
SOFTENG 2017

The Third International Conference on Advances and Trends in Software

Engineering

ISBN: 978-1-61208-553-1

April 23 - 27, 2017

Venice, Italy

SOFTENG 2017 Editors

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology,

Sweden

Pål Ellingsen, Bergen University College, Norway

Paolo Maresca, Verisign, Inc., USA

 1 / 128

SOFTENG 2017

Forward

The Third International Conference on Advances and Trends in Software Engineering
(SOFTENG 2017), held between April 23-27, 2017 in Venice, Italy, continued a series of events
focusing on challenging aspects in the field of software engineering.

Software engineering exhibits challenging dimensions in the light of new applications,
devices and services. Mobility, user-centric development, smart-devices, e-services, ambient
environments, e-health and wearable/implantable devices pose specific challenges for
specifying software requirements and developing reliable and safe software. Specific software
interfaces, agile organization and software dependability require particular approaches for
software security, maintainability, and sustainability.

The conference had the following tracks:

 Software designing and production

 Software testing and validation

 Software reuse

 Software reliability, robustness, safety

We take here the opportunity to warmly thank all the members of the SOFTENG 2017
technical program committee, as well as all the reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly
thank all the authors that dedicated much of their time and effort to contribute to SOFTENG
2017. We truly believe that, thanks to all these efforts, the final conference program consisted
of top quality contributions.

We also gratefully thank the members of the SOFTENG 2017 organizing committee for their
help in handling the logistics and for their work that made this professional meeting a success.

We hope that SOFTENG 2017 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the field of
software engineering. We also hope that Venice, Italy provided a pleasant environment during
the conference and everyone saved some time to enjoy the unique charm of the city.

SOFTENG 2017 Committee

SOFTENG Steering Committee
Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Miroslaw Staron, University of Gothenburg, Sweden
Yoshihisa Udagawa, Tokyo Polytechnic University, Japan
Ulrike Hammerschall, Hochschule München, Germany

SOFTENG Industry/Research Advisory Committee

 2 / 128

Philipp Helle, Airbus Group Innovations - Hamburg, Germany
Sigrid Eldh, Ericsson AB, Sweden
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Michael Perscheid, Innovation Center Network, SAP, Germany
Janne Järvinen, F-Secure Corporation, Finland
Paolo Maresca, VERISIGN, Switzerland
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea

 3 / 128

SOFTENG 2017
Committee

SOFTENG Steering Committee

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Miroslaw Staron, University of Gothenburg, Sweden
Yoshihisa Udagawa, Tokyo Polytechnic University, Japan
Ulrike Hammerschall, Hochschule München, Germany

SOFTENG Industry/Research Advisory Committee

Philipp Helle, Airbus Group Innovations - Hamburg, Germany
Sigrid Eldh, Ericsson AB, Sweden
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Michael Perscheid, Innovation Center Network, SAP, Germany
Janne Järvinen, F-Secure Corporation, Finland
Paolo Maresca, VERISIGN, Switzerland
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea

SOFTENG 2017 Technical Program Committee

Ibrahim Akman, Atilim University, Turkey
Issam Al-Azzoni, King Saud University, Saudi Arabia
Jocelyn Aubert, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Doo-Hwan Bae, School of Computing - KAIST, South Korea
Alessandra Bagnato, SOFTEAM R&D Department, France
Anna Bobkowska, Gdansk University of Technology, Poland
Luigi Buglione, Engineering SpA, Italy
Azahara Camacho, Universidad Complutense de Madrid, Spain
Pablo C. Cañizares, Universidad Complutense de Madrid, Spain
Byoungju Choi, Ewha Womans University, South Korea
Morshed U. Chowdhury, Deakin University, Australia
Cesario Di Sarno, University of Naples "Parthenope", Italy
Sigrid Eldh, Ericsson AB, Sweden
Faten Fakhfakh, University of Sfax, Tunisia
Fausto Fasano, University of Molise, Italy
Rita Francese, Università di Salerno, Italy
Barbara Gallina, Mälardalen University, Sweden
Matthias Galster, University of Canterbury, Christchurch, New Zealand
Alessia Garofalo, COSIRE Group, Aversa, Italy
Pascal Giessler, Karlsruher Institut für Technologie (KIT), Germany

 4 / 128

Ulrike Hammerschall, Hochschule München, Germany
Noriko Hanakawa, Hannan University, Japan
Rachel Harrison, Oxford Brookes University, UK
Qiang He, Swinburne University of Technology, Australia
Philipp Helle, Airbus Group Innovations, Hamburg, Germany
Jang-Eui Hong, Chungbuk National University, South Korea
Fu-Hau Hsu, National Central University, Taiwan
Shinji Inoue, Tottori University, Japan
Janne Järvinen, F-Secure Corporation, Finland
Hermann Kaindl, TU Wien, Austria
Atsushi Kanai, Hosei University, Japan
Imran Khaliq, Media Design School, Auckland, New Zealand
Abdelmajid Khelil, Bosch Software Innovations, Germany
Herbert Kuchen, Westfälische Wilhelms-Universität Münster, Germany
Vinay Kulkarni, Tata Consultancy Services Research, India
Dieter Landes, University of Applied Sciences Coburg, Germany
Karl Leung, Hong Kong Institute of Vocational Education (Chai Wan), Hong Kong
Chu-Ti Lin, National Chiayi University, Taiwan
Panos Linos, Butler University, USA
Francesca Lonetti, CNR-ISTI, Pisa, Italy
Ivano Malavolta, Vrije Universiteit Amsterdam, Netherlands
Paolo Maresca, VERISIGN, Switzerland
Alessandro Margara, Politecnico di Milano, Italy
Sanjay Misra, Covenant University, Nigeria
Masahide Nakamura, Kobe (National) University, Japan
Risto Nevalainen, Finnish Software Measurement Association (FiSMA), Finland
Flavio Oquendo, IRISA - University of South Brittany, France
Fabio Palomba, University of Salerno, Italy
Fabrizio Pastore, University of Milano – Bicocca, Italy
Antonio Pecchia, Federico II University of Naples, Italy
Andréa Pereira Mendonça, Amazonas Federal Institute (IFAM), Brazil
Michael Perscheid, Innovation Center Network, SAP, Germany
Heidar Pirzadeh, SAP SE, Canada
Pasqualina Potena, SICS Swedish ICT Västerås AB, Sweden
Oliviero Riganelli, University of Milano Bicocca, Italy
Michele Risi, University of Salerno, Italy
Alvaro Rubio-Largo, Universidade NOVA de Lisboa, Portugal
Gunter Saake, Otto-von-Guericke-University of Magdeburg, Germany
Kazi Muheymin Sakib, University of Dhaka, Bangladesh
Rodrigo Salvador Monteiro, Universidade Federal Fluminense, Brazil
Akbar Siami Namin, Texas Tech University, USA
iroyuki Sato, University of Tokyo, Japan
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Paulino Silva, ISCAP - IPP, Porto, Portugal

 5 / 128

Maria Spichkova, RMIT University, Australia
Praveen Ranjan Srivastava, Indian Institute of Management (IIM), Rohtak, India
Miroslaw Staron, University of Gothenburg, Sweden
Tugkan Tuglular, Izmir Institute of Technology, Turkey
Yoshihisa Udagawa, Tokyo Polytechnic University, Japan
Sylvain Vauttier, Ecole des Mines d'Alès, France
Miroslav Velev, Aries Design Automation, USA
Colin Venters, University of Huddersfield, UK
Laszlo Vidacs, Hungarian Academy of Sciences, Hungary
Hironori Washizaki, Waseda University, Japan
Ralf Wimmer, Albert-Ludwigs-University Freiburg, Germany
Guowei Yang, Texas State University, USA
Cemal Yilmaz, Sabanci University, Turkey
Mansooreh Zahedi, IT University of Copenhagen, Denmark
Peter Zimmerer, Siemens AG, Germany
Alejandro Zunino, ISISTAN-UNICEN-CONICET, Argentina

