriate machine learning ap-
proaches and their implementations in machine learning frame-
works which can be employed for best-fit service recommen-
dation, our focus was set on speed, real-time/online processing,
accuracy and concept drift mechanisms. “Concept drift occurs
when the values of hidden variables change over time. That is,
there is some unknown context for concept learning and when
that context changes, the learned concept may no longer be
valid and must be updated or relearned” [2]. The evaluation
was conducted with a prototype implementation of a holistic
recommendation component for a service broker in order to
determine the most appropriate method and framework for this
purpose.

In Section II, the architecture of our service selection
framework is introduced. Section III describes the challenges
and optimisation focus within service selection. Section IV
focuses on the pre-selection and evaluation of machine learning
methods and frameworks. In Section V, the conducted evalu-
ation of machine learning methods regarding appropriateness
for service selection in a service market is described. Related
work is outlined in Section VI. Finally, the conclusion is done
in Section VII.

II. FRAMEWORK ARCHITECTURE

In [1], we introduced our framework which optimises
service selection based on consumer experience, call context
and preferences (utility functions). In this paper, we focus
on the recommendation component of our framework, which
is depicted in Figure 1. The illustration shows the service
consumer’s realm where a local component manages dynamic
bindings and requests for best-fit service instances. The second
task is to measure a service call’s performance (measurement
of experienced NFPs) and to provide this information to the
central broker component for learning purpose. Within the
scope of this paper, our main focus is set on the foreground
and background model combination, which is important for
the overall recommendation process.

When a measurement feedback ticket arrives, the collected
data is persisted and the pre-processing of the data is con-
ducted. Afterwards, the data is used for the online learning of
the NFPs. There exists a learning model for each NFP and
service instance combination. In time or amount intervals, for
each utility function and call context, the utility values for each
service instance are calculated. Once all utility values for all
instances are calculated, the service instance with the highest
utility value within each utility function and call context will be
updated in the foreground table. This foreground table contains
the recommendation information for each call context and
preference (utility function). When a service recommendation
request arrives, the broker only has to look up this information
in the recommendation table of the foreground model, while
the actual learning and calculation is done asynchronously in
the background model.

Central Broker

Service Consumer

Foreground Model Background Model

Local Component
Service Request

Best-fit Service Recommendation for each
Call Context Class and Utility Function

Service Instance

Data Pre-Processing

Performance Prediction

Service Selection
Optimisation

Data Pre-Processing

Feedback Ticket

Service Selection

Optimised Service Selection

Measured Service
Performance (NFPs)

Service..U1U1

Figure 1. Foreground and background model within our framework.

The background model activities comprise machine learn-
ing, calculation and determination for the optimisation at
consumer side. However, these tasks are time-consuming. The
decoupling of the time-consuming tasks of the background
model from the foreground model, which handles the time-
critical recommendation tasks, reduces or even avoids the costs
in terms of (service) time.

III. OPTIMISATION FOCUS AND CHALLENGES

Following the Cross Industry Standard Process for Data
Mining (CRISP-DM) [3], before machine learning methods
can be employed, it is mandatory to have a clear understanding
of the optimisation goals as well as the data which is used. As
introduced above, the service broker and its learning compo-
nent are supposed to recommend the best-fit service instance
among functionally equivalent candidates. In particular, they
are supposed to be aware of the call context and a consumer’s
preferences and base their recommendation on the experiences
of previous service calls by consumers of similar call contexts.

In general, the selection of a service instance is based on
one or more NFPs. NFPs have different scales of measurement
with different optimisation functions. For example, response
time is a ratio scale with an optimisation towards the minimum.
The availability for a service at a specific time is nominal:
a service is either available or not. In such a case, the
optimisation focus is to select a service instance which has the
highest (maximum) probability of being available. When the
selection of a service instance is based on more than one NFP,
NFP data has to be normalised in order to be comparable and
calculable. Usually, in such a case, not all NFPs are equally
important, so their importance has to be weighted and taken
into account. Within our framework, utility functions are used
to calculate the utility value for each service instance based
on the expected NFPs of each candidate and their weighted
impact. “Utility functions can be captured in a vector of real
values, each representing the weight of a corresponding quality
metric [NFP]. The idea is based on a weighted scoring model”

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 53 / 77

[1]. For instance, lowest response time is more important
(weighted: 60 %) than lowest price (weighted: 40 %) would
results in a utility function U(ResponseT ime, Price) = 0.6×
||ResponseT ime|| + 0.4 × ||Price||, where || · || normalises
ResponseT ime and Price, respectively, between 0 and 1 [1].
Since preferences vary, the utility functions also vary among
all service consumers. Therefore, within the overall optimisa-
tion/recommendation process, the overall utility is individual.
However, within a single tier recommendation, the NFPs of
service instances are based on consumers’ contexts. Hence,
within the same call context (e. g., time, weekday, location,
type/size of input data), consumers with different preferences
experience statistically similar NFPs, but the calculated utilities
are different due to different utility functions. Within our
framework, the expected NFPs of service instances are learned
and each individual utility value is (pre-)calculated, which is
then used for the actual individual service recommendation.

Analysing the market, change is the most important char-
acteristic regarding the data. Besides new service instances,
existing ones may temporarily not be available or cease to exist
for good. But one has also to take into account that changes in
infrastructure, network or market participants’ behaviour arise,
which also affect the NFPs within certain call contexts. These
things are in general not evident to consumers, but have to
be taken into account for recommendation tasks. Therefore,
learning components for service brokers have to cope with
rapid change. Service recommendation is in total a time-critical
challenge. First, change has to be discovered quickly, and
secondly, the recommendation query itself is supposed to be
part of a service call and service time is one of the major
optimisation goals. However, service recommendation is time-
consuming, especially the learning and calculation part of it.
Within our framework, we tackle this drawback by introducing
two approaches. The first approach splits the component for
direct dynamic service recommendation requests into a fore-
ground and a background model. The learning of the expected
NFPs is done in the background model, while its results
together with the pre-calculated utility values, and therefore
the best-fit service instances within each utility cluster and call
context class, are stored in the foreground model, which can
be easily and quickly retrieved. The second approach focuses
on dynamic service binding, which is mainly based on the idea
that service bindings are updated at consumers’ side. For this,
we developed a plug-in for middleware/SOA products. The
actual service binding addresses within the dynamic service
binding are updated by the central component by the usage of
the publish–subscribe pattern [1].

We predefined the following optimisation goals for the
recommendation unit within our framework:

1) High-performance service determination
2) High recommendation accuracy of the best-fit service

instance
3) Continuous machine learning process
4) Adaptation to performance (NFP) changes

IV. MACHINE LEARNING METHODS AND FRAMEWORKS

This section focuses on the pre-selection and evaluation of
machine learning methods and frameworks.

A. Pre-selection of machine learning methods
Based on [4][5], there are several aspects for the evaluation

of machine learning methods such as speed, accuracy, scala-
bility, robustness and interpretability. The requirements listed
in Table I were defined for the pre-selection of appropriate
machine learning methods.

TABLE I. REQUIREMENTS FOR THE SELECTION OF MACHINE
LEARNING METHODS

Speed describes how efficient the machine learning method performs con-
cerning the training and prediction time. Furthermore, this aspect also
concerns the overall machine learning process as a ’critical path’ from
end-user side.

Accuracy describes how effective the machine learning method performs:
Degree of correct classification or coefficient of determination in
regression [5].

Scalability considers the ability of the method to be efficiently applied to a large
data set [5].

Robustness describes the ability to make correct classifications and predictions,
given noisy or missing data value. It also considers whether the
method is able to run automatically in a changing environment [5].

There is a broad variety of learning methods that address
classification and regression. The major aim of our recom-
mendation unit is to recommend the best-fit service. Although
the prediction of a certain value can be employed for pre-
calculation purpose, the goal within the overall recommenda-
tion process is to recommend best-fit service instances, which
is a nominal result. For classification in general, the costs of
the learning phase are cheaper than for regression. Therefore,
we focused primarily on classification methods in the initial
phase. In [4], the author published a comprehensive overview
of established supervised machine learning classification tech-
niques. This overview provides useful information for method
selection, highlighting the benefits and drawbacks of each
method which helped us to find appropriate methods for further
evaluation. Table II is an extraction reduced to the requirements
we outlined in Table I.

As previously mentioned, although in general accuracy is
an important desire in machine learning, in our time-critical
domain, speed is as important within our recommendation
process. However, due to the separation of the foreground and
background model, speed is not as important anymore, since
learning is done asynchronously in the background model.
Therefore, we are able to put a stronger focus on accuracy
again. Scalability and robustness are also important criteria
in our framework. Although Naı̈ve Bayes and Decision Trees
are not highly rated on accuracy in Table II, their rating
in all other criteria is high and, among all criteria, they
have the highest overall rating. After initial pre-tests with
test data sets of various kinds, we selected Naı̈ve Bayes,
Hoeffding Tree [6] and Fast Incremental Model Trees with
Drift Detection (FIMT-DD) [7] for the implementation in our
framework, and therefore, for the evaluation within our broker
scenario.

The Naı̈ve Bayes classifier is a simple probabilistic classi-
fier based on Bayesian statistics (Bayes’ theorem) with strong
independence assumptions [8]. The Hoeffding tree or Very Fast
Decision Tree (VFDT) is an incremental, anytime decision
tree induction algorithm that is capable of learning from
massive data streams, assuming that the distribution generating
examples do not change over time. It exploits the fact that
a small sample can often be enough to choose an optimal

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 54 / 77

TABLE II. COMPARISON OF THE MAJOR MACHINE LEARNING METHODS
(**** REPRESENT THE BEST AND * THE WORST PERFORMANCE) (BASED ON [4])

Decision Tree Naı̈ve Bayes Neural Networks kNN SVM Rule Learners

Speed of Learning/Training *** **** * **** * **
Speed of Classification/Prediction **** **** **** * **** ****

Scalability / Incremental Learning ** **** *** **** ** *
Accuracy ** * *** ** **** **

Robustness/Tolerance to missing values *** **** * * ** **
Robustness/Tolerance to noise ** *** ** * ** *

splitting attribute. This idea is supported mathematically by the
Hoeffding bound, which quantifies the number of observations
needed to estimate some statistics within a prescribed preci-
sion [6][9]. FIMT-DD focus on time-changing data streams
with explicit drift detection [7].

B. Machine learning frameworks
Besides the machine learning methods, their implementa-

tion within libraries and frameworks are as important. For the
selection of machine learning frameworks, we considered the
requirements listed in Table III to be relevant.

TABLE III. REQUIREMENTS FOR THE SELECTION OF MACHINE
LEARNING FRAMEWORKS/LIBRARIES

Integration Easy integration of the library in Java; Capability of online pro-
cessing within a machine learning workflow (online learning)

Automation High degree of automation; Ability to adapt to changes (e. g.,
changing service instances, service consumers with new call con-
texts)

Usage Strong dependency between the library and the machine learning
methods; Framework targets general approaches and is not limited
to specific purposes

Open Source Framework should be open source and freely available to the public

In order to get an overview about popular and wide-spread
software in the data analytic and data mining area, we took
the results of KDnuggets’ online poll about software that their
open community members had used within the past 12 months
in real projects [10]. The results of the poll, in which 3,000
had participated, contain open source as well as commercial
products. Although these results give an overview about the
software in this field, it has to be considered critically, since
the poll was open and everyone could have taken part.

The following frameworks were pre-evaluated based on our
requirements listed in Table III, but were not suitable for our
purpose. RapidMiner [11] is a well-known and widely-used
desktop application for solving a variety of machine learning,
data and text mining tasks. It offers a comprehensive selec-
tion of machine learning methods and integrates third-party
libraries. Despite of all the benefits, we declined RapidMiner
mainly because of the missing capability of incremental/online
learning. A reason for that could be that RapidMiner comes
from the area of classical batch processing and analytics.
Furthermore, an integration in Java is possible but requires
additional efforts for automation tasks. R [12] is an open
source software environment for statistical computing and
graphics. With a classical statistical background, R does not
provide modern machine learning approaches and does not
focus on incremental learning. Apache Mahout [13] is a suite
of machine learning libraries with algorithms for clustering,
classification and collaborative filtering on top of scalable and

distributed systems. Despite the overall advantages, it was not
selected because of the little selection of machine learning
methods and the specific use cases. Other libraries such as
Apache Spark [14], KNIME [15], Shogun [16], Shark [17],
scikit-learn [18] and Vowpal Wabbit [19] were reviewed but
not considered for further evaluation, because of early misfits
to our requirements.

We selected Weka [20] and MOA [21] because of their
extensive collection of classical machine learning methods as
well as new algorithms with state of the art concepts for
incremental learning. Because of their native Java integration
ability, they provide a high degree of automation. Furthermore,
Weka is also used by other software in this sector, such as
RapidMiner. Both frameworks are open source and developed
by the University of Waikato. Weka contains different methods
and algorithms for pre-processing, classification, regression,
clustering, association rules and visualisation. MOA stands for
Massive Online Analysis, which focuses on online algorithms
for data streams. It includes several state of the art algorithms
for classification, regression and clustering.

V. EVALUATION

This section describes the evaluation scenario, evaluation
criteria, the evaluation environment and method as well as
the results of the evaluation of machine learning methods re-
garding their appropriateness for service selection in a service
market.

A. Evaluation scenario
The evaluation of the learning methods and frameworks

implies that the actual best-fit service instance is known at
each call context (location, weekday, time, etc.) with each
utility function. This is a challenge when it comes to a real-
world validation. In reality, service calls in a service market,
especially the Internet, cannot be repeated under the exactly
identical conditions as the Internet’s network behaviour as
well as a service’s infrastructure are complex systems in
terms of factors that influence service calls. For instance, at
a certain, unique moment, the load of a service instance’s
system environment and the network load or any incident
are combinations of coincidences and can therefore not be
repeated. In order to gain exact reproducible situations, all
service calls which are supposed to be compared need to
be made at the same moment which is practically infeasible,
especially when there are several competitive service instances.

To get a situation where the validation process retrieves ex-
actly the best-fit service instance for validation at each moment
considering call context and utility function, we developed a
simulator which creates service instance measurements for a
certain time period based on predefined behaviour profiles. The

44Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 55 / 77

implementation of this framework follows a periodic behaviour
influenced by statistical random-based deviation. Currently,
the periodic behaviour of the simulated Web services follows
our initial measurements in [1] and considers: day/night time,
weeks, months, work days and weekends. The random-based
deviation is supposed to simulate unexpected incidences such
as network traffic jams, high/low usage of a service’s limited
infrastructure. The random-based influence over a period was
also evidenced in our real-world service tests [1]. At the
moment, two NFPs are simulated which are response time and
availability.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

225

250

275

300

325

F
ri

21
.0

2.

S
at

 2
2.

02
.

S
un

 2
3.

02
.

M
on

 2
4.

02
.

Tu
e

25
.0

2.

W
ed

 2
6.

02
.

T
hu

 2
7.

02
.

F
ri

28
.0

2.

S
at

 0
1.

03
.

S
un

 0
2.

03
.

M
on

 0
3.

03
.

Tu
e

04
.0

3.

W
ed

 0
5.

03
.

T
hu

 0
6.

03
.

F
ri

07
.0

3.

S
at

 0
8.

03
.

S
un

 0
9.

03
.

M
on

 1
0.

03
.

Tu
e

11
.0

3.

W
ed

 1
2.

