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Foreword

The Nineteenth International Conference on Advances in Signal, Image and Video Processing
(SIGNAL 2024), held between March 10 – 14, 2024, continued the inaugural event considering the
challenges mentioned above. Having these motivations in mind, the goal of this conference was to bring
together researchers and industry and form a forum for fruitful discussions, networking, and ideas.

Signal, video and image processing constitutes the basis of communications systems. With the
proliferation of portable/implantable devices, embedded signal processing became widely used, despite
that most of the common users are not aware of this issue. New signal, image and video processing
algorithms and methods, in the context of a growing-wide range of domains (communications,
medicine, finance, education, etc.) have been proposed, developed and deployed. Moreover, since the
implementation platforms experience an exponential growth in terms of their performance, many signal
processing techniques are reconsidered and adapted in the framework of new applications. Having
these motivations in mind, the goal of this conference was to bring together researchers and industry
and form a forum for fruitful discussions, networking, and ideas.

We take here the opportunity to warmly thank all the members of the SIGNAL 2024 Technical
Program Committee, as well as the numerous reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to SIGNAL 2024. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the SIGNAL 2024 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that SIGNAL 2024 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the field of signal
processing.

We are convinced that the participants found the event useful and communications very open.
We also hope that Athens provided a pleasant environment during the conference and everyone saved
some time for exploring this beautiful city
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Pavel Loskot, ZJU-UIUC Institute, China
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Mixture Based Hybrid Regularization Method for
Blind Image Deconvolution

Linghai Kong, Suhua Wei
Institute of Applied Physics and Computational Mathematics

Beijing, China
email: kong linghai@iapcm.ac.cn,wei suhua@iapcm.ac.cn

Abstract—Following our recent work on mixed Poisson-White
Spike noisy image restoration, we present a multi-convex opti-
mization model to address the fundamental problem of Poisson
blind image deconvolution (BID). This problem is encountered
in a special application of X-ray radiography in hydro-tests,
which also plays an important role in advanced tomographic
imaging. We utilize a combined two-dimensional Square Cauchy-
Gaussian distribution, whose parameters are totally unknown, to
characterize the base structure of the convolution kernel. A new
prior density function for the convolution kernel is proposed
by integrating the structure density into a Kullback-Leibler
divergence. The multi-convex optimization model is derived by
a joint maximum a posteriori estimation (MAP) procedure, into
which local estimation and expectation maximization algorithm
are involved to gain convexity and solvability. To solve the
proposed model numerically, a block coefficient descent based
algorithm is to be proposed, in which majorization-minimization
algorithm and Barzilai-Borwein estimation along with alternating
direction minimization of multipliers are utilized to promote the
computational efficiency. Numerical results show the effectiveness
of our proposed algorithm, as well as its adaptivity.

Index Terms—Poisson blind image deconvolution; Square
Cauchy distribution; Multidirectional fractional-order derivatives;
Multi-convex; Combined 2-dimensional Square Cauchy-Gaussian
distribution

I. INTRODUCTION

We consider a photon-limited BID problem encountered in
a specific application of flash X/γ-ray radiography (FXR) for
hydrodynamic experiments [1] [2], which serves as crucial
preprocessing in advanced FXR imaging, especially in 2-
dimensional (2D) and 3-dimensional (3D) tomographic recon-
struction. Till now, the existing methods of digital radiograph
processing are commonly non-blind or based on known Gaus-
sian kernel under the classical Gaussian noise assumption.
In applications, however, due to physical and geometrical
limitations of the digital radiography system, the acquired data
suffer many types of perturbation other than the Gaussian ones.
Besides a typically signal-dependent component, i.e., photon
shot or Poisson noise [3]–[5], it is noteworthy that heavy-
tailed very impulsive components must be taken into account
for better understanding both the system blur and the noise as
well [6], [7] and [4].

The rest of this submission is organized as follows. In
Section 2, we present a new noisy degraded image model and
then introduce briefly the modeling procedure of our proposed
hybrid regularization model for Poisson BID. In Section 3, we

introduce in brief our main idea on how to solve the proposed
model numerically. An experimental result is shown to validate
our approach. More details on the numerical scheme and
additional experimental results will be present on site. Section
4 concludes this submission.

II. PROPOSED MODEL

In applications, due to the type and amount of the con-
tamination, it is difficult to present an accurate noise model,
and most studies are built upon a common or oversimplified,
signal-independent choice, i.e., additive white Gaussian noise.
In this study, we pay more attention to two kinds of non-
Gaussian perturbation. In fact, Poisson noise can be intro-
duced to the intensity image by the counting process at the
scintillator and the CCD array, which is a typical example
of signal-dependent noise, and more familiar to fluorescence
microscopy, positron emission tomography and astronomy.
Moreover, a special case of impulsive behavior has to be con-
sidered. Indeed, there always exists a large number of radiation
particles in high energy radiography, although not irradiated
directly, reaching the CCD detector and contaminating the
image. This perturbation can also be produced by secondary
scattered neutron and gamma radiation hitting the detector
even endowed with sophisticated shielding [8]. The struck
pixels are displayed as white spikes, which are generally hold
much bigger signal counts than those of neighboring pixels
and more frequently observed in the dark or extremely low
contrast areas.

A highly valued aspect of high energy radiography is the
ability to resolve fine details in the high-density object, and
resolution depends on the size of the radiographic source spot
[9]. Various techniques and definitions have been proposed for
measuring and characterizing the spot size at different labo-
ratories, from which a general conclusion can be drawn that
heavy-tailed distributions, including two-dimensional Cauchy
distribution and Square Cauchy distribution, also known as
Quasi-Bennett distribution and Bennett distribution [9], re-
spectively, are more physically realistic than the Gaussian one
to characterize the source spot, although their parameters are
still very hard to measure or determine in good accuracy. It
is shown in [10] that the Cauchy distribution and Gaussian
distribution are of Lévy-stable type. On the other end, to
model the detector response or simulate X-ray scattering in

1Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-142-8
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X-ray radiography, it is notable that Cauchy distribution can
also be deduced theoretically from the assumption of isotropic
radiation [11].

In this section, we address the Poisson BID problem in
the image space. We adopt the one-dimensional mixture
of Poisson and Square Cauchy (MPsC) distributions [4] to
characterize the noise in radiographic data, and extend the
MPsC denoising method to address the Poisson BID problem.
To better condition the deblurring process, our main idea
is introducing a combined two-dimensional Square Cauchy-
Gaussian distribution with unknown parameters to approxi-
mate the basal structure of the unknown blur kernel, and then,
integrating it into a Kullback-Leibler (KL) divergence (see [4]
and references therein) to construct our prior kernel density
function.

Let f, u, k, w, b : Ω → [0, 1] be the recorded noisy blurred
image, the source image, the blur kernel, and the additive
Square Cauchy noise, and the background, respectively. Ω =
(−1, 1)2 denotes the image domain. In applications, one may
assume that b is the mean of a known Poisson distribution.
Assuming a convolution blur model for a linear radiographic
system, we propose the following noisy degraded image model

f = Poisson(k ∗ u+ b) + w
.
= z(u, k) + w, (1)

in which z is a realization of Poisson distributed random
variable Z with PDF given by

PU,KZ (z; k ∗ u+ b) =
(k ∗ u+ b)ze−(k∗u+b)

z!
, (2)

k is the blur kernel, ∗ denotes the two-dimensional lin-
ear convolution operator, w is a realization of square
Cauchy distributed random variable, whose PDF is given by
PW (w;σ2

w) =
2σ3
w

π(σ2
w+|w|2)2 , σ

2
w > 0, w ∈ R.

Proper formulations of both the latent image prior and the
blur prior are crucial to the success of BID methods. In our
context, the convolution kernel k is regarded as realization
of a random variable K, whose PDF is assumed to be
unknown, except it can be characterized by a heavy-tailed
mixture of Lévy-stable distributions [9] [10]. For convenience
of discussion, in the follow we consider a combined 2-
dimensional Square Cauchy-Gaussian distribution with PDF
Bk(x; ΘB) =

∑2
i=1 γipi(x;σ2

i ), x ∈ Ω as prior structure of
the kernel, where p1 and p2 are defined by

p1(x;σ2
1) =

σ2
1

π(σ2
1 + |x|2)2

, p2(x;σ2
2) =

1

2πσ2
2

exp

(
−|x|

2

2σ2
2

)
,

(3)
respectively, the denotation ΘB represents the set of param-
eters γ1, γ2, σ

2
1 , σ

2
2 . γi ≥ 0 is a mixture ratio satisfying

γ1 + γ2 = 1.
We then utilize the KL divergence to measure the differ-

ence between the unknown kernel k and the basel structure
Bk(x; ΘB), and define a prior constraint on the blur kernel k
given by PK(k) ∝ e−JK(k) with

JK(k)(x) = k(x)[ln k(x)− lnBk(x; ΘB)− 1] +Bk(x; ΘB).
(4)

In terms of the prior constraint on the source image, we
employ the combined first order TV and multidirectional
FOTV of [12]–[14] to define a gradient’s sparsity enhancing
PDF of the source image, which is given in the Gibbs form
as

PU (u) ∝ e−JU (∇u,∇αu), JU (∇u,∇αu)=g1|∇u|+g2|∇αu|,
(5)

where α ∈ (1, 2] denotes the order of multidirectional
fractional-order derivatives in the Grünwald-Letnikov sense,
g1(x) and g2(x) are defined as the same spatially adaptive
functions in [4]. The multidirectional FOTV or FOTV4 [13]
[4] is utilized to promote the selectivity of edges, and suppress
more perturbation in the image as well.

Under these presumptions, our BID problem is then trans-
lated into recovering the latent image u and degradation kernel
k from a single observation f with (1), (3), (4) and (5).
Introduce denotation Θ = {σ2

w} ∪ ΘB . In our context, we
also assume that all the parameters in Θ are unknown.

III. NUMERICAL ALGORITHM IN BRIEF

Taking advantage of variational Bayesian and MAP princi-
ples, we will propose a multi-convex variational framework
for the Poisson BID problem, into which an expectation
maximization (EM) scheme is incorporated to estimate directly
the parameters of the kernel structure as well.

In brief, we will report the modeling processes of the pro-
posed variational Bayesian framework, in which some modi-
fications, such as local approximation for the blur image and
EM estimation for kernel structure parameters, are involved to
gain solvability and convexity. Moreover, the convexity of the
proposed optimization model is validated. As for the numerical
algorithm for our proposed model, a block coefficient descent
(BCD) [15] [16] based algorithm of the Gauss-Seidel type is
to be present, in which majorization-minimization algorithm
[17] [18] and Barzilai-Borwein estimation [19] along with
alternating direction method of multipliers (ADMM) [20] are
utilized to promote the computational efficiency. We use a
localized structural similarity (SSIM) index to perform quan-
titative assessment on our methods.

Fig. 1. Left: A synthesized noisy blurred image. Center: A restored image by a
comparison algorithm. Right: A restored image using our proposed algorithm.

Numerical results have shown the effectiveness of the pro-
posed algorithm. In Figure 1, we present an example on BID,
in which the left image is a synthesized noisy blurred image,
obtained by convoluting with a combined Square Cauchy-
Gaussian kernel and then adding a mixed Poisson-Cauchy

2Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-142-8

SIGNAL 2024 : The Ninth International Conference on Advances in Signal, Image and Video Processing

                             9 / 39



noise (SSIM=0.4581). The center image (SSIM=0.7275) is ob-
tained by a comparison algorithm, or median filter injunction
with a shock filter. The right one (SSIM=0.9407)is obtained
by our proposed algorithm.

IV. CONCLUSION

A novel multi-convex optimization framework was proposed
for blind deblurring images degraded by Lévy-stable blurs and
contaminated by high-level non-Gaussian noises. Numerical
results showed the effectiveness of the proposed algorithm on
deblurring and denoising simultaneously, as well as adaptivity
and quality. Learning based methods may be introduced in
some future work to further promote the performance of our
proposed method.
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Fractional Order Variational Approach for Image Denoising and CT Reconstruction

Suhua Wei
Institute of Applied Physics and

Computational Mathematics
Beijing, China

email: wei suhua@sina.com

Linghai Kong
Institute of Applied Physics and

Computational Mathematics
Beijing, China

email: kong linghai@iapcm.ac.cn

Abstract—Image denoising is a fundamental problem in the
area of image processing. The widely applications make it very
important to research. Variational method is an efficient way to
restore images corrupted by noises. In this paper, we propose
a variational model to deal with Gaussian noise and mixed
noise. In the proposed model, we use the combination of Total
Variation (TV) and Fractional order Total Variation (FTV) as the
regularization term. Numerical results show that the proposed
model has advantages on recovering image edges and textures.
We also generalize our approach to CT image reconstruction
by fan beam X-rays from a single radiograph. By a single
radiograph, we can reconstruct an axially symmetric object
image. The variational model and the algorithm to solve it will
be given, and the efficiency of the proposed method will be
illustrated by numerical tests.

Index Terms—image denoising; total variation; fractional order;
CT; image reconstruction

I. INTRODUCTION

Image denoising is a fundamental problem that has been
researched for a long time and yet no clear cut solution exists
due to its ill-posedness. To overcome the ill-posedness of the
inverse problem arised in image restoration, Total Variation
(TV) regularization model was proposed by Rudin, Osher
and Fatemmi in 1992 [5]. Since then, variational method
was rapidly developed and widely used in image processing
tasks. Various variational models were developed for image
denoising, deblurring, segmentation, registration and so on. In
this work, we focus on image denoising techniques and appli-
cations. Total variation regularization model is very efficient
on recovering image edges while removing noises. But it often
leads to staircase effects on the flat region, and small details,
such as textures are often filtered out with noise. Therefore,
the improved variational models were considered. Fractional
order Total Variation (FTV) regularization has shown its
advantages on texture preserving in recent research [1]-[4][6].
In this paper, we propose a new variational model by taking
the combination of TV and FTV as regularizer for image
noise removal. The proposed variational model is established
according to noise type and its characteristics. The noise
type deals with Gaussian noise and mixed Poisson and White
Spike noise. We also construct the numerical algorithm for
proposed model based on Alternating Direction Method of
Multipliers (ADMM). Numerical tests show the effectiveness
of the proposed method.

.

The rest of the short paper is organized as follows: In
section 2, we describe the image denoising problem. The
mathematical model and algorithm for eliminating Gaussian
noise are given. In section 3, we introduce the CT image
reconstruction. For axially symmetric objects reconstruction,
we illustrate how to establish optimization problem by using
the hybrid regularization of TV and FTV for getting efficient
reconstruction while suppressing noise. In section 4, we give
conclusions and future work.

II. IMAGE DENOISING

Generally, the process of image contaminated by Gaussian
noise can be modeled as follows:

f = u+ n (1)

where f is the measured image contaminated by noise n,
u is the true image to be recovered. The variational model
for image denoising is composed of two parts, the first part
is the data fitting term, the second part is the regularization
term. The data fitting term depends on the noise type, and
the regularization term utilizes the prior knowledge of the
unknown image. Therefore, the restoration process results in
the model:

min
u

{1
2
∥u− f∥22 + µR(u)}, (2)

where µ is the regularization paprameter which balance the
data fitting and regularizing. The choice of the regularization
term is the key point of the model. For better recovery of
the image edges and textures, we propose to use the hybrid
regularization of TV and FTV, it takes the following form:

R(u) =

∫
Ω

g(x, y)|∇u|dxdy +
∫
Ω

(1− g(x, y))|∇αu|dxdy
(3)

Why do we choose the combination of TV and FTV ? As
we know, TV regularization is good at edge detection after
image restoration, but smears small textures in some region.
FTV regularization can protect image textures after restoration.
The purpose of taking the combination of TV and FTV as
regularizers is to have both advantages of TV and FTV. To
balance the weight of TV and FTV, we use a gradient related
functional g to judge edges and textures.