 6 / 128

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 128

Table of Contents

Visualizing Execution Models and Testing Results
Bernard Stepien, Liam Peyton, and Mohamed Alhaj

1

A Comparative Study of GUI Automated Tools for Software Testing
Peter Sabev and Katalina Grigorova

7

Chimera: A Distributed High-throughput Low-latency Data Processing and Streaming System
Pascal Lau and Paolo Maresca

16

Integrating Static Taint Analysis in an Iterative Software Development Life Cycle
Thomas Lie and Pal Ellingsen

25

Method for Automatic Resumption of Runtime Verification Monitors
Christian Drabek, Gereon Weiss, and Bernhard Bauer

31

Quality Evaluation of Test Oracles Using Mutation
Ana Claudia Maciel, Rafael Oliveira, and Marcio Delamaro

37

Visual Component-based Development of Formal Models
Sergey Ostroumov and Marina Walden

43

Analysing the Need for Training in Program Design Patterns - An empirical exploration of two social worlds
Viggo Holmstedt and Shegaw A. Mengiste

51

A Model-Driven Approach for Evaluating Traceability Information
Hendrik Bunder, Christoph Rieger, and Herbert Kuchen

59

On the Effect of Minimum Support and Maximum Gap for Code Clone Detection? An Approach Using Apriori-
based Algorithm ?
Yoshihisa Udagawa

66

Function Points and Service-oriented Architectures
Roberto Meli

74

Overview of a Domain-Driven Design Approach to Build Microservice-Based Applications
Roland H. Steinegger, Pascal Giessler, Benjamin Hippchen, and Sebastian Abeck

79

Consistent Cost Estimation for the Automotive Safety Model based Software Development Life Cycle
Demetrio Cortese

88

 1 / 2 8 / 128

A Team Allocation Technique Ensuring Bug Assignment to Existing and New Developers Using Their Recency
and Expertise
Afrina Khatun and Kazi Sakib

96

Self-Governance Developer Framework
Mira Kajko-Mattsson and Gudrun Jeppesen

103

Security and Software Engineering: Analyzing Effort and Cost
Callum Brill and Aspen Olmsted

110

Improving a Travel Management Procedure: an Italian Experience
Antonello Calabro, Eda Marchetti, Giorgio Oronzo Spagnolo, Pierangela Cempini, Luca Mancini, and Serena
Paoletti

114

Powered by TCPDF (www.tcpdf.org)

 2 / 2 9 / 128

Visualizing Execution Models and Testing Results

Bernard Stepien, Liam Peyton
School of Engineering and Computer Science

University of Ottawa
Ottawa, Canada

Email: (Bernard | lpeyton)@uottawa.ca

Mohamed Alhaj
Computer Engineering Department

Al-Ahliyya Amman University
Amman, Jordan

Email: m.alhaj@ammanu.edu.jo

Abstract—Software engineering models typically support some
form of graphic visualization. Similarly, testing results are
shown as execution traces that testing tools, such as TTCN-3
can display as message sequence charts. However, all TTCN-3
tools avoid presenting data directly in the message sequence
chart because some of it may be complex structured data.
Instead, they simply display the data types used. The real data
is made available through detailed message inspection
representations when the datatype shown is clicked on. Thus,
validation of test results requires a tedious message by message
inspection especially for large tests involving sequences of
several hundred test events. We propose the capability to
specify which data can be displayed in the test results message
sequence chart. This provides overview capabilities and
improves the navigation of test results. The approach is
illustrated with an example of SIP protocol testing and an
example of testing an avionics flight management system.

Keywords-sofware modelling; testing; TTCN-3.

I. MOTIVATION

Modeling and testing of software applications are
intricately linked. The first describes the expected behavior
while the second describes a trace of real behavior of a
system. The first preoccupation of a software engineer is to
ensure that both expected and actual behaviors do indeed
match. While formal modelling techniques abound (Unified
Modeling Language (UML), [1], Specification and
Description Language (SDL)[2], Use Case Maps (UCM)[3]),
testing is often performed with ad hoc coded tests using
frameworks such as JUnit [5]. There is very little code reuse
between tests and displaying the results often accounts for
50% of the code written to define tests.

Formal models frequently use Message Sequence Charts
(MSCs) [4] (Figure 1) (Pragmadev studio) to enable the
software engineer to visualize the behavior of a system even
before it has been implemented giving them the possibility to
detect design flaws early and thus avoid costly testing
iterations [6][7].

The formal test specification language Testing and Test
Control Notation (TTCN-3) [8] provides advantages over
frameworks like Junit, with strong typing, a powerful
matching mechanism, and a separation of concerns between
the abstract test specification layer and the concrete layer

that handles coding/decoding data which can result in
significant code reuse [16].

Figure 1. basic MSC

Especially interesting is the support of MSCs to display
test results that is provided by commercially available
TTCN-3 execution tools like TTworkbench, [9], Testcast
[10], PragmaDev Studio [11], Titan [12]. All of these tools
use MSCs to display test results which is especially efficient
when the system is composed of multiple components that
interact with each other as shown in Figure 2.

Figure 2. Test results as MSC

However, all of these tools are confronted with the same
problem of displaying complex structured data in the limited
space provided by MSCs. Thus, they avoid the display
problem altogether by showing only the data type of the
message (Figure 2 shows TTworkbench) and show the
content of the message in a separate table (Figure 3 for
TTworkbench) when clicking on one of the arrows of the
MSC. This requires a tedious message by message inspection
of the MSC. However, this feature is critical in order to
allow to spot errors efficiently. The TTworkbench tool is

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 10 / 128

particularly interesting because it is the only one that shows
the test oracle, the expected message against the data
received from the SUT and flags any mismatches in red.

Figure 3. Detailed message content display

II. TTCN-3 CONCEPT OF TEMPLATE

The central concept of TTCN-3 is the template language
construct that enables describing both test stimuli and test
oracles as structured data in a single template. This in turn is
used by the TTCN-3 tools internal matching mechanism that
compare the values of a template to the actual values
contained in the response message both on message based
and procedure based communication. More important is that
the template has a precise name and is a building block that
can be re-used using its name to specify the value of an
individual field or another template that itself can be re-used
by specifying a modification to its values. This is a concept
of inheritance. For example, one may specify the templates
for the sender and the receiver entities separately:

template charstring entityA_Template
:= “abcd@xyz.com”;

template charstring entityB_Template
:= “pqr@uvw.com”;

A stimuli message can then be specified as:

template MessageType stimuli_1 := {
sender := entityA_Template,
receiver := entityB_Template,
payload := “it was a dark and

stormy night”
}

The response template can itself reuse the above entity
addresses by merely reversing their roles (sender/receiver):

template MessageType response_1 := {
sender := entityB_Template,
receiver := entityA_Template,
payload := “nothing to fear”

}

The TTCN-3 template modification language construct
can be used to specify more stimuli or responses for the same
pairs of communicating entities:

template MessageType stimuli_2
modifies stimuli_1 := {

payload := “the sun is shining at
last”

}

Templates can then be used either in send or receive
statements to describe behaviors in the communication with
the SUT. Such behavior can be sequential, alternative or
even interleaved behavior. The TTCN-3 receive statement
does more than just receive data in the sense of traditional
general purpose languages (GPL). It compares the data
received on a communication port with the content of the
template specified. The following abstract specification
means that upon sending template stimuli_1 to the SUT, if
we receive and match the response message to the template
response_1 we decide that the test has passed. Instead, if we
receive and match alt_response we decide that the test has
failed.

myPort.send(stimuli_1);
alt {

[] myPort.receive(response_1){
Setverdict(pass)

}
[] myPort.receive(alt_response){

Setverdict(fail)
}

}

III. SELECTING DATA FIELDS TO DISPLAY

While most of the tools provide test results in form of an
XML file precisely for enabling users to use their own
proprietary test results display methodology, instead, we
decided to modify the tool’s source code. The motivation
for this approach was to avoid having to re-develop the
MSC display software and especially the message selection
mechanism that displays the detailed structured data table
but also to maintain consistency between the abstract layer
and the TTCN-3 tool. Thus, we preferred to modify the
display software source code itself to display selected data
so that the existing detailed data features when clicking on
the arrows of the MSC are preserved and don’t need to be
re-developed. Our approach is a first in TTCN-3 tools.

