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SIGNAL 2019

Forward

The Fourth International Conference on Advances in Signal, Image and Video Processing
(SIGNAL 2019), held between June 02, 2019 to June 06, 2019 - Athens, Greece, continued a
series of events related to signal, image and video processing.

Signal, video and image processing constitutes the basis of communications systems. With
the proliferation of portable/implantable devices, embedded signal processing became widely
used, despite that most of the common users are not aware of this issue, New signal, image and
video processing algorithms and methods, in the context of a growing-wide range of domains
(communications, medicine, finance, education, etc.) have been proposed, developed and
deployed. Moreover, since the implementation platforms experience an exponential growth in
terms of their performance, many signal processing techniques are reconsidered and adapted
in the framework of new applications. Having these motivations in mind, the goal of this
conference was to bring together researchers and industry and form a forum for fruitful
discussions, networking, and ideas.

We welcomed academic, research and industry contributions. The conference had the
following tracks:

 Features and models for images/signals

 Special signal, image and video processing applications/domains

 Signal processing theory and methods
We take here the opportunity to warmly thank all the members of the SIGNAL 2019

technical program committee, as well as all the reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly
thank all the authors who dedicated much of their time and effort to contribute to SIGNAL
2019. We truly believe that, thanks to all these efforts, the final conference program consisted
of top quality contributions.

We also thank the members of the SIGNAL 2019 organizing committee for their help in
handling the logistics and for their work that made this professional meeting a success.

We hope that SIGNAL 2019 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the areas of
signal, image and video processing. We also hope that Athens, Greece provided a pleasant
environment during the conference and everyone saved some time to enjoy the historic charm
of the city.
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Abstract— The objective of this work is to develop a deep
learning model for classification of smoke and no smoke
regions in aerial recorded videos. For that, a deep belief
network model was selected and implemented. First, frames
were extracted from the provided videos. The Gaussian
Mixture Model (GMM) was applied as background estimation
algorithm. Then, the Deep Belief Network algorithm was
applied to detect the smoke for the candidate region. Deep
Belief Network was implemented and tested on different
datasets. Overall, the obtained results reveal that our
implemented model was able to accurately classify smoke and
no smoke regions. Through the experiments with input videos
obtained from various weather conditions, the proposed
algorithms were useful to detect smoke in forests to minimize
the damage caused by forest fires onto vegetation, animals and
humans.

Keywords- smoke detection; GMM; Deep Belief Network.

I. INTRODUCTION

Video-based smoke detection systems are composed of
two types of methods. The first one relies on static features,
such as the color of the smoke. The second method uses
dynamic feature like movement, texture, etc.

Our proposed method of smoke detection uses dynamic
features based on the Gaussian Mixture Model [1] and the
Deep Belief Network (DBN) [2][3] as a classifier to reduce
the false alarms and to increase the detection rate of video
smoke detection systems.

Several researchers have played a significant role in the
development of useful video smoke detection systems. We
focused on some of them. Hu et al. [4] extract the motion
feature and use the Convolutional Neural Network (CNN)
[5] as classifier. Chen et al. [6] extract motion, color and
energy features to classify smoke and no smoke regions
using Support Vector Machine SVM [7]. Toreyin et al. [8]
extract motion, color, energy and texture as features and
classify the smoke and no smoke regions using decision
trees.

The rest of the paper is organized as follows: the
proposed technique intended for smoke detection is
presented and detail in Section 2. Experimental results are
shown in Section 3. Conclusion and perspectives are
presented in the last section.

II. THE PROPOSED METHOD

A. Smoke Motion Detection

First, extracting candidated regions is a crucial step to
know the nature of motion (ordinary or chaotic). Labeling
motion regions could be done by using three methods:
Optical Flow, Background Subtraction and Temporal
differencing. The technique intended for background
subtraction that we used in simulations is the Gaussian
Mixture Model [1]. This method subtracts the background
image from the current frame to find regions containing
motions. In this approach, the camera is stationary.

Each pixel in the frame is defined by a mixture of K
Gaussian distributions. The probability that a pixel
represents the intensity is defined by:


2
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where wi is the weight.

i is the mean.
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i is the covariance for the i th distribution.

 is a Gaussian probability density function:
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To model the background, Bk is estimated as:

 arg min( )
b

k i
i

B w Th


  

Th is the minimum fraction of the background model.
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B. Fisher Vector

Fisher vector [9] represents a dimension reduction
technique that can be used for classification as well. It picks
a new dimension that gives maximum separation between
means of projected classes and minimum variances within
each projected class. The Fisher Vector is an image
representation obtained by pooling local image features. It is
mostly used as an image descriptor in visual classification
and improves the classification performance of the
representation. Our developed idea is realized as follows:

• Fitting a Gaussian Mixture Model (GMM)
• Saving and loading the fitted GMM
• Computing the Fisher Vectors based on the fitted

GMM

C. Deep Belief Network
Deep Belief Network is a tool of machine learning that

represents a stack of Restricted Boltzmann Machine [10].
After the pre-training process with the RBMs, the network
acts like a multi-layer Perceptron [11] using the
backpropagation [12] as tool to accomplish the training. The
architecture of the used Deep Belief Network is presented in
Figure 1.

Our aim is to improve the performance of smoke
detection. An efficient method is presented using deep belief
network. The algorithm is separated into two major phases.
The first phase is to segment the candidate regions in video
sequences. The Fisher criterion is applied to maximize the
ratio of the separation of the two classes with respect to their
dispersions. The Fisher criterion [9] is similar to Principle
components analysis but it focuses on maximizing the
separability among known categories. Second, the
normalized candidate areas are identified by the novel
structure based on deep belief network. Finally, the
corresponding alarm is given by the identification results.
The algorithm schematic diagram is shown in Figure 2.

III. EXPERIMENTAL RESULTS

A. Database
The following simulations were done on a PC Processor

Intel(R) Core (TM) i5-3337U CPU @ 1.80GHz, 1801 MHz,
RAM 4GB. Some of the used frames extracted from videos
in our database are presented in Figure 3.

Figure 2. Algorithm Shematic Diagram

Figure 1. Deep Belief Network Architecture
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B. Discussion

First of all, we have extracted frames from smoke-based
videos. The size of each frame of the videos is set to 320 ×
240 pixels. The main idea of our work is to extract the
candidate regions related to the smoke movement which will
inserted in a vector of characteristics.

The use of criterion of Fisher allowed us to keep the
most important values in this feature vector to make the
classification then by the deep belief network. As we
mentioned before, we used the GMM [1] as a technique to
detect the motion of smoke that is considered a chaotic
movement. The results are shown in the Figure 4.

Figure 3. (a) Frames containing smoke extracted from our Database without noise, (b) Frames containing smoke with noise
(fog, moving people, etc.), (c) Frames without smoke

Figure 4. Background Substraction using GMM [1]
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At this stage, we have extracted frames from
smoke-based videos. The size of each frame of the videos is
set to 320 × 240 pixels. The fixed parameters of the deep
belief network are defined as:
Number of hidden layers=2
Number of epochs=400
Learning rate = 0.6

After fixing the features that we classified using
deep belief network, we changed the classifier to SVM [7].
The comparison between the proposed method and the
method using SVM is based on these criteria:


TP TN

Accuracy
TP TN FP FN




  



TP

Precision
TP FP








TP
Recall =

TP+ FN



Precision.Recall

F1score = 2.
Precision+ Recall



where TP: True Positive smoke Frames
TN: True Negative Frames
FP: False Positive Frames
FN: False Negative Frames
In this section, the frames containing noise such as

moving people and fog give us an idea about the robustness
of the proposed method. We notice a slight modification in
the different criterion of comparison. These results are
exhibited in the Table I.

This table shows that the developed method presents
in the absence of the noise the best value of accuracy and
Recall compared to the classification with SVM [7]. The
presence of the noise affects slightly the accuracy and the
precision. These values decrease slowly with noise.
Moreover, the application of our proposed method helps us
to find the smoke and the no smoke regions, as shown in
Figure 5.

Condition Classifier Accuracy F1 score Precision Recall

-Noise SVM 93.43 0.952 1 0.912

DBN 94.86 0.962 1 0.928

+Noise DBN 92.57 0.936 0.88 1

SVM 91.54 0.92 0.86 1

TABLE I. COMPARISON BETWWEN THE PROPOSED METHOD USING DBN AND THE METHOD USING SVM CLASSIFIER FOR SMOKE DETECTION

Figure 5. Smoke Detection Results
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IV. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a novel approach for smoke
detection using Deep Belief Network. We extracted the
candidate regions by using GMM [1].

For a better classification, we used the Fisher vector
which gives us maximum separation between the means of
different classes and keeps just the most important values.
Then, the extracted feature vector was fed into deep belief
network to calculate many criteria such as accuracy, F1
score, Precision and Recall. The robustness of this method
is tested by adding noise. Finally, to evaluate the noise
influence, we tested our method on noisy data. These
promising results provide clear evidence about the
capability of such a network in recognizing smokes in our
recorded frames easily. Train the developed method with a
significant amount of data will undoubtedly provide more
promising results and would help in accelerating the next
generation of surveillance and real-time monitoring
systems. As perspectives to our work, the future step is to
combine the deep belief network to FasterR-CNN to
classify and localize simultaneously smoke and no smoke
regions.
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Abstract—The problem of retrieving images from a dataset, which
are similar to a query image is an important high-level vision
problem. Different tasks define similarity based on different low-
level features like shape, color or texture. In the presented work,
we focus on the problem of retrieval of images of similarly
shaped objects, with the query being an object selected from
a query image at runtime. Towards this end, we propose a novel
shape representation and associated similarity measure, which
exploits the dimensionality reduction and feature extraction
methods of Principal Component Analysis (PCA) and Enhanced
Fisher Model (EFM). The effectiveness of this representation
is demonstrated on large-scale image datasets for the task of
object retrieval and the performance is compared to Histograms
of Oriented Gradients (HOG).

Keywords–Computer Vision; Principal Component Analysis;
Fisher Linear Discriminant; Enhanced Fisher Model; Histogram
of Oriented Gradients; Image Search.

I. INTRODUCTION AND BACKGROUND

With the enormous popularity of digital devices equipped
with cameras, along with the wide access to high speed Internet
and cloud storage, several applications based on image search
and retrieval have emerged. Such applications include aug-
mented reality, geo-localization, security and defense, educa-
tional uses, to name a few. Billions of images are uploaded and
shared over social media and web sharing platforms everyday,
giving rise to a greater need for systems that can retrieve
images similar to a query image from a dataset. Traditional
approaches of content-based image retrieval are based upon
low level cues such as shape, color and texture features. In
this paper, we are trying to address the problem of retrieving
images that have similarity in the shapes. Specifically, we
select a window from a query image surrounding an object of
interest and want to be able to retrieve similarly shaped objects
from other images in the dataset, which are taken “in the wild”,
i.e., user generated content without any control. Towards that
end, we investigate and propose a novel representation and
retrieval technique that is based on shape features, dimension-
ality reduction and discriminant analysis and is robust to the
slight changes in the window object selection.

The Histograms of Oriented Gradients (HOG) feature vec-
tor [1], originally proposed for pedestrian detection, is very
popular among researchers for shape matching. It has success-
fully been combined with other techniques [2] and fused with
other descriptors [3] for scene image classification. HOG has
also given rise to other extremely successful object detection
techniques, such as Deformable Part Models (DPM) [4].
More complicated descriptors [5] have been used for image

Figure 1. The proposed image representation aims at enhancing the HOG-
based retrieval set by training an EFM-based classifier. The method is
described in more detail in Section II

retrieval with reasonable success. However, such methods are
time consuming and more processor-intensive as compared to
simple HOG matching. In recent years, handcrafted features
have declined in popularity due to the success of deep neural
networks in object recognition [6]–[8], but such methods are
not without their drawbacks. Deep neural networks require a
lot of processor time and run better on specialized hardware.
They also require far greater number of training images than
are available in a small or medium-sized dataset. For these
reasons, enhancing simple handcrafted features like HOG can
be effective for solving small-scale retrieval problems more
effectively than more complex methods.