We will discuss how to choose fractional order α and the
gradient related functional g. To solve the proposed model,
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Fig. 1. Left is a clean image, middle is the noisy one, right is the denoised
by our proposed model.

we use Alternating Direction Method of Multipliers. In Figure
1, we give an example of image denoising by our proposed
model. The left image is clean, the middle is a noisy one
contaminated by Gaussian noise, and the right is the denoised
image by our proposed model. We add Gaussian noise to the
clean image (left), then we get the noisy image (middle). We
use the proposed model (2) to calculate the denoised image
denoted by u. In equation (2), f represents the noisy image
which is known. The numerical result u is the right image.
We can see that the denoised image has got improvement on
SNR (signal to noise ratio) and details recovery. For example
the hair and the hat edges in Lena image.

III. CT RECONSTRUCTION

The image denoising idea can be extended to CT image
reconstruction. As we know, CT image reconstruction is very
helpful to diagnose the inner features of objects and charac-
teristics of human bodies through x-ay radiographs. In this
case, we talk about image reconstruction of axially symmetric
objects from a single radiograph by fan beam x-ray. This leads
to Abel transform inversion. Suppose the projection matrix is
known A, the measured projection data is d, and the object
features to be solved is represented by ρ, the CT reconstruction
is described by the following mathematical model:

min
ρ

{1
2
∥Aρ− d∥22 + µR(ρ)}, (4)

R(ρ) =

∫
Ω

g(r)|∇ρ|dr +
∫
Ω

(1− g(r))|∇αρ|dr (5)

Where the function ρ is dependent on variable r which
represents the radius of objects with axially symmetry.

CT image reconstruction is an important area for ap-
proaching. Especially when the noise type are mixed or
even unknown, the reconstruction problem are challenging on
mathematical modelling and numerical algorithm designing. If
the optimization problem are not convex, there is no guarantee
for the global solution of the optimization problem to be
reached.

IV. CONCLUSIONS

We make an approach on image denoising variational
models and algorithms. To deal with the ill-posedness of the

inverse problem, we introduce a new regularization term which
combines the advantages of TV and FTV. This regularization
technique has been applied to CT image reconstruction. For
mixed poisson and white spiky noise, we have also explored
image restoration models and numerical algorithms. Numerical
experiments are given to show the efficiency of our proposed
model on recovering image edges and textures while suppress-
ing noises [1]. In the future, we will do further approach
according to reviewers’ suggestions. At the present stage, our
research work is still going on, especially comparisons with
other works will be illustrated through numerical tests.

ACKNOWLEDGMENT

This work is partially supported by National Natural Sci-
ence Foundation of China (NSFC) under Grant Numbers
11571003,12271053.

REFERENCES

[1] S. Wei, L. Kong.“A Combined First and Fractional Order Regularization
Method for Mixed Poisson-White Spike Noisy Image Restoration,”
Inverse Problems and Imaging , vol. 18, pp.38–61, February 2024.

[2] Z. Guo, W. Yao, J. Sun and B. Wu, “Nonlinear Fractional Diffusion
Model for Deblurring Images with Textures,” Inverse Problems and
Imaging , vol. 13, pp.1161–1188, 2019.

[3] M. R. Chowdhury, J. Zhang, J. Qin, Y. Lou,, “Poisson image denoising
based on fractional-order total variation,”, Inverse Problems and Imag-
ing, vol. 14, pp.77–96, 2020.

[4] J. Bai, X.-C. Feng, “Fractional Order anisotropic diffusion for image
denoising,” IEEE Trans. Image Processing, vol.16, pp.2492-2502, 2007.

[5] L. Rudin, S. Osher, E. Fatemi,, “Nonlinear total variation based noise
removal algorithms,” Physica D, vol.60, pp.259–268, 1992.

[6] J. Zhang, K. Chen, “A total fractional-order variation model for image
restoration with non-homogeneous boundary conditions and its numer-
ical solution,” SIAM J. Imaging Sci., vol. 8, pp.2487–2518, 2015.

[7] R. Abraham, M. Bergounioux and E. Trelat, “A penalization approach
for tomographic reconstruction of binary axially symmetric objects,”
Applied Mathematics and Optimization, vol. 58, pp.345–371, 2008.

[8] F. F. Dong and Y. M. Chen “A fractional-order derivative based varia-
tional framework for image denoising,” Inverse Problems and Imaging,
vol. 10, pp.27–50, 2016.

5Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-142-8

SIGNAL 2024 : The Ninth International Conference on Advances in Signal, Image and Video Processing

                            12 / 39



Feature Point Correction and Image Merging for Enhanced Branch Detection in 
Vineyard Drone Photography 

 
YuJie Wu, Naoki Morita, Md Saidi Muhammad Ashraf Naim 
School of Information and Telecommunication Engineering 

Tokai University 
Tokyo, Japan 

e-mail: wyj13357889606@gmail.com, wv062303@tsc.u-tokai.ac.jp, 0cjt2118@cc.u-tokai.ac.jp  
 

Kenta Morita 
Faculty of Medical Engineering 

Suzuka University of Medical Science 
Mie, Japan 

e-mail: morita@suzuka-u.ac.jp

Abstract—This paper presents a new method for feature point 
correction and image merging in drone-based vineyard 
photography, aimed at improving branch detection accuracy. 
Addressing the issue of inaccurate feature point matching in 
traditional methods, we developed a technique that analyzes 
tangent angles between feature points, focusing on parallel 
alignment for precise merging. Our approach significantly 
enhances the accuracy of merged images, achieving about 90% 
precision compared to less than 10% in conventional methods. 
This advancement offers a promising solution for precise 
vineyard monitoring and management through aerial imagery. 

Keywords- aerial image stitching; feature point correction; 
agricultural monitoring 

I. INTRODUCTION 
Monitoring the growth of branches in Japanese viticulture 

is crucial for harvesting tastier grapes and managing nutrients 
[1]. However, observing these branches from the ground is 
challenging. To overcome this limitation, we propose using 
drones for aerial monitoring of the branches. 

In drone-based vineyard photography, shadows cast by the 
branches vary depending on the shooting location, leading to 
areas of high contrast and overlapping images where shadows 
merge. To address this issue, we proposed a method to 
eliminate the influence of shadows and enable the overlapping 
of branches in the images [2]. This method involves 
generating images that extract only the branches from aerial 
photographs and identifying key features from these images 
to facilitate merging (see Figure 2). 

While this method was effective for images with varying 
shadow projections, there were instances where accurately 
extracting the necessary features for merging from the branch-
only images proved challenging, resulting in excessive image 
distortion. As a result, merged images that displayed all 
branches extending from the trunks could not be produced. 

Traditional image fusion methods have limitations in 
addressing this specific challenge. These methods fail to 
account for the complexities introduced by shadows and the 

merging of branch images. Therefore, we propose a new 
method for feature point correction and image merging 
tailored specifically for aerial photographs of vineyards. By 
analyzing tangent angles between feature points and selecting 
the most parallel lines, our method aims to improve the 
accuracy of merged images. 

To provide a comprehensive overview of the challenges in 
this field, it is essential to review existing literature. In the 
following section, we will discuss the problem statement, the 
significance of the problem, previous research outcomes, and 
how our proposed solution differs. This comprehensive 
literature review will shed light on the novelty and 
effectiveness of our proposed method. 

 

 
Figure 1.  Photograph of the farm 

 

Trunk 

about 2m 
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Figure 2.  Method Proposed in Previous Research 

 
The remainder of this paper is organized as follows: 

Section II discusses the problems with the conventional 
method. Section III outlines the objectives of this study. 
Section IV describes the proposed solution. Section V 
presents the experiments conducted, along with the results and 
discussion, and Section VI concludes the paper. 

II. PROBLEM 
This section introduces an analysis of feature point pairing 

in overlapping aerial photographs, crucial for accurate image 
stitching and analysis in precision agriculture. We begin with 
Figure 3, which illustrates the methodology for identifying 
and pairing feature points across overlapping images. Figure 
3 displays pairs of feature points from overlapping aerial 
photographs. As can be seen in Figure 3, the feature points are 
paired one-to-one. However, in the same location as depicted 
in Figure 3, Figure 4 shows pairs of feature points from images 
that recognize only the branches. In Figure 4, there are several 
locations where the feature points are one-to-many. Despite 
areas that do not overlap being excluded from feature point 
extraction, they are still extracted as feature point pairs. 

When these images are merged based on this information, 
the result, as shown in Figure 5, does not maintain the original 
form and is misplaced. Furthermore, beyond this point, 
additional image merging becomes impossible. Consequently, 
this prevents the accurate capture of the exact location and 
growth status of all branches extending from the trunk. 

 
Figure 3.  Feature Point Pairs from Two Overlapping Aerial Photographs 

 
Figure 4.  Feature Point Pairs from Recognition Images Showing Only 

Branches 

 
Figure 5.  Merging Result Using Feature Point Pairs from Figure 4 

III. PROPOSAL 
When merging images using only translational movement, 

the feature point pairs of overlapping images become parallel. 
Our preliminary analysis of relevant images demonstrated that 
adjusting them through translational movement alone 
sufficiently aligned the branches. Exploiting this 
characteristic, our proposed method identifies the correct 
feature point pairs by selecting the line with the highest 
number of parallel feature point pairs and discards any other 
feature point tangents. This ensures that only the correct 
feature point pairs are used for merging. 

While existing research on feature point correction, as 
referenced in [3] to [9], suggests various methods, the unique 
characteristic of our study, where translational movement 
alone is sufficient for merging, renders those methods 
unnecessary. Moreover, the feature point matching in the 
relevant feature point pairs for our research is prone to errors, 
making it challenging to apply conventional methods. 
Therefore, we propose a novel method specifically tailored for 
aerial photographs of vineyards, which addresses these 
limitations. 

Compared to traditional methods, our proposed method 
offers distinct advantages. Firstly, it leverages the inherent 
characteristic of translational movement for merging, 
reducing the computational complexity and eliminating the 
need for complex algorithms employed in other methods. This 
simplifies the merging process and improves efficiency. 
Secondly, by selecting the feature point pairs with the most 
parallel lines, our method ensures more accurate alignment of 
branches in the merged images. This results in improved 
visual clarity and facilitates better analysis of the branches' 
growth patterns. 

In practical applications, our method provides valuable 
benefits. Its simplicity and efficiency make it suitable for 
large-scale vineyards, where monitoring a vast number of 
branches can be time-consuming. By accurately merging 
images and extracting key features, our method enables more 
precise monitoring of the number of new shoots growing from 
the grapevine trunks. This information is crucial for 
optimizing grape quality and nutrient management. 
Furthermore, the proposed method can be easily integrated 
into existing drone-based monitoring systems, offering a 
practical solution for vineyard management. 
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In summary, our proposed method introduces a novel 
approach to feature point correction and image merging for 
aerial photographs of vineyards. By leveraging the inherent 
characteristic of translational movement and selecting the 
most parallel feature point pairs, our method improves the 
accuracy and efficiency of merge. 

The objective of this research is to merge images in such a 
way that the branches extending from the trunk can be clearly 
identified. Specifically, if the feature point pairs extracted 
from recognition images are incorrect, the goal is to detect and 
eliminate them, thus ensuring that only correct feature point 
pairs are used for merging. 

IV. EXPERIMENTS AND CONSIDERATIONS 
This study aims to improve the merging of images at the 

boundary areas of branches in agricultural photography 
conducted by drones. We compared the merging rates of 
branches at the boundaries using both the conventional and 
proposed methods, summarizing and discussing the results. 

 
A. Experimental Method 

We merged images of all branches extending from the 
trunk individually and examined how many branches were 
misaligned at the image boundaries.  

The misalignment was measured in terms of the thickness 
of the branches. Based on four datasets of trunk images, we 
analyzed the number of seamlessly merged branches and the 
number of branches that were separated by various distances 
(1-2 branches, 3-4 branches, and more). We then calculated 
the success rate of branch merging for each dataset. 

Incorporating the findings from the preliminary 
investigation, we found that the necessary adjustments for 
accurate image merging, specifically rotations up to 0.8 
degrees and resizing within a 6% margin, are well within the 
range that maintains feature point pairs in parallel alignment. 
This insight led to refining our method to better accommodate 
the slight deviations caused by drone vibrations, without 
sacrificing the precision of branch alignment in merged 
images. 

We adjusted the tolerance for angle deviation to plus or 
minus 0.5 degrees, a  strategic decision that not only addresses 
the challenges of drone flight dynamics but also harnesses the 
robustness of the SIFT algorithm for precise feature matching. 
This modification significantly improves the merging 
accuracy of branch images at boundaries, enhancing seamless 
integration and reducing misalignments. 

This optimized approach underlines our commitment to 
advancing image processing techniques in agricultural 
monitoring. By adapting our methodology to the nuances of 
drone-captured imagery, we demonstrate the potential of 
sophisticated image processing to improve the accuracy and 
reliability of agricultural data collection, setting the stage for 
the detailed experimental results and analysis that follow in 
this section. 

 
B. Experimental Results 

1) Table I: Results by the Conventional Method shows 
the severe limitations of the conventional approach, with a 

majority of branches misaligned and merging rates 
disastrously low. 

2) Table II: Results by the Proposed Method illustrates 
the effectiveness of the proposed method, with nearly all 
branches aligned correctly and high merging rates across all 
datasets. 

The experimental results are presented in two tables 
comparing the conventional method with the proposed 
method for merging images of vineyard branches. The tables 
quantify the alignment of branches in merged images, 
displaying the number of branches with varying degrees of 
misalignment and the overall merging rate. For the 
conventional method, the merging rate is notably low (below 
10%), indicating a significant misalignment of branches. 
Conversely, the proposed method shows a substantial 
improvement, with the majority of branches exhibiting no 
misalignment and the merging rates increasing to 
approximately 90%. This demonstrates the effectiveness of 
the proposed method in improving the accuracy of image 
merging in agricultural photography conducted by drones, 
specifically in the context of vineyard monitoring. 

 
TABLE I.  RESULTS BY THE CONVENTIONAL METHOD  

Trunk 
No. 

No 
Misalignment 

1-2 
Branches 

3-4 
Branches More Merging 

Rate 
1 14 47 54 67 7.69% 
2 21 128 68 105 6.52% 
3 21 97 50 109 7.58% 
4 24 104 77 122 7.33% 

 
TABLE II.  RESULTS BY THE PROPOSED METHOD 

Trunk 
No. 

No 
Misalignment 

1-2 
Branches 

3-4 
Branches More Merging 

Rate 
1 159 10 6 7 87.36% 
2 310 3 8 1 96.27% 
3 269 4 2 2 97.11% 
4 313 3 3 8 95.72% 

 
C. Analysis of Results 

The results show that the merging accuracy of the 
proposed method, at around 90%, was significantly higher 
compared to less than 10% for the conventional method. The 
proposed method successfully merged many branches, 
demonstrating its effectiveness. However, there remains a 
need for further improvement to address the issue of some 
branches that still break apart, which is a  challenge for future 
research. 