The central concept of our approach is to use the
standard TTCN-3 extension capabilities that can be
specified at the abstract layer using the with-statement
language construct. TTCN-3 extensions were devised in the
TTCN-3 standard to precisely allow tools to handle various
non-abstract aspects of a test such as associated codecs and
display test results in the most appropriate way the user
desires. While the language is standardized, there is no
standardization on how a tool operates and, in particular,
how it displays test results. Here, we use the template
definition itself and its associated with-statement in the
abstract layer as a way to specify the fields that will be
displayed on the MSC during test execution since the
template is used by the matching mechanism. In the
following example, we are testing some database content for
information about cities that is a well multi-layered data
structure with fields and sub-fields as follows.

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 11 / 128

template CityResponseType response_1
:= {

location := {
city := "ottawa",
district := "ontario",
country := "canada"

},
statistics := {

population := 900000,
average_temperature := 10.3,
hasUniversity := true

}
} with { extension "{display_fields

{ location {city},
statistics { population }}}"; }

The above TTCN-3 with-statement uses the standard
TTCN-3 extension keyword. It contains a user definition
that is represented as a string. The content of this string is
not covered by the TTCN-3 syntax but by syntax defined by
the user. Thus, it is the responsibility of the user to handle
syntax and semantic checking of that string’s content. First,
we have defined a keyword called display_fields to indicate
that the specification is about selecting the fields to display.
Then, we specify a list of fields and subfields to display.
The curly brackets indicate the scope of subfields. For
example, we specified that we want to see the city subfield
of the location field and the population subfield of the
statistics field. This hierarchy is necessary because various
fields may have subfields with identical names.

Figure 4. Structure of a TTCN-3 tool

We have implemented this feature on the Titan [12]
open-source TTCN-3 execution tool software since this
feature requires modifying the source code of the tool. None
of the commercial TTCN-3 tool vendors make their source
code available. Two areas of the Tool’s source code (see
Figure 4) were modified:

• the source code for the executable (GPL) code
generator that will propagate the selected fields to
display.

• the TTCN-3 test case management code that
handles the MSC display

This did not require modification of the parser since the
content of the with-statement is user defined, thus not
modifying the grammar of the TTCN-3 language. However,
the user definition turns up in the parse tree that is used for
test execution code generation. It is during this code
generation that we take into account this extension for the
display specification. Most TTCN-3 execution software is
based on execution code generated in a general purpose
language (GPL) like Java for TTworkbench or C++ for
Titan and PragmaDev studio and multiple strategies for
TestCast. The general principle of these GPL generated
code is to transform the abstract TTCN-3 definitions into
executable GPL code, for example, in the TITAN tool, the
abstract TTCN-3 template definition response_1 shown
previously becomes a series of C++ definitions, one for
defining constants and the other to define the template
matching mechanism as follows:

static const CHARSTRING cs_7(2, "75"),
cs_2(6, "canada"),
cs_8(6, "france"),
cs_4(8, "new york"),
cs_3(13, "new york city"),
cs_1(7, "ontario"),
cs_0(6, "ottawa"),
cs_6(5, "paris"),
…

The above definitions are in turn used to generate the
C++ source code for the template definition as follows:

static void post_init_module()
{
TTCN_Location
current_location("../src/NewLoggingStudy
Struct.ttcn3", 0,
TTCN_Location::LOCATION_UNKNOWN,
"NewLoggingStudyStruct");
current_location.update_lineno(42);
#line 42
"../src/NewLoggingStudyStruct.ttcn3"
template_request__1.city() = cs_0;
template_request__1.district() = cs_1;
template_request__1.country() = cs_2;
current_location.update_lineno(48);
#line 48
"../src/NewLoggingStudyStruct.ttcn3"
{
LocationType_template& tmp_0 =
template_response__1.location();
tmp_0.city() = cs_0;
tmp_0.district() = cs_1;
tmp_0.country() = cs_2;
}

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 12 / 128

Thus, we had to use the same technique of C++ variable
definitions to pass on our field display definitions since at
run-time, the parse tree is no longer available. The test
result MSC is considered as logging activity. Here this is
illustrated by calling TITAN function log_event_str() that
actually writes the template in the source code because this
is the test oracle as follows:

alt_status
AtlasPortType_BASE::receive(const
CityRequestType_template&
value_template, CityRequestType
*value_ptr, const COMPONENT_template&
sender_template, COMPONENT *sender_ptr)
{
…
TTCN_Logger::log_event_str(": extension
{display_fields { location {city},
statistics { population, temperature}}}
@NewLoggingStudyStruct.CityRequestType :
"),
my_head->message_0->log(),
TTCN_Logger::end_event_log2str()),
msg_head_count+1);
…

Using the above source code, during the test execution,
the Titan tool writes a log file that contains the matching
mechanism results, i.e. the field names and instantiated
values of the TTCN-3 template but also after the code
modifications, the display_fields specifications as follows:

09:33:49.443373 Receive operation on
port atlasPort succeeded, message from
SUT(3): extension { display_fields {
location {city}, statistics {
population, temperature}}}
@NewLoggingStudy.CityResponseType : {
city := "ottawa", district := "ontario",
country := "canada", population :=
900000, average_temperature :=
10.300000, hasUniversity := true } id 1

The above data is used by the MSC display tool (on
Eclipse) and shows two different kinds of information. The
first is the content of our display_fields definition and the
second is the full data that was received and matched. In
fact all we had to do was to prepend the field selection logic
to the actual log data that remained unchanged. The first
will enable the MSC display software to display only the
data requested like on Figure 9 while the second one is used
for the detailed message content table that is obtained
traditionally by clicking on the selected arrow of the MSC
like on Figure 3.

While in open source Titan the execution code is written
in C++, the actual Eclipse based MSC display is written in
Java. Thus we had to modify the Java code that displays the
MSC as well. Now, this is the implementation that is valid
for Titan tool only. Each tool vendor has different coding
approaches and would require different code generation
strategies. Unfortunately since they do not make their source
code available, all we can do is to strongly encourage these
tool vendors to implement our MSC display approach.

IV. THE SIP PROTOCOL TESTING EXAMPLE

The SIP protocol (Session Initiation protocol) [13] is a
very complex protocol using complex structured data
including a substantial proportion of optional fields. The
SIP protocol TTCN-3 test suites are available from ETSI
[14] Traditional TTCN-3 tools will display all the fields in
the detailed message content table. The user must click on
some fields of interest to see the structured content.
However, most real application messages make use of only
a fraction of all the available fields. Thus, our approach can
easily display this fraction of available fields in the MSC.