Simple HOG matching, however, poses significant chal-
lenges in effective image retrieval due to the fact that the
apparent shape of the query object may change considerably
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Figure 2. Auto-generation of offset windows to be used as positive training
samples during querying. The window dimensions and offsets shown are only
representative.

between images due to differences in lighting, viewing angle,
scale and occlusion. This is particularly true for content
generated by users in the wild. In effect, every query image
is an exemplar of its own class and a retrieval system must
be trained to treat it that way. In [9], this idea is handled
using a Support Vector Machine (SVM) [10]. Instead of an
SVM, here we introduce the novel idea of enhancing the
HOG features by the EFM process [11] because it produces a
low-dimensional representation, which is important from the
computational aspect. Principal Component Analysis (PCA)
has been widely used to perform dimensionality reduction for
image indexing and retrieval [11]. The Enhanced Fisher Model
(EFM) feature extraction method has achieved good success
rates for the task of image classification and retrieval [3]. In
the proposed method, which is represented schematically in
Figure 1, we show this method to be effective in isolating the
query object from the background.

The rest of this paper is organized as follows. Section II
outlines in detail the method proposed in this paper. The
datasets used and the experiments performed are detailed in
Section III. Finally, we list our conclusions and directions for
future research in Section IV.

II. PROPOSED METHOD

A. Window Generation

We start with generating objectness windows from each
image. We use the method used by [12], which designs an ob-
jectness measure and explicitly trains it to distinguish windows
containing an object from background windows. This method
uses five objectness cues - namely, multi-scale saliency, color
contrast, edge density, superpixels straddling, and location and
size - and combines them in a Bayesian framework. We select
the 25 highest-scoring windows from each image in our dataset
and extract HOG features from these windows.

While testing our system, the user generates a window
on the query image manually roughly enclosing the object
of interest. Then, we automatically select 10 slightly offset
versions of this window. Eight of these are generated by
moving the user-selected window to the right, left, up, down,

up-right, up-left, down-right and down-left by 5%, respectively.
Two windows are generated by expanding and contracting the
user’s selection by 5%, respectively. Features are now extracted
from these 10 as well as the original window for further
processing. This process is represented in Figure 2.

B. HOG

The idea of HOG rests on the observation that local features
such as object appearance and shape can often be characterized
well by the distribution of local intensity gradients in the
image [1]. HOG features are derived from an image based
on a series of normalized local histograms of image gradient
orientations in a dense grid [1]. The final HOG descriptors are
formed by concatenating the normalized histograms from all
the blocks into a single vector.

Figure 3 demonstrates the formation of the HOG vector
for a window selected from an image. We use the HOG
implementation in [13] for both generating the descriptors and
rendering the visualizations used in this paper.

C. Dimensionality Reduction

PCA, which is the optimal feature extraction method in the
sense of the mean-square-error, derives the most expressive
features for signal and image representation. Specifically, let
X ∈ R

N be a random vector whose covariance matrix is
defined as follows [14]:

S = E{[X − E(X )][X − E(X )]t} (1)

where E(·) represents expectation and t the transpose opera-
tion. The covariance matrix S is factorized as follows [14]:

S = ΦΛΦt (2)

where Φ = [φ1φ2 · · ·φN ] is an orthogonal eigenvector matrix
and

Λ = diag{λ1, λ2, . . . , λN}

Figure 3. Formation of the HOG descriptor from a query image window.
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Figure 4. The positive and negative weights learned from the HOG features
through the EFM discriminative feature extraction process.

a diagonal eigenvalue matrix with diagonal elements in de-
creasing order. An important application of PCA is the extrac-
tion of the most expressive features of X . Towards that end, we
define a new vector Y: Y = P tX , where P = [φ1φ2 . . . φK ],
and K < N . The most expressive features of X thus define
the new vector Y ∈ R

K , which consists of the most significant
principal components.

D. EFM

The features obtained after dimensionality reduction by
PCA as discussed in Section II-C are the most expressive
features for representation. However, they are not the optimum
features for classification. Fisher’s Linear Discriminant (FLD),
a popular method in pattern recognition, first applies PCA
for dimensionality reduction and then discriminant analysis
for feature extraction. Discriminant analysis often optimizes
a criterion based on the within-class and between-class scatter
matrices Sw and Sb, which are defined as follows [14]:

Sw =

L∑

i=1

P (ωi)E{(Y −Mi)(Y −Mi)
t|ωi} (3)

Sb =

L∑

i=1

P (ωi)(Mi −M)(Mi −M)t (4)

where P (ωi) is a priori probability, ωi represent the classes,
and Mi and M are the means of the classes and the grand
mean, respectively. One discriminant analysis criterion is J1:
J1 = tr(S−1

w Sb), and J1 is maximized when Ψ contains the
eigenvectors of the matrix S−1

w
Sb [14]:

S−1

w
SbΨ = Ψ∆ (5)

where Ψ,∆ are the eigenvector and eigenvalue matrices of
S−1

w Sb, respectively. The discriminating features are defined
by projecting the pattern vector Y onto the eigenvectors of Ψ:

Z = ΨtY (6)

Z thus contains the discriminating features for image classifi-
cation.

The FLD method, however, often leads to overfitting when
implemented in an inappropriate PCA space. To improve
the generalization performance of the FLD method, a proper
balance between two criteria should be maintained: the energy
criterion for adequate image representation and the magnitude
criterion for eliminating the small-valued trailing eigenvalues
of the within-class scatter matrix. The EFM improves the
generalization capability of the FLD method by decomposing
the FLD procedure into a simultaneous diagonalization of
the within-class and between-class scatter matrices [11]. The
simultaneous diagonalization demonstrates that during whiten-
ing the eigenvalues of the within-class scatter matrix appear
in the denominator. As shown by [11], the small eigenvalues
tend to encode noise, and they cause the whitening step to
fit for misleading variations, leading to poor generalization
performance. To enhance performance, the EFM method pre-
serves a proper balance between the need that the selected
eigenvalues account for most of the spectral energy of the
raw data (for representational adequacy), and the requirement
that the eigenvalues of the within-class scatter matrix (in the
reduced PCA space) are not too small (for better generalization
performance). For this work the number of eigenvalues was
empirically chosen.

E. Training

The EFM feature extraction method uses positive and neg-
ative training samples to find the most discriminative features.

(a)

(b)

Figure 5. Some sample query images from (a) the Oxford Buildings dataset,
and (b) the PASCAL VOC 2012 dataset.
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In our setting, there is only one query image to be used as a
positive sample. This is similar to the Exemplar-SVM training
scenario used by [9], but to make the training more robust to
selection error by the user and to prevent overfitting, we use
11 windows instead of just the one selected by the user as
described in Section II-A.

We rank all objectness windows from all images in the
dataset in terms of Euclidean distance in the HOG space from
the original query window. For the negative training samples,
we use 110 windows that are ranked low, i.e., are very distant
in the HOG space. Experimentally, we found that the last
ranked windows are not very good candidates for negative
training samples, since they are often outlier windows that
contain large blank areas like the sky. Instead, windows that
have a rank 1000 to 5000 perform well. We also tried training
the system with different numbers of negative samples and
found a number close to 100 performs the best. These windows
are mostly background regions like ground and vegetation. The
positive and negative weights for the HOG features learned by
this method can be seen in Figure 4.

For an n-class problem, the EFM process for discrimina-
tory feature extraction reduces the dimensionality of any vector
to n − 1. Since our problem is a two-class problem, EFM
produces one feature per window. We compute the score of
each window by finding the absolute value of the difference
between the window EFM feature and the average positive
training set EFM feature. Ranking the images by their best-
scoring windows gives us the retrieval set.

III. EXPERIMENTS

A. Dataset

We have used the two datasets shown in Figure 5 for
this work. First, we evaluate the retrieval performance of the
proposed method on images gathered in the wild. For this,
we use the Oxford Buildings dataset [15], which consists of
5062 images of 11 different Oxford landmarks and distractors
collected from Flickr [16]. 55 images from this dataset were
used as queries for testing our retrieval system. Flickr images
are completely user-generated, which means there is a great
variation in camera type, camera angle, scale and lighting

Figure 6. The mean landmark-identification performance by using the K-
nearest neighbors method with varying K.

TABLE I. THE NUMBER OF IMAGES CONTAINING EACH LANDMARK IN

THE OXFORD BUILDINGS DATASET

Landmark Good OK Junk

All Souls Oxford 24 54 33

Ashmolean Oxford 12 13 6

Balliol Oxford 5 7 6

Bodleian Oxford 13 11 6

Christ Church Oxford 51 27 55

Cornmarket Oxford 5 4 4

Hertford Oxford 35 19 7

Keble Oxford 6 1 4

Magdalen Oxford 13 41 49

Pitt Rivers Oxford 3 3 2

Radcliffe Camera Oxford 105 116 127

conditions. This makes this dataset very difficult for image
retrieval in general and landmark-identification in particular
(the results of which are shown in Figure 6). Figure 5(a) shows
some of our query images from this dataset. For each query, the
images that contain the query landmark are further classified
into good, OK and junk categories, with progressively poorer
views of the query landmark. Table I shows the landmark-wise
distribution of good, OK and junk images in this dataset.

We also test retrieval performance on the PASCAL VOC
2012 dataset [17]. We only use the training/validation data
from this dataset to test our retrieval algorithm. This data
consists of 17,125 images from 20 classes. We create five
random test sets of size 100 each from the original image set
and perform a five-fold cross-validation on all our experiments.
Figure 5(b) shows some images from this dataset.

B. The Retrieval Task

The proposed image representation is tested on two differ-
ent tasks the first of which is retrieval. Here, an image is used
as a query to retrieve similar scenes from the dataset. For this,
the user selects a rectangular region of interest from the query
image, and HOG features from this rectangular window is
matched with the 25 highest scoring objectness windows from
each image in the database, both in the raw HOG space and
after the proposed training and feature extraction procedure.
The closest matches based on Euclidean distance are retrieved

Figure 7. Mean retrieval accuracy (measured by the presence of a relevant
image in the top 10 retrieved images).
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Figure 8. Comparison of image retrieval results for HOG and the proposed EFM-HOG. Images 1, 2 and 3 are from the Oxford Buildings dataset. Images
4, 5 and 6 are from the PASCAL VOC 2012 dataset. In each case, (a) shows top ten images retrieved by HOG, and (b) shows top ten images retrieved by
EFM-HOG. Red rectangles indicate images that do not represent the same landmark or object class as the query.

in order of their distance from the query window. Finding
an instance of the query in the top 10 retrieved images is
considered a success. Figure 7 compares the retrieval success
rates of the HOG descriptor and the proposed EFM-HOG
representation. Specifically, in 41 cases out of 55 queries in
the Oxford buildings dataset, the query landmark is retrieved
within top 10 images by the proposed method, as opposed to
40 by HOG. This is actually a very small difference, but this
can be explained by the nature of this dataset. For all landmark
query images in this dataset, there are at least some images
in the dataset that show clear views of the landmarks with
no occlusions. HOG is actually pretty effective at retrieving
these images. To actually understand the effectiveness of the
proposed method, we repeat this experiment with just the junk
files for each query. In this experiment, we find that the HOG
method retrieves a relevant image in the top 10 only once
out of all 55 queries, while the proposed EFM-HOG method
achieves this 5 times out of the 55.

For PASCAL VOC, the experiment is performed on all
five random splits and the average success rate is found to be
65.2% for EFM-HOG as compared to 36.8% for HOG. We

also find that the conventional HOG performs quite well for
clearly segmented objects, such as airplanes in the sky, but
the EFM-HOG performs much better for images of objects
with a cluttered background. Some HOG and EFM-HOG
retrieval results are shown in Figure 8. Figure 9 shows another
interesting aspect of our retrieval technique. Here, we show the
image means of the first 100 windows retrieved by both HOG
and EFM-HOG on PASCAL VOC. The figure shows that the
EFM-HOG means contain clearer shapes, which indicates that
the EFM-HOG retrieves more similar shapes than HOG, even
when the results are irrelevant to the query.

C. The Landmark-identification Task

Some images in our Oxford Buildings dataset belong to
one of the eleven landmarks listed in Table I, the others
belong to none of the classes and are used as distractors. The
second experiment that we performed with the new EFM-HOG
descriptor was a landmark-identification task where the system
tries to label each query image with its correct landmark
label. This is done by retrieving relevant images in a manner
similar to the retrieval task, and then performing the K-
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Figure 9. The means of the top 100 retrieved windows for HOG and EFM-HOG for 4 query images from the PASCAL VOC 2012 dataset.

nearest neighbors classification on the top K results. The same
experiments are repeated for the conventional HOG descriptor
as well. As can be seen from Figure 6, the proposed EFM-HOG
outperforms HOG by a significant margin for nearly all values
of K between 1 and 35. The highest EFM-HOG landmark-
recognition performance of 65.5% is achieved at K = 3.