V. CONCLUSION 
The goal of this research was to merge images in a way 

that allows for the clear identification of branches extending 
from the trunk. We addressed the issue of distorted merged 
images caused by incorrect feature point pairs in recognition 
images that only retain branches. To this end, we reconsidered 
the method of selecting feature point pairs and proposed a new 
method of image merging using tangent angles. This new 
approach significantly reduced feature point mismatches, 
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improving the merging accuracy from less than 10% with the 
conventional method to approximately 90% with the proposed 
method. This demonstrates the effectiveness of the proposed 
method. 

In the future, we aim to solve the remaining issues with 
broken branches and achieve even higher precision in image 
merging. 
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Abstract—The L-Edge and L-Cylinder imaging devices are
used to reconstruction the image of high-energy X-ray source.
The physical model considering the penetration effect of X-ray
to the imaging device is established, the transmission imaging
matrix is constructed, and the algebraic solution method of
spot image reconstruction is established. The X-ray source with
Gaussian distribution is reconstructed The results show that the
artifacts and discontinuous in the center of the reconstructed
images can be improved using L-Cylinder imaging device.

Index Terms—reconstruction, X-ray source, L-Cylinder

I. INTRODUCTION

The blur caused by the high energy X-ray source spot is one
of the important factors leading to image degradation. Focal
spot measurement is an important part of studying high-energy
X-ray flash radiography. The major laboratories engaged in
the research of high-energy X-ray flash radiography at home
and abroad have carried out the related research on spot
size measurement, and representative methods include pinhole
method, slit method, edge method, rollbar method and so on.

In 2016, Fowler et al. [1] designed the L-Rolled Edge device
for imaging based on the ”opaque” physical model of the
imaging device proposed by Barnea [2], using only one corner
of the square hole imaging device, obtained the imaging light
and shade information of two dimensions, and gave the two-
dimensional intensity distribution of focal spot through image
reconstruction. In this paper, based on the ”L” configuration
device, an imaging physical model considering transmission
effect is proposed, and L-Cylinder imaging device is used
to reconstruct the X-ray source image. The two-dimensional
distribution of the source penetrating the imaging device is
obtained, and the intensity distribution of the source is derived
by image reconstruction.

An outline of the rest of the paper is as follows. In
Section 2, We present the physical model and solution method.
Numerical results for reconstruction using L-Cylinder imaging
device are presented in Section 3. Finally, the conclusion are
summarized in Section 4.

II. PHYSICAL MODEL AND SOLUTION METHOD

It is assumed that the X-ray source is an ideal source, that
is, an isotropic monomeric point source. The intensity of X-

rays emitted from the source, passing through the object and
reaching each point on the detector plane can be expressed as

I(x, y) = I0(x, y)e
−L(x,y) = I0(x, y)e

−
∫ d(x,y)
0 µ(l)dl, (1)

where I(x, y) and I0(x, y) are the intensity of X-rays received
by the detector with or without objects, L(x, y) is the total
optical path of the X-rays to point (x, y) on the imaging
plane, d(x, y) is the distance from the point (x, y) on the
imaging plane to the source, and µ(l) is the linear attenuation
coefficient of X-rays in the material at a distance l from the
source.

If the source plane and the imaging plane are respectively
discretized in pixels and regarded as one-dimensional vectors,
the formula 1 can be written in the form of matrix multiplied
by vector:

Ax = b, (2)

where b is the measurement vector, x is the reconstructed
image vector, and A is the projection matrix of size M ×N .
The element aij of matrix Areflects the overall attenuation of
the i-th source intensity reaching the j-th pixel in the imaging
plane after passing through the imaging device. In practice, if
noise generally exists, the above formula becomes

Ax = b+ n, (3)

where n is the noise of the imaging system.
It is assumed that the source is 15cm away from the center

of L-Edge and the imaging plane is 120cm away from the
center of L-Edge, that is, the geometric magnification ratio M
of the imaging system is 8. Assuming that the L-Edge imaging
device is a homogeneous single medium, the element aij of
the imaging matrix based on the transmission model can be
written as

aij = I0e
−L((x′,y′)→(x,y)) (4)

where L((x′, y′) → (x, y)) is the optical path of X-rays
passing through the L-Edge imaging device on the path from
point (x′, y′) in the source plane to point (x, y) in the imaging
plane. It can be derived according to the geometric relative
position relationship.
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(a) (b)
Fig. 1. Imaging matrix of L-Edge imaging device with different physical
models (local enlargement). (a) Opaque model; (b) Transmission model
considering transmission effect.

(a) (b)
Fig. 2. (a) L-Cylinder imaging device; (b) The transmission imaging matrix
of the L-Cylinder device.

For the ”opaque” model adopted by Barnea et al. [2], it is
equivalent to µ being infinity, and the matrix element based
on the ”opaque” model can be written as:

aij =

{
1, L > 0,
0, L = 0.

(5)

Figure 1 shows the imaging matrix of these two models
under the same imaging state. It can be seen that the transition
between light and shade of opaque model is simple, see Figure
1(a), whereas the imaging matrix in Figure 1(b) changes
gradually after considering the transmission effect, which can
more truly reflect the gradual change of X-ray intensity when
penetrating L-Edge imaging device.

III. RECONSTRUCTION OF SOURCE

In view of the right angle edge of L-Edge imaging device,
there is a sudden change of image intensity near the edge,
which leads to serious artifacts in the reconstructed image [3].
Therefore, we propose an improved design, that is, the L-
Cylinder imaging device is directly formed by splicing two
sections of cylinders into an ”L” shape, as shown in Figure
2(a). The transmission imaging matrix of the constructed L-
Cylinder device is shown in Figure 2(b). The transmission
imaging matrix based on the improved imaging device can
form a uniform band transition region, which is beneficial to
the smoothness of the reconstructed image theoretically.

Set the FWHM of X-ray source with Gaussian distribution
used in the Monte Carlo simulation as 0.2 cm. Figure 3
shows the MC photographic image of this source and its
reconstructed intensity distribution, and the cross-sectional

lines of the reconstructed image in different directions are
shown in Figure 4 [4].

Fig. 3. Ground truth and reconstruction of Gaussian Source. Left: Ground
truth; Right: Reconstruction with L-Cylinder device.

Fig. 4. Transverse lines of reconstructed source in horizontal and vertical
directions.

As can be seen from Figure 4, the L-Cylinder imaging de-
vice can well reconstruct the intensity distribution of Gaussian
source, and accurately measure the FWHM of Gaussian source
to be 0.2cm. The L-Cylinder imaging device significantly
improves the discontinuity phenomenon which reconstructed
with L-Edge imaging device.

IV. CONCLUSION

In this paper, the spot measurement method of high-energy
X-ray source based on image reconstruction is studied. The
physical model considering the penetration effect of X-ray to
the imaging device is established, and the algebraic solution
method of spot image reconstruction is established. The X-
ray source with Gaussian distribution is reconstructed. The
results show that the artifacts and discontinuous in the center
of the reconstructed images can be improved using L-Cylinder
imaging device, and is more suitable for the reconstruction of
high-energy X-ray source.
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Abstract—Painting classification is an interesting cross-
disciplinary research problem in computer vision. With the
increased accessibility of digitized collections of fine-art paint-
ings, development of effective painting classification algorithms
has become vital as they have many potential applications
in museums, various industries, painting theft investigation,
forgery detection, art education, etc. However, the availability of
large scale annotated benchmark datasets with high-resolution
authentic painting images still remains a challenge. Towards
that end, in this work, we develop an image dataset consisting
of high-resolution painting images from 100 different artists
spanning 14 different styles. This dataset is an extension of the
Painting-91 dataset constructed by Khan et al. Our contribution
towards extending this dataset are threefold. First, we address
the limitations of the dataset by removing errors and enhancing
image resolutions. Second, we add more images to augment some
of the artist categories with fewer images. Third, we include the
works of nine more painters from diverse backgrounds and styles
for creating a more representative and inclusive database of fine-
art paintings. We also perform a preliminary evaluation of this
newly constructed Paintings-100 dataset using several different
Convolutional Neural Network (CNN)-based classification tech-
niques for artist recognition. Furthermore, we demonstrate that
our proposed and improved dataset is more suitable for patch-
based models than the earlier published Painting-91 dataset due
to larger image resolutions.

Keywords—painting classification; image dataset; CNN

I. INTRODUCTION AND BACKGROUND

Due to the substantial digitization of artworks in recent
years, along with the impressive development in the area
of computer vision, automated painting classification is an
interesting and crucial research problem. Fine-art painting
classification, which includes identifying the artist and the
artistic style from a painting, has many applications in mu-
seums, various industries, painting theft investigation, forgery
detection, art education, etc. However, this is not a trivial task
due to the complexities of artistic styles, subjectivity in the
interpretation of paintings, varied image quality, lack of fine
details, and context of the visual images [1] [2].

In the last decade, several studies have focused on em-
ploying computer vision techniques to analyze paintings and
other forms of visual art [3]–[6]. In our previous work [7],
we explored the use of pre-trained Convolutional Neural Net-
work (CNN) models as a feature extraction tool for painting
classification. Some of the popular painting datasets that are
available publicly for artist and style classification include the
Painting-91 dataset by [8], the WikiArt dataset [9], and the

Figure 1. Some errors that exist in the old Painting-91 dataset.

Painting dataset consisting of ten classes of fine-art paintings
from the PASCAL VOC [10].

While CNNs have proven to be versatile and effective in
various image-related tasks, one of the major challenges of
being able to effectively use CNNs for painting classification is
the need for large hand-labeled datasets [2]. To that end, in this
paper, we have worked on improving the existing Painting-91
dataset [8] to not only include newer artists and painting styles,
but also carefully remove different mis-attribution and other
human errors that existed in that dataset. Some of these errors
are shown in Figure 1. Our newly constructed dataset, called
the Paintings-100 dataset, also has enhanced image resolutions
than the previous dataset. We have augmented certain artist
categories, which had fewer images in the previous dataset,
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Figure 2. Some paintings of the newly added nine artists that are included
in the Paintings-100 dataset.

with newer images. Last, but not the least, we have also done
a preliminary evaluation of this dataset using several CNN
based methods on both whole images as well as random image
patches for the artist classification task.

The rest of this paper is organized as follows. Section II
and its subsections outline in detail the dataset constructed in
this work. The techniques used to evaluate the classification
performance on this dataset, the experiments performed, and
results obtained are described in detail in Section III. Finally,
we list our conclusions and directions for future research in
Section IV.

II. DATASET CONSTRUCTION

When we worked on [7], we realized that the images in
the original Painting-91 dataset [8] are too small for learning
meaningful features using deep learning. While trying to
replace the images with their high-resolution versions, we
found several kinds of human errors and other limitations in
the original dataset which needed to be fixed. These issues,
some of which are shown in Figure 1, are as follows:

A. Low resolution

This was the main motivation for this work. The mean size
of an image in this dataset is 268× 263 pixels. These dimen-
sions are smaller than the input sizes of many CNN models.
So, to improve the quality of the data, we started replacing
the images with high-resolution versions downloaded from
the Internet via Google Reverse Image Search [11]. We were
successful in this task for about 97% of the images, but we
also ran into other errors as detailed next.

B. Mis-attributions

These are images labeled with a painter’s name that are not
painted by that painter. Some of these mis-attributed images
are deliberate attempts to copy the attributed painter’s style,
some are created using image editing software by making
collages of existing paintings, and some others have simply

Figure 3. For artist classification task, we used both whole images as well
as random patches from the images to feed into different CNN models.

been downloaded from a source on the Internet which also
had the wrong label.

C. Duplicates

Several of the images in most artist classes are duplicates of
other images also in the class. The number of images per class
varies from 30 to 51, which is already very small for training
deep learning models, and the presence of duplicate and
mislabeled images further reduces this number. For instance,
the painter class Hieronymus Bosch has 50 paintings, out of
which 25 are duplicates (exact or slightly variant copies), and
a further 5 are wrongly attributed, thus bringing the actual
number of usable images down to 20.

D. Cropped images

These are images which show only part of a painting, the
whole of which may or may not be present in the dataset.
Since the overall composition bears as much information about

TABLE I
NEW ARTISTS WHOSE PAINTINGS WERE ADDED TO THE DATASET, ALONG

WITH THEIR NATIONALITY AND STYLE.

Artist Nationality Style
Amrita Sher-Gil Hungarian-Indian Several
Jamini Roy Indian Indian folk art
Julie Mehretu Ethiopian American Several
Katsushika Hokusai Japanese Ukiyo-e
Kitagawa Utamaro Japanese Ukiyo-e
Rafiy Okefolahan Cape Verdean Contemporary multimedia
Raja Ravi Varma Indian Indian realism
Utagawa Hiroshige Japanese Ukiyo-e
Zhang Xiaogang Chinese Surrealism
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a painter’s identity as details do, just having a small cropped
portion of a painting in the dataset is not ideal.

E. Color variations

These are also copies of other images in the dataset.
However, instead of being exact duplicates, these images
have a different color palette. There is no way of knowing
which of the copies has a more accurate color palette, and
so, color cues lose their significance in classification. To
further complicate matters, some artists (such as Andy Warhol)
themselves produced multiple copies of the same painting with
slight differences in details and color, which count as different
images in the dataset.

F. Lack of diversity

While the original dataset contains an impressive collection
of works from 91 painters and 13 style categories, this collec-
tion focuses exclusively on Europe and the Americas. There
are no painters representing the rich artistic heritage of Asia
and Africa. This is not exactly an error, but an omission in the
dataset that needed to be addressed for overall improvement.

Improvements

We took several steps to address the above issues. First,
we replaced most images with their high-resolution versions
wherever such a version was available in the public domain.
The mean image size in the new dataset is 1, 523 × 1, 493
pixels. This amounts to a 32-fold increase in the number of
pixels per image, on average. Second, we replaced wrongly
labeled images with their correct counterparts, or new images
by the same artist. Third, wherever possible, we also added
new paintings to all artist categories that had less than 50
paintings. Fourth, we reduced the number of duplicates by
replacing them with new paintings wherever possible. Last,
but not the least, we added 50 paintings each by 9 more
painters spanning a diverse array of styles representing Asian
and African art (shown in Figure 2 and Table I). This makes
our new Paintings-100 dataset a more diverse, inclusive and
representative database of fine-art paintings. The presented
Paintings-100 dataset has 5, 357 images which is an impressive
25% increase from the 4, 266 image Painting-91 dataset.

III. EXPERIMENTS AND DISCUSSION

The original Painting-91 dataset, and by extension, the
proposed Paintings-100 dataset, are both designed for two
classification tasks. These tasks are artist classification and
style classification. The first task is straightforward as every
image has an artist class label, and the artist classes are roughly
equal in size. For the second task, the dataset contains 14 style
class labels in addition to the 100 artist class labels. This is a
slight increase from 13 style classes in the Painting-91 dataset
(Ukiyo-e is the new style class introduced). Each style class
contains works from more than one artist, but not all artists
have a style class label [8]. In the current work, we have only
analyzed the dataset with respect to the first problem.

The artist classification problem is somewhat challenging
for CNN-based models. This is mainly due to two reasons.

Figure 4. Painting by Edgar Degas. When the whole image is used for artist
recognition, the CNN identified it as a Frans Hals painting, whereas by using
random patches, it is correctly classified as an Edgar Degas artwork.