Figure 5. SIP protocol example model MSC

The ETSI definitions for the SIP protocol have used a
strategy to try to alleviate the data type display problem in
test result MSCs. The approach consists of redefining
several times the same structured data type giving different
names like in the following excerpt where there is a type for
an INVITE method and the BYE request that are absolutely
identical from a field definition point of view but they will
display differently on the MSC using data types only:

type record INVITE_Request {
RequestLine requestLine,
MessageHeader msgHeader,
MessageBody messageBody optional,
Payload payload optional

}
type record BYE_Request {

RequestLine requestLine,
MessageHeader msgHeader,
MessageBody messageBody optional,
Payload payload optional

}
Where the main field is defined as:

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 13 / 128

type record RequestLine {
Method method,
SipUrl requestUri,
charstring sipVersion

}
And the method type is an enumerated type:

type enumerated Method {
ACK_E,
BYE_E,
CANCEL_E,
INVITE_E,
…

}
All of this can be used to specify a template that has all

its fields set to any value except for the method as follows:

template INVITE_Request
INVITE_Request_r_1 := {

requestLine := {
method := INVITE_E,
requestUri := ?,
sipVersion := SIP_NAME_VERSION },

msgHeader := {
callId := {

fieldName := CALL_ID_E,
callid := ?

},
contact := ?,
cSeq := {
fieldName := CSEQ_E,
seqNumber := ?,
method := "INVITE" },
fromField := ?,
toField := ?,
…

}

We can select the field for the SIP method to display in
the test results MSC by adding the with-statement to the
above template as follows:

with { extension "{display_fields
{ requestLine { msgHeader {cSeq

{method} }} }}"; }

This will produce exactly the test results MSC that will
be identical to the model MSC shown on Figure 5.

V. AN AVIONICS TESTING EXAMPLE

The whole idea of selecting data to display on a test
results MSC originated specifically in an industrial
application that we have worked on for testing the Esterline
Flight Management System (FMS) [15]. The FMS shown on
Figure 6 enables pilots to enter flight plans and display the

flight plan on the FMS screen. A flight plan can be modified
as a flight progresses. Flight plans and modifications are
entered by typing the information using the alphanumeric
key pad that consist of letters of the alphabet, numbers and
function keys. For test automation purposes, key presses can
be simulated by sending messages to a TCP/IP
communication port. The content of a screen can be retrieved
anytime with a special function invocation that will return a
response message on the TCP/IP connection. Thus, we have
the behavior of a typical telecommunication system sending
and receiving messages with the difference that the response
message must be requested explicitly, it is not coming back
spontaneously and is subject to response delays that must be
handled carefully in case of time outs.

Figure 6. Flight Management System

In this case, stimuli messages are simple characters or
names of function keys. These messages are by definition
very short and can easily be displayed in full on the test
results MSC. For such short messages, we have devised a
default display option where if there is no with-statement
with a display field specification for a given template, the
MSC will display all data of this message. This is
particularly optimal for short message content like the FMS
key presses. The original test results MSC provided by Titan
was displayed using useless message type names as shown
on Figure 7 .

Figure 7 Original TITAN test results MSC display

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 14 / 128

It is clear from looking at Figure 7 that this MSC is not
useful from an overview point of view while our approach
on Figure 9 shows the messages values which allows the
user to explore rapidly the test results before deciding to go
for a fully detailed view of the results when for example the
matching of the test oracle with the resulting response
shows a failure. This is where the comparison with a model
such as UCM is particularly easy to achieve as shown on
Figure 8.

Figure 8. FMS model as UCM

The content of the screen is mapped to a data structure
that contains fields for the various lines of the screen and
also subfields to describe the left and the right of the screen.
The FMS has 26 such fields, a title line, 6 lines structured
into 4 subfields and a scratch pad line. Normally a test is
designed to verify a given requirement which consists in
verifying that a limited number of fields have changed their
values. For example, the result of a sequence of stimuli may
have changed the field that displays the destination airport
on line 2 in the right part of the screen.

Figure 9. Modified Titan test result MSC

VI. CONCLUSION

In this research, we have shown that when using
TTCN-3, it is an advantage to display selected information
of complex structured data so as to have an overview on the

test results and be able to locate an area of interest quickly
and efficiently in test results.

ACKNOWLEDGMENT

We would like to thank CRIAQ, MITACS, ISONEO
SOLUTIONS and CMC Esterline for their financial support
on this project.

REFERENCES

[1] S. Jagadish, C. Lawrence and R.K. Shyamasunder, cmUML -
A UML based Framework for Formal Specification of
Concurrent, Reactive Systems, Journal of Object Technology
(JOT), Vol. 7, No. 8, Novmeber-December 2008, pp 188-
207.

[2] A. Ollsen, O. Færgemand and B. Møller-Pedersen, Systems
Engineering using SDL 92, Elsevier Science B.V.,
Amsterdam, The Netherlands, 1994.

[3] R.J.A. Buhr and R. S. Casselman, Use Case Maps for Object-
Oriented Systems, Prentice Hall Inc., Upper Saddle River,
New Jersey, USA, 1995. ISBN:0-13-456542-8

[4] R. Alur, and M. Yannakakis, Model checking of message
sequence charts, International Conference on Concurrency
Theory. Springer Berlin Heidelberg, 1999, pp 114-129

[5] Y. Cheon, and G. T. Leavens, A simple and practical
approach to unit testing: The JML and JUnit way. In
European Conference on Object-Oriented Programming, June
2002, pp. 231-255. Springer Berlin Heidelberg.

[6] A. Miga, D. Amyot, F. Bordeleau, C. Cameron, and M.
Woodside, Deriving Message Sequence Charts from Use Case
Maps Scenario Specifications. Tenth SDL Forum (SDL’01),
Copenhagen, Denmark, June 2001.. LNCS 2078, 268-287

[7] J. Kealey, and D. Amyot, (2007) Enhanced Use Case Map
Traversal Semantics. In: E. Gaudin, E. Najm, and R. Reed
(Eds.): 13th SDL Forum (SDL 2007), Paris, France,
September 2007. LNCS 4745, Springer, 133-149.

[8] ETSI ES 201 873-1 version 4.6.1 (2014-06) The Testing and
Test Control Notation version 3 Part 1: TTCN-3 Core
Language

[9] TTworkbench,Spirent,
https://www.spirent.com/Products/TTworkbench

[10] Testcast, Elvior: http://www.elvior.com/testcast/introduction

[11] PragmaDev Studio, http://www.pragmadev.com/

[12] Titan, https://projects.eclipse.org/proposals/titan

[13] SIP RFC 3261, https://www.ietf.org/rfc/rfc3261.txt

[14] SIP TTCN-3, ETSI http://www.ttcn-
3.org/index.php/downloads/publicts/publicts-etsi/27-publicts-sip

[15] FMS, href= http://www.esterline.com/avionicssystems/en-
us/productsservices/aviation/navigationfmsgps/flightmanagementsyst
ems.aspx

[16] B. Stepien, L.Peyton, M. Shang and T.Vassiliou-Gioles, “An
Integrated TTCN-3 Test Framework Architecture for
Interconnected Object-based Internet Applications”,
International Journal of Electronic Business, Inderscience
Publishers, Vol. 11, No. 1, pp. 1-23, 2014. DOI:
http://dx.doi.org/10.1504/IJEB.2014.057898

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 15 / 128

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1 7

A Comparative Study of GUI Automated Tools for Software Testing

Peter Sabev
Department of Informatics and Information Technologies

“Angel Kanchev” University of Ruse
Ruse, Bulgaria

e-mail: psabev@uni-ruse.bg

Prof. Katalina Grigorova
Department of Informatics and Information Technologies

“Angel Kanchev” University of Ruse
Ruse, Bulgaria

e-mail: kgrigorova@uni-ruse.bg

Abstract—Nowadays, a main resort for delivering
software with good enough quality is to design, create,
implement and maintain test cases that are executed
automatically. This could be done on many different
levels, however graphical user interface (GUI) testing is
the closest one to the way the real user interacts with the
software under test (SUT). The aim of this paper is to
determine the most popular GUI automated tools for
software testing among a list of 52 candidates and
compare them according to their features, functional
and non-functional characteristics.