IV. CONCLUSION

We have presented in this paper a new image descriptor
based on HOG and discriminant analysis that uses a novel
approach to fetch scenes with similar shaped objects. We
have conducted experiments using over 5, 000 images from
the Oxford Buildings dataset and over 17, 000 images from
the PASCAL VOC 2012 dataset and concluded the following:
(i) HOG features are not always sufficiently discriminative
to perform meaningful retrieval, (ii) the discriminative nature
of HOG features can be improved with the EFM for feature
extraction and dimensionality reduction, and (iii) HOG features
perform well for clearly isolated objects with little background
clutter, but the EFM-HOG performs better for real-world
images with cluttered backgrounds.

We intend to use this method with more datasets in the
future, so that a more thorough understanding of its strengths
and weaknesses can be achieved.
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Abstract—A Python-based software for the phenoCAVe family
of resonators for plants investigations is developed to
automatically extract both the center frequency and the quality
factor of the main resonance peak, i.e., of the lowest
transversal-magnetic mode TM010, at different scan positions.
Due to the specific design of the cavities, which includes large
openings on the top and on the bottom of the resonators, the
main peak even in the unloaded case (when no object is
measured) has a sufficiently small quality factor (<350), which
leads to the large influence of the higher modes on the
reliability of the extracted data. Additionally, the repeated
movements of the resonators and long cables usage may alter
the cable influence. Moreover, continuous movements during
the scans as well as a finite time of spectra sweep give a
distorted peak, especially at the borders of large objects, such
as plant pots, i.e., when the objects are starting to pass through
a resonator. All these problems and more are taken into
account in the automatic data analysis software, which allows
to obtain reliable responses from noninvasive scans of the
investigated plants over the whole period of their growth and
further usage of these responses to calculate the important
parameters for the plant growth, such as water content, dry
weight, biomass, pot water content etc. Here, the whole process
from the analysis of distorted spectra to the evaluation of the
suitable parameters for plant growth is demonstrated. Such an
analysis can be used not only for plant phenotyping platforms
but also in various physical platforms supposing low-quality
spectra analysis and dielectric studies of materials.

Keywords-low-quality resonance peaks; spectra fitting.

I. INTRODUCTION

Fitting of experimental data using theoretical models is
an important and well-known problem in various fields of
study allowing to fulfill the understanding of investigated
processes or events. There are plenty of developed tools to
do so, especially when theoretical models are quite simple,
such as polynomial, Gaussian, and Lorentzian, or even a
convolution of the last two, often called a Voigtian. Such
tools, for instance Origin (OriginLab Corporation,
Northampton, MA, USA), Matlab-based (MathWorks,
Natick, MA, USA) scripts, Python-based scripts, such as the
lmfit package [1], etc., are usually used in peak fitting tasks.
Nevertheless, task-specified algorithms were developed as
well for the peak fitting procedure, which mainly deal with
either specific data or particular cases of some processes [3]–
[6].

To analyze spectra where low-quality resonance peaks
are presented, a simple model of fitting these peaks cannot
be used due to several reasons. First, due to the coupling of
modes, they are influencing each other by changing their
visible parameters on the spectrum, such as peak frequency,
peak amplitude/attenuation, as well as their quality factor.
Secondly, the amplitude/attenuation at each frequency can be
affected by uncertainties caused by reflections in cables,
noises, spurious coupling or, in case of a phenoCAVe family
of resonators [2], by continuous movements of the cavities.
Some of these uncertainties can be represented as baselines
which are fitted together with spectra to obtain proper
spectrum parameters [7][8].

Skresanov et al. [9] described a novel approach to
recover coupled mode parameters from the microwave
resonator amplitude-frequency response to deal with the first
reason mentioned above. They used an approach from the
theory of oscillation, meaning that it is always possible to
select such a coordinate system, in which oscillations are
independent. In this case, the total amplitude Γ(f) of the
reflected/transmitted signal can be presented as a sum of
complex amplitudes of these oscillations (modes) as follows:


exp( )

( )
1 2 ( )

n
i i

S

i i i

A j
f

jQ f




   


  

where ΓS is the coefficient equal to Γ(f) at f→∞ and is 
considered to be a real number, i is the ordinal number of an
oscillation, n is the total number of oscillations (modes),

0 0(( ) ) /i i if f ff   is the frequency tuning parameter, Ai,

Qi, f0i, and φi are the amplitude, quality factor, resonant
frequency (Center Frequency, CF [2]), and phase shift of the
i-th oscillation, respectively. In the case of scattering
parameters, the amplitude Γ(f) should be considered in the
logarithmic form

 10 0( ) 20log ( ( ) / )S f f    

where S(f) is the scattering parameter, e.g., S11, S21, etc., and
Γ0 is the amplitude of the excited signal by a signal
generator.

This work presents an advanced fitting algorithm based
on the approach mentioned above [9] to study low-quality
resonance peaks, i.e., the peaks that have low-quality factor,
disturbances, influences of other modes, etc. The developed
software allows to fully-automatically analyze all the spectra
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obtained during the scans of a set of plants, which can be
grown in different environmental conditions, may have
different genotypes, pot sizes, soil types, etc.

In Section II, the selection of a proper approach to fit
spectra obtained during the measurements by the
phenoCAVe family of resonators [2] is presented, where the
advantage of using (1) is clearly demonstrated (Section II.A)
and compared with the simple Lorentzian fitting approach
for the case of loaded resonators (Sections II.B and II.C).
Additional problems that may appear during the fitting
process caused by disturbed spectra are discussed in
Section III. The spectra fitting routine and the graphical user
interface of the fully-automated data analysis software based
on it is shown in Section IV. The conclusions are conducted
in Section V.

II. FITTING OF SPECTRA

A. Unloaded resonators

The fitting algorithm (further referred to as complex
approach) that uses (1) to calculate parameters of up to 7
resonance modes for measured spectra is realized in so-
called “Shaman” software [9]. As an example, Figure 1
shows the spectrum (black dots) which includes the
resonance peaks of 5 different Transversal-Magnetic modes
(TM010, TM110, TM210, TM020, and TM310) as well as the
fitted curve given by the software (red solid line). The
obtained parameters for each mode are mentioned in
TABLE 1. The matching is very close to ideal, which proves
the right approach of the fitting. In many cases, especially
when resonance peaks have large quality factors, the phase is
not taken into account. The green dashed lines (Figure 1) are
the fitted Lorentzian curves when each φi equal to zero. The
difference is clearly visible, although the peaks have fairly
correct positions.

B. Loaded resonators; comparison of fitting approaches

The approach when the phase is not taken into account
can be realized in such a way that the data points are
preselected to be as close as possible to the peak, i.e., in
terms of the scattering parameter S21 up to 3-5 dB far from

the highest point. Then, the fitting by Lorentzian curve is
done in the following form (further referred to as Lorentzian
approach)


2 2

( )
1 4 ( )

A
f

Q f
 


 

The last works well for the resonant oscillations, which
quality factors are large enough, usually more than 103, to
make the influence of other resonance modes negligible. Due
to both the design and the large openings in the resonators
used for plant investigations [2], the quality factor of the first
(TM010) mode even when the cavities are empty (unloaded)
has far smaller values (< 350).

To demonstrate how a large error can be caused by the
Lorentzian approach in comparison with the complex one, a
study using both approaches was done. The analyzed spectra
were obtained during the scan of a young maize plant (of
about 2 g fresh weight) with its pot using resonator 1 [2].
The relative errors made by the Lorentzian approach are
shown in Figure 2. Here, it was supposed that the complex
approach gives the true values for the peak parameters, and
the relative error was calculated using following equation

 Relative error / 100%complex Lorentzian complexp p p   

where p denotes either peak frequency f0 or quality factor Q.
The result consists of the analysis of the 1st resonance peak
only, although the fittings done by the complex approach
included the 2nd mode too. It should be noted that the quality
factor Q is the most suitable parameter in this study to
demonstrate the influence of modes on each other, due to its
strong dependence on the form of a resonance peak.
Therefore, the relative errors were built versus Q on the plot.
Decreasing of Q was stimulated by placing the resonator at
different vertical positions during the scan of a maize plant
with its pot [2].

TABLE I. FITTED RESONANCE MODES’ PARAMETERS

Modes,
i

Parameters

f0i (GHz) Qi Ai (dBm) φi

1: TM010 1.14989 246.3 -15.55 0

2: TM110 1.47970 23.2 -29.37 161°

3: TM210 1.94015 297.4 -7.72 -5°

4: TM020 2.13039 72.9 -25.60 8°

5: TM310 2.38543 335.7 -5.68 -172°

Figure 1. Transmittance spectrum with 5 resonance modes measured for unloaded resonator 1
[2] (black dots), fitting of it (red solid line), and individual resonance modes without phase shift

φi information (green dashed line).
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C. The false approach leads to errors in plant water
amount estimation

It is visible that the difference between approaches may
cause errors in the estimation of both f0 and Q of up to 0.2%
and 6%, respectively (see Figure 2). These errors may
increase or decrease for larger or smaller measured plants,
respectively. Moreover, by further estimation of the plant
Water Amount (WA) [2] 0.2% by f0 means about 2.3 MHz
for the resonator 1, which in terms of the water distribution
over the height of a plant gives ~1.5 µL/mm (data not
published yet). This in its turn, for a young maize plant of
2 g fresh weight and about 200 mm height gives 0.3 mL of
WA, or about 16% of error for the plant WA estimation
(0.3[mL] / (2[g]×0.95[mL/g]) × 100% ≈ 16%) 

This example demonstrates how the wrong fitting
approach can affect the final measurement results. Therefore,
in the phenoCAVe data analysis software, the complex
approach instead of the simpler Lorentzian one was selected.

III. DISTURBED SPECTRA

A. When a resonator is continuously moving while
receiving the spectra

Scanning of a plant by a resonator [2] involves the
obtaining of a set of spectra at different positions along the
height of the plant. Either a plant or a resonator can be
moved against each other. The measurement setup based on
the resonator 1 is supposed to shift a plant through the cavity,
when the setup based on the resonator 2 displaces the cavity
itself. To decrease the scanning time, these movements can
be continuous at the intermediate points between the highest
and the lowest positions. These lead to additional
uncertainties caused by the finite sweep time of the Vector
Network Analyzers (VNAs), which are used to obtain
spectra, i.e., each frequency on the spectrum has its own
position.

For the Screen-House setup [2], every position of the
resonator is read out from the MAXON motor drive unit
each 50 ms. The VNA (ZNC 3, Rohde & Schwarz GmbH,
Cologne, Germany), in its case, has 87.5 µs sweep time per

frequency point, i.e., one whole spectrum that consists of 801
points is measured during 70 ms. The highest speed of the
resonator varies from 20 to 70 mm/s, meaning that during
70 ms the resonator can change its position by about 5 mm,
which may lead to the crucial modification of the spectra,
especially when the resonator is close to the plant pot. By
knowing the vertical position of each point on the spectra
and taking a set of spectra measured at different positions,
spectra for each selected position can be recalculated using a
polynomial fit of order 2. Such a polynomial fit gives a few
positive effects. The first one is the automatically smoothed
spectrum, and the second one is the possibility to detect
outliers in combination with the Grubbs’ test [10].

B. Influence of cables and surroundings

Both setups presented previously [2] have cables to
deliver and acquire signals. The cables can be calibrated
using a built-in utility of VNA and commercially available
calibration kits (in our case ZV-Z132, Rohde & Schwarz
GmbH, Cologne, Germany). The calibration may not
properly work in some cases. For the setup based on
resonator 2, even calibrated VNA showed a sinusoidal
behavior on the spectrum (see Figure 3). In this case,

additionally to the spectrum fitting, residuals 21 ( )resS f should

be fitted by using a sum of sines in the following form

 21 sin sin sin( ) sin(2 / )
k

res
i i i

i

S f a f f    

where aisin, fisin, φisin are the sine parameters, and k is the
number of sines. The bottom plot in Figure 3 reflects this
situation. Residuals may depend on the position of the
resonator due to the influence of surroundings, causing the
residuals fitting to be done for each spectrum. Moreover, this
procedure should be circled to obtain proper parameters for
the resonance peak, i.e., firstly, the spectrum (measured data)

Figure 3. Complex fitting approach for the spectrum obtained using
unloaded resonator 2 [2] (top plot) and fitting of residuals S21

res using (4)
with k = 2.

Figure 2. Relative errors of the estimated parameters, peak frequency f0

(black squares) and quality factor Q (red circles), versus Q for the 1st

resonance mode TM010. The black solid line depicts the inverse square
dependence on Q.
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is fitted by the complex approach, secondly, residuals are
calculated and fitted, and finally, the obtained curve in the
form (5) is subtracted from the measured data. These three
steps are repeated several times to obtain a stable solution
(see Figure 3).