Firstly, deep learning is data-hungry, and very few artists
manage to paint more than a few dozen completed paintings
in their lifetime. This severely reduces the images available
for training. Secondly, CNN models take fairly low-resolution
images as their input. This means, we either need to down-
sample the images and lose all detail, or crop the images
and lose all sense of composition and context. Since neither
solution was fully acceptable to us, we decided to use an
ensemble of multiple CNN models that use both downsampled
whole images and full-size patches cropped out of the high-
resolution images. For classifying the patches, we designed
our own CNN from scratch and trained it using 25 random
square patches from each training image. For the whole image
classification, we fine-tuned the VGG-16 network [12] trained
on the ImageNet image dataset [13]. These two models are
shown in Figure 3. In both cases, we used 24 images per
class with augmentation for training, 6 per class for validation,
and the rest for testing. We used decision fusing based on
the labels predicted by the two models. Our initial results
were promising, with the patch-based model yielding a 32%
accuracy on the test set, the whole image model yielding
33%, and the fused accuracy at 38%. The confusion matrix
for this result is shown in Figure 5. Figure 4 illustrates the
effectiveness of such a fusion. In this example, although the
whole image classifier predicts the label to be Frans Hals,
different patches vote for different labels and the true artist,
Edgar Degas, gets the most votes.

We also did a visualization of the responses from the
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Figure 5. The confusion matrix for the artist classification experiment using
the combined decision of two CNN models. The rows indicate actual class
index values while the columns indicate predicted index values.

last convolutional layer of our patch-image classifying CNN
using the Grad-CAM technique [14]. This ”heatmap” analysis
highlights the regions of an image that are key identifiers for
artist recognition. While this is a work in progress, the results
demonstrated in Figure 6 show some of the characteristics of
artists that the network can identify correctly. For instance,
bold outlines are a signature characteristic of Jamini Roy
and these outlines are highlighted in the topmost example
in Figure 6. Similarly, dotted patterns and certain kinds of
brush strokes are recognized as characteristic features of Roy
Lichtenstein and Vincent Van Gogh, respectively.

IV. CONCLUSION AND FUTURE WORK

In this work, we presented a large scale diverse high-
resolution image dataset for artist and style classification.
While this was based on the Painting-91 dataset, the improve-
ments were significant enough for the Paintings-100 dataset to
be considered a new dataset. Although we need to run many
more experiments, initial results based on an ensemble of CNN
models showed promising results for the artist classification
task.

There are many different ideas that we would like to try
out on this dataset in the near future. Currently, we select
the patches randomly. In future, we want to try selecting
patches with face detectors and object detectors to see how that
affects our results. We plan to use some color normalization
techniques to reduce the effect of photographic conditions on
the paintings. Last, but not the least, we still need to run style
classification experiments on this dataset and see the results.
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Abstract—The author aims to pass on the tradition of classical 
music to the next generation by significantly reforming and 
evolving the traditional pedagogy of piano education. 
Recording and reflecting on one’s performance through video 
can be a helpful tool in the learning process. However, current 
video platforms lack the functionality to quickly cue specific 
scenes. Moreover, video recording is generally limited to a 
single angle. Reflecting on not just the hands but also the use of 
the upper body and feet is crucial in piano performance. We 
have developed a system that enables multi-angle recording 
using multiple smartphones, allowing for the review of video 
linked to the musical score. This paper will discuss the system’s 
development, focusing on the synchronization between audio 
and every video angle, and user reviews. Utilizing this system 
for objective evaluation of actual performances is expected to 
reveal gaps between the ideal and reality and to discover new 
challenges. 

Keywords-Piano Lesson; support; Multi-Angle recording 
system; visualization. 

I.  INTRODUCTION 
This paper is part of a research project conducted at a 

music university in Japan, aimed at passing down the 
tradition of classical piano to the next generation. Previous 
piano studies [1] - [4] have primarily focused on beginners, 
aiming to record and analyze performance techniques, such 
as pointing out errors and playing habits. While multi-angle 
video recording can be achieved using multiple cameras, 
reviewing these recordings simultaneously requires 
aggregating data and editing with specialized software, 
making instant post-performance review challenging. Our 
study targets music university students, with a focus on 
lessons for acquiring musical expression. To master musical 
expression, repeated practice is necessary to understand the 
nuances in sound created by different playing styles. 
Therefore, it’s crucial to instantly review one’s playing 
technique and the resulting sound. We are developing a 
system that utilizes smartphones and tablets for recording 
performances from multiple angles. This system allows for 

immediate playback from specific annotated points [5], 
enabling performers to promptly reflect on their technique. 

The remainder of this paper is organized as follows. 
Section II describes the multi-angle recording system being 
developed in this study, and Section III describes the results 
of two experiments. Finally, Section IV presents the 
conclusions and future challenges of this research. 

II. SYNCHRONIZED RECORDING  SYSTEM USING 
MULTIPLE SMARTPHONES 

The architecture of our system is composed of a server-
client model. On the server side, the system is implemented 
using the Laravel framework, while on the client side, it is 
developed using Vue.js. This system has been tested for 
operation using Chrome browsers on PCs, iOS, and Android. 

A. Recording 
This section describes a multi-angle recording method 

using three perspectives: upper body, hands, and feet, 
utilizing four smartphones. One smartphone is logged into 
the system and serves as the controller for starting and 
stopping recordings and capturing audio. The other 
smartphones are used as video cameras. Recording is 
synchronized with the start/stop signal from the controller 
device, and automatically uploaded to the server upon 
completion. Adding camera angles is streamlined by 
scanning a QR code displayed by the controller machine, 
which transfers user information and automatically directs to 
the recording standby page. The system’s design allows for 
the addition of angles corresponding to the number of 
smartphones prepared. If only one smartphone is available, it 
can be utilized by turning on the video function on the 
controller device. 

B. Reflection 
When the user clicks on an index (score name and 

practice time) on the calendar, the score and the video are 
displayed. Figure 1 is the viewing page. One angle of the 
video is displayed prominently, while the remaining angles 
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are displayed as thumbnails. Selecting a thumbnail switches 
between the enlarged display and the thumbnail display. 
During playback, the audio comes from the microphone 
recorded by the controller device, and the video displays all 
angles simultaneously. In the example in Figure 1, 
annotations are added at two different measures during the 
initial listening session. These annotations are also useful for 
reflecting simultaneously from the second time onward. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Example of score and video viewing page. 

III. SYSTEM EVALUATION 

A. Difference in video timestamps 
The system compiles video from each device onto a 

server after recording ends, making it accessible to users 
instantly. The audio captured by the microphone was 
compared with the audio from three video recordings, which 
were not utilized during the reflection phase. The results 
revealed a discrepancy ranging from 0.03 to 0.29 seconds. 
This is the timing discrepancy between each device receiving 
the recording start signal from the controller and the actual 
commencement of recording. 

B. User Reviews 
Interviews were conducted with four students and one 

teacher to gather feedback on the system. 
1) Audio Discrepancy: A notable discrepancy in audio 

timing, 0.29 seconds as reported by a student caused 
discomfort, though some students found it negligible. The 
teacher deemed a discrepancy as minimal as 0.03 seconds to 
be intolerable for educational use, emphasizing that 
precision within 0.01 seconds is fatal. 

2) Multi-Angle Recording: Students noted its benefit for 
observing their full body and foot movements, which are 
typically not visible when only focusing on hand 
movements. Reviewing each angle’s video separately is not 
practical. Having the capability to simultaneously reflect on 
multiple angles in a single view is highly convenient. 
However, the teacher highlighted the inadequacy of video 
for detailed foot technique analysis, noting that even with 
this system or standard iPhone recording, audio-video 
discrepancies can emerge. Specifically, the delayed auditory 
feedback from pedal use, as opposed to the immediate 

response from hand movements, underscores the necessity 
for improved visualization of pedal pressure and timing in 
such recordings. 

3) Annotation Feedback: Users highly appreciated the 
feature for swiftly returning to annotated sections in lengthy 
pieces. Despite the initial effort to annotate these points, the 
ease of revisiting them was noted as a major benefit.  

4) Suggestions for Improvement: The students suggested 
adding a 10-second rewind and fast-forward feature. They 
highlighted the need for easier navigation through small 
sections of the video, finding the current method of using 
the progress bar for minor adjustments to be less efficient 
and user-friendly. 

IV. CONCLUSION AND FUTURE WORK 
In this study, we aimed to record piano performances in 

multi-angles to enable performers to check their body 
movements. A multi-angle recording system was developed, 
utilizing multiple smartphones working in tandem. The 
results showed that the system was effective for student self-
review. However, for professional levels, like teachers, it 
was evident that the system requires further improvement. 

Future tasks include addressing three main points: First, 
not only synchronizing the start of the recordings but also 
adjusting the playback timing of each file to eliminate 
discrepancies between audio and video. Second, beyond 
reviewing from annotated points, a feature for instant access 
to desired timestamps, like 10-second skips, is necessary. 
Third, for foot pedal usage, it was discovered that video of 
that angle alone is insufficient, and visualization of the force 
and extent of pedal engagement is required. 
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Abstract—Parameter estimation plays a crucial role in many
applications of statistical signal processing. Estimation theory is a
well-established and rigorous framework for making the statisti-
cal inferences from noisy observations. It yields the best possible
(in a precisely defined sense), interpretable and numerically effec-
tive procedures, provided that the models of measurements and
of signals are known up to unknown parameters. Understanding
the fundamental principles of parameter estimation is nowadays
also important in designing the interpretable machine learning
architectures, which usually exchange the computational com-
plexity for the superior performance, while alleviating the need
for knowing the models of signals and measurements. This paper
comprehensively outlines the key principles of estimating the
time-invariant random and non-random parameters, which are
accompanied by several illustrative examples. The presentation
focuses on the key ideas, and does not cover many other relevant
topics; for example, neither the estimation of time-varying signals
nor the survey of the research literature are considered.

Keywords—Inference; linear estimator; noise; optimum estima-
tor; parameter estimation; risk function; uncertainty.

I. INTRODUCTION

The common task in many applications of statistical signal

processing is to learn the values of hidden parameters, and

to extract other useful information from noisy measurements.

This must be done statistically, i.e., the good-quality parameter

estimates must be obtained with a high probability, i.e., most

of the time. As illustrated in Figure 1, the unknown values

of parameters are mapped to measured signals, which are

distorted by the measurement noise. The goal is to find the

optimum mapping for the measurements in order to recover

the parameter values of interest with as small error as possible,

despite the presence of other nuisance parameters and the

measurement noise. Since the mapping of parameters to mea-

surements is assumed to be known, one might be tempted to

simply undo the mapping by using the corresponding inverse

mapping. This may be a simple strategy for estimating the

parameter values, provided that the inverse mapping can be

obtained. However, the caveat is that the inverse mapping

usually amplifies the measurement noise, so it is only effective

if the noise is sufficiently small, and thus, can be neglected.

In practice, this is often not the case, and more sophisticated

methods of the parameter estimation are required.

The best possible target mapping representing the estimator

is usually formulated as the solution of a constrained or un-

constrained optimization problem. The optimization problem

is defined, so that the estimation error is minimized in some

sense. This is also dependent on how the estimated values

are used in a given signal processing application. However,
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Figure 1. The mapping of parameters to measured signals, and the inverse
mapping of measurements to the estimated parameter values.

the resulting optimization problem may not have any solution,

for example, since some important knowledge is missing, or

it may be too complex to be solved effectively. In such a

case, the estimator can be constrained to be a linear filter.

This greatly limits the implementation complexity, although

the optimality can now be only considered within the class

of linear filters. The solution of the optimization problem can

be sometimes found analytically in a closed-form, otherwise

it must be obtained numerically.

The solution of the optimization problem answers one of the

following two questions, depending on the application, i.e.:

1) “Which from several defined values the parameter has?”

2) “How big is the parameter value?”

The first question is central in detection theory, and it is also

closely related to the optimum decision and the hypothesis

testing problems. The second question is the subject of this

tutorial, i.e., it defines the point estimates of the parameter

within estimation theory. The parameter estimates can be also

obtained as ranges of values, however, the interval estimates

are not considered in this tutorial.

If the parameters vary in time, they are referred to as signals

in engineering applications of statistical signal processing. In

mathematics, the term, process, instead of signal is usually

preferred, and the parameter estimation is studied as one of the

tasks of statistical inference. In data science, the longitudinal

data in discrete time are referred to as sequences or time-series,

and the estimation problems are referred to as data mining.

In general, there are three levels of statistics that can be

obtained for the measurements as indicated in Figure 2. In par-
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ticular, the parametric and non-parametric descriptive statistics

are used in characterizing and summarizing the measurements

in observational studies. In order to estimate the values of

hidden parameters, which cannot be observed directly, the

inferential statistics require using more sophisticated methods

as discussed above. Finally, the causal inferences are used to

determine, for example, the counterfactual outcomes and other

cause-effect relationships, which is, however, beyond the scope

of this tutorial.

observations

inferences

causality

di
ff

ic
ul

ty

Figure 2. The three levels of statistically processing the measurements.

A random signal at any particular time instant is a random

variable. The processing of continuous time signals can exploit

derivatives, whereas differences are used for signals in discrete

time (the time discretization does not automatically replace

derivatives with differences). The important consideration in

estimating the parameter values is whether their prior prob-

ability distribution is known; in such a case, the parameters

can be considered to be random, and the Bayesian inference

methods are used. Otherwise, without any prior knowledge,

the unknown parameters must be treated as being non-random

(i.e., deterministic). There are, however, many situations when

some prior parameter statistics are known (e.g., the mean and

the variance), or their probability distribution is known par-

tially; these cases must be considered individually as they do

not constitute the case of random nor non-random parameters.

There are generally four basic types of the parameter

estimation problems depending whether the prior probability

distribution of the parameter to be estimated is known or not,

and whether the estimator is general (i.e., unconstrained), or

it is a linear filter or a transformation.

The rest of this tutorial is organized as follows. The problem

of finding the best possible estimator for a random parameter

minimizing so-called risk function is outlined in Section II. It

includes the Minimum Mean-Square Error (MMSE) and the

Maximum a Posteriori (MAP) estimators. If the prior distribu-

tion of the parameter is not known, it must be treated as being

non-random as explained in Section III. This case includes

the Minimum Variance Unbiased (MVUB), the Maximum

Likelihood (ML), the Least Squares (LS) and the moment-

based estimators. For these estimators, the Cramer-Rao Lower

Bound (CRLB) of their performance has been defined. Linear

estimators of random and non-random parameters are con-

sidered in Section IV and Section V, respectively. Additional

solved problems are provided in Section VI. The relevant

textbooks and the topics and problems, which are not covered

in this tutorial are summarized and discussed in Section VII.

Finally, Section VIII concludes the paper.

II. GENERAL ESTIMATION OF RANDOM PARAMETERS

Consider first the case of a general estimation of a continu-

ous or discrete random parameter, P, having the known prior

Probability Density Function (PDF), fP(p), or the Probability

Mass Function (PMF), PrP(p), respectively. The parameter P

is observed as the value (or multiple values), X(P), repre-

senting the system being considered, i.e., it is crucial that

the dependence of X on P is known. It is then possible to

derive the statistical dependence of X on P represented by the

conditional density, fX |P(x|p), or the conditional probability,

PrX |P(x|p), respectively. The estimator converts the measure-

ments, X(P), to the parameter estimates, P̂(X), which are

used in a given application. The application dictates how to

define the estimation errors, µ(P̂(X),P). The overall process

is summarized in Figure 3.

P̂(X) µ(P̂(X),P)
applicationestimator

parameter
estimate

system
P X(P)

(observed)
measured

value
parameter estimation error

quantification of

Figure 3. A formulation of the parameter estimation problem.