Keywords-GUI; software; quality assurance; QA; automated
testing; test automation; testing tools; UI; GUI; tests; Selenium;
RFT; UFT; TestComplete; Ranorex; OATS.

I. INTRODUCTION

Testing is an essential activity to ensure quality of
software systems. Automating the execution of test cases
against given software or system can greatly improve test
productivity, and save time and costs.

However, many organizations refuse to use test
automation or have failed on implementing it because they
do not know how to deal with the implementation of a test
automation strategy.

Figure 1. The ideal test automation pyramid on the left and the reversed
reality on the right.

In 2009, Mike Cohn proposed the test automation
pyramid (Fig. 1) that has become a best practice in the
software industry. According to the pyramid, unit testing
should be the majority of tests, creating foundation of the
testing strategy, later expanded by service-level integration
tests and finished by GUI automated tests [1]. GUI tests are
time-consuming, harder to maintain, thus they are placed on
the top of the pyramid, aiming to do as little user interface

tests as possible. However, the reality shows a totally
reversed situation. In many companies, because of the
isolation of the role of QA engineers and tasking them to
write GUI tests only, the ration of GUI tests to unit tests is
inverse. Although it is not possible to collect ratio for test
distribution in each project, reports from 2016 show that unit
testing is done in only 43% of the software companies, while
45% of them do integration testing, and GUI test automation
is done in 76% of the companies. 60% of quality assurance
engineers claim to design, implement and maintain scripted
testing, and 39% claim to do user simulations. The report
also shows that 94% of the software engineers consider
functional automation and scripting important, and 67% find
automation tools challenging or extremely challenging [2].

All the above indicates that choosing a satisfactory GUI
automated testing tool or framework is very important task,
and a challenging problem to solve at the same time. The
incorrect choice of proper GUI testing tool may result
significant loss of time and money, and may even lead one to
be unable to automate their GUI testing entirely. This paper
conducts a comparative analysis of 52 state-of-the-art tools
and provides comparison tables that could direct towards the
most suitable tool according to their requirements.

In the next section, a methodology for creating a
comprehensive list of tools is described. In Section III, the
list of GUI tools is filtered by popularity and maturity. In
Section IV, a final assessment is made for the top candidates,
giving them score in eight different categories. The outcome
of that assessment is shown in Section V, and as the scores
are quite close, details for each of the finalist are given in
Section VI. A conclusion based on this paper is made in
Section VII.

Figure 2. Automation Tools Selection Criteria

 16 / 128

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1 8

II. METHODOLOGY

A comprehensive list of 52 automated testing tools is
created (Table I), based on [3]-[5] and the information
available in the websites listed in the table itself.

The list consists of both free and proprietary tools that are
web-based or work at least on one of the following operating
systems: Windows, Linux or MacOS. Only proprietary tools
with available demo versions are considered. Then some
tools are discarded from the list, according to the criteria
shown on Fig. 2.

The active development of a testing tool is very
important, so tools with no active development after 2015, as
well as all deprecated tools are later discarded from the list.

As Table I shows, only 30 tools have active development
after 2015, and those tools were listed in Table II. The
percentage of active, inactive and discontinued development
is shown on Fig. 3.

Figure 3. Distribution of active, discontinued and inactive development of
automated GUI testing tools.

Only the 10 most popular tools that are mature enough
made it to the final stage where a comparison against cost
effectiveness, functional and non-functional characteristics is
made. This is further explained later in this paper.

III. MATURITY AND POPULARITY

It is very important that automated testing tools are
mature enough, being on the market for at least 3 years, as it
takes time until the tools are polished according to the needs
of their users. All of the tools remaining are on the market
since 2014 or earlier, with SilkTest being the oldest tool with
active development in this study (since 1999). It is also very
important for a testing tool to be popular in the software
engineering industry (so as many professionals as possible
know about the product, its features and how to use it). It
should be popular also among the scientific researchers (so

innovations are presented continuously) and the QA
community (as people need to help each other, contribute
and give suggestions for improvements). That is why the
following criteria are chosen to determine tools popularity:

 Google Results (GR Rank) – Google Search [6] is
conducted with the name of the tool and the vendor
together. When the product is community-driven or
there is ambiguous tool name (e.g., Selenium), the
phrase “testing tool” is added to the search. All
results are recorded, the list is then sorted by the
number of the search results, and finally ranking is
assigned and recorded in the GR Rank column. The
search results were returned using Google Chrome in
incognito mode with Bulgarian IP address. Last, but
not least, it is hard, if not impossible task to
distinguish positive and negative mentions in the
search results. Popularity, however, consists of both,
i.e., if one knows about a given tool but they do not
like it, the tool is still popular;

 To assess the popularity in the scientific community,
a search similar as above is performed in Google
Scholar (GS Rank) [7] and ResearchGate (RG Rank)
respectively [8];

 Website popularity is assessed according to Alexa
website rank [9]. Although this rank is focused
towards the website and respectively the software
vendor, popular vendors are expected to be more
reliable and software to have longer support
lifecycle. The rankings are recorded under A Rank
column;

 Wikipedia page views are measured using a web
statistics tool [10] (0 is written for the tools with no
dedicated Wikipedia page), and ranking is recorded
under W Rank column.

The different criteria may have different importance for
the different researches, so the popularity can be calculated
in many ways. For the general case of this study, an average
of the GR, GS, RG, A and W columns is calculated and
recorded under the Popularity Index column and Table II is
then sorted according to that criteria. The top 10 tools based
on their popularity index are considered for the next stage.

IV. FINAL ASSESSMENT

In the final stage, each of the top 10 candidates is
assessed in eight different categories. In each category,
maximum 5 points are given, forming a maximum of 40
points per tool. The scores given to some of the categories
are not normalized intentionally, to allow adding future
tools without changing the scoring system.

A. Popularity (P)

Popularity assessment is described above already. 5
points are given to tools with popularity index below 3.0; 4
points when the index is from 3.1 to 6.0; 3 points - 6.1 to
7.5; 2 points - 7.6 to 9.0; 1 point - 9.0 to 15 and no points
are given for popularity index that is more than 15. As
already mentioned above, it is a challenging task to
determine popularity objectively and with good precision.

 17 / 128

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1 9

The main idea is to give similar points according to tools
popularity index. That is why the border values are chosen
in a way to provide equal distribution of points for relatively
equal segments of tools with similar popularity indexes.

B. Licensing Costs (LC)

Licensing costs are very important factor in many
software companies. Thus, the maximum of 5 points is
given to the free tools, 4 points are given to tools that cost
under $1000 per single license, 3 points - for tools with
single license between $1000 and $2000; 2 points - from
$2001 to $5000; 1 point - from $5000 to $10000, and no
points are given for license above $10000. For period-based
licenses, the period considered is 3 years. Again, border
values are chosen with equal distribution of points in mind.