IV. SPECTRUM FITTING ROUTINE

The suggested spectrum fitting routine is shown in
Figure 4. The whole procedure starts from the reading of the
spectral information (measured data) for the resonance peak
at the selected position of a resonator. Then, if the resonator
was continuously moving during the scan, the recalculating
spectrum function is called (Section III.A). After that, the
complex fitting approach starts (Section II), which is
followed by the residuals fitting if needed (Section III.B).
After subtraction of the fitted residuals, the complex
approach can be called again, i.e., circled until obtaining a
stable solution. At the end, the evaluated parameters of the
resonance peak are stored for further analysis (not a part of
this work). This routine is repeated for each measured
spectrum at different positions of the resonator.

It should be noted that the residuals obtained at different
positions are stored too for the unloaded runs of the
resonator. Later, these residuals are used to simplify the
fittings for the resonator runs with a measured object, e.g., a
plant, a pot with soil, etc.

The fitting routine presented in Figure 4 was

programmed in the fully-automatic phenoCAVe data
analysis software using Python programming language. To
make an interface and to deal with the mathematics behind it,
a list of packages was used, such as pyqtgraph, PyQt5, scipy,
numpy, lmfit, csv, itertools, fnmatch, inspect, os, bayeos,
multiprocessing, sys, warnings, time, traceback, typing,
copy, etc. The software tab, where spectra fitting is visible, is
presented in Figure 5 with the data shown in Figure 3. The
time spent to fit one spectrum from “Start” to “End” (see
Figure 4) using “spectrum recalculating” and 20 iterations of
“residuals fitting” was less than 5 seconds on the Intel Xeon
E5-2630 v3 based computer.

V. CONCLUSIONS

The fitting approach presented in this work was mainly
developed to analyze low-quality resonance peaks on
measured spectra. The simple Lorentzian fitting approach
was compared with the complex one, to which a preference
was given. Additionally to that, issues that may arise during
the measurements using partially opened resonators were
shown and discussed with their possible resolution. Among
them are the influences of other modes, surroundings, cables,
and continuous movements of either a resonator or an
investigated object. In the end, the spectrum fitting routine
was suggested and the software based on it was
demonstrated. The suggested complex fitting approach is not
newly developed but the proposed fully automated fitting
routine has novel ideas which can be useful for the precise
analysis of spectra with low-quality resonance peaks.
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Abstract—Model-based very deep Convolutional Neural Networks
(CNN) have achieved great success in Single Image Super-
Resolution (SISR) work. However, most of the super-resolution
models based on deep convolution networks can not fully utilize
the hierarchical features of the original low-resolution images.
In order to improve the quality of the high-frequency details of
the reconstructed super-resolution image, we proposes a super-
resolution method for Residual Dense Generative Adversarial
Networks (RDGAN). We use the Generative Adversarial Net-
works (GAN) as our main model structure and the residual-
dense block as the basic building blocks of the generator, which
makes the network pay more attention to the extraction of low-
resolution image hierarchical features. Then, we fully exploit the
hierarchical features from all the convolutional layers. Finally,
we use perceptual loss as our loss function to get finer texture
details and more realistic photo effects. Experiments show that
our method can achieve significant improvement in the quality
of high-frequency detail reconstruction at high magnification.

Keywords–CNN; Single Image Super-Resolution; Generative
Adversarial Networks.

I. INTRODUCTION

The task of estimating a High-Resolution (HR) image from
its Low-Resolution (LR) counterpart is called Single Image
Super-Resolution (SISR) [1], which has received significant
attention and progress in recent years. Super-Resolution (SR)
has direct applications in computer vision, such as image/video
enhancement, medical image processing [2][3], face recogni-
tion [4] and image generation [5].

Image SR is an ill-posed problem. The ill-posed character
of the under-constrained SR problem is especially pronounced
for high upscaling factors. Recently, a large number of SISR
methods have been proposed to solve this underdetermined
problem, including interpolation-based [3][6], reconstruction
methods [7], and learning-based methods [8][9]. Most CNN-
based methods [10][11] attempt to minimize pixel-wise the
Mean Square Error (MSE) between the ground truth image
and the reconstructed HR image. This strategy calculates the
pixel-wise image difference and maximizes the Peak Signal-
to-Noise Ratio (PSNR), which is a common measurement for
evaluating the SR algorithm. In these cases, the high-frequency
details of some sharp edges and textures in the SR image are
still blurred and smooth in appearance, which is significantly
different from the ground truth image.

In order to solve these drawbacks, Ledig et al. [12]
proposed a GAN-based network. This enhances the invariance

of the pixel field change. However, for a very deep network,
only using Residual Networks (ResNets) and jump connections
can not fully utilize the LR image information. Inspired by
Zhang et al. [13], we use Residual Dense Block (RDB) as the
basic component of our generator and we use Local Residual
Learning (LRL) in order to make full use of the hierarchical
features of LR. In this paper, we proposes a deep learning
SISR method, which uses enhance Residual Dense Generative
Adversarial Network (RDGAN) to improve the reconstruction
quality of high-frequency edges and textures in the SR images.
At the same time, we minimize the perceptual loss so that the
generated images have photo realistic textures.

The rest of this paper is organized as follows. Section
II addresses the related works in the literature. Section III
describes the method. Section IV describes the experiments.
We conclude the paper in Section V.

II. RELATED WORKS

In order to solve the Single Image Super-Resolution prob-
lem, early algorithms [14][15] have been mainly based on
sampling interpolation techniques, but these methods show
considerable limitations in predicting the texture details of the
image.

Recently, the CNN-based [16] approaches have shown
excellent performance. Dong et al. proposed Super-Resolution
Convolutional Neural Networks (SRCNN) [10], which train
a 3 layer deep fully convolutional network end-to-end to
achieve excellent SR performance. Kim et al. [17] used a
very deep CNN network (20 weight layers) to achieve better
performance and visual effects. In particular, they showed skip-
connection and recursive convolution alleviate the burden of
carrying identity information in the super-resolution network.
In [18], Lim et al. propose the Enhanced Deep Residual
Networks (EDSR) with better performance than SRResNet.
Johnson et al. [19] proposed perceptual loss functions based on
high-level features extracted from pretrained networks, which
can reconstruct finer details compared to the per-pixel loss.
Recently, Generative adversarial networks [20] have shown
excellent results in many computer vision problems including
SISR. Ledig et al. [12] used GAN to get photo-realistic natural
images, which have better visually implausible performance
than any other state-of-the-art methods. The authors propose
a perceptual loss function constructed by both an adversarial
loss and a perceptual content loss based on high-level features
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Figure 1. Examples of residual block, dense block and residual dense block. ”+” means element-wise summation operation. ”concat” means
concatenation operation. ”bottleneck” in dense block which produces k feature-maps.

extracted from pre-trained Visual Geometry Group (VGG)
networks.

III. METHOD

A. Network selection
Many research works [21][22] show networks that perform

satisfactory in image generation, classification, and feature
extraction and they are equally superior in image super-
resolution. Among them, GANs, ResNets and DenseNets are
successfully applied to image super-resolution tasks [23][24].

GANs: Following Goodfellow et al., we define a discrimi-
nator network DθD that is optimized in an alternating manner
with the generator network GθG to solve the adversarial
minimum-maximum problem:

min
θG

max
θD

EIHR∼ptrain(IHR)[logDθD (I
HR)]+ (1)

EILR∼pG(ILR)[log(1−DθD (GθG(I
LR))]

where θG and θD represent the parameters of the generator
and the discriminator, IHR and ILR represent the ground truth
image and the low resolution image. The general idea is that
it allows people to train a generative model G, the purpose
of which is to fool the discriminator D that can distinguish
between the real image and the generated image. With this
approach, our generator can learn to create solutions that are
highly similar to real images. This encourages perceptually
superior solutions residing in the subspace, the manifold, of
natural images.

ResNets: The main idea is to use a residual learning frame-
work to ease the training of very deep networks. Let a single
image x0 go through a L-layer convolutional network. Each
layer corresponds to a non-linear transformation H`(·), where
` represents the index of the layer. Let x` be the output of `-th
layer. The traditional convolutional network generally uses the
output of the `th layer as the input of the (`+1)-th layer, which

can be expressed as: x`+1 = H`+1(x`). Unlike traditional
CNNs, ResNets implements a residual block that sums up
the identity mapping of the input to output of a layer, where
the output can be depicted as: x`+1 = H`+1(x`) + x`. This
process eases the convergence during training. The structure
of ResNets is shown in Figure 1(1).

DenseNets: The obvious difference between DenseNets and
ResNets is that ResNets is a summation, while DenseNets is a
concatenation. DenseNets enhances the transmission efficiency
of information and gradients in the network. Each layer can
directly get the gradient from the loss function and directly
get the input signal, so that it can train deeper networks. The
dense connection was introduced among memory blocks and
dense blocks. Consequently, the feature maps of all previous
layers are treated as separate inputs by connecting them to a
single tensor [x0, x1, ..., x`], while their own feature maps are
passed as input to all subsequent layers. Layer `+1 receives the
feature maps of all previous layers and can be expressed as:
x`+1 = H`+1([x0, x1, ..., x`]). Figure 1(2) shows an example
of dense block construction.

RDBs mainly integrates the residual blocks and the dense
blocks. The structure difference is obvious in Figure 1(3).
Let Fl−1 and Fl represent the input and output of the `-th
RDB, respectively, and they all have G0 feature maps. In our
experiment, we set G0 to 128. In the `-th RDB, the output of
the c-th convolutional layer can be formulated as:

F`,c = σ(W`,c[F`−1, F`,1, ..., F`,c−1]) (2)

where σ represents the Rectified Linear Unit (ReLU) activation
function. W`,c is the weight of the c-th convolutional layer.
For convenience, we ignore the bias term. In our work, we set
the number of convolution layers in each RDB to 9. We use
these layers to extract continuous memory. Then, connect all
the feature maps extracted earlier. Inspired by MemNet [25],
we introduce a 1×1 convolutional layer to adaptively control
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Figure 2. Architecture of Generator and Discriminator Network

the output information. Finally, the number of feature maps
becomes G0. This step can be expressed as:

F`,m = HLFF ([F`−1, F`,1, ..., F`,9]) (3)

where HLFF represents a function of the 1*1 convolution
layer. Finally, use the principle of residuals to achieve local
residual learning. The output of the `-th RDB can be expressed
as:

F` = F`−1 + F`,m (4)

B. Basic network architecture
The entire network structure of the generator is presented

in Table I. We set up sixteen RDBs and each RDB is set as
described above. In order to prevent the loss of LR images
detail, we removed the pooling layer and the BN layer, then
connected the outputs of all RDBs, with 1×1 convolution
kernels to fuse feature maps and add residuals connect to retain
more details. More details can be seen in Figure 2. This model
can accept the input of LR images of any size, obtain the SR
image of a given scaling factor α through the whole generator,
and upgrade the image quality through continuous optimization
of the generator and discriminator.

C. Loss function
The loss function we use is the same as Ledig et al.

[12], combining pixel-wise loss and vgg19 loss [19] based
on the high-level features extracted from the pre-trained 19
layer VGG networks. Given the high resolution ground truth
image IHR, the corresponding low resolution image ILR and
the image ISR generated by our network, the loss function can
be defined as follows:

Lpercep(I
HR, ISR) = λM × LM (IHR, ISR) + (5)

λV × LV (IHR, ISR)
where LM (IHR, ISR) is pixel-wise loss and LV (I

HR, ISR)
is vgg19 loss. λM and λV are scaling hyperparameters. In our
work, we set λM to 1 and λV to 0.006.

TABLE I. ARCHITECTURE DETAILS FOR 4× RDGAN GENERATOR. NOTE
THAT EACH ”CONV” LAYER SHOWN IN THE TABLE CORRESPONDS THE

SEQUENCE RELU-CONV.