Since the parameter, P, is assumed to be random, the

function, µ(P̂,P), quantifying the estimation error, (P̂− P),

is a random variable. In order to minimize the estimation

error for any value of P (which is unknown), the optimum

estimator minimizes the mean value, or so-called the risk,

E
[
µ(P̂,P)

]
, where E[·] denotes expectation. For instance, the

MMSE estimator minimizes the risk, EX ,P

[
µ(P̂(X),P)

]
=

EX ,P

[
(P̂(X)−P)2

]
, whereas the probability that the error

is greater than a threshold, ∆, assumes the risk function,

EX ,P

[
µ(P̂(X),P)

]
= Pr

(
|P̂(X)−P|> ∆

)
, as illustrated in Fig-

ure 4.

(P̂−P) 00

1

µ(P̂,P) = (P̂−P)2
µ(P̂,P) =

{
0 |P̂−P|< ∆

1 |P̂−P| ≥ ∆

−∆ +∆ (P̂−P)

Figure 4. The two examples of risk function for designing estimator, P̂(X).

In particular, the optimum estimator of a random parameter,

P, minimizes the general risk function,

EX ,P

[
µ(P̂(X),P)

]
=

∫
{X}

∫
{P}

µ(P̂(x), p) fX ,P(x, p)dpdx. (1)

The risk (1) is minimized, if and only if,

P̂opt = argminP̂(x) EX ,P

[
µ(P̂(x),P)|X = x

]
. (2)

Remark 1. The expressions presented here assume that P

and X are scalar random variables; the extension to random

vectors is (usually) straightforward.
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A. The MMSE Estimator

Substituting the MMSE function, µ(P̂,P) = (P̂−P)2, into

(1) above, the MMSE estimator is defined as,

P̂MMSE(x) = EP[P|X = x] =
∫
{P}

p fP|X (p|x)dp

=

∫
{P} p fX ,P(x, p)dp

fX (x)
=

∫
{P} p fX |P(x|p) fP(p)dp∫
{P} fX |P(x|p) fP(p)dp

.
(3)

Hence, if no measurements are available at all, the optimum

MMSE estimator is, P̂MMSE = EP[P] = P̄ (the mean of P).

Example 1. The signal samples, x(i), i = 1,2, · · · ,n represent

the sum of a random, but otherwise constant parameter, P,

having the uniform PDF over the interval, (0,d), and a zero-

mean stationary white Gaussian noise, w(i), having the known

variance, σ2
w. The noise samples, w(i), and the parameter, P,

are independent. Find the MMSE estimate of P.

Solution: 1. For P = p, the measured signal, x(i) = p+w(i),

has the conditional PDF,

fX |P(x|p) =
n

∏
i=1

fW (x(i)− p)

=
1

√

(2πσ2
w)n

exp

(

− 1

2σ2
w

n

∑
i=1

(x(i)− p)2

)

.

(4)

The prior PDF of the parameter, fP(p) = 1
d

, for p ∈ (0,d), and

0, otherwise. Thus, the PDF of X is,

fX (x) =

∫ ∞

−∞
fX |P(x|p) fP(p)dp =

1

d

∫ d

0

n

∏
i=1

fW (x(i)− p)dp

=Cn exp

(

− 1

2σ2
w

(

nx̃2 −
n

∑
i=1

x2(i)

))

×

×
(

Q

(

− x̃

σw

√
n

)

−Q

(
d − x̃

σw

√
n

))

(5)

where Cn = (d
√

n)−1(2πσ2
w)−(n−1)/2, Q(u) =

∞∫
u

1√
2π

e−t2/2 dt

(the Q-function), and, x̃ = 1
n

n

∑
i=1

x(i), so the MMSE estimator,

P̂MMSE(n) =

∫ ∞

−∞
p fP|X (p|x)dp

= x̃− σw√
n

Q̇
(

− x̃
σw

√
n
)

− Q̇
(

d−x̃
σw

√
n
)

Q
(

− x̃
σw

√
n
)

−Q
(

d−x̃
σw

√
n
) , g(x̃,n).

(6)

For streaming data, the online MMSE estimator is obtained

assuming a recurrent evaluation of the arithmetic average, i.e.,

x̃ =
1

n

n

∑
i=1

x(i) =
x(n)

n
+

n−1

n

1

n−1

n−1

∑
i=1

x(i)

︸ ︷︷ ︸

x̃(n−1)

. (7)

The corresponding circuit is shown in Figure 5. �

z−1

1
n

n−1
n

g(x̃,n)
x(n) P̂MMSE(n)x̃(n)

d σw

nuisance
parameters

Figure 5. The MMSE estimator for streaming data from Example 1.

The nuisance parameters that appeared in Figure 1 and

Figure 5 are the parameters that affect the measured sig-

nal, however, they are otherwise irrelevant in the application

considered. Consequently, the nuisance parameters can be

estimated, and these estimates simply ignored. Alternatively,

the estimated nuisance parameters can be substituted into the

estimator of the parameters of interest; this method is referred

to as an adaptive estimation. The third strategy often used in

practice is to eliminate the random nuisance parameters, N,

from the distribution of the measurements, X(P,N), i.e.,

P̂MMSE =

∫
{P}

p

∫
{N}

fP,N|X (p,n|X = x)dn

︸ ︷︷ ︸

fP|X (p|X=x)

dp = EP[P|X = x] .

(8)

The average MMSE estimator (8) is then considered to be

good enough, for any specific values of N.

Omitting the derivations and proofs, the MMSE estimates

have the following properties.

• The estimation error of the MMSE estimator has zero-

mean, i.e., the MMSE estimates are unbiased:

E
[
P̂MMSE(X)−P

]
= 0 ⇒ E

[
P̂MMSE(X)

]
= E[P] . (9)

• The estimator variance can be expressed as,

var
[
P̂MMSE−P

]
= E

[(
(P̂MMSE−P)−E

[
(P̂MMSE−P)

])2
]

= var[P]−var
[
P̂MMSE

]
.

(10)

• The estimation error is uncorrelated with (i.e., orthogonal

to) an arbitrary function of X , i.e.,

cov
[
P̂MMSE(X),g(X)

]
= cov[P,g(X)]

= E
[
P̂MMSE(X)g(X)

]
−E
[
P̂MMSE(X)

]

︸ ︷︷ ︸

E[P]

E[g(X)] . (11)

Consequently, cov
[
P̂MMSE −P,g(X)

]
= 0, and for g(X) =

P̂MMSE(X),

cov
[
P̂MMSE −P, P̂MMSE

]
= 0. (12)

Remark 2. The unbiased estimator does not suffer from a

systematic error. Moreover, the estimator quality is generally

quantified as the variance of its estimation error.

Theorem 1 (Gauss-Markov theorem). Let P and X be the

vector of parameters to be estimated, and the vector of

measurements, respectively. If P and X are jointly Gaussian,
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i.e., P and X are Gaussian with the means, P̄, and, X̄, and the

covariance matrices, var[P], and, var[X], respectively, then,

P̂MMSE(x) = P̄ + H(x− X̄), H = cov[P,X]var−1[X] . (13)

The covariance matrix of the estimation error is,

var
[
P̂MMSE −P

]
= var[P]−cov[P,X]var−1[X]cov[X,P] . (14)

Example 2. Let, x(t) = A + w(t), be an observed signal over

the time interval, t ∈ (0,T ), where A is a normally distributed

random variable with known mean, Ā, and known variance,

σ2
A, and w(t) represents a zero-mean Additive White Gaussian

Noise (AWGN) having the known variance, C0. Estimate the

value of A from the measured signal, x(t).

Solution: 2. Assuming Gauss-Markov theorem, after some

straightforward derivations, the estimator is obtained as,

ÂMMSE =
C0

Tσ2
A +C0

Ā +
σ2

A

Tσ2
A +C0

∫ T

0
x(t)dt. (15)

In addition, if T σ2
A ≫C0, then the estimator can be simplified

as,

ÂMMSE =
C0 Ā

T σ2
A

+
1

T

∫ T

0
x(t)dt. (16)

�

Example 3. The samples received in a data packet of N

symbols are expressed as, x(i) = ps(i) + w(i), i = 1,2, . . . ,N,

where p represents the channel attenuation, s(i) is transmitted

modulation symbol, and w(i) is the sample of an AWGN.

Discuss how to estimate the channel attenuation, p.

Solution: 3. The attenuation, p, is usually a complex-

valued zero-mean Gaussian random variable. Since estimating

unknown p while also detecting unknown s(i) at the same

time is not possible, the first n out of N data symbols are

usually reserved for so-called pilot symbols, which are known

at the receiver. For example, let s(i) = s0, for i = 1, . . . ,n. Then,

the received symbols, ps0, have zero mean, and the variance,

E
[
|ps0|2

]
= E

[
|p|2
]
|s0|2, and Gauss-Markov theorem can be

used to estimate, ps0, i.e., to estimate, p. �

B. The MAP Estimator

If P is a discrete random variable, then it is meaningful to

define its estimation error as,

µ(P̂,P) =

{
0 P̂ = P

1 P̂ 6= P.
(17)

The corresponding risk is equal to the probability of error, i.e.,

E
[
µ(P̂(X),P)

]
= Pr

(
P̂(X) 6= P

)
= 1−Pr

(
P̂(X) = P

)
. (18)

This yields the MAP estimator,

P̂MAP(X) = argminpi
E[µ(pi,P)|X = x]

= argmaxpi
Pr(P = pi|X = x) .

(19)

If P is a continuous random variable, then the estimation

error can be defined as,

µ(P̂,P) =

{
0 |P̂(X)−P|< ∆

1 |P̂(X)−P| ≥ ∆.
(20)

If ∆ in (20) is small, i.e., the probability that P̂ is close to P

is large, then,

P̂MAP(X) = argmaxP̂ fP|X (P̂|X = x)

= argmaxP̂ fX |P(x|P̂) fP(P̂)
(21)

where fX |P(x|P̂) represents the likelihood function. In practice,

the maximum can be obtained by assuming the derivatives, i.e.,
d

dP
fX |P(x, P̂) fP(P̂) = 0, or, d

dP
log( fX |P(x, P̂) fP(P̂)) = 0.

III. GENERAL ESTIMATION OF NON-RANDOM

PARAMETERS

The estimators introduced in the previous subsection require

that the prior statistical description of the parameters to

be estimated is completely known. If this is not the case,

then the parameters can treated as being non-random. The

caveat is that the estimator of a non-random parameter, P,

is often much more difficult to find, and it may not even

exist. For example, assuming the MMSE criterion, minimizing

the risk, E
[
µ(P̂(X),P)

]
=

∫
{X}(P̂(X)−P)2 fX (x,P)dx, yields

correct, but otherwise useless solution, P̂ = P. Figure 6 shows

the examples when the optimum estimator (in the sense of

minimizing the average risk) exists, and when it does not exist.

E{µ(P̂(X),P)}

P

P̂1

P̂2

P

E{µ(P̂(X),P)}

P̂2

P̂1

Figure 6. The examples when the optimum estimator exists (left), and when
it does not exist (right).

The estimation of a non-random parameter, P, generally

relies on knowledge of the statistical dependence of the

measured values, X , i.e., on the parameterized PDF or PMF,

fX (x,P), or, PrX (x,P), respectively, which must satisfy,
∫
{X}

fX (x,P)dx = 1, or, ∑
x∈{X}

Pr(X = x,P) = 1, ∀P. (22)

A. The MVUB Estimator

The minimum variance unbiased (MVUB) estimator of a

non-random parameter, P, is unbiased, i.e., E
[
P̂
]

= P, for ∀P.

The variance of the estimation error of an unbiased estimator

is,

var
[
P̂(X)−P

]
= E

[
(P̂(X)−P)2

]

︸ ︷︷ ︸

MSE

= var
[
P̂(X)

]
. (23)

Consequently, the MVUB estimator minimizes the MSE equal

to the variance of P̂. However, the MVUB estimator may not

exist, i.e., there may be no such function of X having the

smallest variance for any value of P, as shown in Figure 6.

There are several important notions to describe the asymp-

totic accuracy of the estimators of non-random parameters. In

particular, the CRLB defines the minimum achievable variance

21Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-142-8

SIGNAL 2024 : The Ninth International Conference on Advances in Signal, Image and Video Processing

                            28 / 39



of any unbiased estimator of a non-random parameter, P. It is

mathematically formulated as,

var
[
P̂
]
≥ 1

J(P)
(24)

where Fisher information, J(P), is computed as,

J(P) = E

[(
∂ ln fX (x,P)

∂P

)2
]

= E

[

−∂2 ln fX (x,P)

∂P2

]

. (25)

Note that, ln fX (x,P), represents the log-likelihood function,

and showing the equality between the two expectations in (25)

requires a derivation.

The estimator is said to be efficient, provided that it is unbi-

ased, and it attains the CRLB defined in (24). Furthermore, the

estimator is said to be consistent, provided that the variance,

var
[
P̂
]
, is decreasing with the number of measurements, X .

Remark 3. There may be estimators that are slightly bi-

ased, but which have the variance smaller than the CRLB.

For example, the estimator design can be constrained as,

E
[
|P̂−P|

]
< ∆, to allow that it may possibly be unbiased.

The trade-off between the bias and the variance frequently

appears in training the machine learning models. Moreover,

the consistency guarantees that collecting more data samples

improves the estimator accuracy, which is also useful for

machine learning.

B. The ML Estimator

The MVUB estimator may not exist, or it is difficult to find.

However, given the measurement, X = x, unless we are very

unlucky, it is meaningful to choose the estimate of P to be the

value with the largest likelihood, i.e.,

P̂ML(X) = argmaxP̂ fX (x, P̂), or

P̂ML(X) = argmaxP̂ PrX

(
X = x, P̂

)
.

(26)

The estimator (26) is referred to as the ML estimator.

The ML estimator has the following properties.

• If the efficient estimate exists, then it is the ML estimate.

• If the efficient estimate does not exist, then the ML

estimate is neither guaranteed to have the minimum

variance, nor to be unbiased.

• The ML estimator is asymptotically unbiased as well as

asymptotically efficient.

• The ML estimator is invariant to any function, g(P), i.e.,

the ML estimate of g(P) can be obtained as,

ĝML(P) = g(P̂ML). (27)

Remark 4. Even though the ML estimator may not be unbi-

ased, it is generally very attractive for its simplicity to obtain

it. Moreover, if all the values of P are a priori equally likely,

then the ML estimator and the MAP estimator are identical.

Example 4. There were x errors detected in a binary sequence

of n bits. Assuming that the errors are independent, and they

occur with the probability, P, decide whether the estimator

P̂ = x/n of P is the MVUB estimator.

Solution: 4. The variance of the estimator, P̂ = x/n, is,

var
[
P̂
]

= P(1− P)/n. The probability of x errors occurring

among n bits is, Pr(X = x,P) =
(

n
x

)
Px(1 − P)n−x, so that

∂
∂P

lnPr(X = x,P) = n
P(1−P)

(
x
n
−P
)
. Since the estimator, P̂ =

x/n, can be shown to be unbiased, and E

[(
∂ lnPr(X=x,P)

∂P

)2
]

=

var
[
P̂
]−1

, the estimator is indeed the MVUB estimator. �

Example 5. The N samples of an unknown constant a were

sampled in a zero-mean AWGN with an unknown variance,

σ2. Find the ML estimate of a.