C. Installation, Configuration and Online Documentation
Availability (IC)

First experience that a given user has with an automation
testing tool is its installation and configuration. If the tool
can be installed, configured and a simple application can be
run within 60 minutes, the tool is considered easy to install
and configure, so it receives 2 points. Online documentation
availability is also considered during that process and
additional point is given for that. The last 2 points are given
if the tool supports at least one (1 point for one, 2 points for
more than one) system for continuous integration and
continuous delivery (CI/CD). The list of CI/CD systems was
taken from Wikipedia [11].

D. Usability (U)

According to ISO 9241-11, usability is the extent to
which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and
satisfaction in a specified context of use [12]. System
Usability Scale (SUS) questionnaire [13] was filled by 10
different software QA engineers at different level of
expertise. Points are given as follows: 5 points are given for
SUS score between 85 and 100; 4 points – for SUS score
from 73 to 84; 3 points – from 52 to 72; 2 points – from 39
to 51; 1 point – from 26 to 38. No points are given for SUS
score of 25 or less.

E. Programming Skills Needed (PS)

Programming skills and the number of programming
languages available are also very important factor when
assessing GUI automation test tool. If the tests can be
created and executed without (or minimum) programming
skills, this means that much more people would be able to
use the tool and the final costs is expected to be less. 5
points were given to tools which require no programming
skills; 4 points when simple programming scripts are
needed, and the tool gives a choice of programming
language; 3 points are given when no choice of
programming language is available. For complex scripts, 2

points are given where choice of programming language is
available and 1 point if there is no such choice. No points
are given where scripts are too complex and even
professional programmer is not able to automate the test
cases needed. Of course, it is not necessarily true that the
maintenance of tools requiring programming is more
expensive compared to record-and-play ones, and this
assessment is handled by the next metric.

F. Recording and Playback of Test Scripts (RP)

Once installed, recording and replay of test script
becomes a major part of tool usage. Inaccurate recording
and replay usually causes more maintenance effort. Data-
driven approach separates the logic from the test data, and
this makes the maintenance easier. Thus, one point is given
to all tools that support data-driven testing. When recording
is possible via both scripts and UI, the playback is easy and
no problems are found, the maximum of 4 additional points
is given. One point less is given when there is only one
option for recording and replay has no problems. Same is
done when both options for recording are available and
minor problems are found while replaying. When there is
only one option for recording and minor problems are
found, 2 points are given. If there are major problems, 1
point is given if there is a workaround, and 0 points – when
there is no workaround.

G. Efficiency (E)

Quick test execution is also very important for a test tool,
especially when there are many test cases to be
automatically executed. A simple set of 4 test cases is
recorded on the different tools, testing Windows Calculator
and Google Calculator (network delay times are removed),
exercising addition, subtraction, multiplication and division.
5 points are given when the whole execution takes less than
5 seconds. From there on, 1 point is subtracted for doubling
the execution period, i.e. 4 points are given for execution
times from 5 to 10 secs; 3 points – from 11 to 20 secs; 2
points – from 21 to 40 secs; 1 point – 41 to 90 secs. No
points are given for test execution that take more than 90
secs.

H. Quality of Reports (QR)

Last but not least, test reporting provides important
information on how the test execution went. 5 points are
awarded for automatically generated and highly
configurable test reports, 4 points – for reports that are
automatically generated but not configurable; 3 points – for
reports that can be manually created or easily integrated; 2
points – when there is at least possibility to integrate the
tool with other reporting tools or systems; 1 point – if such
integration is not supported but possible with workarounds.
No points are given if such integration is not possible.

 18 / 128

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1 10

TABLE I. FULL LIST OF GUI AUTOMATED TOOLS FOR SOFTWARE TESTING CONSIDERED

Name
Developer
or Vendor

Website (URL)
Latest
version

OS1 Supported
Languages

License Demo St2 Last
Update

Abbot Java GUI
Test Framework

Timothy
Wall

http://abbot.sourceforg
e.net/

1.3.0 WLM Java EPL N/A NU 2015

App Test AppPerfect
http://www.appperfect.

com/products/app-
test.php

14.5 WLM Java
$299-$399 per

user
15 days Act 2016

Ascential test
Zeenyx
Software,
Inc.

http://www.zeenyx.co
m/AscentialTest.html

6 Web Java, .NET Proprietary
On

request
Act 2016

AutoIt AutoIt
https://www.autoitscrip

t.com/site/autoit/
3.3.14.2 W

Own BASIC-
like language

Freeware (closed
source)

N/A NU 2015

Coded UI Test Microsoft

https://docs.microsoft.c
om/en-

us/visualstudio/test/use
-ui-automation-to-test-

your-code

(part of
Visual
Studio)

W .NET $1200 per user No Act 2016

CubicTest CubicTest
https://github.com/cubi

ctest/
2.21.0 WLM Java EPL N/A Dis 2012

Dojo Objective
Harness

Dojo
Foundation

https://dojotoolkit.org/ 1.11.3 Web JavaScript AFL N/A Act 2017

eggPlant
Functional

Test
Plant Ltd

http://www.testplant.co
m/

17.0.2 WLM
Java, .NET, C#,

Ruby, C++,
Python

Proprietary 5 days Act 2017

eZscript
Universal
Test
Solutions

http://www.uts-
global.com/eZscript.ht

ml
0.375 W

XML, keyword
driven

Proprietary
On

request
NU 2010

Fake
Celestial
Teapot

http://fakeapp.com/ 1.9.1 M
AppleScript,
JavaScript

$30
Freemiu

m
Act 2016

FEST
Google Code
/ Atlassian

https://code.google.co
m/archive/p/fest/wikis/

Github.wiki
0.30 WLM Java

Freeware (open
source)

N/A Dis 2013

FitNesse
Community-
driven

http://fitnesse.org/ 20160618 WLM Java, Python, C#
Freeware (open

source)
N/A Act 2016

Gauge
Thought
Works, Inc.

http://getgauge.io/ 0.7.0 WLM
.NET, Java,

Ruby
GPLv3 N/A Act 2017

Google Test Google Inc.
https://github.com/goo

gle/googletest
1.8.0 WLM C++

Freeware (open
source)

N/A Act 2016

GTT (GUI Test
Tool)

Prof. Woei-
kae Chen

http://gtt.sourceforge.n
et/

3.0 WLM Java
Freeware (open

source)
N/A Dis 2009

IcuTest
NXS-7
Software Inc

http://www.nxs-
7.com/icu/

1.0.7 W .NET Proprietary N/A Dis 2010

iMacros
Ipswitch,
Inc.

http://imacros.net/ 11.2 WWeb JavaScript Proprietary 30 days Act 2016

IronAHK
Community-
driven

https://github.com/poly
ethene/IronAHK

0.7 W .NET
Freeware (open

source)
N/A NU 2010

Jameleon
Community-
driven

http://jameleon.sourcef
orge.net/

3.3 WLM Java, XML
Freeware (open

source)
N/A NU 2013

Jubula
Eclipse &
BREDEX
GmbH

http://www.eclipse.org/
jubula/

8.4.0 WL
Java, Swing,

HTML
Freeware (open

source)
N/A Act 2017

Linux Desktop
Testing Project

Community-
driven

https://ldtp.freedesktop.
org/

3.5.0 WLM
Java, .NET,

Python, Ruby,
Perl, Clojure

GNU LGPL N/A NU 2013

Marathon
Jalian
Systems

https://marathontesting.
com/

5.0.0.0 WLM
Java, Swing,

Ruby
$1480 per user 30 days Act 2016

Maveryx Maveryx srl
http://www.maveryx.co

m/
1.5 WLM Java

2000 EUR per
year

Freemiu
m

Act 2016

Oracle
Application
Testing Suite

Oracle
http://www.oracle.com/
technetwork/oem/app-
test/index.html

12.5.0.3.0 Web
Own,

OpenScript
(Java)