Layers Output size Residual DenseNet Feature-maps

Convolution W×H 3×3 conv 64
RDB(1-16) W×H Bottleneck × 9 64
Concat W×H Connect 1024(64×16)
Convolution W×H 1×1 conv 64
Convolution W×H 3×3 conv 64
Summation W×H 3×3 conv 64
Convolution W×H 3×3 conv 256
Upscale 2W×2H PixelShuffle 64
Convolution 2W×2H 3×3 conv 256
Upscale 4W×4H PixelShuffle 64
Convolution 4W×4H 3×3 conv 3

pixel-wise loss: It is the Euclidean distance between the
generated image ISR and the ground truth image IHR. Pixel-
wise loss is defined as follows:

LM (IHR, ISR) =
1

SWH
‖IHR − ISR‖2 (6)

where SWH is the size of the target image. This loss is added
to achieve smoother textures from the ground truth image.

vgg19 loss: It is the Euclidean distance between the feature
maps generated by the loss network. When given the pre-
training network φ and a series of convolutional layers C
and the feature map of each convolutional layer on C is
Si ×Wi ×Hi, we can define vgg19 loss as follows:

LV (I
HR, ISR) =

∑
i∈C

1

Si ×Wi ×Hi
‖φi(HR)− φi(SR)‖ (7)

where Si×Wi×Hi represent the size of the respective feature
map in the VGG networks.

adversarial loss: In addition to the perceptual loss described
above, we also add the adversarial loss to the perceptual loss.
This encourages our network to preserve more textures on
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TABLE II. QUANTIFIED PERFORMANCE OF DIFFERENT SUPER-RESOLVED METHODS ON BENCHMARK DATA, WHICH IS MEASURED BY (PSNR [DB],
SSIM). [4× UPSCALING].

Set5 Bicubic Aplus [26] SRCNN [10] VDSR [17] DRCN [27] SRGAN [12] RDGAN
PSNR
SSIM

28.42
0.8104

30.28
0.8603

30.07
0.8627

31.35
0.8838

31.53
0.8854

29.40
0.8472

31.70
0.8903

Set14
PSNR
SSIM

25.99
0.7027

27.32
0.7491

27.18
0.7503

28.01
0.7674

28.02
0.7670

26.02
0.7397

28.13
0.7872

BSD100
PSNR
SSIM

25.96
0.6675

26.82
0.7087

26.68
0.7101

27.27
0.7251

27.23
0.7233

25.18
0.6688

27.39
0.7290

Urban100
PSNR
SSIM

23.14
0.6577

24.32
0.7183

24.52
0.7221

25.18
0.7524

25.14
0.7510

-
-

25.68
0.7712

natural images. It optimizes parameters by minimizing the
generative loss LGAN defined based on DθD (GθG(I

LR)),
which means the probability of the discriminator that the
reconstructed images GθG(I

LR) is a natural HR image:

LGAN =

N∑
n=1

−logDθD (GθG(I
LR)) (8)

Finally, our loss function can be expressed as:

L(IHR, ISR) = Lpercep(I
HR, ISR) + (9)

λGAN × LGAN (IHR, ISR)

We set λGAN = 0.001. After doing this, we get the images
with more natural textures and more realistic details.

IV. EXPERIMENTS

A. Training Details
The train and validation datasets were sampled from

DIV2K datasets [28]. DIV2K datasets were obtained from
[29][30]. The train dataset has 800 images and the valida-
tion dataset has 100 images. We obtained the LR images
by downsampling the HR images using bicubic kernel with
downsampling factor r=4. This corresponds to a 16× reduction
in image pixels. We test the performance on four standard
benchmark datasets: Set5 [31], Set14 [32], BSD100 [33],
Urban100 [34].

All the experiments were implemented by means of Python
3.6 and PyTorch [35] on a NVIDIA 1080Ti GPU. For training,
we use the Red-Green-Blue (RGB) input patches of size
128×128 from LR images with the corresponding HR patches.
Note that we can apply the generator model to images of
arbitrary size as it is fully convolutional. We train our model
with the ADAM optimizer [36] by setting β1=0.9. The learning
rate was initially set to 0.0001 and decreased by a factor of
10 after 50 epoches. We alternate updates to the generator and
discriminator network, which is equivalent to k=1 as used in
Goodfellow et al. [20]. A mini-batch size of 5 was set during
the training. It takes about one days to train RDGAN.

B. Evaluation on benchmark datasets
We train all models with 400 epochs. The training process

stopped after no improvements of the loss was observed after
350 epoches. We present the quantitative evaluation results of
our RDGAN on public benchmark datasets in Table II. We

compare the proposed method with the state-of-the-art methods
including Aplus [26], SRCNN [11], SRGAN [12], VDSR [17]
and DRCN [27]. For comparison, the SR results are evaluated
with PSNR and Structural Similarity (SSIM) [37] on Y channel
(i.e., luminance) of transformed YCbCr space. Our RDGAN
shows significant improvement compared to other models. We
also provide the qualitative results in Figure 3. We can see
that the method we propose produces relatively sharper edges,
while other models may produce ambiguous results.

V. CONCLUSION

In this work, we proposed a very deep Residual Dense
Generative Adversarial Network (RDGAN) for Single Image
Super-Resolution, where RDBs are used as basic modules for
the generator network. By using the new generator network
architecture, we maintain the accuracy of the reconstructed
image while maintaining the visual quality of the super-
resolution image. In terms of the loss function, we retain the
confrontation loss, which makes the generated image retain
full detail and more realistic in terms of visual perception.
We evaluated our method on a large number of datasets and
the results show that our RDGAN can achieve good results in
Single Image Super-Resolution.
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Abstract— Recently, You Look Only Once, version 3
(YOLOv3) approach has been presented as a more efficient
solution in the process of object detection. Despite the fact that
YOLOv3 can obtain faster and more accurate results than
other approaches, it needs to be used in a system with a single
powerful Graphics Processing Unit (GPU). However,
sometimes, there is a need to process multiple real-time object
detection algorithms concurrently on a single GPU, where each
object detection algorithm receives a live stream from a
camera. It is challenging to have concurrent object detection
from live streams on a single GPU. In this paper, we propose a
two-step solution to this problem. In the first step, our goal is
to provide a model to optimize memory usage and, in the
second step, we propose a multi-thread approach that uses
YOLOv3 to perform real-time object detection on multiple,
concurrent, live streams on a single GPU. In this approach,
GPU resources are optimally used. The proposed approach is
evaluated on a public dataset and the result shows
improvements in performance by an average of 12% in
Central Processing Unit (CPU) usage and 13% in frames per
second (FPS) compared to the YOLOv3.

Keywords-Real-Time Object Detection; YOLO; Multi-Thread
Approaches.

I. INTRODUCTION

Recent researches in the field of object detection based
on Convolutional Neural Network (CNN) methods such as
Region-CNN (R-CNN) [1], Faster R-CNN [3], YOLO [2],
YOLOv2 [4] and YOLOv3 [5] have shown improvements
when compared with other detection methods which focus
on traditional detection [8][11]-[13]. Generally in object
detection methods, the following steps are performed: 1)
feature extraction of images [7][9], 2) classification
[1][14][15] and 3) localization [6][10]. Recent approaches,
such as YOLOv3, detect objects using the conventional
system with a single GPU. YOLOv3 uses YOLOv2 as a
base structure along with 53 convolutional layers. YOLOv3
is more powerful and faster than YOLOv2 because it uses
the GPU in a more efficient way.

Although the YOLOv3 is more accurate than other
approaches, it needs to be executed in a system with a single
powerful GPU. In addition, in some applications, it is
desired to use CNN’s potential for concurrent, real-time
object detection. Hence, an efficient hardware
implementation along with an efficient network design are
required. It is challenging to leverage this approach for

concurrent, real-time object detection. For example, in some
real-world applications, such as concurrent real-time
inference on a GPU server in a commercial system, the
available computing GPU resources are limited in terms of
memory. In this case, each object detection approach
receives a live stream from a camera and all processing is
performed on a GPU. The main problem is system resources
such as memory, CPU, and GPU when using them
concurrently for real-time detection scenarios.

Alternative methods suggest using multiple GPUs in
parallel. To solve this problem, in this paper, a model
(network architecture design) is proposed, which uses
YOLOv3 for concurrent real-time objection detection on a
single GPU server using a multi-thread architecture. Our
purpose is to provide an optimized architecture that
significantly decreases memory usage while at the same
time increasing the number of object detection outputs.
Therefore, this architecture makes possible use of multiple
YOLOv3s on a single GPU server with low memory usage
and high speed in detection performance. We have
implemented the proposed model on the Nvidia Quadro
p5000 with Linux customized by Nvidia by the Compute
Unified Device Architecture (CUDA) architecture. The
result shows improvements in performance by an average of
12% in CPU usage and 13% in FPS compared to the
YOLOv3.

The paper is organized as follows. In Section 2, related
works are discussed. Problem description and methodology
are presented in detail in Section 3. In Section 4, the
experimental result is presented. The conclusion is drawn in
Section 5.

II. RELATED WORK

Convolutional neural networks offer significant
improvements for applications such as image classification,
object detection [30], face detection [24], segmentation [31]
and object tracking [32][19]. Traditional methods for object
detection have focused on Scale-Invariant Feature
Transform (SIFT) such as the Fast Point Feature Histograms
(FPFH) [20] and Normal Aligned Radial Features (NARF)
[21] that are used in 3D image registration. Classification
methods are also used for object detection and include
nearest-neighbor methods [22] and support vector machines
[23].
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More recent methods using convolutional neural
networks [29] such as YOLO [2], YOLOv2 [4] and
YOLOv3 [5] object detection approaches have shown more
improvement in comparison with traditional computer
vision methods such as methods based on SIFT [16]. Using
deep learning-based strategies [33], these methods provide
significant speed advantages over R-CNN (for example, 45
frames per second in YOLO on an Nvidia Titan-X GPU).
Although convolutional neural networks require a training
process, they can be applied for general challenges. They
can also be used along with fewer hardware resources.

Despite an increase in speed, there is a gap between
software and hardware implementations [34] due to high
power consumption. In fact, there is a need to implement
hardware along with an efficient neural network design in
order to exploit CNN’s for low-power. Some research exists
on real-time processing using multi-core architectures and
GPUs. Methods such as the Gaussians Mixture Model
(GMM) for background modeling are used in [17] based on
such architectures. In the GPU architecture, Nvidia has
provided GeForce, Quadro and Tesla/Fermi series with
different performance ranges. In [25], a hardware
architecture for real-time object detection using depth and
edge information is proposed. In [26], an analytical
framework (OPTiC) is proposed for partitioning optimal
CPU-GPU co-execution on systems. In [27], a GPU-based
floating real-time object detection system is proposed.
Based on the results in this paper, using GPU instead of
CPU can increase speed and improve performance. Using
convolutional neural networks in other applications like
Internet of Things (IoT) and mobile edge computing is
discussed in [28]. In this paper, real-time multiple object
tracking is implemented on an Nvidia GPU architecture.

There has been a very limited number of works on
concurrent real-time object detection on multiple live
streams. In this paper, we try to provide an optimized
architecture to concurrently detect objects on multiple
cameras. In this architecture, YOLOv3 is used as a
backbone approach to detect objects. We conducted
experiments to evaluate the approach. In the next section,
we describe the methodology.

III. PROBLEM DESCRIPTION AND METHODOLOGY

In this section, we discuss two improvements in the
performance of the YOLO in regards to the process of
object detection. In the first subsection, we present the new
architecture model which changes the structure of YOLO in
the object detection process to reduce the number of
unnecessary computations and conversions in the object
detection process. In the second subsection, we provide a
multi-thread approach for performing real-time object
detection on multiple live streams concurrently. Using these
two improvements, we achieve increased efficiency in the
object detection process using YOLOv3.

A. The Architecture of the Model

In this subsection, we plan to explain the network
architecture of the object detection process. Before we start

to discuss the model, we need to describe the architecture of
the object detection process in YOLOv3. Then, we discuss
the problems of the architecture. Finally, we provide a
model as a solution to overcome these problems.

The main architecture of the YOLOv3 is depicted in
Figure 1. This architecture includes an object detection
process using YOLO on the darknet framework. As shown
in Figure 1, there are computing and converting processes.
All of the computing processes are done on the GPU side
and the converting processes are conducted on the CPU
side. The process is started with converting RGB (red,
green, and blue) image as a three dimensions matrix to the
YOLO image using a function. The YOLO image is a two
dimensions matrix that contains RGB values for each pixel.
The main function of the object detection is done using
YOLO on a converted YOLO image. The output of the
detection is a vector of coordinates for each detected object.
As previously mentioned, YOLOv3 uses a conventional
neural network to detect objects. Since in this paper our goal
is to discuss the architecture of the object detection process,
we avoid the explanation of the YOLOv3 method in detail.
Finally, the CPU converts the YOLO image to RGB image
format.