03
.

T
hu

 1
3.

03
.

F
ri

14
.0

3.

S
at

 1
5.

03
.

S
un

 1
6.

03
.

M
on

 1
7.

03
.

Tu
e

18
.0

3.

W
ed

 1
9.

03
.

T
hu

 2
0.

03
.

F
ri

21
.0

3.

S
at

 2
2.

03
.

S
un

 2
3.

03
.

M
on

 2
4.

03
.

Tu
e

25
.0

3.

Day

R
es

po
ns

e
T

im
e

(m
s)

Service Instance

●

●

●

●

DE1Service

DE2Service

SE1Service

US1Service

Figure 2. Overview about the simulated response time of four service
instances and their trend over the whole period.

●
● ● ● ●

●
●

●

●

●

● ● ●

●

● ● ●
●

●

●
●

● ●

● ● ●
●

●

97.5

98.0

98.5

S
un

M
on Tu

e

W
ed

T
hu F
ri

S
at

Weekday

A
va

ila
bi

lit
y

(%
) Service Instance

●

●

●

●

DE1Service

DE2Service

SE1Service

US1Service

Availability by Weekday

●
●

●
● ● ● ● ●

●

●

● ● ●
●

● ●
●

● ●
● ● ●

●
●● ● ●

●
● ●

●
● ●

●

● ● ● ● ● ● ●
● ● ● ●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●
● ● ●

●

●
●

●

●

● ●
●

●
● ● ●

●

● ●
● ● ● ● ● ● ●

●

●

●

●
● ●

●
●

● ●

95

96

97

98

99

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Daytime

A
va

ila
bi

lit
y

(%
) Service Instance

●

●

●

●

DE1Service

DE2Service

SE1Service

US1Service

Availability by Daytime

Figure 3. Overall periodic behaviour regarding availability of the simulated
service instances with weekday and daytime aspects.

Figure 2 and Figure 3 depict an overview about the
simulated NFPs. The simulated validation data set comprises
a period of 30 days and has a total set of 460,800 records (40
records/hour × 24 hours/day × 30 day × 16 unique clients).

The records contain information about day, time, response
time in millisecond and availability (Boolean). Within the
simulation, between each record there is a time interval of
90 seconds. Figure 2 shows in a condensed form the response
time of all services instances within the whole period. Note that
the line is only the trend. Within the recommendation process,
the actual best-fit service instance at each time is important
and not the averaged value of each service instance. The line
is therefore only a visual orientation for us to determine the
concept drift of each service instance within the period (e. g.,
DE2Service). Figure 3 shows the statistical value of availability
with a focus on weekday and daytime periods.

B. Evaluation criteria
For the evaluation of the appropriateness of machine learn-

ing algorithms and their implementation in frameworks, each
framework has to recommend the best-fit service instance
based on a user’s utility function and call context, i. e., the
instance with the highest utility value. Implemented in our
foreground-/background-model scenario, the machine learning
algorithms have to estimate the expected NFP behaviour for all
NFPs and all service instances. As described above, this results
in n×m models (while n is the amount of considered NFPs
and m is the amount of service instances). Since the number
of modes can increase significantly, the recommendation table
of the foreground model is updated asynchronously by the
background model. In the background model, NFPs are learned
continuously using the incremental learning functionality of
the machine learning methods. However, although the expected
NFPs per service instance are learned online, the utility values
for each utility function and call context, and therefore the
determination of the best-fit service instance, are calculated
asynchronously in time- and count-based intervals. Besides the
fact whether the actual best-fit service instance was recom-
mended at each time, we also focus on how good the pre-
calculated utility value was. For this, we took two indicators:
TOP1 accuracy gives evidence on the recommendation quality
as percentage of the correctly determined best-fit services with
respect to the actual best-fit services instances, whereas the
TOP2 accuracy shows the percentage of the determined best-
fit instance within the actual top-two best-fit service instances.

C. Evaluation environment and method
For the execution of the evaluation, we used a test machine

running Linux (Ubuntu 12.04 LTS) as its operating system,
equipped with an i5-3340M CPU @ 2.70GHz x 4 (64 bit) and
15.6 GiB RAM.

The evaluation focuses on the overall recommendation.
Recall that the overall process is split into the learning of the
actual expected NFPs in a certain call context, for which we
employ machine learning frameworks, and the calculation of
the utility values according to service consumers’ individual
utility functions (preferences), from which the best-fit service
can be determined. The machine learning frameworks learn
each incoming record online, while the pre-calculation and
determination part is conducted in intervals.

The evaluation is supposed to evaluate the accuracy within
the period of examination at each point in time. Therefore,
the data is not split into a training and validation set. In fact,
with each learning interval, which also contains the update
of the foreground table, the recommendation entry for a call

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 56 / 77

context and utility function is validated with the actual best-fit
service for the upcoming service call. Hence, at each time, with
the previously learned records, the recommendation quality for
future recommendation requests in the same call context and
with the same utility function is measured. The idea is that
change in general can be evaluated.

D. Evaluation results
As written above, the overall learning for the recommen-

dation of the best-fit service instance is split into the learning
of the expected NFPs, for which we employ the machine
learning methods/frameworks, and the determination of the
best-fit instance based on pre-calculation. The first part is
done continuously, while the second part is done in intervals.
For the overall evaluation, we conducted two rounds, one
with an interval of 10 records and one with 100 records.
Table IV shows the results for 100 records, since there were
only minor differences between both rounds; however, the
10 records round achieved slightly better results. As shown,
the results of the FIMT-DD achieved around 70 % of correct
predictions (with 10 record intervals, we achieved over 70 %).
Note that the calculated utility ranges from 0–100. Comparing
all methods, there is not much difference between Naı̈ve Bayes
and Hoeffding Tree. The FIMT-DD shows very good results.
It has the highest update rate of the foreground table, which
is an indication that it reacts quicker and more fine-grained on
change than the other methods.

TABLE IV. EVALUATION RESULTS OF THE MACHINE LEARNING
METHODS NAÏVE BAYES, HOEFFDING TREE AND FIMT-DD

WITHIN THE OPTIMISED SERVICE SELECTION/RECOMMENDATION

Naı̈ve Bayes Hoeffding Tree FIMT-DD

TOP1 Accuracy (in %) 58.634 59.837 69.287
TOP2 Accuracy (in %) 90.163 90.421 93.471
Mean Absolute Error (Utility) 1.656 1.660 1.049
Recommend. Table Updates 659 647 1.189

40

50

60

70

F
ri

21
.0

2.

S
at

 2
2.

02
.

S
un

 2
3.

02
.

M
on

 2
4.

02
.

Tu
e

25
.0

2.

W
ed

 2
6.

02
.

T
hu

 2
7.

02
.

F
ri

28
.0

2.

S
at

 0
1.

03
.

S
un

 0
2.

03
.

M
on

 0
3.

03
.

Tu
e

04
.0

3.

W
ed

 0
5.

03
.

T
hu

 0
6.

03
.

F
ri

07
.0

3.

S
at

 0
8.

03
.

S
un

 0
9.

03
.

M
on

 1
0.

03
.

Tu
e

11
.0

3.

W
ed

 1
2.

03
.

T
hu

 1
3.

03
.

F
ri

14
.0

3.

S
at

 1
5.

03
.

S
un

 1
6.

03
.

M
on

 1
7.

03
.

Tu
e

18
.0

3.

W
ed

 1
9.

03
.

T
hu

 2
0.

03
.

F
ri

21
.0

3.

S
at

 2
2.

03
.

S
un

 2
3.

03
.

M
on

 2
4.

03
.

Tu
e

25
.0

3.

Day

A
cc

ur
ac

y
(%

)

Methods

TOP1 FIMT−DD

TOP1 Hoeffding Tree

TOP1 Naive Bayes

Figure 4. Service recommendation accuracy of the FIMT-DD, Hoeffding
Tree and Naı̈ve Bayes algorithm in the course of time.

The cold start problem applies to service recommenda-
tion, which means that good recommendation results are also

supposed to be achieved with a small set of records at the
beginning. Depicted in Figure 4, we can see that for the TOP 1
indicator in the overall recommendation process, the FIMT-
DD quickly achieves a high accuracy. The drift detection of
the FIMT-DD seems to work at the end of the period where
some service instances change their performance behaviour
(see Figure 2).

Our recommendation approach is supposed to be scalable.
Table V shows the processing time of the overall process
(NFP learning, utility pre-calculation, best-fit determination
and update of the foreground table) for incoming measurement
records. As we can see, a single record is processed in less
than three milliseconds by a total of 460 thousand records.
For all machine learning methods, we used the MOA frame-
work. The figures show that, in term of learning overhead,
there is not much difference between the methods. However,
comparing the figures, Naı̈ve Bayes would be able to process
approximately 900 records more in an hour than the FIMT-DD.
Comparing the numbers of the 100 record and the 10 record
intervals (factor 8.8), it reveals that since the NFPs are learned
continuously for every incoming record, the time-consuming
part is related to the pre-calculation and best-fit determination.
Although this is also due to the fact that these figures also
include the evaluation steps (calculation of the actual NFPs,
calculation of the actual utility values and determination of the
actual best-fit instance), there is a high optimisation potential
within the pre-calculation/-determination steps such as in-
memory databases instead of hard disk databases. However,
since these steps are asynchronous, they do not harm the
recommendation process and are still good enough for back-
ground processing.

TABLE V. TIME FOR PROCESSING A SINGLE INSTANCE IN
MILLISECONDS OF THE MACHINE LEARNING METHODS NAÏVE

BAYES, HOEFFDING TREE AND FIMT-DD

Processing per record (ms) Naı̈ve Bayes Hoeffding Tree FIMT-DD

100 record intervals 2.602 2.614 2.621
10 record intervals 22.997 23.080 23.129

Figure 5 reveals more insight in the accuracy measure. The
figure shows the degree of accuracy of the utility prediction.
Once again, the best-fit service instance is the instance with the
highest utility value regarding a service consumer’s individual
preferences (utility function). So, the closer the prediction
towards the actual utility value is, the better the method.
Comparing the method’s charts, we see that for Naı̈ve Bayes
and Hoeffding Tree the predicted utility values at each time are
both quite similar and do not reflect the curve of the actual
values. In contrast, the chart for FIMT-DD depicts that the
prediction is very close to the actual values. The intercepts of
the curves show, that FIMT-DD does cope with change rapidly.
In all cases, intercepts – which denote a change in the best-fit
ranking – are also reflected in the prediction quite accurately.

For the evaluation of service recommendation in general,
the actual utility gain is an important measure. Since the
selection of service instances are based on several NFPs, the
utility value as a basis for the individual preferences is an
appropriate measure to benchmark service recommendation.
In Table VI, the average experienced utility value after the
service recommendation based on the FIMT-DD algorithm

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 57 / 77

FIMT−DD

Hoefdding Tree

Naive Bayes

30

40

50

60

70

80

90

30

40

50

60

70

80

90

30

40

50

60

70

80

90

F
ri

21
.0

2.

S
at

 2
2.

02
.

S
un

 2
3.

02
.

M
on

 2
4.

02
.

Tu
e

25
.0

2.

W
ed

 2
6.

02
.

T
hu

 2
7.

02
.

F
ri

28
.0

2.

S
at

 0
1.

03
.

S
un

 0
2.

03
.

M
on

 0
3.

03
.

Tu
e

04
.0

3.

W
ed

 0
5.

03
.

T
hu

 0
6.

03
.

F
ri

07
.0

3.

S
at

 0
8.

03
.

S
un

 0
9.

03
.

M
on

 1
0.

03
.

Tu
e

11
.0

3.

W
ed

 1
2.

03
.

T
hu

 1
3.

03
.

F
ri

14
.0

3.

S
at

 1
5.

03
.

S
un

 1
6.

03
.

M
on

 1
7.

03
.

Tu
e

18
.0

3.

W
ed

 1
9.

03
.

T
hu

 2
0.

03
.

F
ri

21
.0

3.

S
at

 2
2.

03
.

S
un

 2
3.

03
.

M
on

 2
4.

03
.

Tu
e

25
.0

3.

Day

U
til

ity

Utility Value

DE1Service Actual

DE1Service Predicted

DE2Service Actual

DE2Service Predicted

SE1Service Actual

SE1Service Predicted

US1Service Actual

US1Service Predicted

Figure 5. Detailed overview about the predicted and actual utility values.

TABLE VI. UTILITY GAIN WITH SERVICE RECOMMENDATION
USING THE FIMT-DD ALGORITHM IN COMPARISON

After selecting . . . Average expe-
rienced utility
value

FIMT-DD
comparison
in per cent

the FIMT-DD recommended instance 86.79 100.0 %
the perpetual best instance at each time 91.86 94.5 %
the perpetual worst instance at each time 29.22 297.0 %
the statistically best instance statically 81.96 105.9 %
an instance randomly 64.08 135.4 %

is compared with other scenarios. The table reveals good
results. As written above, within this evaluation scenario, the
overall best and worst services can be determined at each time.
Once again, such comparisons are only possible within such a
scenario; this is not possible in reality. Comparing the figures,
we see that the FIMT-DD-based recommendation is able to
achieve 94.5 % of the maximum achievable utility value. It
is 35.4 % better than a random selection approach and even
5.9 % better than the statistically best service instance when
statically using it. Note, that statically choosing the statistically
best service instance is also a kind of learning.

VI. RELATED WORK

In [1], we introduced the overall concept of how knowledge
can benefit service selection/recommendation in general. In
that work, we presented the framework on an abstract level

and introduced the recommendation component as a black
box. In this work, however, we highlighted exactly this rec-
ommendation component and demonstrated the application
of a concrete machine learning approach and how Service
Level Achievements can be turned into knowledge for the
benefit of a consumer-centric optimised service recommen-
dation. In [1], we introduced a multi-stage selection with
multi-stage dependencies of (compound) services. In this work,
however, our focus was set on the general, appropriate and
feasible approach of employing machine learning methods
within service recommendation.

Further details about the evaluation can be read in [22].
This initial approach focuses mainly on the evaluation of
machine learning algorithms which are appropriate for service
recommendation. However, this work does not focus on some
major characteristics of a service market such as the granularity
of contexts and preferences (utility functions) and the avail-
ability of measurement data according to the actual usage of
services. Furthermore, service recommendation also influences
the behaviour of NFPs of service instances. For instance, best-
fit service instances are more often consumed, which might
affect response time. So, in case of limited service resources,
these best-fit instances’ NFPs can change for the worse.

Collaborative filtering (CF) approaches for service recom-
mendation also focus on the exploitation of shared knowledge
about services in order to recommend services to similar
consumers before the actual consumption on an automated
basis [23][24][25][26]. The major drawback of CF is that
consumer-related preference similarities have to be found be-
forehand. With our call context and utility function approach,
new consumers can already benefit from existing knowledge.
CF approaches also do not take into account that consumers
can have different optimisation goals or preferences and only
some approaches [24][25] consider differences between con-
sumers regarding their context. In [27], the authors tackle the
lack of consideration of a consumer’s preferences and interests;
however, they do not take consumer context into account. The
authors of [28] describe an approach to tackle the mentioned
cold-start problem within CF.