Solution: 5. Assuming, x(i) = a+w(i)e, the joint PDF of N

observed samples is,

fX (x,a,σ) =
1

√

(2πσ)N
exp

(

− 1

2σ

N

∑
i=1

(x(i)−a)2

)

. (28)

The ML estimates of the unknown parameters, a and σ,

respectively, must satisfy,

∂ ln fX (x, âML, σ̂ML)

∂âML
=

1

σ̂ML

N

∑
i=1

(x(i)− âML)
!
= 0

∂ ln fX (x, âML, σ̂ML)

∂σ̂ML
= −N

2

1

σ̂ML
+

1

2σ̂2
ML

N

∑
i=1

(x(i)− âML)2 !
= 0.

(29)

Solving these two equations for âML and σ̂ML, their estimators

become,

âML =
1

N

N

∑
i=1

x(i), and

σ̂ML =
1

N

N

∑
i=1

(x(i)− âML)2.

(30)

The estimate, âML, has the mean, E[âML] = 1
N ∑N

i=1 E[x(i)] =
1
N ∑N

i=1 a = a, and the variance of estimation error,

E
[
(âML −a)2

]
= 1

N2 ∑N
i=1 var[x(i)] = 1

N2 ∑N
i=1 σ = σ/N. On the

other hand, for the estimate, σ̂ML, E[σ̂ML] = σ N−1
N

, i.e.,

E[σ̂ML] 6= σ. Hence, the ML estimate of σ is only asymp-

totically unbiased, and the variance of estimation error,

E
[
(σ̂ML −σ)2

]
= σ2 2N−1

N2 becomes asymptotically (for large

N) equal to the CRLB, 2σ2/N, proving that the ML estimator

of σ is asymptotically efficient. �

Many practical scenarios involve measurements in an

AWGN. Specifically, in discrete time, assume the measured

samples, x(i) = g(p) + w(i), where g(·) denotes a non-linear

function, and w(i) is a zero-mean AWGN with unknown

variance. The ML estimate of P is then,

P̂ML = argminP̂

N

∑
i=1

|x(i)−g(P̂)|2. (31)

Similarly, in continuous time, assume the observed signal,

x(t) = g(t, p) + w(t), over the time, t ∈ (0,T ), where g(t, p)
is a signal dependent on P = p, and w(t) denotes a stationary

zero-mean AWGN with unknown variance. The ML estimate

of P is then,

P̂ML = argminP̂

∫ T

0
|x(t)−g(t, P̂)|2 dt. (32)
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Example 6. Find the ML estimate of a constant phase shift, θ,

of the unmodulated carrier signal, x(t) = Acos(ωct +θ)+w(t),

received over the time, t ∈ (0,T ), and assuming that, ωcT ≫ 1.

Solution: 6. The ML estimate of θ is,

θ̂ML = argminθ̂

∫ T

0
(x(t)−Acos(ωct + θ̂))2 dt

≈ argmaxθ̂

∫ T

0
x(t)cos(ωct + θ̂)dt

= ∠

∫ T

0
x(t)e−jωct dt

︸ ︷︷ ︸

X(ωc)

.

(33)

Alternatively,

∂

∂θ̂ML

ln fX (x,A,ωc, θ̂ML)
!
= 0

⇒
∫ T

0
x(t)sin(ωct + θ̂ML)dt = 0.

(34)

The corresponding implementations are shown in Figure 7.

The bottom circuit in Figure 7 is a Phase-Locked Loop (PLL).

It uses the output signal of a Voltage-Controlled Oscillator

(VCO) to recover the carrier signal in order to enable the

coherent detection of transmitted data symbols. �

x(t) ∫ T
0

VCO

sin(ωct + θ̂ML)

−sin(ωct)

θ̂ML

∫ T
0

∫ T
0

x(t)

Re{X(ωc)}

Im{X(ωc)}

∠
cos(ωct)

Figure 7. The two ML estimators of phase shift, θ, of the unmodulated
noisy carrier signal, x(t).

C. The LS Estimator

It may be sometimes impractical or impossible to obtain

the distribution of the measurements, X . However, if a rea-

sonably good model, g(P), of X(P) can be obtained, so that,

X(P) ≈ g(P), then, the optimum estimator of the non-random

parameter, P, can be defined as,

P̂opt(X) = argminP̂ µ
(
X ,g(P̂)

)
. (35)

The corresponding LS estimator is obtained by assuming N

measurements, Xi, and the error function,

µ
(
X ,g(P̂)

)
=

N

∑
i=1

vi

(
Xi −g(P̂)

)2
(36)

where vi are the weights to (de-)emphasize the measurements.

For time-continuous measurements, x(t), the LS estimator

is,

P̂LS = argminP̂

∫ T

0

(
x(t)−g(t, P̂)

)2
dt. (37)

If the parameter, P, is continuous, the minimization of

(35) or (37) can be performed by differentiation, and then

numerically findings the root of a non-linear function.

Remark 5. The LS estimator corresponds to the ML estimator,

provided that the measurement noise is AWGN.

D. The Moments Based Estimator

Both the ML and the LS estimators may be too complex

to implement, since they require finding the extremum of

a generally non-linear function. An alternative approach for

estimating the non-random parameter is to match its statistical

moments. In particular, the n-th general moment of a random

variable, P, is defined as,

gn(P) = EP[Pn] =
∫
{P}

pn fP(p)dp, or

gn(P) = EP[Pn] = ∑
p∈{P}

pn Pr(P = p) .
(38)

If the measurements are stationary, i.e, they have the same

moments, the n-th moment, gn(P), can be estimated from N

measurements, xi, as,

ĝn(P) =
1

N

N

∑
i=1

xn(i). (39)

Subsequently, the estimate of P is obtained by using the

inverse function, g−1
n , i.e.,

P̂ = g−1
n

(

1

N

N

∑
i=1

xn(i)

)

. (40)

Remark 6. In practice, the moments order, n, is typically

assumed to be small, since it is more difficult to reliably

estimate higher-order moments, and the estimation error in-

creases with n. The estimator (40) is unbiased, and consistent,

i.e., limN→∞ ĝn(P) = gn(P), however, there are otherwise no

guarantees about its optimality. Note also that although the

parameter, P, may be a random variable, its distribution is

unknown, and thus, for the purpose of its estimation, it is

considered to be non-random.

IV. LINEAR ESTIMATION OF RANDOM PARAMETERS

The general estimation strategy is to seek an optimum func-

tion to minimize the mean estimation error, i.e., the risk. This

requires a full statistical description of measurements, X , as a

function of the unknown parameter, P. Such a dependence is

normally expressed as the conditional distribution, fX |P(x|p),

or the conditional probability, Pr(X |P), when P is considered

to be a random variable, and the parameterized distribution,

fX (x;P), or the parameterized probability, Pr(X ;P), when P is

non-random.

Provided that only some statistics of the parameter, P, are

known, such as its mean and the variance, they are sufficient
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to define an optimum linear estimator. Such an estimator is

simply a linear filter, which can be written as,

P̂(X) = a + HX (41)

where X is the vector of measurements, P is the vector of

parameters to be estimated, and P̂(X) is the vector of the

estimates. The vector a and the matrix H represent the filter

coefficients, which are independent of the actual values, P,

and, X. Consequently, given the statistics of X and P, such as,

E[X], var[X], E[P], var[P], and cov[P,X]), the task is to find

the optimum filter coefficients, a, and, H.

A. The LMMSE Estimator

The Linear MMSE (LMMSE) estimator is unbiased, i.e.,

E
[
P̂(X)

]
= E[P], or, E

[
P̂(X)−P

]
= 0, where 0 denotes the

all-zeros vector. For the scalar, P, the LMMSE estimator

minimizes the variance, var
[
P̂(X)−P

]
= E

[
(P̂(X)−P)2

]
. In

case of the vector, P, the LMMSE estimator minimizes the

correlation matrix,

var
[
P̂(X)−P

]
= E

[
(P̂(X)−P)(P̂(X)−P)T

]
. (42)

Remark 7. The square matrix, A, is minimized, provided that

it is positively semi-definite, i.e., uT Au ≥ 0, as well as uT Au

has the minimum value for some non-zero vector, u.

The LMMSE estimation minimizes the variance matrix,

var
[
P̂(X)−P

]
. It is straightforward to show that the minimum

occurs, when,

a = P̄−HX̄, and, H = cov[P,X]var−1[X] (43)

requiring only knowledge of P̄ = E[P], X̄ = E[X], var[X], and

cov[P,X]. The LMMSE estimate is then computed as,

P̂LMMSE(X) = P̄ + H(X− X̄). (44)

The LMMSE estimator has the following properties.

• The estimates are unbiased, i.e., E
[
P̂LMMSE(X)

]
= E[P].

• The estimation error and the measurements are uncorre-

lated (orthogonal), i.e., cov
[
P̂LMMSE −P,X

]
= 0.

• The estimation error and the estimate are uncorrelated,

i.e., cov
[
P̂LMMSE −P, P̂LMMSE

]
= 0.

• The variance matrix of the estimate, var
[
P̂LMMSE

]
=

Hvar[X]HT = Hcov[X,P].
• The covariance matrix of the estimation errors is equal

to,

S = E
[
(P̂LMMSE −P)(P̂LMMSE −P)T

]

= var
[
P̂LMMSE −P

]
= var[P]−var

[
P̂LMMSE

]
.

(45)

• The estimator, which is linear, unbiased and orthogonal,

is the LMMSE estimator.

Example 7. The stationary signal, x(t), with a known auto-

covariance, Kx(τ) = E[(x(t + τ)− x̄)(x(t)− x̄)], is sampled at

three time instances, t ∈ {t0−∆t, t0, t0 +∆t}. Find the LMMSE

estimate, ˆ̇x(t0), of the derivative, d
dt

x(t)|t=t0 = ẋ(t0).

Solution: 7. Define the vectors, P = ẋ(t0), and, X = [x(t0 −
∆t),x(t0),x(t0 +∆t)]T . Then, the covariance functions are writ-

ten as, Kx(τ) = Kx(−τ), Kẋ,x(τ) = K̇x(τ), Kx,ẋ(τ) = −K̇x(τ),

Kẋ(τ) = −K̈x(τ), and var[ẋ(t0)] = Kẋ(0). The corresponding

cross-covariance vector,

cov[P,X] = [K̇x(∆t), K̇x(0)
︸ ︷︷ ︸

0

, K̇x(−∆t)
︸ ︷︷ ︸

−K̇x(∆t)

] (46)

and the variance matrix,

var[X] =





Kx(0) Kx(∆t) Kx(2∆t)
Kx(∆t) Kx(0) Kx(∆t)

Kx(2∆t) Kx(∆t) Kx(0)



 . (47)

These expressions can be substituted into, P̂LMMSE(X) = P̄ +
H(X− X̄), and, H = cov[P,X]var−1[X], to get the estimator,

ˆ̇x(t0) = ¯̇x(t0) +
K̇x(∆t)

Kx(0)−Kx(2∆t)
︸ ︷︷ ︸

const

×

(x(t0 −∆t)− x(t0 + ∆t)− x̄(t0 −∆t) + x̄(t0 + ∆t)) .
(48)

�

Example 8. The signal samples, x(i), i = 1,2, · · · ,n, represent

the sum of a random, but otherwise constant parameter, P,

having the uniform probability distribution over the interval,

(0,d), and a stationary AWGN, w(i), with zero-mean, and a

known variance, σ2
w. The noise, w(i), and the parameter, P,

are independent. Find the LMMSE estimate of P.

Solution: 8. Define the vector, X = [x(1), . . . ,x(n)]T , having

the elements, x(i) = P + w(i), so that, X = [1, · · · ,1]T P + W.

The parameter has the mean value, E[P] = d/2, and the

variance, var[P] = d2/12, while the noise, E[w(i)] = 0, and,

var[w(i)] = σ2
w. This yields the LMMSE estimator,

P̂(n) =
nd2

nd2 + 12σ2
w

(

6σ2
w

nd
+

1

n

n

∑
i=1

x(i)

)

. (49)

�

V. LINEAR ESTIMATION OF NON-RANDOM PARAMETERS

If the vector of parameters, P, is non-random, then, E[P] =
P, and, cov[P,X] = E

[
(P−P)(X− X̄)T

]
= 0. Substituting

these expressions into the LMMSE estimator, the solution,

P̂LMMSE = P, is correct, but useless. As for general estimators

of non-random parameters, a different strategy is required.

Assuming a class of linear unbiased estimators, i.e., the

estimators of the form, P̂(X) = a + HX, then,

E
[
P̂(X)

]
= a + HX̄

!
= P, ∀P (50)

and thus, X̄ = DP+r, such that, HD = I, and, a = −Hr. The

matrix, D, and the vector, r, are assumed to be known and

independent of P, where I is the identity matrix. Consequently,

the linear unbiased estimator of P is written as,

P̂ = H(X− r) (51)
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under the constraints,

X̄ = E[X] = DP + r, and, HD = I. (52)

A. The BLUE Estimator

The Best Linear Unbiased Estimator (BLUE) is a linear

estimation with the smallest variance. If the number of mea-

surements (the length of vector, X), is equal to the number of

parameters to be estimated (the length of vector, P), then the

BLUE estimator is defined as,

P̂ = H(X− r), H = D−1. (53)

On the other hand, if the length of vector, X, is greater than

the length of vector, P, which is often the case, then the BLUE

estimator is defined as the one that minimizes the correlation

matrix of the estimation error, i.e.,

S = E
[
(P̂(X)−P)(P̂(X)−P)T

]

︸ ︷︷ ︸

correlation matrix

= var
[
P̂(X)−P

]

︸ ︷︷ ︸

variance matrix

= var
[
H(X− X̄)

]
= Hvar[X]HT .

(54)

Thus, the matrix, S, is equal to the variance matrix of the

estimation error, since the estimator is unbiased, and it also

equal to the variance matrix of the estimate, since P is

considered to be non-random.

Furthermore, if var[X] is independent of P, which is not

always guaranteed, the BLUE estimator, P̂ = H(X − r), is

defined by the matrix,

H =
(
DT var−1[X]D

)−1
DT var−1[X] . (55)

The corresponding correlation matrix is then,

S =
(
DT var−1[X]D

)−1
. (56)

Example 9. The radar determines the distance to a target

using three measurements, x1, x2 and x3. The measurements

are distorted by a zero-mean additive errors, wi, i = 1,2,3.

The correlations between the measurements are dependent

on their separation in time, i.e., (a) if the time separation

is T1, then, r12 = r23 = 0.9, and, r13 = 0.7; (b) if the time

separation is T2, then r12 = r23 = 0.7, and, r13 = 0.4; and

(c) if the time separation is T3, then r12 = r23 = r13 = 0.

Obtain the BLUE estimator of the distance from the three

measurements, and also calculate the mean square error of

the estimate. Assume that the variance of the measurement

errors is, var[wi] = 30 m2.

Solution: 9. In this case, the vector, D, and the variance

matrix of X are defined, respectively, as,

D =





1

1

1



 , var[X] = 30





1 r12 r13

r12 1 r23

r13 r23 1



 . (57)

After substituting the specific values for the correlation co-

efficients, r12, r23, and r13, the matrices, var−1[X], and, the

vector, DT var−1[X], can be computed including the scalar

value, DT var−1[X]D. Subsequently, the estimators and their

mean square errors are obtained for each case of the time-

separation, i.e.,

(a) T1: p̂ = x1 − x2 + x3, S = 24 m2;

(b) T2: p̂ = (x1 + x3)/2, S = 21 m2;

(c) T3: p̂ = (x1 + x2 + x3)/3, S = 10 m2.