Although the YOLOv3 can obtain more accuracy and
speed compared to other approaches, it needs to be used in a
system with a powerful single GPU. Also, there are
unnecessary computations and conversions in the object
detection process in the Darknet framework. Here, we
provide an improved model to optimize the process of the
detection using the YOLO in the Darknet framework. We
call the improved model MvcYOLO. The MvcYOLO model
is presented in Figure 3. In this model, we change the
detected coordinates using YOLO detection algorithm and
eliminate the unnecessary conversion at the last step of the
Darknet framework. For each detected object, there is a
coordinate point which describes the center of each object
and two scales as the percentage of the specified object's
length and width. These coordinates are produced with
YOLO. In this step, we intervene in the normal process of
YOLO and calculate new coordinates instead of drawing
detected regions by using YOLO provided coordinates. For
this propose, we calculate the left corner, length, and width
of the detected region using the information of provided
coordinates by YOLO. As mentioned before, in YOLO
detection, we have the points that belong to the center of
each detected object and two percentage of length and width
in every detected object. In this process, we convert YOLO
detection coordinates to our desired coordinates. Our
purpose is to draw regions obtained from detected objects
on the RGB image directly. In fact, YOLO makes the
additional computations with drawing detected regions on
the YOLO image and then unnecessary converts the YOLO
image to RGB image. So, to achieve more efficiency, we
prevent drawing regions by YOLO on YOLO image and re-
draw regions using the new estimated coordinates directly

24Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-716-0

SIGNAL 2019 : The Fourth International Conference on Advances in Signal, Image and Video Processing

                            33 / 45



Figure 1. The architecture of the object detection process in YOLOv3.

on the OpenCV RGB image. Finally, we consider new
coordinates to draw regions on RGB image directly using
the estimated coordinates. These extra calculations and
conversions may be considered little, but we obtain
improvements in terms of CPU usage by eliminating them.
The results are discussed in the next section.

B. Multi-thread Approach to Handle Concurrent
Surveillance Videos

The second part of our improvements is focused on the
GPU usage per YOLO object. Each YOLOv3 object in the
Darknet framework uses 1.70 GB GPU memory. This
means that we can handle a surveillance video with 1.70 GB
GPU memory. Because the GPU memory is limited in the
GPU cards, it is a costly process to cover a large scale of
surveillance cameras. This paper provides a multi-thread
approach to handle concurrent surveillance videos with each
YOLOv3 object. As mentioned before, if each surveillance
camera works with a YOLOv3 object, 1.70 GB GPU of
memory is needed to be assigned to it. As a result, it
requires a lot of GPU memory for performing real-time
object detection on multiple live streams concurrently.

To solve this problem, in this paper we present a multi-
thread approach as a solution to handle concurrent
surveillance videos. In this approach, a pre-processing and a
post-processing step are added to the YOLO object. In the
pre-processing step, a multiplexer for fragmentation of live
streams is applied. In the post-processing also, a de-
multiplexer is used to re-fragmentation and assembling the
frames of each live stream. An overview of the approach is
depicted in Figure 2.

Figure 2. An overview of the multi-thread approach.

As shown in Figure 2, the input and output of YOLO are
defined as YIn and Yout. There are a multiplexer and a de-
multiplexer at the beginning and at the end of the process. In
the multiplexer, in each live stream, a frame of every four
frames is selected. Thus, there are intervals of four frames
in each live stream. In the next step, the frames are passed to
detect objects using YOLOv3. In this way, frames of four
live streams are fragmented and are passed separately to the
YOLOv3 algorithm to detect the objects. The output of the
YOLOv3 algorithm is a video that contains every four video
frames. This fragmentation process works as a multi-thread
approach. To investigate the efficiency, we evaluated the
approach using experiments and the results are presented in
the next section.

IV. EVALUATION METHODOLOGY AND EXPERIMENTS

In this section, we evaluate the methodology and
experiments in two subsections. The first subsection
discusses the experiment environment. The second
subsection presents experiments to evaluate the proposed
model and approach in Section III by describing an
architecture structure.

A. Experiment Environment

In this section, we evaluate the performance of the
proposed model and architecture in the previous section.
First, we prepare an experiment to compare the efficiency
between the YOLOv3 and MvcYOLO. Our evaluation is on
a dataset of 2D MOT 2015 containing 30 videos with FPS
30 and different qualities resolution (1280×720, 1920×1080
and 3840×2160 pixels). This benchmark contains video
sequences in different environments. The properties of a
video analysis server used as a test server are presented in
Table I.

TABLE I. THE PROPERTIES OF VIDEO ANALYSIS SERVER.

CPU Intel core i9-7940X 14 core/ 28 thread
GPU Nvidia Quadro p5000 16GB

RAM 32 GB DDR4

Disk 256 NVM Express SSD
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Figure 3. The architecture of the object detection process in MvcYOLO model.

B. Experimental Evaluation of the Model

As discussed before in this section, in order to evaluate
the proposed model MvcYOLO, we make an experimental
comparison between the original YOLOv3 and MvcYOLO.
Our focus is on system resources like CPU, GPU, RAM and
FPS values. CPU is one of the critical resources in this area
because it performs the main conversion steps in the darknet
framework. As previously mentioned, we prepare 10 videos
in a different range of quality. The results are presented in
Figure 4 in three-line graphs denoted as a, b, and c. The first
line graph (a) compares the CPU usage percentage between
original YOLOv3 and MvcYOLO in different video
qualities. Overall, the CPU usage increases over the video
qualities during the increasing computational power for
handling large size of frames. The CPU usage in the
MvcYOLO is lower than YOLOv3 overall video qualities.
The bigger drop of CPU usage was seen on 4k video
quality. We conclude that MvcYOLO has a better
performance on high-quality videos.

The second line graph (b) uses the frame rate as a
criterion for evaluation. The FPS is the frequency at which
consecutive images, called frames, appear on a display. The
FPS is compared in two models and the result shows the
average of FPS values in the two approaches. It can be seen
that the FPS of MvcYOLO was far higher than the original
YOLOv3. The MvcYOLO improves FPS of high-quality
video frames 13 to 26 in comparison to the original
YOLOv3 approach. However, the MvcYOLO uses lower
computational power in terms of CPU and RAM resources
in each frame. As illustrated in the results, CPU usage has a
high correlation with FPS. In 720p, the FPS value of
YOLOv3 and MvcYOLO are 28, while this amount
decreases steeply to 26 and continues to decline but more
gradually to 13 in 4k video quality on YOLOv3 approach.
In contrast, the FPS amounts of MvcYOLO declined more
steeply to 26 in 1080p and 4k video qualities.

The third line graph (c) shows the average RAM usage
in terms of GB over different video qualities in each
approach. MvcYOLO uses less RAM than YOLOv3

because of doing less computation in the conversion process
while improvements are not significant. Changes in RAM
usage of YOLOv3 and MvcYOLO are approximately the
same in each video quality.

C. Experimental Evaluation of the Multi-Thread Model

In the second part of the evaluation, our goal is to
consider the proposed model in the previous section with a
multi-thread approach as a solution to handle concurrent
surveillance videos. As discussed in Section III, to obtain
more efficiency in YOLO, we need to use a multi-thread
architecture. So, we performed experiments to find the
optimal number of cameras. Based on the result, 8GB GPU
memory could handle a maximum of four surveillance
cameras simultaneously. This paper provides a multi-thread
approach to handle a minimum of four surveillance cameras
over each YOLOv3 object and supports 16 cameras for 8GB
GPU memory. The reason for choosing four cameras is the
thread scheduler of the operating system and CPU power of
the analysis server.

We call the multi-thread approach Multi-MvcYOLO.
We compare MvcYOLO and Multi-MvcYOLO in three
metrics of CPU usage, FPS and RAM usage. The results are
depicted in Figure 5. Based on the results, it can be seen that
CPU usage of Multi-MvcYOLO sharply decreased in each
video quality especially on high-quality videos. In Multi-
MvcYOLO the value of FPS is less compared to MvcYOLO
because of performing four videos as multi-threads.
However, Multi-MvcYOLO needs much more RAM than
the others due to the thread scheduling process that uses
extra RAM for scheduling.

As mentioned before, Multi-MvcYOLO handles four
videos on a single YOLOv3 instance while YOLOv3 cannot
handle more than one video on an object instance. Each
YOLOv3 object instance uses approximately 1.70 GB from
GPU memory. Since GPU memory is so costly, Multi-
MvcYOLO approach uses optimal GPU memory and
handles more surveillance cameras over a normal GPU card.
Interestingly, Multi-MvcYOLO has better performance
compared with YOLOv3 over the video qualities.
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Figure 4. A comparison between original YOLOv3 and MvcYOLO in different video qualities on a) The CPU usage percentage b) FPS and c) RAM Usage

Figure 5. A comparison between original MvcYOLO and Multi-MvcYOLO in different video qualities on a) The CPU usage percentage b) FPS and c) RAM
Usage

V. CONCLUSION AND FUTURE WORK

In the existing systems, it is necessary to use a powerful
single GPU when applying YOLOv3 to detect objects.
However, sometimes, there is a need to process multiple
real-time object detection algorithms concurrently on a
single GPU, where each object detection algorithm receives
the live stream from a camera. In these cases, to reduce
memory usage and other resources, we proposed solutions
in two steps. In the first step, we provided a model for
optimal memory usage and in the second step, we proposed
a multi-thread approach that uses YOLOv3 to perform real-
time object detection on multiple live streams concurrently
on a GPU. This way, GPU resources are optimized to solve
the limited memory issue. Experimental results show that
the proposed approach can reduce memory consumption and
increase performance by an average of 12% in CPU usage
and 13% in FPS compared to the original YOLOv3. As
future work, we are planning to improve MvcYOLO in
terms of load balancing and network overhead on a large
scale of camera surveillance environments.
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Abstract—Corneal Pulsation (CP), as one of the manifestations 

of eye dynamics, has shown a great potential in the glaucoma 

diagnosis. The morphology of the CP signal, acquired noninva-

sively with a non-contact ultrasonic technique, has been found 

to alter in glaucoma patients. The aim of this preliminary study 

was to ascertain whether complexity of the CP signal may be a 

useful parameter to differentiate glaucoma patients from 

healthy individuals. Refined Composite Multiscale Fuzzy Entro-

py (RCMFE) was considered as a complexity measure. 

RCMFE of the CP signal was calculated in 25 glaucoma pa-

tients and 25 healthy subjects. Statistical analysis showed that, 

on average, glaucomatous eyes were characterized by higher 

entropy of the CP signal than healthy ones. This result suggests 

that RCMFE of the CP signal may support ophthalmologists in 

glaucoma diagnosis in its early stages. 

Keywords–multiscale entropy; corneal pulsation; glaucoma 

diagnosis. 

I.  INTRODUCTION 

Corneal Pulsation (CP) reflects temporal corneal expan-
sion related to ocular dynamics [1] and cardiovascular 
activity [2]. It has been shown that morphology of the nonin-
vasively acquired CP signal changes with advancing age [3]. 
These specific changes, in the form of a double-peak wave in 
the CP signal during one heart cycle, have been named the 
Ocular Dicrotic Pulse (ODP) [4]. ODP has been detected 
more frequently in glaucoma patients than in healthy indi-
viduals, which has been explained by higher ocular rigidity 
of glaucomatous eyes [4][5]. 

Detection of ODP signal from the CP signal alone is not 
straightforward, since the CP signal is often noisy, irregular, 
and non-stationary. To overcome this problem, it has been 
proposed to synchronously measure reference cardiovascular 
signals—such as blood pulse or ECG, which, in contrast to 
the CP signal, exhibit clearly defined peaks—and to use, e.g., 
Dynamic Time Warping to synchronize these two classes of 
signals [3] and the wavelet transform to analyze the CP 
signal without the synchronization [6]. However, there is still 
a need to find such a feature of the CP signal, which would 
enable differentiating glaucoma patients from healthy sub-
jects, without the necessity of explicit identification of the 
ODP signal or measurements of any auxiliary cardiovascular 
signal. To address this need, we propose to use the multiscale 
entropy algorithm to evaluate signal complexity. 

Many previous studies have already shown that entropy 
of various physiological signals is altered in a wide range of 
pathological states [7][8]. To the best of our knowledge, en-

tropy of the CP signal has never been considered so far. The 
aim of this preliminary study was to ascertain whether this 
entropy based approach applied to the CP signal is sufficient 
to differentiate Primary Open-Angle Glaucoma (POAG) 
patients from healthy individuals. The paper is organized as 
follows: Section 2 describes material and methods, Section 3 
contains results, Section 4 discusses and concludes the study. 