Some work focuses on the prediction of NFPs for the
detection of SLA violations such as [29]. This work mainly
focuses on SLAs. In [1] (also cf. [26]), we argued that SLAs
are not a good basis for service selection, considering the
fact that service providers are profit-oriented, it is tempting
to embellish their SLAs in order to be consumed. Also, as
SLAs of consuming and providing services (e. g., compound
services) depend on the SLAs of their sub-providers, deviations
of actual non-functional characteristics and those specified
in SLAs may propagate and spread even unintendedly and
without the control of the providers. Furthermore, the perfor-
mance experience at consumers’ side is also dependent on a
consumer’s call context, which is also not reflected in SLAs.

We recently conducted a paper study about relevant NFPs
during service selection, for which we processed over 4,000
conference papers in the SOC domain. In this study, we discov-
ered only a very few papers considering more than one NFP
during service selection/recommendation. Our approach con-
siders the optimisation (recommendation) with several NFPs
which is challenging due to the fact that the determination of
the best-fit service instance according to service consumers’
individual preferences result in a calculation task. Furthermore,

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 58 / 77

NFPs have different scales of measurement and different
optimisation focuses. Therefore, the complete recommendation
process cannot be left to machine learning alone.

VII. CONCLUSION

We evaluated appropriate machine learning frameworks for
the recommendation of best-fit services according to consumer
preferences and call contexts within a service market. Imple-
mented in the recommendation component for a service broker,
the FIMT-DD showed very good results in the evaluation. Fur-
thermore, its implementation in the MOA framework fulfilled
a high degree of our requirements in terms of recommendation
accuracy, speed of learning, scalability and robustness. With a
high degree of automation, Java integration and being open
source, the MOA framework also fulfilled all software-related
requirements.

This initial evaluation was based on a continuously gener-
ated simulation data set. This data set allowed us to compare
the learning/recommendation results with the overall optimum
and on a reproducible basis, which would have not been
possible with real-world services. The characteristics of the
simulated data set, however, are based on real-world services,
which we observed in former studies. The records in the
data set consisted of continuous data. Within our framework
and in reality, this continuity of records can in general not
be assumed, since the recommendation framework uses mea-
surement of actual invoked service calls. However, service
instances cannot be assumed to be invoked equally often.
Furthermore, best-fit services are more often recommended and
therefore consumed, while underdogs never get the chance to
prove themselves. Also, often recommended service instances
might be affected by the over-consumption if infrastructure
resources are exceeded. In order to tackle this, our framework
needs further strategies and tests of how big the impact of this
potential drawback is in reality and how this can be solved.
The implemented prototype of the overall recommendation
process also needs further performance improvements for the
pre-calculation and pre-determination part. Finally, the overall
approach has to be validated to a real-world scenario with a
realistic number of clients and services.

Nonetheless, the prototype and the employment of the
FIMT-DD within the MOA framework build a good foundation
for service brokers recommending a best-fit service towards
service consumers’ preferences. With the foreground/back-
ground architecture of the framework, the time-consuming
overall learning process is decoupled from the actual time-
critical recommendation process. So, our approach only pro-
duces minimal overhead to service times.

REFERENCES

[1] J. Andersson, A. Heberle, J. Kirchner, and W. Löwe, “Service Level
Achievements - Distributed knowledge for optimal service selection,”
in Ninth IEEE European Conference on Web Services (ECOWS), 2011,
pp. 125–132.

[2] C. Sammut and M. Harries, “Concept drift,” in Encyclopedia of
Machine Learning, C. Sammut and G. Webb, Eds. Springer US,
2010, pp. 202–205. [Online]. Available: http://dx.doi.org/10.1007/
978-0-387-30164-8 153

[3] C. Shearer, “The CRISP-DM model: The new blueprint for data
mining,” Journal of Data Warehousing, vol. 5, no. 4, 2000, pp. 13–22.

[4] S. B. Kotsiantis, “Supervised machine learning: A review of classifica-
tion techniques,” Informatica, no. 31, 2007, pp. 249–268.

[5] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2nd ed.
Elsevier, Morgan Kaufmann, 2006.

[6] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2001,
pp. 97–106.

[7] E. Ikonomovska, J. Gama, and S. Džeroski, “Learning model trees from
evolving data streams,” Data Mining and Knowledge Discovery, vol. 23,
no. 1, 2011, pp. 128–168.

[8] E. J. Keogh and M. J. Pazzani, “Learning augmented bayesian
classifiers: A comparison of distribution-based and classification-based
approaches,” 1999. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.55.7726

[9] Weka, “Weka Javadoc – Hoeffding Tree,” date of retrieval:
25 Oct 2014; http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/
HoeffdingTree.html.

[10] KDnuggets.com – Data Mining Community’s Top Resource
for Data Mining and Analytics Software, “What analytics,
data mining, data science software/tools you used in the
past 12 months for a real project poll,” June 2014, date of
retrieval: 22 Oct 2014; http://www.kdnuggets.com/polls/2014/
analytics-data-mining-data-science-software-used.html.

[11] “RapidMiner,” https://rapidminer.com/, http://sourceforge.net/projects/
rapidminer/.

[12] “The R project for Statistical Computing,” http://www.r-project.org/.
[13] “Apache Mahout,” http://mahout.apache.org/.
[14] “Apache Spark,” http://spark.apache.org/.
[15] “KNIME,” http://www.knime.org/.
[16] “The SHOGUN Machine Learning Toolbox,” http://www.

shogun-toolbox.org/.
[17] “Shark machine learning library,” http://image.diku.dk/shark/sphinx

pages/build/html/index.html.
[18] “scikit-learn – Machine Learning in Python,” http://scikit-learn.org/.
[19] “Vowpal Wabbit (Fast Learning),” http://hunch.net/∼vw/.
[20] Machine Learning Group at the University of Waikato, “Weka – Data

mining with open source machine learning software in Java,” http://
www.cs.waikato.ac.nz/ml/weka/.

[21] University of Waikato, “MOA Massive Online Analysis,” http://moa.
cms.waikato.ac.nz/.

[22] P. Karg, “Evaluation and Implementation of Machine Learning Methods
for an Optimized Web Service Selection in a Future Service Market,”
Master’s thesis, Karlsruhe University of Applied Sciences/Linnaeus
University, Germany/Schweden, 2014.

[23] Z. Zheng, H. Ma, M. Lyu, and I. King, “QoS-aware Web service
recommendation by collaborative filtering,” Services Computing, IEEE
Transactions on, vol. 4, no. 2, 2011, pp. 140–152.

[24] M. Tang, Y. Jiang, J. Liu, and X. Liu, “Location-aware collaborative
filtering for QoS-based service recommendation,” in Web Services
(ICWS), IEEE 19th International Conference on, 2012, pp. 202–209.

[25] L. Kuang, Y. Xia, and Y. Mao, “Personalized services recommendation
based on context-aware QoS prediction,” in Web Services (ICWS),
IEEE 19th International Conference on, 2012, pp. 400–406.

[26] R. Yang, Q. Chen, L. Qi, and W. Dou, “A QoS evaluation method
for personalized service requests,” in Web Information Systems and
Mining, ser. Lecture Notes in Computer Science, vol. 6988. Springer
Heidelberg, 2011, pp. 393–402.

[27] G. Kang, J. Liu, M. Tang, X. Liu, B. Cao, and Y. Xu, “AWSR: Active
Web service recommendation based on usage history,” in Web Services
(ICWS), IEEE 19th International Conference on, 2012, pp. 186–193.

[28] Q. Yu, “Decision tree learning from incomplete QoS to bootstrap service
recommendation,” in Web Services (ICWS), IEEE 19th International
Conference on, 2012, pp. 194–201.

[29] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar, and
F. Leymann, “Runtime prediction of service level agreement violations
for composite services,” in Service-Oriented Computing. ICSOC/Ser-
viceWave 2009 Workshops, 2010, pp. 176–186.

48Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 59 / 77

Towards a Compiler for Business Processes — A Research Agenda

Thomas M. Prinz, Thomas S. Heinze,
and Wolfram Amme

Chair of Software Technology, Friedrich Schiller University
Jena, Germany

Email: {Thomas.Prinz, T.Heinze,
Wolfram.Amme}@uni-jena.de

Johannes Kretzschmar
and Clemens Beckstein

Artificial Intelligence Group, Friedrich Schiller University
Jena, Germany

Email: {Johannes.Kretzschmar,
Clemens.Beckstein}@uni-jena.de

Abstract—Business process management (BPM) and service-
oriented architectures (SOA) promise the development, appli-
cation, maintenance, and improvement of business processes,
i.e., service compositions, as it is done in software engineering.
However, BPM is currently more similar to an unfinished patch-
work and an overall system supporting BPM is missing since it
requires a unified execution engine (a virtual machine), a common
intermediate representation, and eventually a compiler. In this
paper, we motivate the construction of such a system for BPM
and propose an approach including the mentioned sub systems.
Additionally, we show the gaps in current approaches and why
some techniques are not yet fully applicable. We encourage that
system with state-of-the-art approaches and our own ideas of
BPM, compiler construction, and artificial intelligence. Such a
system finally will encourage processes for small and medium-
sized enterprises and for SOA applications.

Keywords–Business Process Management; Compiler; Interme-
diate Representation; Planning; Service-oriented Architecture.

I. INTRODUCTION

It seems that time has come for the efficient and suc-
cessful application of business process management (BPM)
and service-oriented architectures (SOA). There are promising
approaches and techniques for each step of the BPM life cycle
[1], i.e., (1) requirements analysis, (2) design, (3) implemen-
tation, (4) verification and testing, and (5) ongoing improve-
ments. However, Koehler et al. have already emphasized gaps
in the BPM life cycle (especially the missing automation of
process translations into executable processes) which hinder
companies in exploiting the benefits of BPM [2]. Therefore,
BPM is more similar to an unfinished patchwork and a unified
system seriously supporting BPM is needed.

In this paper, we argue for a compiler for business pro-
cesses, i.e., service compositions. Koehler et al. have already
argued for a compiler for business IT-systems and provide
interesting approaches and ideas. Their compiler follows a top-
down approach. However, the implementation of a compiler for
business processes needs both: A well-defined business process
modeling language as input and a machine that executes a pro-
cess for the output. For example, the programming language
Java would not have been so successful if it had not used its
own virtual machine abstracting from the real physical design.

A virtual machine for business processes is similar to a
unified and sufficient intermediate representation (IR) (like a
bytecode for processes). Current process description languages
like the Business Process Model and Notation 2.0 (BPMN) [3]

and Event-driven Process Chains (EPCs) [4] are primarily de-
signed for high level descriptions of business processes rather
than for technical implementations. Although we do not want
to translate abstract processes into executable ones (since there
is the need for developers supporting that transformation), a
well-defined and common technical basis for the definition of
usable constructs and expressions is needed to guarantee such
a transformation without later risking high additional effort.

As the IR is not suitable for the development of processes
in general (like machine code or Java Bytecode for programs),
it is necessary to provide a more high-level but IR-conform
processing language (like a subset of BPMN and EPCs).
Therefore, that language has to be automatically transformable
into the IR. Such a transformation can basically be done by
a compiler. The compilation process should provide powerful
tools and analyses with useful failure and diagnostic infor-
mation about the process for the developer. These kinds of
information are currently undetailed and so new algorithms
have to fill the gap. Additionally, a tool can handle such
information to provide several options for (semi-) automatic
error handling. Within a dialog between the developer and the
system, the developer can choose the best fitting solution.

Although there are already approaches considering parts
of the mentioned system, little attention has been paid to
their interaction. We identified four important subsystems for a
general overall BPM system: (1) a simple and unified process
engine, i.e., a (virtual) machine, (2) a unified IR, (3) a verifying
compiler translating business processes into that IR, and (4)
an error handling which provides correction proposals being
applied to processes.

In this paper, we consider the state-of-the-art of BPM
systems (Section II) in short. We describe a system consisting
of a compiler, an IR, and a process engine with regard to
state-of-the-art approaches, solutions (Section III) and provide
own research approaches to finally enable the implementation
of such a new approach for a system. Section IV summarizes
and concludes the paper.

II. STATE OF THE ART

There are many tools providing BPMN for BPM e.g.,
Activiti BPM Platform [5], Redhat jBPM [6], IBM WebSphere
[7], AristaFlow BPM Suite [8], and BonitaBPM [9]. These
tools allow for the development, simulation, and execution of
business processes. Furthermore, they have additional features
supporting parts of the BPM lifecycle.

49Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 60 / 77

However, most of those tools use different subsets of and
(intermediate) representations for BPMN such that processes
are not interchangeable between tools without additional effort.
Considering that fact for the programming language Java for
example: It would be strange if there would be a variety of
virtual machines for Java, for each accepting a different subset
of Java bytecode instructions. Apromore [10] is an advanced
process model repository based on a common intermediate
representation (canonical representation) to handle different
process model languages. However, although the repository
benefits from that representation, common parts of process
modeling languages like exceptions, exception handling, sig-
nals, transitions, etc. are not accurately representable.

Our approach calls for the implementation of a core virtual
machine for business process modeling languages that is
extensible by additional tools. Such a core virtual machine
asks for a greatest possible subset of process elements being
accepted by the machine (the IR) and also asks for a compiler,
which constructs the IR form for current process modeling
languages (e.g., Web Services Business Process Execution
Language 2.0 (BPEL) [11], Yet Another Workflow Language
(YAWL) [12], EPCs or BPMN). The compilation process is
not always straightforward as some modeling languages (e.g.,
BPMN) only provide subsets of executable process models
(e.g., BPMN Process Execution Conformance [3] for BPMN).

Compilers for business processes are rare in existing tools.
Most of them take a process as it is and interpret it stepwise.
Sometimes, however, additional information is needed for the
execution of a process which can be derived from a compiler,
e.g., data types, soundness or reference safety. Additionally,
most business process modeling language’s output formats
are not suitable for fast and efficient analyses and compilers
therefore have to create a more compact format.

For this purpose, our approach calls for the implementation
of a compiler that transforms and analyzes a process in
an intermediate and interchangeable representation. The most
common used intermediate representations for business pro-
cesses are specification conform exchange formats or BPEL.
BPEL has the great advantage to be a block-based language.
That, however, is the largest problem for simply transforming
processes of graph-based languages (like BPMN) to BPEL
[13][14]. Furthermore, BPEL was designed to orchestrate
different web services and not to directly execute tasks.

Our approach relies on an intermediate representation for
business processes. That representation should allow and out-
perform existing analyses for the verification of pre-defined
process properties since process validation is very expensive by
currently supported BPM tools. State-of-the-art research con-
siders those verification mechanisms. For example, in previous
work [15], we have focused on compiler-based mechanisms
for finding deadlocks and missing synchronizations. These
techniques are so efficient that we were able to perform the
analyses after each modification of a process model and to
give detailed diagnostic information as shown by our tool
implementation [16].

Besides these compiler-based mechanisms, we argue for
semantic analyses of processes by artificial intelligence (AI)
planning methods. These methods rely on semantic descrip-
tions of process-activities. Semantic descriptions are already
widely used in the field of service-oriented architectures

through service description standards, like Web Service Mod-
eling Language (WSML) [17] and Web Ontology Language
for Semantic Web Services (OWL-S) [18]. In contrast to
previous service description standards, these languages allow
the specification of requirements and impacts of a service
regarding a descriptive domain model. With such descriptions,
an AI planner is able to goal-oriented generate an ordered
set of services, which can be executed as a BPEL-like service
composition by workflow engines [19][20]. Because of the fast
growing complexity of planning problems, there are usually
assumptions of the domain models concerning time, execu-
tion, observability and influence aspects [21]. Therefore, AI
planning for workflow generation is only practical in particular
use-cases with simple workflow models. Our approach focuses
on cheaper methods for evaluating a process, which are part
of planning algorithms. Thereby, AI planning could be used
also for more comprehensive workflow descriptions and could
enhance a comprehensive semantic analysis.