�

Remark 8. In Example 9, if the measurements are uncor-

related, the estimate is a simple arithmetic average, and the

estimator variance is the smallest. In other two cases, the un-

equal combining weights account for the non-zero correlations

between the measurements.

VI. ADDITIONAL SOLVED PROBLEMS

Example 10. An unmodulated carrier is measured in discrete

time in the presence of a zero-mean AWGN with an unknown

variance, σ2
w, i.e.,

x(i) = Acos(βi + Φ) + w(i), i = 1,2, · · · ,N (58)

where β is a known angular frequency, which can be assumed

to be, −π < β < π, A is a Rayleigh distributed random

amplitude, and Φ is a uniformly distributed random phase

over the interval, (−π,π). The amplitude, A, and the phase,

Φ, are independent, and let the measured mean received power

be also known. Find the MAP estimate of the phase Φ.

Solution: 10. The amplitude A is a nuisance parameter,

which can be averaged out from the likelihood function,

fX |A,Φ(x|a,φ), of the received signal, x(i). Provided that,
∣
∣
∣
∣

sin(Nβ)

N sin(β)

∣
∣
∣
∣
≪ 1, (59)

the MAP estimate of Φ is obtained as (after some derivations),

Φ̂MAP = −∠(I + jQ) (60)

where

I =
N

∑
i=1

x(i)cos(βi)

Q =
N

∑
i=1

x(i)sin(βi).

(61)

�

Example 11. An unmodulated carrier with unknown ampli-

tude, phase and angular frequency is measured in a zero-mean

AWGN with an unknown variance, σ2
w, i.e.,

x(i) = Acos(βi + φ) + w(i), i = 0,1, · · · ,N −1 (62)

where β ∈ (0,π). Find the ML estimate of all the unknown

parameters, provided that |sin(Nβ)/(N sin(β))|≪1.

Solution: 11. The unknown parameters are: φ, A, β, and σ2
w.

Define the quantities,

k∗ = argmaxk=0,1,··· ,N/2

∣
∣
∣
∣
∣

N−1

∑
i=0

x(i)e−j 2π
N k i

∣
∣
∣
∣
∣

Dk∗ =
N−1

∑
i=0

x(i)e−j 2π
N k∗ i.

(63)
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The corresponding ML estimates are then computed as,

β̂ML =
2π

N
k∗, ÂML =

2

N
|Dk∗ | ,

φ̂ML = ∠Dk∗ , σ̂2
wML =

1

N

N

∑
i=1

x2(i)− 2

N2
|Dk∗ |2 .

(64)

�

Example 12. As shown in Figure 8, the distance from an

object at unknown locations, P1, and, P2, is measured at

multiple spatial locations, xi = (i− 1)∆, i = 1,2, · · · ,N. Find

the LS estimate of the object location.

y

x

∆

P2

P1(i−1)∆

di

0

Figure 8. Determining the object location from multiple distance
measurements.

Solution: 12. Denote the distances,

di = gi(P1,P2) =
√

(P1 − xi)2 + P2
2 . (65)

The estimate, [P̂1, P̂2], of the object location, [P1,P2], is given

by numerically solving the following set of non-linear equa-

tions:

1

N

N

∑
i=1

di

gi(P̂1, P̂2)
= 1

2

N(N −1)

N

∑
i=1

(i−1)di

gi(P̂1, P̂2)
= 1.

(66)

The initial location estimate can be computed as,

P̂1 =
d2

1 −d2
N +(N −1)2∆2

2(N −1)∆

P̂2 = ±
√

d2
1 − P̂2

1 .

(67)

�

Example 13. A non-random discrete time signal, p(i) =
Asin(βi+φ), i = 0,1,2, . . ., is measured in a zero-mean AWGN

with unknown variance, σ2
w. The frequency, β, is assumed to

be known, whereas the amplitude, A, and the phase, φ, are

unknown deterministic quantities. Find the LMMSE estimator

(filter) to suppress the measurement noise at the current time

instant, i = n. Then, simplify the estimator, provided that,

|sin(nβ)/sin(β)| ≪ 1.

Solution: 13. The exact signal estimate and its variance,

respectively, can be derived to be,

p̂(n) =
1

2g(n)sin(β)
×

n

∑
i=0

x(i)(nsin(β)cos((n− i)β)− sin(nβ)cos((i + 1)β)

S(n) =
σ2

w

2g(n)

(

n +
1

2
− sin((2n + 1)β

2sin(β)

)

(68)

where

g(n) =
1

4

(

(n + 1)2 −
(

sin(nβ)

sin(β)

)2

− sin((2n + 1)β)

sin(β)

)

. (69)

If the condition, |sin(nβ)/sin(β)| ≪ 1, is valid, the estimator

and its variance can be approximated as,

p̂(n) ≈ 2

n + 1

n

∑
i=0

x(i)cos((n− i)β)

S(n) ≈ 2

n + 1
σ2

w.

(70)

�

Example 14. A zero-mean discrete-time Gaussian random

signal, v(n), has the auto-covariance, Kv(n) = σ2
va|n|, a > 0.

The signal, v(n), is observed through a non-linear memoryless

circuit having the output signal, x(n) = exp(kv(n)), k > 0.

Find the MMSE estimate, x̂(n), from the past samples, x(i),

i = 1,2, · · · ,n− 1. Note that the random signal, v(n), can be

generated as,

v(n) = av(n−1) + σv

√

1−a2 w(n) (71)

where v(1) = σvw(1), and w(i) is the sample of a zero-mean,

unit-variance AWGN.

Solution: 14. The extrapolated value, x(n), is estimated as:

x̂(n) = (x(n−1))a
exp

(
1

2
k2σ2

v(1−a2)

)

. (72)

The variance of this estimator (predictor) can be found to be,

S = exp(2k2σ2
v)− exp(k2σ2

v(1 + a2)). (73)

�

VII. DISCUSSION

Estimation theory has been established decades ago. It is

now the standard part of the undergraduate and graduate

curricula in most engineering schools. It is then not surprising

that many textbooks are available [1]–[17]. For example, good

explanations of various topics in estimation theory at the

intermediate level are provided in [7]. It should be noted

that only textbooks are provided in the list of references.

The survey of research papers and the state-of-the art are

beyond the scope of this tutorial, which solely focuses on the

fundamental principles of the parameter estimation.
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Moreover, this tutorial could not cover many other important

topics in parameter estimation. For instance, adaptive estima-

tors estimate the values of multiple parameters successively

rather than jointly in order to reduce the complexity. Bayesian

inference relies on simple Bayes theorem; however, in practice,

the underlying distributions cannot be obtained in closed-

form, have many dimensions, or are only known up to a

scaling constant. This requires to use sophisticated numerical

algorithms involving sequential sampling, or approximations.

Furthermore, estimating and predicting the values of time-

dependent parameters is the subject of statistical filtering. It

involves designing, e.g., Kalman filters and its variants, par-

ticle filters, and others. Importantly, signal estimation follows

the same fundamental ideas of parameter estimation.

Computer simulations often perform implicit parameter

estimations. It would be useful to consider the underlying pa-

rameter estimators explicitly as the components of simulations.

This may be straightforward for point estimators, and it is

more challenging for estimating, e.g., posterior distributions.

Unlike statistical inferences, the causal inferences are still

a relatively new topic, which is not always included in

the engineering curricula. Therefore, the textbooks on causal

inferences are also a few and more recent [18]–[22]. A

common strategy for performing causal inferences is to exploit

the parameter inferences. In turn, the causal inference could

enhance the parameter estimation methods.

Mathematical derivations rather than intuitive designs are

often necessary to obtain the estimators, especially when

the measurements are very noisy. Mathematical tractability

for non-linear models can be achieved by assuming function

linearization and other types of approximation. The estimator

derivation translates the estimation problem into the corre-

sponding optimization problem, and a procedure how to solve

the optimization problem. This appears to be in a sharp

contrast with nowadays nearly ubiquitous use of machine

learning algorithms. These algorithms offer the solutions that

are more flexible, but their design is based on intuition

and extensive computer-based experimentation while avoiding

complicated mathematical derivations altogether. Moreover,

these algorithms can be implemented with a few lines of

the Python code. The caveat is that the universal models

used in supervised machine learning require large amounts of

training data, they ignore excessive computational complexity,

and their intuitive and experimental design often completely

obscure their interpretability. This may explain why there are

many computing libraries for machine learning, but only a few

for parameter estimation.

Thus, having specialized, interpretable, but computationally

efficient model-based estimators on one hand, and the uni-

versal, but inefficient model-free machine learning algorithms

lacking the interpretability on the other hand indicates that

there is a need to bring the principles of estimation theory

into machine learning practice. For example, suppressing the

measurement noise and adopting the model constraints by the

means of estimation theory should greatly aid the machine

learning to be either faster, or requiring less training data.

VIII. CONCLUSION

The choice of the appropriate estimator in a given signal

processing scenario is completely dependent on what infor-

mation is available. In particular, the model of measurements

and of signals must be known, so that the statistical description

of measurements and parameters to be estimated can be

obtained in full, or at least partially. For instance, if the prior

distribution of parameters is not known, these parameters are

considered to be non-random, and their estimator may be much

more difficult to find, or may not even exist. The lack of

model knowledge can be replaced by the input-output samples

as in the supervised machine learning. Another important

consideration is how noisy the measurements are.
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Abstract—A recently developed Recursive Least-Squares
(RLS) adaptive filter based on a Third-Order Tensor (TOT)
decomposition technique, namely RLS-TOT, has proved to be
efficient in system identification problems that target the esti-
mation of long length impulse responses. This solution fits very
well in echo cancellation scenarios, where the associated impulse
response of the echo path can reach hundreds or even thousands
of coefficients. In this short paper, we further discuss several
strategies for improving the performance of RLS-TOT, focusing
on its main parameters that control the convergence features.

Index Terms—adaptive filter; recursive least-squares algorithm;
echo cancellation; tensor decomposition; convergence parameters

I. INTRODUCTION

Adaptive filtering algorithms are frequently involved in
many real-word system identification problems [1]. Among
them, the Recursive Least-Squares (RLS) algorithm represents
a very appealing choice due to its fast convergence rate, which
can be achieved even for highly correlated input signals [2].
However, the price to pay is a high computational complexity.

In this framework, the overall difficulty increases when deal-
ing with the identification of long length impulse responses,
which raise significant challenges in terms of the complexity,
convergence/tracking, and accuracy of the solution. Even the
“fast” (i.e., less complex) versions of the RLS algorithm face
performance limitations in such scenarios [3]. A well-known
example is related to echo cancellation, where the echo paths
are usually modeled as finite impulse response filters that can
reach hundreds/thousands of coefficients [4].

Exploiting the characteristics of the systems to be identified
represents a natural path to follow, in order to overcome
the main challenges related to the estimation of long length
impulse responses. In this context, several recent works have
focused on decomposition-based techniques that involve the
Nearest Kronecker Product (NKP) and low-rank approxima-
tions [5]–[8]. In this framework, the NKP-based approach in
conjunction with a Third-Order Tensor (TOT) decomposition

has been addressed in [9] and [10]. The resulting RLS-TOT
algorithm combines the coefficients of three adaptive filters of
much shorter lengths, which leads to important advantages in
terms of the main performance criteria.

In this short paper, we explore several upcoming develop-
ments related to the RLS-TOT adaptive filtering algorithm,
aiming to improve the overall performance by tuning its con-
vergence features. In this context, we target the development
of improved versions of this algorithm, by using variable
forgetting factors and variable regularization parameters.

In the following, Section II presents the RLS-TOT al-
gorithm. Next, Section III is dedicated to the results and
discussions. Finally, Section IV concludes this paper.

II. RLS-TOT ALGORITHM

Let us consider a single-input single-output scenario with
real-valued signals. The main goal is to identify an unknown
impulse response with L real-valued coefficients, which are
grouped into the column vector h. Thus, at the discrete-time
index n, the reference signal results in

d(n) = hTx(n) + w(n) = y(n) + w(n), (1)

where the superscript T denotes the transpose operator, the
column vector x(n) contains the most recent L samples of
the zero-mean input signal x(n), y(n) = hTx(n) is the
output signal, and w(n) is a zero-mean additive noise, which
is uncorrelated with x(n).

Also, let us consider that the length of h can be expressed
as L = L11L12L2, with L11 ≥ L12 and L11L12 ≫ L2. Thus,
the impulse response can be equivalently decomposed as [9]

h =

L2∑
l=1

P∑
p=1

hl
2 ⊗ hlp

12 ⊗ hlp
11, (2)

where P < L12 and the (shorter) component impulse re-
sponses hlp

11, hlp
12, and hl

2 have the lengths L11, L12, and
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L2, respectively, while ⊗ denotes the Kronecker product.
The particular subscript/superscript notation indicates different
set of vectors related to the component impulse responses,
as shown in Table I (which summarizes the specific data
structures). The development from [9] that led to (2) is based
on the low-rank approach [5]. This is a reasonable approach,
since in practice most of the system impulse responses are low
rank, especially in the context of room acoustics [7].

In this decomposition framework, the main focus is the
identification of the component impulse responses from (2).
Thus, the identification of the impulse response h (with
L = L11L12L2 coefficients) is reformulated as a combination
of three sets of coefficients, i.e., hl

2 of length L2 (with
l = 1, 2, . . . , L2), hlp

12 of length L12, and hlp
11 of length

L11 (with l = 1, 2, . . . , L2 and p = 1, 2, . . . , P ). Corre-
spondingly, related to these three sets, we need to estimate
L2
2, PL12L2, and PL11L2 coefficients, respectively. For the

common decomposition setup that involves L11L12 ≫ L2 and
P ≪ L12 [9], this represents an important dimensionality
reduction, especially for large values of L.

In this context, let us consider that ĥ(n) is an estimate of
the impulse response h at the discrete-time index n, so that
the a priori error signal results in

e(n) = d(n)− ĥT (n− 1)x(n). (3)

On the other hand, using the impulse response decomposi-
tion from (2), we can also express its estimate as ĥ(n) =∑L2

l=1

∑P
p=1 ĥ

l
2(n)⊗ ĥlp

12(n)⊗ ĥlp
11(n), where ĥlp

11(n), ĥ
lp
12(n),

and ĥl
2(n) are three shorter impulse responses of length L11,

L12, and L2, respectively. Thus, in order to construct the cost
functions of the RLS-TOT algorithm, we can rewrite e(n) in
three equivalent ways, with the purpose of “extracting” each
individual component. As a result, following the development
from [10], the equations that defined the RLS-TOT are:

k12,11(n) =
P12,11(n− 1)x12,11(n)

λ2 + xT
12,11(n)P12,11(n− 1)x12,11(n)

,

k2,11(n) =
P2,11(n− 1)x2,11(n)

λ12 + xT
2,11(n)P2,11(n− 1)x2,11(n)

,

k2,12(n) =
P2,12(n− 1)x2,12(n)

λ11 + xT
2,12(n)P2,12(n− 1)x2,12(n)

,

P12,11(n) = λ−1
2

[
IL2

2
− k12,11(n)x

T
12,11(n)

]
P12,11(n− 1),

P2,11(n) = λ−1
12

[
IPL12L2 − k2,11(n)x

T
2,11(n)

]
P2,11(n− 1),

P2,12(n) = λ−1
11

[
IPL11L2 − k2,12(n)x

T
2,12(n)

]
P2,12(n− 1),

ĥ2(n) = ĥ2(n− 1) + k12,11(n)e(n),

ĥ12(n) = ĥ12(n− 1) + k2,11(n)e(n),

ĥ11(n) = ĥ11(n− 1) + k2,12(n)e(n),

where λ2, λ12, and λ11 are the forgetting factors, which are
positive constants smaller than or equal to one. The rest of
notation is detailed in Table I, where IL• denotes the identity
matrix of size L•×L• and 0L• generally denotes an all-zeros
column vector of length L•. As shown in Table I, the three
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Figure 1. Complexity order of the conventional RLS algorithm and RLS-TOT
for two impulse responses, with lengths (a) L = 512 and (b) L = 2048.

component impulse responses are connected via the Kronecker
product, so that they are interdependent. The initialization
setup is P12,11(0) = δ−1IL2

2
, P2,11(0) = δ−1IPL12L2 , and

P2,12(0) = δ−1IPL11L2 , where δ > 0 is the regularization
parameter. Also, the components of the filters are initialized
with ĥl

2(0) =
[
1 0T

L2−1

]T
, ĥlp

12(0) =
[
1 0T

L12−1

]T
,

and ĥlp
11(0) =

[
1 0T

L11−1

]T
.