II. MATERIAL AND METHODS 

The study sample consisted of 25 patients (8 males and 
17 females) with POAG, aged from 59 to 79 (69.1 ± 6.0 
years, mean ± SD), and a control, age-matched group of 25 
healthy subjects (8 males and 17 females; 65.2 ± 6.4 years). 
Exclusion criteria were: systemic diseases, any previous 
ocular surgical procedure, conjunctival or intraocular in-
flammation, and corneal abnormalities such as edema or 
scars. Before the measurements, the purpose of the study and 
the protocol were explained to the participants. Afterwards, 
signed informed consent form was obtained from all patients 
and controls. The study had been approved by the Bioethics 
Committee of the Military Institute of Medicine in Warsaw 
(decision No. 67/WIM/2015) and adhered to the tenets of the 
Declaration of Helsinki. 

Measurements of the CP signal of the glaucomatous eye 
in POAG patients and randomly selected eye in healthy 
subjects were performed using a non-contact ultrasonic 
distance sensor. The sensor allowed 10-second continuous 
data acquisition with the sampling frequency set to 400 Hz 
and in-vivo measurement of the CP amplitude with an accu-
racy below 1 µm [9]. For each eye, CP measurements were 
repeated five times and then three good-quality recordings, 
not affected by eye blink artifacts, as evaluated by an expert, 
were chosen for further analysis. 

After preprocessing, including filtering in the range of 
0.5–20 Hz and removing linear trend, signal entropy was 
estimated using the Refined Composite Multiscale Fuzzy 
Entropy (RCMFEµ) [8] up to scale factor No. 50. RCMFEµ is 
defined as a sequence of fuzzy entropies computed for se-
lected scale factors, where consecutive scales correspond to 
decreasing granularity of the analyzed time series. The aver-
age value of RCMFEµ was calculated from three repeated 
measurements for each participant and scale factor. Since the 
null hypothesis of normality of RCMFEµ was not rejected by 
the Kolmogorov–Smirnov test, the values obtained for each 
scale were compared between the two groups using the 
unpaired t-test. In the range of scales where p-values were 
below a significance level α = 0.05, scale-averaged entropies 
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were computed for each participant and finally compared 
between the two groups using the unpaired t-test. 

III. RESULTS 

Figure 1a shows group-averaged values of RCMFEµ rep-
resented as a function of scale factor in the two groups, 
whereas Figure 1b presents results of statistical comparison 
between the groups for each scale factor. It can be seen that 
mean values of RCMFEµ are significantly different between 
the groups for scales in the range of 25–34. Results of the 
unpaired t-test applied for entropies averaged over the 
abovementioned scale range are shown in Figure 2. 

IV. CONCLUSION AND FUTURE WORK 

According to the decomplexification theory of illness, a 
loss in complexity is usually associated with pathological 
states [10]. Hence, it could be expected that a glaucomatous 
eye should be characterized by lower entropy of the CP 
signal than a healthy one. Our results, however, reveal the 
opposite tendency, which can be related to higher ocular 
stiffness (higher mechanical resistance of cornea) in glauco-
matous eyes caused by the elevation of intraocular pressure 
[11]. Nevertheless, RCMFEµ applied in this study satisfied 
our goal, as the measure was sensitive enough to differentiate 
between glaucoma patients and healthy subjects without the 
need for detecting the ocular dicrotism. To obtain results 
with higher degree of confidence, the analysis should be 
repeated on a larger study sample. More male participants 
need to be recruited if gender-specific differences are to be 
investigated. Ten-second measurements of the CP signal 

appear to be sufficiently long to reliably estimate entropy 
using RCMFEµ. The proposed RCMFEμ of a CP signal may, 
in the future, constitute a sensitive indicator of changes in 
ocular stiffness and support ophthalmologists in glaucoma 
diagnosis in its early stages. 
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Figure 1.  Refined composite multiscale fuzzy entropy (RCMFEµ) of the 

corneal pulse (CP) signal. (a) Means of grouped data ± 1.96 standard error 

of means. For better visibility, only even numbers of scale factor are 

shown. (b) p-values resulting from the comparison between the two groups 
using unpaired t-test. 

 
Figure 2.  Mean values of scale-averaged entropies ± 1.96 standard error 

of means. Entropies were averaged in the scale range 25–34. 
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Abstract—We propose a chaos-based communication system em-
ploying the symbolic dynamics of the Sprott D chaotic attractor.
The chaotic dynamics is modeled by a graph representing the
evolution of the chaotic trajectories. Finite-state encoders are
employed to map unrestricted binary sequences in the restricted
sequences generated by the discretization of the chaotic flow.
Finally, the performance of the proposed system is analyzed.

Keywords–Chaos communication; Symbolic dynamics; Topology
of three-dimensional chaotic attractors.

I. INTRODUCTION

Chaos-based communication systems are suitable alter-
natives in modern communications due to some inherent
characteristics of the chaotic behavior such as decorrelation,
non-periodic behavior, broadband spectrum, energetic effi-
ciency [1]. The use of chaotic dynamical systems has been
considered in several different scenarios [2]. In particular,
three-dimensional chaotic attractors have been successfully
employed in the design of digital communication systems [3].

The chaotic trajectories within three-dimensional chaotic
attractors can be discretized by a labeled partition of a Poincaré
section. This defines a map between the continuous flow and
the symbolic representation of the chaotic system. The sym-
bolic sequences generated by a chaotic attractor are restricted
due to the dynamical constraints imposed by the chaotic flow,
and these restrictions can be exploited in the design of chaos-
based communication systems. The dynamical mechanism of a
chaotic attractor is represented by a set F that represents words

(or sequences) that never occur in the symbolic representation
of the attractor dynamics. The forbidden set F is used to
construct a graph that represents the discrete dynamics of the
system and is employed in the design of Finite-State Encoders
(FSE), used to map unrestricted into restricted sequences.
Moreover, the FSE are used in the decoder to estimate the
information sequence.

II. MAIN RESULTS

To illustrate the proposed methodology, we detail the
design of a communication system based on the Sprott D
system, defined by







ẋ(t) = −y(t)
ẏ(t) = x(t) + z(t)
ż(t) = x(t)z(t) + ay2(t)

(1)

where a = 2.3 is the control parameter [4]. The Poincaré
section for the Sprott D system is a plane perpendicular to the
xy plane with y = 0. Figure 1 shows the Sprott D attractor

A B
y

x

b

Figure 1. Sprott D attractor and its Poincaré section with a labeled binary
partition in projection on the xy plane.

in projection on the xy plane and its Poincaré section with a
labeled binary partition over the alphabet A2 = {A,B}. The
threshold of the partition is defined by the minimum of the
Poincaré return map. When a chaotic trajectory crosses the
Poincaré section, we assign the label of the region where the
crossing occurs in the symbolic evolution of the system. The
continuous flow is mapped into symbolic sequences SN =
s0s1s2 . . . sN−1, where si ∈ A2 is the label of the visited
region in the Poincaré section in the ith crossing. Therefore,
SN records the order of visitation in the regions of the Poincaré
section in N consecutive crossings.

The first step in the proposed methodology is to find the
set F for the Sprott D system. We search in SN for words
with length n that never occur as sub-sequences of SN . In
this work, we consider n ≤ 10 and in this case the set F is

F = {BB,BAAB,BAAAAB}. (2)

Applying the procedures described in [5], we construct a graph
that represents the dynamics of a restricted system according
to the specification of the set F . Then, we construct the
FSE for the Sprott D system employing the method described
in [6], which is illustrated in Figure 2. The FSE maps one
information bit into two symbols s1s2. The next step to design
the communication system is to associate the chaotic signals
with the state transitions of the FSE.

The states transitions s1s2 of the FSE in Figure 2 cor-
respond to two successive crossings in the Poincaré section
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Figure 2. Finite-state encoder for the Sprott D attractor.
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Figure 3. Chaotic signals generated by the Sprott D attractor versus the
angle θ to encode the information sequence 0101.

illustrated in Figure 1. The chaotic signals associated with
the transitions are defined as the segments of the chaotic
trajectories generated by the variables of the system connecting
the corresponding regions of the Poincaré section. Any variable
can be used and in this work we employ the variable y. We
define the angle θ as the angle between the vector obtained by
connecting the center of the attractor to a point of a chaotic
trajectory in projection on the xy plane and the Poincaré
section [3]. Parameterizing the chaotic signals as y(θ), the
crossings are periodic with angular period 2π. For example,
the chaotic signal associated with the transition from state A to
state B in the FSE is the segment of trajectory y(θ) connecting
the regions A to A and subsequently connecting the regions
A to B, denoted yAAB(θ), with angular period 4π. Fig. 3
illustrates a chaotic trajectory versus the angle θ that encodes
the information sequence 0101 starting at state A.

The proposed communication system is represented in
Figure 4. The state transitions are induced by chaos control [7]
according to the information bits b0b1b2 . . .. The chaotic wave-
forms y(θ) are inverted (multiplied by −1) in the bipolar
modulator when the information bit is 0 [3]. At each signaling
interval T , the signal y(θ) is mapped into the transmitted signal
s(t) with duration T . The signal s(t) is transmitted over an
AWGN channel and the received signal is r(t) = s(t) + n(t),
where the noise n(t) has uniform power spectral density
N0/2. The decoder uses the Viterbi algorithm to estimate the
information sequence.

We performed numerical simulations to evaluate the Bit
Error Rate (BER) of the proposed communication system. The
Signal to Noise Ratio (SNR) is defined as SNR = Ēs/N0,
where Ēs is the average energy of the transition curves. Fig-
ure 5 shows the performance of the proposed system and the
uncoded BPSK system for reference purposes. The proposed
system outperforms the BPSK system by approximately 1.8

Sprott D

Attractor

Bipolar

Modulator
Channel Decoder

s(t) r(t) b̂kbk y(θ)

Figure 4. Block diagram of the communication system based on the Sprott
D chaotic attractor.

SNR (dB)

B
E

R
Figure 5. BER for the Sprott D communication system over an AWGN

channel. The BER for an uncoded BPSK is also shown.

dB for a BER = 10−5 .

III. CONCLUSIONS

We proposed a methodology to design chaos-based com-
munication systems using a discretization of the chaotic flow
generated by the Sprott D chaotic attractor. The discrete
chaotic dynamics was used to design an FSE to transmit
information when the dynamics is restricted, resulting in
better robustness against the channel noise. Therefore, the
proposed system is an interesting alternative in chaos-based
communications, yielding enhanced performance at the cost
of a relatively simple encoding scheme.
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Abstract— A technique to reject the noise of the Trans-
Impedance Amplifiers (TIAs) of an integrated streak camera
in the case of a repeatable input signal is proposed. The
modifications of the sensor architecture are marginal with only
one additional power supply connected to the column buffer of
the sampling cell. The noise rejection can be adjusted
independently of the effective bandwidth of the system. The
simulation results show that the TIA noise can be reduced
from 3.5mV to 0.31mV, which is the limit of the used sampling
cells due to the thermal noise on capacitor (kTC). The resulting
signal-to-noise ratio is more than 10 times better with an
acquisition time of only 20 µs thanks to the on-chip analog
averaging feature.

Keywords—High-speed imaging; CMOS; N-path filter; noise.

I. INTRODUCTION

High-speed imaging using Complementary Metal-Oxide
Semiconductor (CMOS) or Charged Coupled Device (CCD)
sensors has seen a sharp increase with the apparition of
commercial products able to achieve a frame rate of 20 Mega
frames per second (Mfps) [1][2]. Thanks to the concept of
burst imaging introduced in 1993 by Pr. Etoh Goji [3], this
sensor can generate a pixel rate in the range of 1 Tera pixels
per second by storing the images within the sensor during the
acquisition. Recently, the 3D microelectronic technology
allowed to push the state of the art of the 2D high speed burst
video sensors with some new functionalities such as an on-
the-fly digitalization [4] and an enhanced frame rate of 100
Mfps [5][6]. Nevertheless, in order to reach a higher frame
rate, the 2D acquisition paradigm has to be abandoned to the
benefit of the streak imaging paradigm. The streak imaging
approach is the sampling of just a single spatial line of the
scene per unit of time. As a consequence, a spatial dimension
is lost and the video is no longer a pile of spatial images
I(x,y) where x and y are the spatial dimensions, but a pile of
lines which can be represented as a spatiotemporal image
I(x,t), where t is the time. Indeed, the fastest frame rate
achieved with a CMOS sensor has been realized thanks to a
streak imaging sensor, such as the one shown in Fig. 1 [7].
By releasing the silicon area constraints of the 2D imagers,
one single pixel (the grayed line of Fig. 1) can set in a front
end with a large sampling and storage unit beside the
photodiode, with almost no spatial limit except the sensor
width. Thus, a wideband front end and sampling unit can be
embedded, and a line rate of 8 Giga lines per second with a
temporal resolution better than 500 ps has been demonstrated
[7].