III. COMPILER-ENGINE ARCHITECTURE
FOR BUSINESS PROCESSES

In the following, we propose a new BPM architecture.
For this purpose, we explain the overall system first and
subsequently describe each subsystem in detail.

Figure 1 gives a structural overview of the complete sys-
tem. The system has two sides inspired by Amme et al. [22]: a
producer and a consumer side. The producer side is a compiler
being adaptable to each business process development tool.
It accepts an entire process in different process modeling
languages, where a specific front-end containing a parser and
a transformation exists for each language. The internal format
is an IR, which allows for the application of semantic analyses
whose output in turn can be used as input for an error handler,
a coder, and an annotator.

The consumer side consists of an engine and virtual ma-
chine, respectively. It loads a compiled process and extracts the
IR. Then, it executes the IR and performs dynamic semantic
analyses and, in the case of an error, it provides an error
handling which enables for a ”rescue” of the running process.

The interface between the producer and consumer side is a
business process repository. The producer side stores compiled
processes within that repository whereas the consumer side can
load them. Furthermore, error handling systems on both sides
utilize the same repository for their analyses.

A. Producer Side
The producer side is divided into a parser, a transforma-

tion, an IR, semantic analyses, and an error handling as well
as a coder and an annotator.

1) Parsing and Transformation: The parser’s task is to
structurally analyze and verify the entire process against its
description language, i.e., a conformance check. Afterwards,
the transformer translates that process into an IR. For this
purpose, the front-end, consisting of the parser and the trans-
former, depends on the process language.

Two approaches can be distinguished: (1) Defining a
mapping from one language to the other [23][24][25] or (2)
creating a parse tree (process structure tree, PST) which is
then used for a translation [26]. Both approaches have their
roots in compiler theory. However, since the PST is similar

50Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 61 / 77

Business
process
repository

Parser

Transformer

Semantic
analyser

Error handler

Coder/
annotator

Syntactic correct process

Intermediate representation (IR)

Verificator

Decoder

IR

Business process

P
ro

d
u

ce
r

si
d

e
 /

 c
o

m
p

ile
r C

o
n

su
m

e
r sid

e
 / e

n
gin

e

Process execution

Dynamic semantic
analyser

Runtime error
handler

Interpreter

Developer

Developer/
User

Services/Tools

Figure 1. System overview containing a compiler and an engine.

to an abstract syntax tree (AST), it provides more structural
information and therefore we prefer the PST as a mapping is
still possible at a later time.

The inclusion of instructions and variables of the business
process constitutes the major problem during the parsing and
transformation. Process instructions can be translated as shown
by Amme et al. [27], using the Concurrent Static Single
Assignment Form (CSSA form) [28]. However, the creation
of CSSA form is currently only suitable for structured graphs.
Most business processes are unstructured, so we have to define
a transformation for those processes and their instructions.

2) Intermediate Representation: A common IR must cover
(almost) all constructs and instructions of currently popular
process languages. Furthermore, it must provide and support
efficient techniques for detailed semantic analyses. Currently,
Petri nets [29] and workflow graphs [30] are commonly used
to represent language-independent and analyzable processes.
Since workflow graphs have Petri net semantics but provide
more structural information, workflow graphs should be used
as they are very similar to (concurrent) control flow graphs of
compiler theory [28].

In previous work, we have defined an extended workflow
graph (eWFG) based on CSSA form [27][31]. In the next
steps, we plan to extend those eWFGs with advanced lan-
guage constructs like OR-joins, events, signals, transactions,
exception handling, and roles.

3) Semantic Analyses: The task of the semantic analyser
is to verify the IR against properties and to restructure the IR,
e.g., for the encoding into a mobile format. Semantic analyses
consist of structural, context-sensitive, content-related, and
goal-oriented analyses. Structural analyses consider only the
control flow of the process without regarding instructions.
Context-sensitive and content-related analyses include those
instructions. Goal-oriented analyses require additional infor-
mation from the developer in which the developer describes
the goals of the process.

Traditionally, process analyses focus on structural process
properties, e.g., soundness [29]. The soundness property guar-
antees the absence of deadlocks in non-deterministic processes.

We have developed a new approach to detect such deadlocks
in conjunction with all the necessary information to repair
them [15][16]. That approach has to be extended for the IR’s
additional language constructs. Although structural analyses
consider only the control flow, they are suitable pre-processors
for advanced analyses as they reduce the solution and failure
space, c.f. SESE decomposition [32]. One has to show that it
is possible to find further structural information, e.g., nodes
with possible race conditions.

Since structural analyses can result in false-positive and
false-negative analysis results [33], the consideration of data
and instructions is essential to seriously support a process deve-
loper. However, less attention has been paid to process data and
instructions in the literature. Sidorova [33] and our previous
work [27][31] describe ways to include data in semantic
analyses. Approaches of compiler theory can improve context-
sensitive and content-related analyses by deriving predicate-
logic expressions, by using path-sensitive data-flow analyses
[34], by using instruction ordering techniques [35], or by using
demand-driven approaches with backward traverses [36]. Es-
pecially, (C)SSA form is predestined for state space techniques
since each variable is defined once and therefore the state space
of a variable can be directly attached to it. All those approaches
have to be reconsidered in the context of process analysis.

Goal-oriented analyses use approaches of AI planning. For
this purpose, one has to define a precise process domain
(properties which are in the focus of the process) that is used
by the developer to describe the changes in this domain and
the goal of the process. Then, the reachability of the goal can
be verified. Furthermore, analyses can make suggestions to
complete a process with respect to its goals. Our major focus
lies on the adaption of AI planning techniques for the context
of processes.

4) Error Handling: The error handler can improve the
IR process by error correction and restructuring. The results
of the semantic analyses are visualized and explained to the
process’s developer, and the error handler derives proposals
for correction which then can be applied. To this end, the
process has to be decomposed in such a way that failures can

51Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 62 / 77

be corrected locally without side effects.
The application of methods for automatic correction is not

in the main line of research in BPM, resulting in only a handful
of related approaches [37][38][39]. Most approaches consider
preconditions of tasks within the process and how they can lead
to deadlocks. Automatic correction then means to introduce
weak conditions to avoid such deadlocks. Other methods derive
a more general model of the process and afterwards construct
a new process representing that model.

We follow another approach, in which the desired behavior
of the process can never be completly derived from the process
since the intention of the process is only in the mind of the
developer. In this case, error handling has to interact with
the developer to identify the best fitting solution. For this,
approaches of AI planning are considered, which use basic
rules to generate good solution proposals.

5) Coder and Annotator: If the process is correct, such that
all verifiable properties hold, the coder and annotator enrich
the IR with the results of the semantic analyses and afterwards
possibly encode it into a mobile format. Both, the annotation
of business processes as well as a mobile format, have not
been in the focus of research. We want to consider approaches
of compiler theory in which the annotation of programs (e.g.,
Java bytecode) or mobile formats are well understood. Our
mobile format SafeTSA, for example, provides approaches to
efficiently transform programs with a tree structure (AST) and
(C)SSA form [40]. As mentioned before, each process can be
represented by its PST and therefore it is possible to generate
a mobile format, similar to SafeTSA, for business processes.
In summary, we have to generate a SafeTSA conform mobile
format for business processes to encourage their exchange.

B. Business Process Repository
After the process becomes executable, has been verified

and possibly encoded into a mobile format, it can be stored
within a business process repository. Thereby, the repository
should provide features to find fitting process interaction
partners by the use of its (semantic) annotations. For this
purpose, promising proposals for methods [41][42] exist which
can be extended and applied to the development of our system.

C. Consumer Side
As most steps of the consumer side are similar to those

of the compiler, we want to only briefly discuss the engine
in the following. On the consumer side, the business process
is taken from the repository and is transformed back into the
common IR (decoder). During that transformation, the process
has to be verified once again (verificator) with the help of the
annotated information, to guarantee a flawless transfer. As the
results of the semantic analyses on the producer side have been
annotated to the IR, that can be done fast.

Subsequently, an interpreter starts executing the process,
for which Petri net-based or straight-forward (and almost se-
quential) approaches have been described in practice. However,
we prefer to use a virtual machine as process engine since this
approach is sufficient for Java. We imagine a main control unit
loading the process and monitoring its execution. Furthermore,
it starts a subprocess for each new control flow (e.g., after
parallel branches) such that each control flow is handled by a
seperate control unit with its own local memory, arithmetic

logic unit, and input/ouput unit. The resulting architecture
provides full parallelism and is able to execute sub processes
on hetergenous subsystems (e.g., in a network). It can request
services and other tools to support (user) tasks. The main
control unit performs dynamic semantic analyses during the
execution of a process to find runtime errors as early as
possible. Since those analyses have full runtime information,
indications of failure situations can be detected before they
occur. A user has then the possibility to correct those failures
with the help of a runtime error handler. Both, the dynamic
semantics analyses and the runtime error handling mechanism,
are based on the process’s annotations, the analyser, and the
error handling techniques of the compiler with the advantage
of having full information about actual variable assignments.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have motivated the construction of a
compiler, a common IR, a virtual machine, and detailed failure
analyses for business process management. We have proposed
a system which allows for the compilation, storing, and exe-
cution of processes based upon its own IR. That system uses
state-of-the-art approaches and ideas from business process
management, compiler construction, and artificial intelligence.
There already exist approaches to realize such a system.

For the future, we recommend to develop and evaluate
a compiler-based development and runtime environment for
business processes without the consideration of data. Those
environments should then be extended for processes with
data. With this in mind, there are four main aspects being
sequential considered: (1) an intermediate representation based
on extended workflow graphs with regard to a virtual machine
and its execution semantics, (2) process properties with static
and dynamic analyses for their verification, (3) an error visual-
ization, handling, and correction, and (4) process annotations
for an efficient information transfer. The major goal is to show
that such a business process management system is possible,
applicable, and efficient. We are sure that such a system is the
future of process development and will support processes for
small and medium-sized enterprises and for the development
of SOA applications.

REFERENCES

[1] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske,
“Business process management: A survey,” in Business Process
Management, International Conference, BPM 2003, Eindhoven, The
Netherlands, June 26-27, 2003, Proceedings, ser. Lecture Notes in
Computer Science, W. M. P. van der Aalst, A. H. M. ter Hofstede, and
M. Weske, Eds., vol. 2678. Springer, 2003, pp. 1–12.

[2] J. Koehler, T. Gschwind, J. M. Küster, H. Völzer, and O. Zimmermann,
“Towards a compiler for business-it systems - A vision statement
complemented with a research agenda,” in Software Engineering
Techniques - Third IFIP TC 2 Central and East European Conference,
CEE-SET 2008, Brno, Czech Republic, October 13-15, 2008, Revised
Selected Papers, ser. Lecture Notes in Computer Science, Z. Huzar,
R. Kocı́, B. Meyer, B. Walter, and J. Zendulka, Eds., vol. 4980.
Springer, 2008, pp. 1–19.

[3] OMG, “Business Process Model and Notation 2.0,” formal/2011-01-03,
2011, last access: February 18, 2015.

[4] A. Scheer, “Architecture of integrated information systems (ARIS),” in
Information Infrastructure Systems for Manufacturing, Proceedings of
the JSPE/IFIP TC5/WG5.3 Workshop on the Design of Information
Infrastructure Systems for Manufacturing, DIISM ’93, Tokyo, Japan,
8-10 November, 1993, ser. IFIP Transactions, H. Yoshikawa and
J. Goossenaerts, Eds., vol. B-14. North-Holland, 1993, pp. 85–99.

52Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 63 / 77

[5] Alfresco, “Activiti BPM Platform,” http://activiti.org/, last access:
February 18, 2015.

[6] redhat, “jBPM - Open Source Business Process Management - Process
engine,” http://www.jbpm.org/, last access: February 18, 2015.

[7] IBM, “IBM WebSphere software - United States,” http://www.ibm.com/
software/websphere/, last access: February 18, 2015.

[8] AristaFlow, “AristaFlow - Aristaflow BPM Suite fr den BPM-Roundtrip
in einem einzigen Werkzeug,” http://www.aristaflow.com/bpmsuite.
html, last access: February 18, 2015.

[9] Bonitasoft, “Bonitasoft - Open Source Workflow & BPM software,”
http://www.bonitasoft.com/, last access: February 18, 2015.

[10] M. L. Rosa, H. A. Reijers, W. M. P. van der Aalst, R. M. Dijkman,
J. Mendling, M. Dumas, and L. Garcı́a-Bañuelos, “APROMORE: an
advanced process model repository,” Expert Syst. Appl., vol. 38, no. 6,
2011, pp. 7029–7040.

[11] OASIS, Web Services Business Process Execution Language Version
2.0, http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html,
OASIS Std. 2, Rev. 0, apr 2007, last access: February 18, 2015.

[12] W. M. P. van der Aalst and A. H. M. ter Hofstede, “Yawl: yet another
workflow language,” Inf. Syst., vol. 30, no. 4, 2005, pp. 245–275.

[13] M. Weidlich, G. Decker, A. Großkopf, and M. Weske, “BPEL to
BPMN: the myth of a straight-forward mapping,” in On the Move to
Meaningful Internet Systems: OTM 2008, OTM 2008 Confederated
International Conferences, CoopIS, DOA, GADA, IS, and ODBASE
2008, Monterrey, Mexico, November 9-14, 2008, Proceedings, Part I,
ser. Lecture Notes in Computer Science, R. Meersman and Z. Tari,
Eds., vol. 5331. Springer, 2008, pp. 265–282.

[14] W. Zhao, R. Hauser, K. Bhattacharya, B. R. Bryant, and F. Cao,
“Compiling business processes: untangling unstructured loops in
irreducible flow graphs,” IJWGS, vol. 2, no. 1, 2006, pp. 68–91.

[15] T. M. Prinz and W. Amme, “Practical compiler-based user support
during the development of business processes,” in Service-Oriented
Computing - ICSOC 2013 Workshops - CCSA, CSB, PASCEB,
SWESE, WESOA, and PhD Symposium, Berlin, Germany, December
2-5, 2013. Revised Selected Papers, ser. Lecture Notes in Computer
Science, A. Lomuscio, S. Nepal, F. Patrizi, B. Benatallah, and
I. Brandic, Eds., vol. 8377. Springer, 2013, pp. 40–53.

[16] T. M. Prinz, N. Spieß, and W. Amme, “A first step towards a
compiler for business processes,” in Compiler Construction - 23rd
International Conference, CC 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014. Proceedings, ser. Lecture Notes
in Computer Science, A. Cohen, Ed., vol. 8409. Springer, 2014, pp.
238–243.

[17] J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel, “The web service
modeling language WSML: an overview,” in The Semantic Web:
Research and Applications, 3rd European Semantic Web Conference,
ESWC 2006, Budva, Montenegro, June 11-14, 2006, Proceedings, ser.
Lecture Notes in Computer Science, Y. Sure and J. Domingue, Eds.,
vol. 4011. Springer, 2006, pp. 590–604.

[18] W3C, OWL Web Ontology Language for Services, http://www.w3.org/
Submission/2004/07/, World Wide Web Consortium W3C Std. 1, Rev. 0,
nov 2004, last access: February 18, 2015.