The computational complexity of the RLS-based algorithms
is proportional to the square of the filter length [2]. Thus,
the conventional RLS algorithm requires a computational
amount proportional to O(L2) = O(L11L12L2)

2. On the
other hand, the RLS-TOT combines three much shorter filters
(for the common setup of the decomposition parameters),
so that it has a lower computational complexity order, i.e.,
O
[
L4
2 + (PL11L2)

2 + (PL12L2)
2
]
. This aspect is indicated

in Figure 1, where the complexity orders of the conventional
RLS algorithm and RLS-TOT are plotted, considering two
impulse responses with L = 512 and L = 2048. For L = 512,
the decomposition setup of the RLS-TOT involves L2 = 2
and L11 = L12 = 16, while for L = 2048 we use L2 = 2
and L11 = L12 = 32. Note that the value of P is usually
significantly smaller than L12, while L12 ≪ L. Consequently,
the computational complexity order of the RLS-TOT can be
much lower as compared to the conventional RLS algorithm.

In the analysis reported in [10], the RLS-TOT was compared
to the conventional RLS algorithm, but also with a previously
developed decomposition-based version that exploits a second-
order decomposition level, which is referred as the RLS
algorithm using the NKP decomposition, i.e., RLS-NKP [6].
This counterpart combines the estimates provided by two
adaptive filters of lengths P ∗L∗

1 and P ∗L∗
2, with L = L∗

1L
∗
2

and P ∗ < L∗
2. While the RLS-TOT is able to outperform the

conventional RLS benchmark and also the RLS-NKP, there is
still room for improvements, as outlined in the next section.
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TABLE I
NOTATION USED FOR THE RLS-TOT ALGORITHM.

Indices: l = 1, 2, . . . , L2, p = 1, 2, . . . , P

Initialization:

ĥ2(0) =

[ (
ĥ1
2

)T
(0) · · ·

(
ĥL2
2

)T
(0)

]T
ĥ
l

12(0) =

[ (
ĥl1
12

)T
(0) · · ·

(
ĥlP
12

)T
(0)

]T
ĥ12(0) =

[ (
ĥ
1

12

)T

(0) · · ·
(
ĥ
L2

12

)T

(0)

]T
ĥ
l

11(0) =

[ (
ĥl1
11

)T
(0) · · ·

(
ĥlP
11

)T
(0)

]T
ĥ11(0) =

[ (
ĥ
1

11

)T

(0) · · ·
(
ĥ
L2

11

)T

(0)

]T
For discrete-time index n = 1, 2, . . .

Ĥlp
12,11(n− 1) = IL2 ⊗ ĥlp

12(n− 1)⊗ ĥlp
11(n− 1)

Ĥ
l

12,11(n− 1) =

P∑
p=1

Ĥlp
12,11(n− 1)

Ĥ12,11(n− 1) =
[

Ĥ
1

12,11(n− 1) · · · Ĥ
L2

12,11(n− 1)

]
Ĥlp

2,11(n− 1) = ĥl
2(n− 1)⊗ IL12 ⊗ ĥlp

11(n− 1)

Ĥ
l

2,11(n− 1) =
[

Ĥl1
2,11(n− 1) · · · ĤlP

2,11(n− 1)
]

Ĥ2,11(n− 1) =
[

Ĥ
1

2,11(n− 1) · · · Ĥ
L2

2,11(n− 1)

]
Ĥlp

2,12(n− 1) = ĥl
2(n− 1)⊗ ĥlp

12(n− 1)⊗ IL11

Ĥ
l

2,12(n− 1) =
[

Ĥl1
2,12(n− 1) · · · ĤlP

2,12(n− 1)
]

Ĥ2,12(n− 1) =
[

Ĥ
1

2,12(n− 1) · · · Ĥ
L2

2,12(n− 1)

]
x12,11(n) = Ĥ

T

12,11(n− 1)x(n)

x2,11(n) = Ĥ
T

2,11(n− 1)x(n)

x2,12(n) = Ĥ
T

2,12(n− 1)x(n)

ĥ2(n) =

[ (
ĥ1
2

)T
(n) · · ·

(
ĥL2
2

)T
(n)

]T
ĥ12(n) =

[ (
ĥ
1

12

)T

(n) · · ·
(
ĥ
L2

12

)T

(n)

]T
ĥ
l

12(n) =

[ (
ĥl1
12

)T
(n) · · ·

(
ĥlP
12

)T
(n)

]T
ĥ11(n) =

[ (
ĥ
1

11

)T

(n) · · ·
(
ĥ
L2

11

)T

(n)

]T
ĥ
l

11(n) =

[ (
ĥl1
11

)T
(n) · · ·

(
ĥlP
11

)T
(n)

]T
ĥ(n) =

L2∑
l=1

P∑
p=1

ĥl
2(n)⊗ ĥlp

12(n)⊗ ĥlp
11(n)

III. RESULTS AND DISCUSSIONS

The main parameters of the RLS-based algorithms are
the forgetting factors. While the conventional RLS algorithm
involves a single forgetting factor (denoted by λ), the RLS-
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Figure 2. Misalignment of the RLS-based algorithms for the identification of
a network impulse response of length L = 512. The forgetting factors are set
based on (4), using K = 5 for the conventional RLS algorithm, and K = 45
for the RLS-NKP and RLS-TOT. The input signal is an AR(1) process and
SNR = 20 dB.

TOT algorithm requires three forgetting factors, i.e., λ11, λ12,
and λ2. Also, the RLS-NKP algorithm [6] uses two forgetting
factors, λ∗

1 and λ∗
2, which correspond to the two adaptive

filters. It is known that choosing the value of a forgetting
factor involves a compromise between the main performance
criteria, i.e., fast convergence/tracking and low misalignment.
In general, the value of a forgetting factor λ⋆ can be related
to the associated filter length (generally denoted by L⋆),
according to the relation [6]:

λ⋆ = 1− 1

KL⋆
, (4)

with K ≥ 1. A higher value of K leads to λ⋆ closer to one,
which improves the accuracy of the solution, but sacrificing
in terms of the tracking behavior. We should also outline that
the initial convergence rate is not always relevant for the RLS-
based algorithms, while the tracking is the true assessment [3].

As compared to the conventional RLS algorithm, the RLS-
TOT provides a better flexibility related to the choice of these
parameters, since it combines three adaptive filters of different
lengths, but much shorter as compared to the length of the
global filter. Since a shorter adaptive filter is usually related
to a faster tracking capability, we could increase the values of
RLS-TOT forgetting factors, aiming to improve its accuracy,
while slightly sacrificing in terms of tracking. On the other
hand, the forgetting factors of the conventional RLS algorithm
and the RLS-NKP should be increased in order to improve
their tracking behavior, while paying in terms of accuracy.

Such an approach is considered in Figure 2, where the
forgetting factors of the comparing algorithms are set based
on (4), using K = 5 for the conventional RLS algorithm and
K = 45 for the decomposition-based versions, i.e., RLS-
NKP and RLS-TOT. The experimental framework is echo
cancellation, aiming to identify a network echo path from
G168 Recommendation [11], with the length L = 512 (the
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Figure 3. Misalignment of the APA, DR-FRLS algorithm, and RLS-TOT, for
the identification of an acoustic impulse response of length L = 2048. The
RLS-TOT uses λ11 and λ12 set based on (4), with K = 100, while λ2 = 1.
The input signal is speech and SNR = 10 dB.

sampling rate is 8 kHz). Thus, the decomposition setup uses
L∗
1 = 32 and L∗

2 = 16 for the RLS-NKP, and L11 = L12 = 16
and L2 = 2 for the RLS-TOT. The input signal x(n) is a
first order autoregressive process, AR(1), which is obtained
by filtering a white Gaussian noise through an AR(1) transfer
function with the pole at 0.8. The output of the echo path,
y(n), is corrupted by a white Gaussian noise, w(n), while
the signal-to-noise ratio (SNR) is set to 20 dB. In order
to test the tracking capabilities, an abrupt change of the
impulse response is considered, by changing the sign of the
coefficients after 2.5 seconds. The performance measure is
the normalized misalignment (in dB), which is evaluated as
20log10

[∥∥∥h− ĥ(n)
∥∥∥ / ∥h∥], where ∥·∥ denotes the Euclidean

norm. As we can notice in Figure 2, the performance gain
(i.e., misalignment/tracking) is clear in the favor of RLS-
TOT, as compared to the RLS-NKP counterpart, for P ∗ = P .
Besides, even if the tracking capability of the conventional
RLS algorithm is improved when using a smaller value of K,
it is significantly slower as compared to the RLS-TOT.

Another strategy that should be considered in case of the
RLS-TOT is to set the maximum value of the forgetting
factor (i.e., equal to 1) for the shortest filter of length L2

2.
In the common setups, this filter has only a few coefficients
(e.g., 4 in our scenario), so that the tracking behavior of the
global filter will be slightly affected, while still improving its
misalignment. This is supported in Figure 3, in the framework
of acoustic echo cancellation. This second experiment is ded-
icated to the identification of an acoustic impulse response of
length L = 2048, using a speech signal as input and operating
in a noisy environment with SNR = 10 dB. Therefore, the
decomposition setup of the RLS-NKP considers L∗

1 = 64
and L∗

2 = 32, while the RLS-TOT uses L11 = L12 = 32
and L2 = 2. Due to its high computational complexity, the
conventional RLS algorithm is prohibitive in such scenarios

0 500 1000 1500 2000

Samples

-5

0

5

10

A
m

pl
itu

de

10-3 (a)

0 500 1000 1500 2000

Samples

-5

0

5

10

A
m

pl
itu

de

10-3 (b)

0 500 1000 1500 2000

Samples

-5

0

5

10

A
m

pl
itu

de

10-3 (c)

0 500 1000 1500 2000

Samples

-5

0

5

10

A
m

pl
itu

de

10-3 (d)

Figure 4. Impulse responses related to the experiment reported in Figure 3:
(a) true acoustic impulse response h; (b) ĥ(n) obtained by APA using µ = 1;
(c) ĥ(n) obtained by DR-FRLS using N = 12; and (d) ĥ(n) obtained by
RLS-TOT using P = 8.

that involve very long length impulse responses. Hence, other
more practical algorithms are used in this simulation. First, we
involve the Affine Projection Algorithm (APA) [12], which
is a very popular choice in the framework of acoustic echo
cancellation. The main parameters of APA are the step-size
(0 < µ ≤ 1) and the projection order (1 ≤ M ≪ L).
Higher values of µ and M improve the convergence rate
and tracking of the algorithm, but increase the misalignment.
In our scenario, we set M = 8 and use different values
of µ to illustrate this behavior. Second, we involve in the
experiment the recently developed Data-Reuse Fast RLS (DR-
FRLS) algorithm [13]. This algorithm can operate with the
maximum value of the forgetting factor (i.e., λ = 1), while the
tracking capability is tuned based on the data-reuse parameter,
denoted by N . As we can notice in Figure 3, the RLS-TOT
outperforms both APA and the DR-FRLS algorithm, in terms
of convergence rate/tracking and misalignment level.

The most relevant estimated impulse responses related to
the experiment reported in Figure 3 are included in Figure 4.
These are compared to the true acoustic impulse response h of
length L = 2048 [shown in Figure 4(a)]. Here, we compare the
estimates provided by three algorithms: i) APA using µ = 1
[Figure 4(b)], ii) DR-FRLS using N = 12 [Figure 4(c)], and
iii) RLS-TOT using P = 8 [in Figure 4(d)]. As we can notice,
the accuracy of the estimated impulse response of RLS-TOT
is significantly better as compared to the estimates obtained
by the comparing algorithms.

In future works, it would be interesting to investigate time-
dependent (i.e., variable) forgetting factors. In this manner,
by varying these parameters within the iterations of the main
algorithm, we can target a better compromise between the
performance criteria. In echo cancellation, this translates in
addressing several challenging situations, like the echo path
change, the double-talk scenario (i.e., the two speakers talk
simultaneously), and the background noise variation.
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In terms of double-talk robustness, an appealing approach
would be to design variable regularization parameters for
the RLS-TOT. To this purpose, the main relations of the
algorithm (presented in Section II) need to be reformulated,
by considering the covariance matrices

R12,11(n) =

n∑
k=1

λn−k
2 x12,11(k)x

T
12,11(k), (5)

R2,11(n) =

n∑
k=1

λn−k
12 x2,11(k)x

T
2,11(k), (6)

R2,12(n) =

n∑
k=1

λn−k
11 x2,12(k)x

T
2,12(k). (7)

Their inverses are equivalent to the matrices P12,11(n),
P2,11(n), and P2,12(n). They can be iteratively evaluated as

R12,11(n) = λ2R12,11(n− 1) + x12,11(n)x
T
12,11(n), (8)

R2,11(n) = λ12R2,11(n− 1) + x2,11(n)x
T
2,11(n), (9)

R2,12(n) = λ11R2,12(n− 1) + x2,12(n)x
T
2,12(n), (10)

so that the final updates of the filters result in

ĥ2(n) = ĥ2(n− 1) +M−1
12,11(n)x12,11(n)e(n), (11)

ĥ12(n) = ĥ12(n− 1) +M−1
2,11(n)x2,11(n)e(n), (12)

ĥ11(n) = ĥ11(n− 1) +M−1
2,12(n)x2,12(n)e(n), (13)

where M12,11(n) = R12,11(n) + δ2IL2
2
, M2,11(n) =

R2,11(n) + δ12IPL12L2 , and M2,12(n) = R2,12(n) +
δ11IPL11L2 . The regularization parameters δ2, δ12, and δ11 can
be designed in a time-dependent manner, as a function of the
estimated SNR. In other words, a lower SNR should be associ-
ated to higher values of the regularization terms, which further
slow down the adaptation process. This is the desired behavior
in double-talk situations or noisy environments, where a low
SNR level could significantly disturb the echo canceler.

IV. CONCLUSIONS

In this short paper, we have presented a tensorial RLS-based
algorithm, which follows a recently developed method that
splits the impulse response of the system based on a third-order
tensor decomposition. The resulting RLS-TOT combines the
estimates provided by three shorter adaptive filters, so that it is
suitable for the identification of long length impulse responses.
We further investigated different strategies for this algorithm,
focusing on its main parameters, i.e., the forgetting factors
and the regularization terms. Simulations performed in echo
cancellation scenarios support the performance gain, in terms
of converge/tracking and accuracy of the solution.
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