The drawback of such a high bandwidth performance is
the noise of the system that increases with the cut-off
frequency. Although a high bandwidth is required for single
shot measurements, there are some other approaches to
measure a repetitive event. Time correlated single photon
counting is obviously a very good technique to measure the

Temporal Sweep Unit
Front-end Multi sampling and storage

Front-end Multi sampling and storage

Front-end Multi sampling and storage

Front-end Multi sampling and storage

… …

Front-end Multi sampling and storage

Front-end Multi sampling and storage

Front-end Multi sampling and storage

Front-end Multi sampling and storage

Vector of

Photodiode

One single

pixel

Time

Fig. 1. A streak camera sensor architecture

temporal evolution of a light pulse with a very high signal-
to-noise ratio, but the acquisition time can be quite long and
these sensors are intrinsically unable to achieve a single shot
measurement [8]. In this paper, we propose a technique to
reduce the noise of a single shot integrated streak camera
with very few modifications of the architecture.

The overall system architecture and theory of operation
are detailed in Section II. The approach functionality and
efficiency are then assessed with simulation results depicted
in Section III. Section IV concludes on the work.

II. SYSTEM ARCHITECTURE AND OPERATION

A. System architecture

A pixel of the integrated streak camera is composed of a
photodiode, a wideband Trans-Impedance amplifier (TIA)
and a sampling and storage line, which is a bank of
capacitors switched with NMOS (N-type Metal Oxide
Semiconductor) transistors, as described in Fig. 2. Each
NMOS switch is driven by the Si signal generated by the
temporal sweep unit with i [1;N] and N the number of
images of the line stored in the sensor. The Si signals are set
on and off sequentially in order to sample the signal applied
on the common line by the TIA A, which gives an image of
the light intensity on the photodiode. After the sampling of
the signal, the voltage Ci on each holding capacitor CHi is
then readout by a source follower. Both the photodiode and
the readout unit are not presented in Fig. 2 for clarity reason,
but they are detailed in [7].

S1

C1

A

CH1

S200

C200
CH200

S1

C1
CH1

R

S200

C200
CH200

R

A

Fig. 2. Simplified architecture of a single pixel and its equivalent model
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The bandwidth of the sampling cell can be well above the
bandwidth of the TIA which is about 1 GHz. Thus, each time
the NMOS is switched on, we can assume that the voltage on
the node Ci follows instantaneously the TIA output. This is
the operation in the single shot mode. Nevertheless, the noise
at the output of the TIA is also sampled and affects the
signal-to-noise ratio.

B. Theory of operation of the on chip averaging

It is well known that averaging a signal reduces the
temporal noise and, if the signal can be repeated, multiple
acquisitions of a single shot can be readout and averaged on
a computer. However, the repetition rate of the event is then
limited by the readout time, i.e., about a few Hz. This
bottleneck can be circumvented by a high repetition rate on
chip averaging. By reducing the voltage of the gate of the
NMOS transistor, the “on resistance” R of the transistor can
be increased and the behavior of the sampling cell is
equivalent to an ideal switch followed by a resistor and the
holding capacitance, as depicted in Fig. 2.

If the RCHi time constant of the sampling cell is higher
than the switch on duration T of the Si signal, the voltage on
the node Ci does not have time to follow the output of the
TIA. At the same time, the TIA noise is also filtered by the
RCHi filter. When the camera is synchronously triggered by
the laser source or vice versa, each time the signal is
repeated, the node voltage Ci tends to reach the signal during
the switch on duration T. In the meantime, the temporal noise
is still filtered and is randomly positive or negative. As a
consequence, a high noise rejection can be achieved by
reducing the sampling cell bandwidth. The system behaves
like an N-Path filter and the transfer function can be written
as [9]:

 
 

 2
0sinc ,

Kout

K
in

V s K
G s jK K

V s N








 
    

 
  (1)

where Vin(s) is the signal at the output of the TIA, Vout(s)
is the signal reconstructed with the readout of the Ci node
voltage and G(s)=1/(1+RCHs) is the transfer function of the
RCH filter. Equation (1) is equivalent to a comb Dirac
modulated by a sinc due to the gate function of the Si signal
and convolved to the elementary filter G(s).

The complete transfer function from (1) is illustrated in
Fig. 3 for sampling cell bandwidths of 100 kHz and
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Fig. 3. Complete transfer function of the on-chip averaging system for
sampling cell bandwidths of 100 kHz (top) and 10 kHz (bottom)

10 kHz for N=200 cells and a sampling rate of 1 GHz, i.e., a
period T of 1 ns. As the signal is periodically repeated, it can
be decomposed in a Fourier series with fundamental
frequency at 1 GHz/200, i.e., 5 MHz and its harmonics.
Thus, the complete transfer function for the measured signal
is almost equal to 1 for its fundamental and is slightly
modulated by the sinc function for its harmonics. Indeed,
each sample trends to be the mean voltage of the TIA signal
along the gate duration T of the sampling signal which is the
reason of the low pass behavior of the sinc function.

C. Noise rejection

Fig. 4 is a close-up view of the complete transfer function
at the frequency of 5 MHz for sampling cell bandwidths of
100 kHz and 10 kHz. Its magnitude at 5 MHz is actually 0
dB in order for the signal fundamental to fully pass through
the filter. The other spectral peaks of the complete transfer
function look similar, except for their magnitude modulated
by the sinc function.
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Fig. 4. Close-up view of the fundamental at 5 MHz of the complete
transfer function of the one chip averaging system for sampling cell

bandwidths of 100 kHz (top) and 10 kHz (bottom)

If we assume that the temporal noise at the output of the
TIA is a white noise, this noise is rejected between two
spectral peaks thanks to the low pass filter G(s). The
narrower are the peaks, the higher is the rejection.
Nevertheless, the overlap of the response of two peaks limits
the maximal rejection. Indeed, the transfer functions given in
Fig. 3 and Fig. 4 indicate a rejection of about 15 and 30 dB
for a filter bandwidth of respectively 100 kHz and 10 kHz.
With an ideal brickwall filter, the noise rejection should be
increased by n where n is the ratio of the filter bandwidth,
i.e., the rejection should be 10 higher with a filter
bandwidth of 10 kHz with respect of the one at 100 kHz.

TABLE I. NOISE REJECTION IMPROVEMENT FOR SEVERAL FILTER

BANDWIDTH

100 kHz 10 kHz 10 kHz1 kHz 1 kHz100 Hz

4.25 3.36 3.1

TABLE I. gives the computed white noise rejection for
the transfer function (1) with a first order filter
G(s) = 1/(1+RCs) and a bandwidth of 100 kHz, 10 kHz and
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1 kHz respectively. The noise rejection is close to 10=3.16
for a decade of bandwidth.

D. Practical limitations

Lowering the filter bandwidth rejects the noise but, as a
drawback, a higher number of signal repetition is required.
Indeed, a sampling cell is switched on only during the
sampling duration T, i.e., the duty cycle is nominally 1/N. As
a consequence, the apparent constant time a of the cell is
about N times the constant time of the RCH filter, i.e.,
a=NRCH. Moreover, the sampling cell suffers from a
leakage current that makes it unable to operate with a too
long time constant. In a conventional CMOS technology, the
leakage time constant is in the range of 100 ms. Thus, the
minimal usable filter bandwidth is in the range of 1 kHz.

The noise rejection is also limited by kTC noise which is
the thermal noise of the resistance R integrated on the
capacitance and is given by (2).

ktc

H

k T
V

C


 (2)

III. SIMULATION RESULTS

A. Bandwidth tunning

The bandwidth of cell filter G(s) can be adjusted by
adjusting the gate to source voltage VGS of the NMOS
transistor in order to obtain an on resistance R that matches
f=1/(2RCH) where f is the required bandwidth and CH is
the value of the holding capacitance. The on resistance
follows a strongly nonlinear response according to VGS that
allows generating a large dynamic of resistance value R and
thus, a large dynamic of bandwidth. The Gate voltage is
generated thanks to buffers with an adjustable power supply.
Though the source of the transistor is following the TIA
output and consequently, the VGS is signal dependent. Fig. 5
gives the small signal bandwidth of the sampling cell filter
versus the buffer power supply voltage for different TIA
output voltages for the designed sampling cell. More than 3
decades can easily be covered thanks to this technique which
does not require any additional transistors within the
sampling cell. The only modification relies on the tuning of
the supply voltage of the buffer that drives the Si voltage.
These buffers are common for a whole column of the sensor
and each column buffer is powered by the same power
supply. As a consequence, the only modification of the
system architecture is to add a specific power supply for
these buffers.
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Fig. 5. Small signal bandwidth of the sampling cell filter versus the buffer
power supply voltage for different TIA output voltage

B. Sinusoidal signal acquisition

The noise rejection has been evaluated with a SPICE
simulation for two sinusoidal signals of 5 and 50 MHz at the
input of the TIA. The total added rms noise at the output of
the TIA integrate from 10 Hz to 10 GHz is 3.5mV rms. The
results are shown in Fig. 6 for several filter bandwidth of
1 GHz down to 1 MHz. The displayed curves are the
concatenation of the voltage Ci from the sampling cells i=1
to 200 after 100 accumulations of the same signal. The
simulated time is then 200 cells×1 ns×550 accumulations =
110 µs.

With a filter bandwidth of 1 GHz (pink curve of Fig. 6),
the sampled signal with 100 accumulations is almost the
image of the last one. Indeed, during the 1 ns long aperture
of the switches, the voltage at the nodes Ci has enough time
to reach the TIA output. In this case, the results are very
close to a classical sampling and we can see that the noise
added by the TIA is present on the sampled signal.
With a filter bandwidth of respectively 100 MHz (green),
10 MHz (blue) and 1 MHz (red), the noise is less and less
present on the sinusoids. We can also see that the shape and
amplitude of the sinusoids are not affected by the filter
bandwidth reduction and that the 50 MHz signal can be
measured even with a filter bandwidth of only 1 MHz. This
simulation demonstrates that the white noise can be
efficiently rejected without altering the periodic signal.
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Fig. 6. Simulation of the noise rejection on a sinusoidal input signal of
50 MHz (top) and 5 MHz (bottom) for a filter bandwidth of 1 GHz down to

1 MHz. A cell is equivalent to 1 ns

C. Noise rejection assessment

In order to characterize the noise rejection, the same
simulation as the previous one was made without any signal
at the input. The observed signal should be the operating
point of the TIA output, i.e., a static voltage of about 1 V.
The result is shown in Fig. 7.

Once again, we can clearly see that the noise is rejected
and that the reconstructed signal becomes less noisy. The
equivalent power spectral densities of the measured noises
are plotted in Fig. 7. We can see that the rejection is applied
on the whole spectrum of the white noise and especially also
for the low frequencies. The statistical distributions of theses
samples are also depicted in Fig. 8. The assessed noise with a
bandwidth of 1 GHz is 1.75 mV rms and is reduced down to
0.769 mV rms for a bandwidth of 100 MHz, i.e., a
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Fig. 7. Simulation of the TIA white noise rejection for different filter
bandwidth. Acquired Samples (left) and equivalent power spectral density
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rejection of 2.3. For a bandwidth of 10 Mhz, the noise is
reduced again down to 0.383 mV rms, i.e., the rejection from
100 to 10 MHz is about 2. Finally, the rejection over the
decade from 10 to 1 MHz is only 1.2 with a noise at 1 MHz
of 0.31 mVrms. This last simulated rejection ratio is less than
expected because it is limited by the kTC noise of the
sampling cell which integrates a holding capacitance of
40 fF, i.e., VkTC = 0.32 mV. The proposed noise rejection
technique makes the TIA noise negligible with respect to the
kTC noise level.
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Fig. 8. Noise distribution (mV) of the simulated sample for noise rejection
assessment for different filter cell bandwidths

IV. CONCLUSION

A technique to reject the noise of the TIAs of an
integrated streak camera in the case of a repeatable input
signal is proposed. The modifications of the sensor
architecture are marginal with only one additional power
supply connected to the column buffer of the sampling cell.
The noise rejection can be adjusted independently of the
effective bandwidth of the system. The simulation results
show that the TIA noise can be reduced from 3.5mV to
0.31mV which is the limit of the used sampling cells due to
the kTC noise. The resulting signal-to-noise ratio is more
than 10 times better with an acquisition time of only 20 µs
thanks to the on-chip analog averaging features.
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