[19] F. Henni and B. Atmani, “Dynamic web service composition. use
of case based reasoning and AI planning,” in Proceedings of the
4th International conference on Web and Information Technologies,
ICWIT 2012, Sidi Bel Abbes, Algeria, April 29-30, 2012, ser. CEUR
Workshop Proceedings, M. Malki, S. Benbernou, S. M. Benslimane,
and A. Lehireche, Eds., vol. 867. CEUR-WS.org, 2012, pp. 22–29.

[20] H. Nacer and D. Aı̈ssani, “Semantic web services: Standards,
applications, challenges and solutions,” J. Network and Computer
Applications, vol. 44, 2014, pp. 134–151.

[21] M. Ghallab, D. S. Nau, and P. Traverso, Automated planning - theory
and practice. Elsevier, 2004.

[22] W. Amme, T. S. Heinze, and J. von Ronne, “Intermediate
representations of mobile code,” Informatica (Slovenia), vol. 32, no. 1,
2008, pp. 1–25.

[23] W. M. P. van der Aalst, “The application of petri nets to workflow
management,” Journal of Circuits, Systems, and Computers, vol. 8,
no. 1, 1998, pp. 21–66.

[24] S. Hinz, K. Schmidt, and C. Stahl, “Transforming BPEL to petri nets,”
in Business Process Management, 3rd International Conference, BPM
2005, Nancy, France, September 5-8, 2005, Proceedings, W. M. P.
van der Aalst, B. Benatallah, F. Casati, and F. Curbera, Eds., vol.
3649, 2005, pp. 220–235.

[25] N. Lohmann, “A feature-complete petri net semantics for WS-BPEL
2.0,” in Web Services and Formal Methods, 4th International
Workshop, WS-FM 2007, Brisbane, Australia, September 28-29, 2007.
Proceedings, ser. Lecture Notes in Computer Science, M. Dumas and
R. Heckel, Eds., vol. 4937. Springer, 2007, pp. 77–91.

[26] J. Vanhatalo, H. Völzer, and J. Koehler, “The refined process structure
tree,” Data Knowl. Eng., vol. 68, no. 9, 2009, pp. 793–818.

[27] W. Amme, A. Martens, and S. Moser, “Advanced verification of
distributed ws-bpel business processes incorporating cssa-based data
flow analysis,” International Journal of Business Process Integration
and Management, vol. 4, no. 1, 2009, pp. 47–59.

[28] J. Lee, S. P. Midkiff, and D. A. Padua, “Concurrent static single
assignment form and constant propagation for explicitly parallel
programs,” in Languages and Compilers for Parallel Computing, 10th
International Workshop, LCPC’97, Minneapolis, Minnesota, USA,
August 7-9, 1997, Proceedings, ser. Lecture Notes in Computer
Science, Z. Li, P. Yew, S. Chatterjee, C. Huang, P. Sadayappan, and
D. C. Sehr, Eds., vol. 1366. Springer, 1997, pp. 114–130.

[29] W. M. P. van der Aalst, A. Hirnschall, and H. M. W. E. Verbeek, “An
alternative way to analyze workflow graphs,” in Advanced Information
Systems Engineering, 14th International Conference, CAiSE 2002,
Toronto, Canada, May 27-31, 2002, Proceedings, ser. Lecture Notes
in Computer Science, A. B. Pidduck, J. Mylopoulos, C. C. Woo, and
M. T. Özsu, Eds., vol. 2348. Springer, 2002, pp. 535–552.

[30] W. Sadiq and M. E. Orlowska, “Analyzing process models using graph
reduction techniques,” Inf. Syst., vol. 25, no. 2, 2000, pp. 117–134.

[31] T. S. Heinze, W. Amme, and S. Moser, “A restructuring method for
WS-BPEL business processes based on extended workflow graphs,”
in Business Process Management, 7th International Conference, BPM
2009, Ulm, Germany, September 8-10, 2009. Proceedings, ser. Lecture
Notes in Computer Science, U. Dayal, J. Eder, J. Koehler, and H. A.
Reijers, Eds., vol. 5701. Springer, 2009, pp. 211–228.

[32] J. Vanhatalo, H. Völzer, and F. Leymann, “Faster and more focused
control-flow analysis for business process models through SESE
decomposition,” in Service-Oriented Computing - ICSOC 2007, Fifth
International Conference, Vienna, Austria, September 17-20, 2007,
Proceedings, ser. Lecture Notes in Computer Science, B. J. Krämer,
K. Lin, and P. Narasimhan, Eds., vol. 4749. Springer, 2007, pp.
43–55.

[33] N. Sidorova, C. Stahl, and N. Trcka, “Soundness verification for
conceptual workflow nets with data: Early detection of errors with
the most precision possible,” Inf. Syst., vol. 36, no. 7, 2011, pp.
1026–1043.

[34] J. Fischer, R. Jhala, and R. Majumdar, “Joining dataflow with
predicates,” in Proceedings of the 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2005, Lisbon,
Portugal, September 5-9, 2005, M. Wermelinger and H. Gall, Eds.
ACM, 2005, pp. 227–236.

[35] E. Duesterwald and M. L. Soffa, “Concurrency analysis in the presence
of procedures using a data-flow framework,” in Symposium on Testing,
Analysis, and Verification, 1991, pp. 36–48.

[36] K. Winter, C. Zhang, I. J. Hayes, N. Keynes, C. Cifuentes, and L. Li,
“Path-sensitive data flow analysis simplified,” in Formal Methods
and Software Engineering - 15th International Conference on Formal
Engineering Methods, ICFEM 2013, Queenstown, New Zealand,
October 29 - November 1, 2013, Proceedings, ser. Lecture Notes in
Computer Science, L. Groves and J. Sun, Eds., vol. 8144. Springer,
2013, pp. 415–430.

[37] M. Gambini, M. L. Rosa, S. Migliorini, and A. H. M. ter
Hofstede, “Automated error correction of business process models,” in
Business Process Management - 9th International Conference, BPM
2011, Clermont-Ferrand, France, August 30 - September 2, 2011.
Proceedings, ser. Lecture Notes in Computer Science, S. Rinderle-Ma,
F. Toumani, and K. Wolf, Eds., vol. 6896. Springer, 2011, pp.
148–165.

53Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 64 / 77

[38] A. Awad, G. Decker, and N. Lohmann, “Diagnosing and repairing
data anomalies in process models,” in Business Process Management
Workshops, BPM 2009 International Workshops, Ulm, Germany,
September 7, 2009. Revised Papers, ser. Lecture Notes in Business
Information Processing, S. Rinderle-Ma, S. W. Sadiq, and F. Leymann,
Eds., vol. 43. Springer, 2009, pp. 5–16.

[39] C. Wagner, “A data-centric approach to deadlock elimination in
business processes,” in 3rd Central-European Workshop on Services
and their Composition, Services und ihre Komposition, ZEUS 2011,
Karlsruhe, Germany, February 21-22, 2011. Proceedings, ser. CEUR
Workshop Proceedings, D. Eichhorn, A. Koschmider, and H. Zhang,
Eds., vol. 705. CEUR-WS.org, 2011, pp. 104–111.

[40] W. Amme, N. Dalton, M. Franz, and J. von Ronne, “Safetsa: A type
safe and referentially secure mobile-code representation based on static
single assignment form,” in Proceedings of the 2001 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), Snowbird, Utah, USA, June 20-22, 2001, M. Burke and M. L.
Soffa, Eds. ACM, 2001, pp. 137–147.

[41] F. Klan and B. König-Ries, “A user-centered methodology for the
evaluation of (semantic) web service discovery and selection,” in 4th
International Conference on Web Intelligence, Mining and Semantics
(WIMS 14), WIMS ’14, Thessaloniki, Greece, June 2-4, 2014,
R. Akerkar, N. Bassiliades, J. Davies, and V. Ermolayev, Eds. ACM,
2014, p. 18.

[42] H. Si and Y. Zhao, “A structured p2p-based approach to semantic
web services publication and discovery,” JSW, vol. 9, no. 7, 2014, pp.
1930–1940.

54Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 65 / 77

An Approach for a Web-based Analysis Solution with MUSTANG

Mirco Josefiok∗ and David Korfkamp† and Jan Witt‡

OFFIS – Institute for Information Technology
Data Management and Data Analysis

Escherweg 2, 26121 Oldenburg
Email: †josefiok@offis.de, †korfkamp@offis.de, ‡witt@offis.de

Abstract—Analytical Information Systems (AIS) are comprehen-
sive solutions for analyzing large data sets. The operation of
an AIS usually requires an extensive infrastructure. Moreover,
usually only specialist users are capable of performing analyses.
In this paper, we present an approach for a web-based analysis
solution which can be deployed either in a web-based environment
or as an on-premise solution. We strongly emphasize self service
capabilities by adding knowledge-based components in the form
of an additional metadata layer.

Keywords–web-based system; analysis information systems; self-
service business intelligence.

I. INTRODUCTION

For coping with an increasing flow of information in
companies and a growing complexity in planning business de-
cisions, Data Warehouses (DWH) with Online Analytical Pro-
cessing (OLAP) have been established. With these technolo-
gies and concepts, a company-wide provision of information
should be guaranteed. Analytical Information Systems (AIS)
are the logical bracket around the concepts and technologies
DWH, OLAP, Data Mining and the respective analysis tools
[1].

Development and operation of an infrastructure for pro-
cessing, storing and analyzing large amounts of data requires
substantial investments. To be able to react promptly and
appropriately and to acquire new data whenever available,
the necessary capacities must be maintained. Therefore, small
and medium enterprises, as well as other entities whose core
competencies are not information technology, do not use
dedicated analysis platforms or business intelligence solutions
commonly [2].

Analytical Information Systems (AIS) (see section II-B)
usually suffer from some shortcomings when it comes to
self-service of business users. Notably, typical business users
are not capable of performing analyses by themselves, be-
cause the software solutions are too complex and lack the
necessary guidance. Moreover, the underlying data model is
often too complex to comprehend. Usually, no metadata is
present, which might help business users to gain insights about
structure and semantics of the underlying multidimensional
data [3].

This raises the demand for a solution which is easily
accessible, scales with an increasing amount of users but does
not lack the analytical capabilities specialist users demand.

In this paper, we present a web-based approach for an anal-
ysis solution. Our approach is based on the MUSTANG (Mul-
tidimensional Statistical Data Analysis Engine) framework [4]

and is developed within the WAIS project [5]. MUSTANG is
used, for example, by epidemiological cancer registries (ECRs)
in several German federal states in an instance called CARESS
[6]. Whilst MUSTANG and its instances were originally
developed as standalone applications, recent changes made it
possible to deploy it as a service-based application in cloud
environments. This results in the opportunity to make the
analysis solution available to a broader audience, which is
backed up by the new approach of the presented solution. With
curated data, even more value can be added to our approach.
Moreover, we introduced an additional metadata layer to foster
self-service operations.

This paper is organized as follows. Section II introduces
the foundations of our work, namely Software as a Service
(SaaS), AIS and the MUSTANG framework. Section III ana-
lyzes the problem statement and introduces the architectural
requirements for a service-based AIS. Section IV gives an
overview of selected related works. Section V presents our
approach and gives an overview of the developed prototype and
its architecture. Section VI describes the evaluation and points
out remaining research and development challenges. Finally,
the paper concludes with Section VII.

II. FOUNDATIONS

Cloud computing is currently considered one of the most
important topics for the information and communications
technology (ICT) sector which has emerged in recent years.
It already has a significant impact on how most IT-related
projects are pursued, especially regarding the design and im-
plementation of new software products. In addition, increasing
innovation may be possible with the new deployment options
available through cloud computing [7].

Several conceptual frameworks to describe and characterize
cloud service offers exist. As they are developed by different
groups and organizations, they differ in their intention, type
of formulation, the level of description, and in terms of
which key issues of cloud service evaluation are addressed.
The American National Institute of Standards and Technology
(NIST) provides a definition of cloud computing which is
well accepted in industry and science [8]. A recent survey of
different frameworks and reference models for the description
of cloud offerings and taxonomy of cloud service offers is
provided by Gudenkauf et al., with the aim to help overcome
the skepticism of enterprises regarding cloud service offers by
identifying their key factors [9].

55Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 66 / 77

A. Software as a Service (SaaS)
According to Babar and Chauhan [10] SaaS can be defined

as follows: ”The capability provided to the consumer [. . .]
to use the provider’s applications running on a cloud infras-
tructure. The applications are accessible from various client
devices through either a thin client interface, such as a web
browser (e.g., web based email), or a program interface. The
consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems,
storage, or even individual application capabilities, with the
possible exception of limited user-specific application config-
uration settings.” Our approach can be regarded as a special
form of SaaS, in which analytical systems are deployed at a
hosted location and accessed by potential users with regular
internet connections.

For a potential user, this model has a wide range of
benefits. Besides the benefits which result from the usage of
cloud services, like cost alignment, cost reduction, streaming
payment and compliance implementation, potential end users
can focus on their core competencies and do not need to bother
about building and maintaining a rather complex infrastructure
for running an AIS.

B. Analytical Information Systems (AIS)
AIS have been established in science and industry for

performing analyses on large data sets. AIS should support
analytical activities by summarizing different concepts and
technologies (DWH, OLAP, Data Mining, Business Intelli-
gence solutions) and present them to the user due to a uni-
fied view. The DWH acts as central database in which all
relevant data should be integrated via ETL processes (extract,
transform, and load). With OLAP a multi-perspective view on
the data can be enabled. Data Mining is an umbrella term for
different methods in the field of data analysis. End users have
access to those concepts and methods via business intelligence
tools. AIS provide those concepts, methods and tools to end
users and support them in the process of information retrieval
and decision making [1].

C. Self-Service Business Intelligence
Self-service business intelligence (SSBI) can be defined

as a BI environment, which empowers business users to
perform complex analyses without needing the help of an
expert [11]. This allows users to acquire information in a
more timely manner and makes them more independent from
dedicated BI departments. Major requirements for establishing
a SSBI solutions are understandable and comprehensible re-
sults, accessible software solutions, fast response times when
performing complex analyses and quick and easy access to the
source data.

D. MUSTANG
MUSTANG is a framework for creating AIS. The sys-

tem supports non-technical users by providing tools for data
analysis in a highly accessible user interface, enabling them
to carry out explorative analyses, ad-hoc queries and report-
ing activities. A usual MUSTANG application consists of
three layers. The Data Integration Layer provides a unified
physical integration of various heterogeneous data sources,
e.g., data warehouses, metadata and geographic information
systems. The Component Integration Layer provides services

DataAccess

GISMetaDWH

Component Integration Layer

Client Layer

Data Integration Layer

Service

DataAccessService

Figure 1. MUSTANG Architecture

to perform different types of analyses and to expose metadata
structures like saved analysis configurations and the structure
of the underlying data warehouse. The client layer provides
an user interface (UI) which orchestrates the services of the
Component Integration Layer and visualizes their results. By
now only a desktop rich client existed - in the course of this
work we developed a new web-based client described in the
upcoming sections. Figure 1 shows a simplified overview of
the MUSTANG architecture.

<<Service>>
Meta::ExportService

...

<<Service>>
Meta::IDimensionService

+GetDimensions(pCubeName: string): DimensionSetVO
+GetDimensionHierarchies(pDimension: DimensionVO) : HierarchySetVO
+GetLayers(pHierarchy: HierachyVO): LayerSetVO
...

<<Service>>
Meta::DimensionService

...

<<Factory>>
ServiceFactory

+ExportService: IExportService
+ResultService: IResultService
+DimensionService: IDimensionService
...

<<Service>>
Analysis::ResultService

...

<<Service>>
Analysis::IResultService

+GetTableResult(pAnalysisConfiguration: AnalysisConfigurationVO): TableResultVO
+GetChartResult(pAnalysisConfiguration: AnalysisConfigurationVO): ChartResultVO
+GetMapResult(pAnalysisConfiguration: AnalysisConfigurationVO): MapResultVO
...

<<Service>>
Meta::IExportService

+ExportToExcel(pExportConfiguration: ExportConfigurationVO, pAnalysisConfiguration : AnalysisConfigurationVO): ExportResultVO
+ExportToXML(pExportConfiguration: ExportConfigurationVO, pAnalysisConfiguration : AnalysisConfigurationVO): ExportResultVO
+ExportToCSV(pExportConfiguration: ExportConfigurationVO, pAnalysisConfiguration : AnalysisConfigurationVO): ExportResultVO
...

«uses»

Figure 2. Services classes of the component integration layer

The individual layers are encapsulated from each other.
Especially the component integration layer provides a service
facade to potential client applications. Figure 2 shows an
example for the services classes of the component integration
layer. The figure depicts three exemplary MUSTANG services

56Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 67 / 77

as well as the service factory which maintains instances of
all MUSTANG services. As visible in the figure, all services
in MUSTANG are written against interfaces and the service
factory exposes only these interfaces in order to maintain
interchangeability of services. The central artifact of a MUS-
TANG analysis is the AnalysisConfigurationVO which is used
across all services of the Analysis namespace. The exemplary
services ExportService and ResultService use this object to
calculate analysis results and provide it for visualization or
to export it into various formats. The DimensionService is
used to expose the dimension structure of the underlying data
warehouse which is one piece of an analysis configuration in
MUSTANG [6].

III. KEY BUSINESS DRIVERS AND REQUIREMENTS

Migrating an existing software system to a cloud environ-
ment or even providing it as a service is a very difficult task.
First, it has to comply with the service-oriented architecture
(SOA) paradigm. A major advantage of doing this is, that with
a SOA multiple services can be orchestrated for higher-value
services [12][13]. Cloud based applications can be considered
a collection of services. Software systems which have been
implemented in a service oriented way, should be able to adopt
cloud computing more easily [14].

AIS are usually very complex systems, dealing with various
different data sources and varying user groups. In most cases,
only specialist users conduct analyses with AIS. With this
in mind, in the course of the project, the following business
drivers and requirements could be identified. Several one-day
workshops with potential users were held. The following list
gives an overview of the most relevant business drivers and
requirements.

Multidimensional analyses: Multidimensional analyses ca-
pabilities are required to allow the exploratory analysis
of complex data.

Performance: Performance comparable to the CARESS
Desktop Client [6] is desired.

Modularity and expandability: It should be possible to sub-
sequently add complementary functionality to the proto-
type.

Web standards: The prototype should use web standards and
should conform to the RESTful architecture paradigm
[15].

Metadata: Meaningful metadata should be provided to in-
crease efficiency and accessibility when performing anal-
yses.

User empowerment: It should be possible for inexperienced
users to perform complex analyses.

We will address the implementation of each individual
business driver in Section V.

IV. SELECTED RELATED WORK

In the field there exist several approaches that address
the aforementioned requirements more or less. In this section
we present a selection of related workings and measure their
degree of fulfilment of these requirements. This selection
consists of CARESS, an instance of MUSTANG with a strong
focus on the requirements of epidemiological cancer registries
in Germany [6], Tableau, a software tool for analyzing different
data sources of all kinds, focusing on self-service BI [16],

KNOBI (Knowledge-based Business Intelligence), which is an
instance of MUSTANG enriched with an ontology-based se-
mantic layer knowledge [11] and Super Data Hub a web-based
analysis solution for big data [17]. While the requirement
multidimensionality has been met by all related approaches,
the other requirements are only fulfilled partially which is
especially true for Metadata and Web standards. See table I
for an overview of the related workings and their requirements
coverage.

CARESS Tableau KNOBI Super
Data
Hub

Multidimensional analyses x x x x
Performance x
Modularity and expandability x x
Web standards x
Metadata x x
User empowerment x x x

TABLE I. Requirements coverage of related work

V. APPROACH

In this section, we present our approach for a web-based
analysis solution based on the MUSTANG framework. In
Section V-A, we describe the server side of our application
and especially how we utilize the MUSTANG framework for
our purpose. In section V-B, we explain the implementation
of our client with particular emphasis on self-service and the
usage of metadata.

Utils

Security

DTO

Cache Controller

«access» «import»

«import»

«import»

«access»

Figure 3. Server Packages

MUSTANG itself started with a monolithic design, but
over the course of the past two years it was reengineered
towards a more service-oriented architecture. The system itself
was divided into loosely coupled components which access
each other through a newly added service layer. Moreover,
this RESTful service layer was added to encapsulate view
logic even further. This allows using different existing cloud
services for hosting different parts of the system. Figure 1
shows a simplified architecture of a possible system based on
MUSTANG. Each data source, the core application and the
view or client application may be deployed using different
cloud services.

A. Prototypical Application - Server Side
On foundation of the reengineered MUSTANG framework

we developed a prototypical application. The MUSTANG
framework already offers rich functions for multidimensional
data analysis that we utilized in order to contribute to the busi-
ness driver Multidimensional analyses. We added a completely

57Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 68 / 77

new developed HTML5/JavaScript frontend to the desktop
application. Therefore, we relied on RESTful web services for
data exchange between client and server. We decided to use
these technologies in order to comply with the business driver
Web standards. Moreover, we added the capability to work
securely in a multi-client environment.

datacontext uti ls

user

summaryattr ibute

resulttable main

project

common

dimension

«access»

«access» «access»

«access»

«access»

«access»

«access»
«access»

«access»

Figure 4. Client Structure

Figure 3 shows the package structure of the server-side
application. It is developed on top of the component integration
layer of the MUSTANG framework and provides an interface
for accessing multidimensional data analysis via web services.
For implementing the application, we used the Microsoft
ASP.NET Web API 2 which offers an easy way to create
RESTful web services. Our application is structured into differ-
ent packages. The main point is the controller package, which
contains the controller-classes. A controller class consists of
methods which handle and answer the incoming client’s HTTP
requests (GET, POST, DELETE, PUT). The returning values
are mostly in the form of lightweight data transfer objects
(DTO) which are organized in the DTO package. A DTO in
our application corresponds to a Value Object provided by
the MUSTANG framework. We tailored our DTOs to have
a smaller size compared to the corresponding Value Object by
removing all information not required by our application. This
way we gained quicker response times from communication
between web browser and ASP.NET server contributing to the
business driver Performance. Before transferring the DTOs to
requesting clients, they are serialized to the JavaScript Object
Notation (JSON), which is the preferred data exchange format
when implementing REST APIs.

Another contribution to the business driver Performance is
the reduction of response times for sending requested data by
our implemented caching functions for OLAP-Server-access,
which are concentrated in the Cache package. Especially the
time for retrieving measures, classification nodes and compre-
hensive metadata-information could be reduced from minutes
to seconds by instantiating them already on server start through
our caching mechanism, which makes the objects present in-
memory. The Security package holds all logic necessary for
authentication and user and group management. At last, the
Utils-package contains various utility-classes for handling and
transforming multidimensional data.

B. Prototypical Application - Client Side
Our client application consumes the web services of the

described server side application. It was developed using
HTML5/JavaScript, especially AngularJS [18]. In order to

contribute to the business driver Modularity and expandability,
the application is organized in a modular way with reusable
components representing different aspects of the view. Figure 4
gives an overview of the client application’s structure.

The main module represents the applications starting point.
It accesses the user module and therefore log-in, log-out and
client side security logic. The central module is the common
module which is accessed by all other modules because its
datacontext holds the overall data which is re-used throughout
the application, e.g., selected multidimensional data, analysis
metadata and user data.

The measures module contains everything needed to select
measures. Assisted by comprehensive metadata, the users
can scan a measure-list by entering search terms or using
filtering mechanism based on facet classifications to identify
proper measures for their analysis intention. The metadata
for measures include, for example, information about theme,
origin of data, area coverage or available dimensions. In this
way, the business drivers Metadata and User empowerment are
addressed.

Figure 5 shows the modal window for selecting measures.
1 shows the facet classification. Facets can be filtered by

name and description and individually grouped. The facet
definition is part of the Extract-Transform-Load (ETL) process.
Users are able to browse, select and deselect different facets.
2 shows list of available measures. For each measure, the

most important meta data is shown right away while additional
information can be accessed via a tool tip. 3 shows the
selected measures as well as the dimensions available with
these measures.

In the dimension module the functionality for selecting
dimensions and appropriate classification nodes is located.
Here, the user can navigate by choosing fitting layers or by
expanding a hierarchy to find suitable classification nodes. A
function to merge different nodes for an ad-hoc aggregation
is included as well. Again, it is possible to display additional
metadata for individual elements.

The main point for analysis purposes is organized in the
resulttable module. After selecting measures, dimensions and
classification nodes the resulting table is generated here. The
user can manipulate the table via drag and drop in an interac-
tive way. Dimensions and measures can be moved and arranged
in columns and rows. For a better table view, it is possible
to change to a full screen mode, in which all nonessential
information is faded out. Furthermore, functionality to export
table data into Excel or comma separated value (CSV) format
is included. Figure 6 shows a generated table. 1 shows user
interface elements for manipulating the table (e.g. moving
dimensions from one axis to another). 2 shows the table itself
and the result data. Finally 3 shows the selected measures
and the user interface elements to determine the presentation
of the measures.

The functionality to save analysis data is implemented in
the project module. Analyses can be organized in collections
called projects and enriched with metadata like descriptions,
editors and visibility declarations (private vs. public).

58Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 69 / 77

Figure 5. Measure Selection

Figure 6. Result Table

VI. EVALUATION AND REMAINING CHALLENGES

The application has been shown to potential users on
various occasions, but an extensive evaluation is currently
underway and will be completed by the end of 2014. By now,
the application was evaluated on four occasions with individual
users or user groups. A scenario was created for the evaluation
which included a typical task with a corresponding analysis
questioning. The participants were encouraged to solve the
task and answer the question with the system at hand. Each
evaluation lasted about two hours with concluding interviews
and a structured feedback process. The evaluation was recorded
and will be processed and evaluated step by step. Right now
only a first impression from the first evaluation appointments
can be given.

The first group consisted of specialist users who are
experienced in working with web-based analysis solutions
and have an extensive knowledge of the analysis domain.
The second group consisted solely of business users with an
extensive knowledge of the domain but minor experience in
working with analysis solutions. Whilst the first group does not
represent the desired core audience for the application, their
feedback is also valuable for improving the analysis capacity.

In preparation of the evaluation, an internal evaluation

was performed. A colleague who was not associated with
the project performed the evaluation. The purpose of this
proceeding was to evaluate the scenario, the task to solve and
to find bugs or stumbling blocks in the application itself.

Feedback from the first group has been mostly positive.
As the majority of participants knew about the domain and
the structure of the multidimensional data, they were able to
produce valid results very quickly and to solve the given tasks.
All agreed that the provided metadata allows performing valid
analyses in a convenient way and producing valuable results
faster. Some struggled with the concepts of facets in the dialog
for selecting measures. This concept — to our knowledge — is
not implemented in other applications so far. Metadata can be
used in this case for filtering a measure-list. Some participants
thought they could already select and specify dimensions while
selecting measures. Not all provided metadata was directly
accessible and was not used in the first place.

Feedback from the second group has been mostly positive
as well. Before evaluation started, a short introduction was
given to each participant. Some participants struggled with the
overall operation of the system but were able to solve the given
task with minimal help. Some participants observed inconsis-
tencies in the operating concept regarding the specification of

59Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 70 / 77

measures.
An initial conclusion which we can derive from the eval-

uation so far is that our overall concept works well and
the provided metadata is helpful for possible users with or
without experience in working with analysis solutions. But
we also found some misconceptions and inconsistencies in
our operation concept, especially regarding the provisioning
of even more metadata and the concept of facet classification.

VII. CONCLUSION AND FUTURE WORK

We presented an approach for a service-based analysis
solution with self-service in mind. Our approach proves to
be an improvement over existing solutions. There are still a
number of issues to be addressed before the solution can be
used on a daily basis. We showed that our solution is accessible
by business users with only minimal instructions while we
preserve the analysis capabilities of an analytical information
system.

Up to now we deployed the application only in a local
environment. In addition, we only performed limited load
tests. Therefore, we need to make sure our application scales
with an increasing amount of users simultaneously performing
analyses. Whilst MUSTANG is a proven and robust framework
it was not tested yet in a multi-user environment.

In Section I we mentioned two main shortcomings of
common analysis solutions. We addressed the issue, that
typical business users are not capable of performing analyses
by themselves by creating a highly accessible solution. Our
solution heavily utilizes supporting metadata, which addresses
the problem, that the underlying data model is too complex to
comprehend. In further iterations, we plan to extend the usage
of metadata and knowledge-based approaches. Our system is
therefore designed and implemented in an extensible way.

This should enable business users to perform analyses
without extensive training or the aid of specialist users. The
evaluation showed, that in many cases metadata is sufficient,
but in some cases business users require more guidance. This
applies especially if they only perform analyses at fixed times
(e.g., once per month or year) but not regularly. With a little
more work we are sure our approach can be understood as a
SSBI solution.

We mentioned some issues in Section VI, mostly regarding
our operation concept. Moreover, we did not yet take security
issues into account. Whilst we developed only a research pro-
totype, a possible application which will be accessible by end
users must take security issues into account. In addition, we
will rework parts of our operation concept, especially regarding
the facet classification as part of the measure selection.

Another planned improvement concerns the contribution of
user-specific data. At the moment, it is only possible to perform
analyses with the data available in the underlying DWH. A
future version could incorporate an interface with an associated
process which allows user groups to add their own data to a
user-specific location. Particularly, this is important because
certain data is not freely available and must not be available
to users outside a respective group.

ACKNOWLEDGMENT

This work is supported by the Federal Ministry of Educa-
tion and Research (BMBF) on the basis of a decision by the
German Bundestag under Grant No. 01IS12042B.

REFERENCES
[1] P. Chamoni and P. Gluchowski, “Analytische Informationssysteme -

Einordnung und Überblick,” in Analytische Informationssysteme : Busi-
ness Intelligence-Technologien und -Anwendungen, 2010, pp. 3–16.

[2] M. Mircea, B. Ghilic-Micu, and M. Stoica, “Combining business intel-
ligence with cloud computing to delivery agility in actual economy,”
Journal of Economic Computation and Economic Cybernetics Studies,
vol. 45, no. 1, 2011, pp. 39–54.

[3] M. Mertens, T. Krahn, and H.-J. Appelrath, “Utilizing Structured
Information from Multiple External Sources in the Context of the
Multidimensional Data Model,” in BIS 2013, ser. Lecture Notes in
Business Information Processing,, Abramowicz, Witold. Heidelberg:
Springer, 2013, pp. 88–99.

[4] O. I. for Information Technology, “Multidimensional statistical data
analysis engine,” http://www.offis.de/en/r d divisions/health/project/
projekte/mustang.html, last visited 2015-02-09.

[5] ——, “Wais - aufbau eines wissensbasierten analytischen information-
ssystems für die kollaborative datenanalyse,” http://www.offis.de/en/r
d divisions/health/project/projekte/wais.html, last visited 2015-02-09.

[6] D. Korfkamp, S. Gudenkauf, M. Rohde, E. Sirri, J. Kieschke, and H.-J.
Appelrath, “Opening up Data Analysis for Medical Health Services:
Cancer Survival Analysis with CARESS,” in Data Warehousing and
Knowledge Discovery - 16th International Conference, Munich, Ger-
many, 2014.

[7] P. Hoberg, J. Wollersheim, and H. Krcmar, “The Business Perspective
on Cloud Computing-A Literature Review of Research on Cloud
Computing,” AMCIS 2012 Proceedings, no. 5, 2012.

[8] G. Vossen, T. Haselmann, and T. Hoeren, Cloud-Computing für Un-
ternehmen: Technische, wirtschaftliche, rechtliche und organisatorische
Aspekte. Heidelberg: dpunkt.verlag GmbH, 2012.

[9] S. Gudenkauf, M. Josefiok, A. Göring, and O. Norkus, “A Reference
Architecture for Cloud Service Offers,” in EDOC 2013, 2013.

[10] P. Mell and T. Grance, “The NIST Definition of Cloud Computing
- Recommendations of the National Institute of Standards and Tech-
nology,” National Institute of Standards and Technology, Gaithersburg,
Tech. Rep., 2011.

[11] M. Mertens, KNOBI - Knowledge-based Business Intelligence for
Business User Information-Self-Service -, 1st ed. Oldenburg: OlWIR
Verlag für Wirtschaft, Informatik und Recht, 2013.

[12] G. Feuerlicht, L. Burkon, and M. Sebesta, “Cloud Computing Adoption:
What are the Issues,” Systems Integration, 2011, pp. 187–192.

[13] M. A. Babar and M. A. Chauhan, “A tale of migration to cloud
computing for sharing experiences and observations,” in Proceedings
of the 2nd International Workshop on Software Engineering for Cloud
Computing, ser. SECLOUD ’11. New York, NY, USA: ACM, 2011,
pp. 50–56. [Online]. Available: http://doi.acm.org/10.1145/1985500.
1985509

[14] J. Lawler, “The Potential Reality of Service-Oriented Architecture
(SOA) in a Cloud Computing Strategy,” Journal of Information Systems
Applied Research, vol. 4, no. 1, 2011, p. 57.

[15] S. Kumaran, R. Liu, P. Dhoolia, T. Heath, P. Nandi, and F. Pinel, “A
restful architecture for service-oriented business process execution,” in
Proceedings of IEEE International Conference on e-Business Engineer-
ing, 2008, pp. 197–204.

[16] T. Software, “Fast analytics and rapid-fire business intelligence from
tableau software,” http://www.tableau.com/, last visited 2015-02-13.

[17] SuperDataHub, “Superdatahub - cloud bi - superdatahub,” http://
superdatahub.com/, last visited 2015-02-13.

[18] Google, “Angularjs — superheroic javascript mvw framework,” https:
//angularjs.org, last visited 2014-10-28.

60Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 71 / 77

A Conceptual Model to Evaluate Decisions for Service Profitability

Eng Lieh Ouh

Institute of Systems Science

National University of Singapore

25 Heng Mui Keng Terrace, Singapore

e-mail: englieh@nus.edu.sg

Stan Jarzabek

Department of Computer Science, School of Computing

National University of Singapore

Computing 1, 13 Computing Link, Singapore

Faculty of Computer Science,

Bialystok University of Technology

e-mail: stanjarzabek@gmail.com

Abstract— Service profitability depends on the cost of

engineering a service for a given base of tenants, on service

provisioning cost, and on the revenue gained from selling the

service to that tenant base. The tenant base depends on the range

of service variability, i.e., on Service Provider's ability to vary

service requirements to meet tenant expectations. These various

factors that have to do with service profitability form a complex

web of information that makes it difficult to analyze and see the

exact impact of decisions regarding the choice of service

architecture or the use of service adaptation techniques. To make

this analysis easier for Service Providers, we built a conceptual

model that helps Service Providers identity factors affecting

service profitability and the interplay among them. Based on that

model, Service Providers can answer questions regarding how

choices of the service architecture or tenant base affect service

profitability.

Keywords-service provider; service profittability; service

architecture; service variability; tenant base; service engineering;

service provisioning.

I. BACKGROUND AND MOTIVATION

Service Providers maximize service profits by looking into
ways to best reduce their engineering and provisioning costs
while selling the service to possibly a large number of satisfied
tenants. The choice of service architecture plays a critical role
in balancing the way these three forces affect service
profitability. However, the most scalable and cheapest for
service provisioning shared service architectures tend to restrict
service adaptability. It is our goal in this paper to analyze the
interplay among conflicting forces that affect service
profitability, and identify the detailed factors behind these
forces. The conceptual model of service profitability presented
in this paper is to help Service Providers better see how
decisions regarding the choices of service architecture,
dynamic (at service runtime) versus static (at the service
construction-time) service adaptation techniques, or the size of
the tenant base affect service profitability. This conceptual
model can be further extended with provisions for quantitative
analysis of service profitability, which is the subject of our on-
going work.

In our previous work [1], we described the decisions that
Service Providers typically make during service engineering
regarding the choice of service architecture, service packaging,
service hosting and the use of static or dynamic binding
techniques to adapt services to needs of various tenants.
Service components can be encapsulated at a service or tenant

specific level packaging. For service hosting, a service can be
hosted on a dedicated or shared process instance. Service
architectures differ in how the service code is managed during
service engineering, service execution and service hosting. As
compared to [1], this paper further elaborates on and formalizes
earlier findings to build a conceptual model.

Section II introduces Service Variability and Service
Architectures. We give our proposed Service Profitability
Model in Section III, followed by an Analysis of Service
Profitability in Section IV. Related work is presented in Section
V. Our conclusion is in Section VI.

II. SERVICE VARIABILITY AND SERVICE ARCHITECTURES

The range of service variability is the extent to which a
Service can be adapted to varying service requirements of
different tenants. The larger the range the service can
accommodate, the higher the number of tenants and the higher
the revenue for the Service Provider. Service architecture is
composed of a set of components and the relationships among
them to implement a service. A service supports a set of
common features [15], shared by all the tenants, and a set of
variant features (FRSV), that are in a range of service variability,
i.e., features that are of interest to some but not all

tenants. Each feature f ∈ FRSV corresponds to a set of variation

points in service architecture components. The purpose of
variation points is to enable customization of components
whenever f is required by a tenant. A selected variant to be
bind to a variation point is composed of service components of
one or more modules as shown in Figure 1.

Figure 1. Service, Features and Variants

Fully-Shared (SAFS) is a service architecture based on a

shared process instance with service components being shared

by tenants during service execution. Dynamic binding

techniques are used to bind the variants to the variation points

of the feature for service running in SAFS. The range of service

variability that is supported by SAFS is as follows:

61Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 72 / 77

 At least one new variant or variation point needs to be

designed and deployed onto existing process instance to

support the varying requirements.

 Existing features can be configured on existing process

instance to support the varying requirements

Partially-Shared (SAPS) is a service architecture based on

a shared process instance but, as opposed to SAFS, the service

components in SAPS can be tenant level or service level

packaged. In other words, the service components packaged in

the module can be servicing a set of tenants or a particular

tenant. Both static and dynamic techniques can be used to bind

the variants to the variation points of the features for Service

running in SAPS. The range of service variability that is

supported by SAPS includes the variability supported by SAFS

and the following:

 For at least one new variant, variation points need to be

designed and deployed onto a dedicated process instance

to support the varying requirements.

 Existing features can be configured, but some features

need to be deployed onto a dedicated process instance to

support the varying requirements.

Non-Shared (SANS) is based on each tenant having its

own, dedicated process instance and the service components

being tenant level packaged. Both static and dynamic

techniques can be used to bind the variants to the variation

points of the features for Service running in SANS. The range

of service variability that is supported by SANS includes the

variability supported by SAPS and the following:

 All required features need to be deployed onto a dedicated

process instance to support the varying requirements.

The service architecture can be hybrid, comprising of a

combination of existing service architectures. The SAFS+PS is

the hybrid service architecture comprising of SAFS and SAPS.

SAFS+PS+NS is the hybrid service architecture comprising of

SAFS, SAPS and SANS. The deployment diagrams of the three

basic service architectures SAFS, SAPS and SANS are shown in

Figure 2. The white portions indicate components of the

architecture that are not shared among tenants and the dark

portions indicate components that are shared among tenants.
Service architectures that share runtime resources to

minimize provisioning cost potentially limit the extent to which
services can be adapted to varying requirements of tenants. For
example, a tenant who requires service to be processed and
data isolated due to security regulations cannot be onboard
together with other tenants (that do not have such
requirements) with a service architecture that does not have
clear separation of runtime resources between tenants. Having
clear separation of runtime resources among tenants incurs
higher provisioning cost for the Service Provider, which would
be likely passed on to the tenant as higher service price. On the
other hand, there are also tenants who are price-sensitive with
minimum variations of requirements. In this case, Service
Providers can best minimize cost by engineering the service on
a service architecture that shares resources. To the Service
Provider, what are the factors and how they interplay can
greatly impact their service profitability. We formalized these
factors into a Service Profitability Model to help Service
Providers analyze a complicated web of interrelated factors
affecting service profitability.

Node

Dedicated TenantB

Process instance
Dedicated TenantA

Process instance

Node

Shared Process Instance

Node

Shared Process Instance

Fully-Shared (FS) Non-Shared (NS)

Interface Layer

Persistence Layer

Interface Layer

Business Layer Business Layer

Persistence Layer

Partially-Shared (PS)

- One Possibility

Interface Layer

Business Layer

Persistence Layer

TenantA (ProductA) `TenantB (ProductB)

Interface Layer

Business Layer

Persistence Layer

C
o
n
fi
g

u
ra

tio
n
 L

a
y
e
r

C
o
n
fi
g

u
ra

tio
n
 L

a
y
e
r

C
o
n
fi
g

u
ra

tio
n
 L

a
y
e
r

C
o
n
fi
g

u
ra

tio
n
 L

a
y
e
r

Service

Level

Packaging

Service

Level

Packaging

Service

Level

Packaging

TenantA

Level

Packaging

TenantA

Level

Packaging

TenantA

Level

Packaging

TenantB

Level

Packaging

TenantB

Level

Packaging

TenantB

Level

Packaging

TenantA

Level

Packaging

TenantB

Level

Packaging

TenantA

Level

Packaging

TenantB

Level

Packaging

TenantA

Level

Packaging

TenantB

Level

Packaging

Shared

Shared

Shared

Figure 2. Service Architectures

62Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 73 / 77

Figure 3. A conceptual model of Service Profitability

III. CONCEPTUAL MODEL OF SERVICE PROFITABILITY

Service Providers seek to maximize their profitability in the
long term by minimizing their costs while maximizing their
revenue. A Service Provider can re-engineer an existing
application into a service or develop a service from scratch.
This is the cost incurred in engineering the functionality of the
service. The engineering cost varies depending on the choice of
service architecture, but is independent of the number of
tenants. Besides engineering service functionality, a Service
Provider needs engineer variability into a service to
accommodate variations in requirements among tenants. For
business strategic reasons, a Service Provider may have some
target tenants in mind and engineer the variability to meet the
varying requirements of the target tenants. The extent of the
service variability can vary with each variability technique and
the selected service architecture which in turn impact the cost
to engineer for variability. Service engineering costs can be
estimated with software cost estimation tools (e.g.,
COCOMOII [2]) typically in terms of function points or lines
of code. The other factor to the cost on top of service
engineering cost is the provisioning cost. This cost is incurred
to host the service in a hardware and network environment to
serve the tenant’s requests. The provisioning cost varies with
the selected service architectures and the extent of service
variability. The provisioning can be hosted internally or
externally, virtualized or non-virtualized. To minimize
provisioning cost, a virtualized environment is usually adopted.
One key factor to whether the hosting is internal or external
depends on each organization’s security policy. Provisioning
cost of virtualized environment can be estimated on the
respective cloud hosting sites (e.g., Amazon Web Services [3]).
During the lifecycle of the service, new tenants might be
interested to subscribe to the same service. For business
reasons, a Service Provider may also wish to onboard new
tenants to maximize their revenue. However, the current extent
of service variability might not exactly fit the requirements of

the new tenants. The additional engineering and provisioning
costs vary with the selected service architectures, adopted
variability technique and the extent of variability of the tenant’s
requirements. The costs to engineer and provision for delta
variability can be estimated similarly as described earlier.
Service revenue will vary with the number of initial set and
new set of tenants. Service profitability for providing the
service in the long term can be measured by the net present
value of the revenue gained minus the costs incurred over a
pre-determined investment horizon, taking into account the
value of money over time. For the rest of this section, we
define the terms and use them in the conceptual model of
service profitability. A conceptual model of Service
Profitability is found in Figure 3.

A. Explanation of the terms in conceptual model

The Range of Service Variability (RSV) is the extent to
which a Service can be adapted to varying service requirements
of different tenants. The larger the range the service can
accommodate, the higher the number of tenants and the higher
the revenue for the Service Provider. The Tenant Base (TB) is
composed of the users of a given Service, or onboarded tenants.
To onboard a tenant, the Service must be able to meet the
requirements of that tenant. As RSV reflects the Service
Provider’s ability to customize the Service, RSV determines
the TB that can be supported. Service Providers dream to
engineer a service where RSV fulfills the varying requirements
of the TB, maximizing service profits. Service Profits are
determined by the Total Service Cost (TSC) incurred and Total
Service Revenue (TSR) gained when providing the service.
Costs are incurred to engineer the functionality of the Service
and to engineer the Service to support a given RSV on a given
Service Architecture (SA). For this, we collectively use the
term Service Engineering Costs (SEC) to denote the both the
Service Functionality Engineering Cost (SFEC) and Service
Variability Engineering Cost (SVEC). SVEC is based on the
selected Variability Techniques (VT) to support a given RSV

63Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 74 / 77

on a given SA. There are also costs involved to provide the
hardware and infrastructure resources to support a given TB on
a given SA. For this, we use the term Service Provisioning
Costs (SPC). TSR is the total revenue from selling the Service
on a given service SA.

Delta Variability (DV) is the change to existing Service
requirements required to onboard new tenant(s). We denote
these newly onboarded tenants as Delta Tenant Base (DTB).
Delta Cost (DC) is the cost to implement DV for a given DTB
on a given SA. Similarly to TSC, DC is composed of Service
Engineering Delta Cost (SEDC) and Service Provisioning
Delta Cost (SPDC).

IV. AN ANALYSIS OF SERVICE PROFITABILITY

In this section, we show use cases for the conceptual model

presented as ten questions illustrating specific profitability-

related dilemma of a Service Provider during service planning.

A. Service Profitability Model and Service Archiectures

For SAFS, the service engineering cost to support the given

range of variability is composed of implementing the dynamic

binding techniques to bind the variants to the variation points

identified for each feature of the Service. The service

provisioning costs to support the given range of service

variability is composed of provisioning the hardware and

infrastructure resources to support the tenant base. Among the

basic architectures, SAFS have the lowest provisioning costs

due to sharing of resources. Delta variability that is the

changes to existing Service requirements by new tenants have

to be supported by the service architecture to onboard the

tenant. If the delta variability is outside the given range of

service variability of SAFS then there are two possible

scenarios. One scenario is that the Service Provider incurs the

service variability delta costs to engineer the delta variability

into the existing SAFS. (e.g., implementing new variants or

variation points that can be shared among tenants). The second

scenario is that the tenant cannot be onboard as the delta

variability cannot be supported on existing SAFS (e.g., tenant

require total isolation of software, process and data).

For SAPS, the service variability engineering costs to

support the given range of service variability is higher than

SAFS as the Service Provider needs to implement both the

dynamic and the static binding techniques. The service

provisioning costs are also higher than SAFS due to the tenant

level packaging leading to the need to provision more

resources to support more software components. If the delta

variability of new tenants is outside the given range of service

variability of SAPS, a Service Provider can onboard the tenants

by incurring service variability delta costs to engineer the delta

variability into the existing SAPS. (e.g., implementing new

variants or variation points that can be shared among tenants

or supporting isolation of software or data). As SAPS is running

on shared process instance, the Service Provider is unable to

onboard the tenant if the tenant has requirements that require a

dedicated process instance (e.g., isolation of processes).

For SANS, the service variability engineering costs to

support the given range of service variability is lower than

SAPS as it needs to implement only based on static binding

techniques. The service provisioning costs are the highest

among SANS and SAPS as dedicated resources are provided for

each tenant. If the delta variability of new tenants is outside

the given range of service variability of SANS, SANS can

support delta variability of new tenants (even for isolation of

process) due to dedicated process instances.

For SAFS+PS, the service variability engineering costs to

support the given range of service variability involves the

implementation of both dynamic and static binding techniques

and the need to support two basic service architectures. It is

higher than any of the basic architectures SAFS, SAPS or SANS.

Depending on whether the service is provisioned on SAFS

and/or SAPS, the provisioning costs for SAFS+PS can be

calculated from the respective provisioning costs of SAFS

and/or SAPS. The support of delta variability is similar to the

scenarios in basic architectures of SAFS or SAPS.
For SAFS+PS and SAFS+PS+NS, the service variability

engineering costs to support the given range of service
variability involves the implementation of both dynamic and
static binding techniques and the need to support all three basic
service architectures. It is the higher than the basic service
architectures. Depending on whether the service is provisioned
on SAFS, SAPS and/or SANS, the provisioning costs for SAFS+PS
can be calculated from the respective provisioning costs of
SAFS, SAPS and/or SANS.

B. Key Questions to Service Profitability

Questions 1 to 3 and 4 to 6 are related to the revenue and cost

of the Service Profitability Model. Questions 7 to 9 are related

to service architectures, while the last question is related to the

overall service profitability.

1) How many tenants will have to be onboarded so that

the profit from service outweighs the cost of building it?

The answer to this question will help the Service Provider to

estimate the breakeven point for service cost and revenue. For

a given service architecture, the Service Provider can simulate

the number of tenants against the expected cost incurred to

build the service for the Service Provider to have a better

insight on the breakeven point for the initial total service costs.

2) How many new delta-tenants will have to be onboarded

to outweigh the cost of implementing changes (delta-

requirements) required for new tenants?

To Service Providers, this is another question on the

breakeven of their investment. It differs from question 7 in

terms of the delta cost against the delta revenue gained from

the delta tenant base. For a given service architecture, the

Service Provider can simulate the number of delta tenants

against the expected delta cost incurred to build the service,

the Service Provider has a better insight on the breakeven

point for the delta costs.

3) Which pricing stratgey should a Service Provider adopt

for the service?

The right pricing strategy positively impacts the total service

revenue and delta revenue to be gained. The pricing strategy

can be pay as per use, subscription-based, tiered based,

transaction based or mixture of the above. The pricing strategy

can also vary across time. For a given service architecture, the

64Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 75 / 77

Service Provider can simulate the expected distribution of

tenants for each of the pricing strategies across the investment

horizon and evaluate for overall service profitability.

4) Is it better to re-engineer from existing code or develop

services from scratch?

The decision to this question impacts the service functionality

engineering cost, which is independent of the number of

tenants. Based on simulation of the expected distribution of

tenants, this question can be addressed to see if the impact of

the additional costs to develop from scratch versus the savings

by re-engineering from existing code.

5) Should a Service Provider provision the service

internally or externally?

The impact of hosting choices on service profitability can be

inferred from service provisioning and service provisioning

delta costs. The cost of provisioning the service internally

typically incurs higher upfront setup and maintenance cost

than external provisioning. However, it provides higher degree

of security in terms of privacy and isolation of data and

processes. Provisioning the service externally can decrease

upfront setup and maintenance costs, but the level of control is

also reduced. Based on the above, simulations can be run with

these costs and expected distribution of tenants to analyze

overall service profitability.

6) Which variability technique should a Service Provider

apply to address the required range of service variability?

A Service Provider can apply static variability techniques to

address higher degree of variability, but can also be more

costly as compared to only applying dynamic variability

techniques to address runtime variability. The adoption of

variability technique impacts the service variability

engineering cost and service engineering delta cost.

Additionally, due to the variability technique, new tenants

with requirements that does not fit the service variability will

either be unable to onboard or the service architecture needs to

evolve. Assuming the service architecture remains the same,

the Service Provider can simulate the expected distribution of

tenants for each of the adopted variability techniques and

evaluate for overall service profitability.

7) To what degree does the selection of a service

architecture impact service profitability?

This is a typical profitability-related question a Service

Provider tries to answer. Based on the conceptual model, a

Service Provider can estimate the total service costs incurred

for each choice of the service architecture. In addition, a

Service Provider may simulate a set of expected delta tenants

that can be onboarded within the pre-determined specified

investment horizon and measure the impact to total service

costs, total service revenue and overall service profits.

8) Should a Service Provider onboard new tenant if this

requires the change of service architecture?

Onboarding new tenants present new business opportunities,

but also incurs costs to implement extra delta variability into

the Service. This cost grows further if onboarding new tenants

requires the change of service architecture, e.g., from shared to

dedicated. In this case, the Service Provider needs to simulate

different distributions of tenants and evaluate the overall

profitability. These distributions differ in their degree of

varying requirements and evaluate the service profitability

impact on each of the service architectures. From the results, a

Service Provider can have a better insight whether to evolve

their architecture or not.

9) Should a Service Provider adopt a specific service

architecture or a hybrid of service architectures?

Besides deciding on the type variability techniques, adopting a

hybrid of service architectures requires additional cost

incurred to manage the variability across service architectures.

The Service Provider can simulate the expected distribution of

tenants for each service architecture including different

hybrids and evaluate for overall service profitability.

10) If a Service Provider has an objective to achieve a

certain level of service profitability within a certain investment

horizon, what costs and revenue the Service Provider needs to

incur and gain?

This question can be considered an optimization problem in

terms of maximizing the total service revenue and delta

revenue while minimizing the total service costs and delta cost

for a given level of service profitability. From the conceptual

model, factors that affect the total service cost and total

service revenue can be defined as equations to be evaluated by

an optimization solver. More than one optimal set of values is

possible in this case. The Service Provider can evaluate and

design towards one of these values in this optimal set.

Each of these questions can be addressed at the lower level of

abstraction. For example, in the first question, the assumption

of a given service architecture can be further decomposed to

evaluate against a set of service architectures for the Service

Provider to be able to evaluate more scenarios.

V. RELATED WORK

There is much literature on how to minimize service
engineering and provisioning costs to improve service
profitability. Existing methods focus on variability techniques
to enable late binding of the service variants, customization of
business process execution language (BPEL) process with
variability descriptors [8] and variability modeling techniques
to manage the variability in service applications [9][10]. Kwok
et al. [11] propose to lower the provisioning cost through
resource calculations with constraints to decide the best server
to onboard a new tenant. A resource consumption estimation
model to optimally place onboarding tenants is also studied in
[12].

A single-instance multi-tenant service application enables a

Service Provider to achieve economies of scale through

runtime sharing. However, runtime sharing can make tenant-

specific variations difficult to achieve in such an application as

it needs to realize the variability across different tenants in the

single-instance application [13]. For the software as service

paradigm to truly meet its potential, Sengupta et.al. [14]

propose that vendors will need to move away from building

rigid “one-size-fits-all” systems, or those that offer a fixed set

of available customization options from which tenants must

select. Service paradigm essentially is an economic model for

software consumption; hence, many of these activities would

65Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 76 / 77

have to be grounded on the basis of financial reasoning that

can benefit the vendor as well as the tenants. In contrast with

other works that addresses costs or benefits independently, this

paper takes a holistic view of service adoption in terms of

service profitability. To the best of our knowledge, there are

no such economics-driven service adoption evaluation

methods; therefore service adoption is frequently made

without holistically evaluating whether it is economically

worthwhile to invest for the long term. In this study, we seek

to propose an economic model of service profitability based

on high-level conceptual model of service profitability

(original contribution) and existing value-added software

engineering metrics and economics-driven models used in

other areas. We believe that the reasoning based on service

profitability is able to address the service paradigm with a

more balanced view than before.

VI. CONCLUSION

Our proposed Service Profitability Model formalizes the
interplay of multiple factors that influence service profitability.
The model addresses decisions related to the tenant base,
required range of service variability, service architecture and
the use of variability techniques. Our model shows how these
decisions affect service cost and revenue. We illustrated the
usage of our profitability model with an analysis of service
architectures and service profitability scenarios. We believe the
model will help Service Providers maximize service
profitability. For future work, we intend to extend our Service
Profitability Model with quantitative methods and tools that
can help Service Providers examine factors that affect service
profitability.

REFERENCES

[1] E. L. Ouh and S. Jarzabek, “Understanding Service Variability for

Profitable Software as a Service: Service Providers’ Perspective,” in

26th International Conference on Advanced Information Systems
Engineering (CAiSE), 2014, pp. 9-16.

[2] “COCOMO II” http://csse.usc.edu/csse/research/COCOMOII [retrieved:
Jan, 2015].

[3] “Amazon Web Services Pricing” http://aws.amazon.com/pricing/

[retrieved: Jan, 2015].

[4] A. Mili, S. F. Chmiel, R. Gottumukkala, and L. Zhang, "An integrated

cost model for software reuse," in Proceedings of the 22nd international
conference on Software engineering (ICSE), 2000, pp. 157-166.

[5] "The Apache Open for Business Project (OfBiz)"

http://ofbiz.apache.org/ [retrieved: Jan, 2015].

[6] Stanislaw Jarzabek and Dan Daniel, "Adaptive Reuse Technique"

http://art.comp.nus.edu.sg/ [retrieved: Jan, 2015].

[7] "FeatureIDE" http://wwwiti.cs.uni-magdeburg.de/iti_db/research

[8] R. Mietzner and F. Leymann, "Generation of BPEL Customization
Processes for SaaS Applications from Variability Descriptors," in IEEE

International Conference of Services Computing, 2008, pp. 359-366,.

[9] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl, “Variability
modeling to support customization and deployment of multi-tenant-

aware Software as a Service applications,” in Proceedings of the 2009

ICSE Workshop on Principles of Engineering Service Oriented Systems,
2009, pp. 18-25.

[10] B. Morin, O. Barais, and J. M. Jzquel, "Weaving Aspect Configurations

for Managing System Variability," in Proceedings of VaMoS, 2008, pp.

53-62,.

[11] T. Kwok and A. Mohindra, “Resource calculations with constraints, and
placement of tenants and instances for multi-tenant SaaS applications,”

in Service-Oriented Computing (ICSOC), 2008, pp. 633-648.

[12] Y. Zhang, Z, Wang, B. Gao, C. Guo, W. Sun, and X. Li, “An effective
heuristic for on-line tenant placement problem in SaaS,” in IEEE

International Conference on Web services (ICWS), 2010, pp. 425-432.

[13] I. Kumara, J. Han, A. Colman, T. Nguyen, and M. Kapuruge, "Sharing

with a Difference: Realizing Service-based SaaS Applications with

Runtime Sharing and Variation in Dynamic Software Product Lines," in
IEEE International Conference on Services Computing (SCC), 2013, pp.

567-574.

[14] B. Sengupta and A. Roychoudhury, “Engineering multi-tenant software-
as-a-service systems,” in 3rd International Workshop on Principles of

Engineering Service-Oriented Systems, 2011, pp. 15-21.

[15] J. Lei, B. Sengupta and A. Roychoudhury, "Tenant Onboarding in

Evolving Multi-tenant Software-as-a-Service Systems," in IEEE

International Conference on Web Services (ICWS), 2012, pp. 415-422.

[16] M. Svahnberg, J. Van Gurp, and J. Bosch, ”A taxonomy of variability

realization techniques. Software: Practice and Experience,” 2005, pp.

705-754.

[17] Y. Zhang, Z. Wang, B. Gao, C. Guo, W. Sun, and Xu Li, “An effective

heuristic for on-line tenant placement problem in SaaS,” in International
Conference on Web services (ICWS), 2010, pp. 425-432.

[18] M. Ma, and J. Huang, ”The pricing model of cloud computing services,”
in Proceedings of the 14th Annual International Conference on

Electronic Commerce, 2012, pp. 263-269.

[19] A. Mukhija, D. S. Rosenblum, H. Foster, and S. Uchitel, “Runtime
support for dynamic and adaptive service composition. in Rigorous

software engineering for service-oriented systems,” 2011, pp. 585-603.

[20] H. Jegadeesan and S. Balasubramaniam, ”A method to support

variability of enterprise services on the cloud,” in Cloud Computing,

2009, pp. 117-124.

[21] D. Ma, ”The business model of" software-as-a-service". in IEEE

International Conference on Services ComputingC(SCC), 2007, pp. 701-

702.

[22] W. Frakes and C. Terry, "Software reuse: metrics and models," ACM

Computing Surveys (CSUR), vol. 28, no. 2, pp. 415-435, 1996.

[23] V. Choudhary, "Software as a Service: Implications for Investment in

Software Development," in 40th Annual Hawaii International

Conference on System Sciences (HICSS), 2007, pp. 209a.

[24] B. Boehm, "Software Engineering Economics," in IEEE Transactions on

Software Engineering, 1984, pp. 4-21.

[25] C. P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. t

Hart, “Enabling multi-tenancy: An industrial experience report,” in 2010

IEEE International Conference on Software Maintenance (ICSM), 2010,
pp. 1-8.

[26] H. Wang and Z. Zheng, “Software architecture driven configurability of
multi-tenant SaaS application,” in Web Information Systems and

Mining, 2010, pp. 418-424.

[27] R. Mietzner, F. Leymann, and M.P. Papazoglou, “Defining composite

configurable SaaS application packages using SCA, variability

descriptors and multi-tenancy patterns,” in Third International
Conference on Internet and Web Applications and Services (ICIW),

2008, pp. 156-161.

[28] T. Kwok, T. Nguyen, and L. Lam, “A software as a service with multi-
tenancy support for an electronic contract management application,” in

IEEE International Conference on Services Computing (SCC), 2008, pp.

179-186.

[29] Y. Zhang, S. Liu, and X Meng, “Towards high level SaaS maturity

model: methods and case study,” in IEEE Asia-Pacific Services
Computing Conference (APSCC), 2009, pp. 273-278

66Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

Powered by TCPDF (www.tcpdf.org)

 77 / 77

http://www.tcpdf.org