Proprietary
Freemiu

m
Act 2016

1 Supported Operating System (OS): W – Windows, L – Linux, M – MacOS, Web – Web-Based Applications
2 Update Status: NU – Not updated since 2015, Dis – Officially discontinued, Act - Active

 19 / 128

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1 11

Pounder
Community-
driven

http://pounder.sourcefo
rge.net/

0.95 WLM Java GNU LGPL N/A NU 2002

QA Liber
Community-
driven

http://qaliber.org/ 1.0 W .NET GPLv2 N/A NU 2011

QF-Test
Quality First
Software
GmbH

https://www.qfs.de/en.
html

4.1.1
WLMWe

b
Java, Swing

2000 EUR per
user

30 days Act 2016

Ranorex
Ranorex Gm
bH

http://www.ranorex.co
m/

6.2.0 WWeb .NET $2590/user 30 days Act 2016

Rational
Functional Tester

IBM
http://www-

03.ibm.com/software/p
roducts/en/functional

8.6.0.7 WL Java, VBScript $6820/user 30 days Act 2016

RCP Testing
Tool

Eclipse https://eclipse.org/rcptt/ 2.2.0 WLM
Eclipse

Common
Language

Freeware (open
source)

N/A Act 2017

RIATest Cogitek Inc.
http://www.cogitek.co

m/riatest.html
6.2.6 WM Own, RIAScript Proprietary 30 days NU 2015

Robot
Framework

Community-
driven

http://robotframework.
org/

3.0 WLM Java Apache N/A NU 2015

Sahi
Tyto
Software

http://sahipro.com/ 6.3.2 Web Java
$695 per
user/year

30 days Act 2016

Selenium
Community-
driven

http://www.seleniumhq
.org/

3.0.1 Web

Java, .NET,
JavaScript,

Python, Ruby,
PHP, Perl, R,
Objective C,

Haskell

Apache N/A Act 2016

SikuliX MIT http://sikulix.com/ 2.0.0
WLMWe

b
Ruby, Python,
Java, Jython

MIT N/A NU 2015

SilkTest
Micro Focus
Int.

https://www.microfocu
s.com/products/silk-
portfolio/silk-test/

17.5 WL
Java, .NET, own

(C++ like)
Individual offer

($5K-9K)
45 days Act 2016

Squish GUI
Tester

froglogic
GmbH

https://www.froglogic.c
om/squish/

6.2 WLM Keyword-driven
4000 EUR per

user
60 days Act 2016

SWAT
Community-
driven

https://sourceforge.net/
projects/ulti-swat/

4.1 WWeb .NET GPLv2 N/A Dis 2012

SWTBot Eclipse
http://www.eclipse.org/

swtbot/
2.5.0 WL Java

Freeware (open
source)

N/A Act 2016

Telerik Test
Studio

Progress
http://www.telerik.com

/teststudio
2016.4.120

8.2
WWeb

HTML, .NET,
JavaScript,

Ruby, PHP, own
(NativeScript)

$2499 30 days Act 2016

Tellurium
Grant Street
Group

http://www.te52.com/ N/A Web
Java, Perl

Python, Ruby
Freeware (closed

source)
N/A Act 2016

Test Complete
SmartBear
Software

https://smartbear.com/p
roduct/testcomplete/

42804 WWeb

JavaScript,
Python,

VBScript,
JScript, Delphi,

C++, C#

3730 EUR 30 days Act 2016

Testing
Anywhere

Automation
Anywhere,
Inc.

https://www.automatio
nanywhere.com/testing

9.3 W Keyword-driven Proprietary
On

request
NU 2015

TestPartner
Micro Focus
Int.

https://www.microfocu
s.com/products/silk-

portfolio/silk-
testpartner/

6.3.2 W .NET Proprietary 45 days Dis 2014

TestStack.White
Community-
driven

https://github.com/Test
Stack/White

0.13 W .NET
Freeware (open

source)
N/A NU 2014

Tosca Automate
UI

Tricentis
GmbH

https://www.tricentis.c
om/resource-

assets/tosca-automate-
ui/

10.1 W VBScript Proprietary 14 days Act 2017

Twist
Thought
Works, Inc.

https://www.thoughtwo
rks.com/products/twist-

agile-testing
Unknown WLM Java Proprietary N/A Dis 2014

UI Automation
Powershell
Extensions

Community-
driven

https://uiautomation.co
deplex.com/

0.8.7 W PowerShell
Freeware (open

source)
N/A NU 2014

 20 / 128

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1 12

Unified
Functional
Testing (UFT)

HP
Enterprise

https://saas.hpe.com/en
-us/resources/uft

12.54 W
Own, keyword

driven, VBScript
$3200 per
user/year

30 days Act 2016

VisualCron NetCart
http://www.visualcron.

com/
8.2.3 W

PowerShell,
SQL, Batch

$149 per
server/year

45 days Act 2016

Watir
Community-
driven

https://watir.com/ 6.1 Web Ruby MIT N/A Act 2017

WinRunner
HP
Enterprise

https://softwaresupport.
hpe.com/document/-

/facetsearch/document/
KM01033448

9.2 W Own, scripting Proprietary N/A Dis 2008

Xnee
Community-
driven

https://www.gnu.org/so
ftware/xnee/

3.19 L
X11 protocol

used
GPLv3 N/A NU 2014

TABLE II. FILTERED TOOLS SORTED BY POPULARITY INDEX

Tool Name
Since
Year

Google
Results

GR
Rank

Google
Scholar
Results

GS
Rank

Research
Gate

Results

RG
Rank

Alexa
Site

Rank

A
Rank

Wikipedia
Views

W
Rank

Popularity
Index

Selenium 2006 1000000 1 1490 1 580 1 24147 10 21637 1 2.8

Rational Functional
Tester

2007 425000 3 518 4 8 3 614 4 767 12 5.2

Google Test 2008 114000 12 437 5 5 6 61 2 2431 4 5.8

Unified Functional
Testing

2000 418000 4 100 10 3 8 3629 8 4416 2 6.4

TestComplete 1999 553000 2 112 9 3 8 32279 11 1326 5 7

FitNesse 2009 328000 5 690 2 17 2 586115 21 1162 6 7.2

Coded UI Test 2010 73700 13 50 16 6 4 40 1 1036 7 8.2

SilkTest 1994 191000 7 615 3 3 8 61962 13 792 10 8.2

Ranorex 2007 125000 10 169 7 2 12 161122 15 901 9 10.6

Oracle Application
Testing Suite

2008 190000 8 41 18 2 12 348 3 604 13 10.8

iMacros 2001 3950 23 201 6 4 7 35068 12 942 8 11.2

Watir 2011 125000 11 138 8 6 4 881518 24 789 11 11.6

Jubula 2012 4870 22 91 11 3 8 2956 7 23 22 14

RCP Testing Tool 2014 143000 9 88 12 0 17 2956 5 0 30 14.6

SWTBot 2001 51200 15 70 13 2 12 2956 6 0 29 15

Telerik Test Studio 2002 29100 16 22 21 0 17 4655 9 544 15 15.6

Dojo Objective Harness 2011 747 29 10 24 0 17 86069 14 3277 3 17.4

eggPlant Functional 2013 24200 17 23 20 0 17 522174 18 489 16 17.6

QF-Test 2001 8540 20 68 14 2 12 2001348 27 241 18 18.2

Gauge 2014 12900 19 65 15 0 17 526578 19 112 21 18.2

Maveryx 2010 256000 6 16 23 0 17 7029069 30 258 17 18.6

Tricentis Tosca 2011 13000 18 24 19 2 12 281142 17 0 27 18.6

Sahi 2010 3210 25 22 22 0 17 534433 20 555 14 19.6

VisualCron 2005 69300 14 5 27 0 17 910942 25 175 20 20.6

App Test 2003 2050 28 42 17 0 17 877243 23 0 25 22

Marathon 2005 5780 21 7 25 0 17 3542542 28 0 23 22.8

Tellurium 2010 3320 24 7 26 0 17 630725 22 0 26 23

Squish GUI Tester 2003 2820 26 5 28 0 17 202006 16 0 28 23

Fake 2010 2440 27 5 29 0 17 1816998 26 0 24 24.6

Ascentialtest 2006 524 30 1 30 0 17 4692844 29 197 19 25

 21 / 128

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1 13

V. FINAL RESULTS

After the final assessment in the eight different categories
above, Table III containing the final rankings is produced:

TABLE III. FINAL CANDIDATES ASSESSMENT RESULTS

№ Tool Name P LC IC U PS RP E QR TOTAL

1 UFT 5 5 4 3 4 2 3 2 29

2 Selenium 4 1 3 4 4 4 4 5 28

3 Ranorex 2 3 4 3 3 4 4 2 26

4 CUITs 1 2 3 4 4 5 3 4 25

5 Google Test 4 5 3 1 1 2 5 1 22

5 TestComplete 3 5 3 2 2 2 3 1 22

7 FitNesse 3 2 3 3 3 3 2 3 21

8 SilkTest 2 1 3 3 4 2 3 2 20

9 OATS 4 1 2 3 3 1 3 2 20

10 RFT 1 1 3 3 3 3 2 4 19

VI. FINAL CANDIDATES

The top 10 GUI automation tools that are taken into the
final comparison are quite different in many aspects –
environment, installation, usage, test script creation and
maintenance, etc. That is why this section is dedicated on
providing more detailed description of each finalist, so one
could pick up the best candidate according to their specific
needs:

A. Selenium

Selenium is nowadays the most popular software testing
framework for web applications. Selenium is portable and
provides a record/playback tool for authoring tests without
learning a test scripting language (Selenium IDE). It also
provides a test domain-specific language (Selenese) to write
tests in a number of popular programming languages,
including C#, Groovy, Java, Perl, PHP, Python, Ruby and
Scala. Selenium WebDriver accepts commands (sent in
Selenese, or via a Client API) and sends them to a browser. It
does not need a special server to execute tests. Instead, the
WebDriver directly starts a browser instance and controls it.
However, Selenium Grid can be used with WebDriver to
execute tests on remote systems. Selenium allows parallel
executions, has multi-platform and multi-browser support
(although there are some issues with Safari and Internet
Explorer). Selenium supports a variety of CI/CD tools,
however some programming may be needed for full setup. A
big amount of programming and setup is needed to integrate
with report generation tools or database (for data-driven
testing). From recording and playback perspective, there is
no option to run the test from a point or state of application,
so tests need to be started from the very beginning each time.
Test execution speed highly depends on the locator used,
e.g., Xpath selectors are much slower compared to getting
elements by their ID.

B. Rational Functional Tester

IBM Rational Functional Tester (RFT) provides
automated testing capabilities for functional, regression,
GUI, and data-driven testing. Installation is straight forward.
The RFT can generate VBScript and Java statements,
requiring some programming experience. Test execution is
generally stable, but occasionally it has memory issues,
which can be solved easily. During playback, Rational
Functional Tester uses the Object Map to find and act against
the application interface. However, during development it is
often the case that objects change between the time the script
was recorded and when a script was executed. For example,
testing with multiple values selected using the Shift key
pressed does not work. RFT supports data driven commands
to generate different test cases, however the expected outputs
need to be manually entered. RFT allows one script to call
another script, so redundant activities are not repeated.
However, scripts quickly become too long and hard to
maintain. From reporting point of view, RFT supports results
logs containing a lot of information, making hard to find the
data really needed. It also supports customized reports but
integration takes a lot of time. CI/CD integration is supported
only for IBM products.

C. Google Test (with Google Mock)

Google Test (also known as Google C++ Testing
Framework) is a unit testing library for the C++
programming language, based on the xUnit architecture.
Google Test cannot be used for GUI automation tests as
standalone tool. In this study, it is used together with Google
Mock, so one can create mock classes trivially using simple
macros, supporting a rich set of matchers and actions, and
handling unordered, partially ordered, or completely ordered
expectations. The framework uses an intuitive syntax for
controlling the behavior of a mock, however it has been
intended to support unit tests rather than GUI, so most testers
find its installation, configuration and coding too complex.
Google Test is good to consider for a team of highly skilled
developers in test.

D. Unified Functional Testing (UFT)

HPE Unified Functional Testing (UFT) software,
formerly known as HP QuickTest Professional (QTP),
provides functional and regression test automation for
software applications and environments. UFT is targeted at
enterprise QA, supporting keyword and scripting interfaces
and features a graphical user interface. The keyword view
allows a novice tester to easily work with the tool. However,
UFT often has problems recognizing customized user
interface objects and other complex objects which need to be
defined as virtual objects, requiring technical expertise. UFT
can be extended with separate add-ins, e.g., support for Web,
.NET, Java, and Delphi. UFT runs primarily on Windows,
relying on obsolete ActiveX and VBScript which is not an
object-oriented language. CI/CD integration is limited, as
Test Execution engine is combined with the GUI Test Code
development IDE. It is not possible to run the tests
independent of HPE Unified Functional Testing. High
licensing costs often mean that the tool is not widely used in

 22 / 128

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1 14

an organization, but instead is limited to a smaller testing
team, encouraging testing to be performed as a separate
phase rather than a collaborative approach (as advocated by
agile development processes). Test execution is quick,
although it causes high hardware load.

E. TestComplete

TestComplete is a functional automated framework for
Microsoft Windows, Web, and smartphone applications,
providing separate modules for each platform. Tests can be
recorded, scripted or manually created with keyword-driven
operations and used for automated playback and error
logging. The tool records only the key actions necessary to
replay the test and discards all unneeded actions, supporting
data-driven testing. Biggest product drawbacks are crashes,
hangs and long waiting times (especially for DOM objects),
as well as problems with reading XPath values for some
browsers. Regular expressions and descriptive programming
are not supported. TestComplete has good integration with
CI/CD and reporting tools, although it might require
technical expertise.

F. FitNesse

FitNesse is an integrated framework consisting of web
server, a wiki and an automated testing tool for software,
focused on GUI acceptance tests. FitNesse was originally
designed as a highly usable interface around the Fit
framework. As such, its intention is to support an agile style
of black-box testing acceptance and regression testing.
Installation is simple. Tests are described in wiki as decision
tables, with coupled inputs and outputs. The link between
those tables and the system under test is made by a piece of
Java code called a fixture. FitNesse comes with its own
version control but also can be integrated with external one.
People with no programming skills are unable to use
FitNesse, except adding or maintaining test cases in the wiki.
The major drawbacks are that those tests are often limited.
Also, recent FitNesse releases have issues with backward
compatibility and lack of error messages or feedback on
what during test execution went wrong.

G. Microsoft Coded UI Tests (CUITs)

Automated tests in Microsoft application that go through
its user interface are known as coded UI tests (CUITs).
These tests include functional testing of the UI controls.
CUITs are available as separate project in Microsoft Visual
Studio (VS). Recording and playback actions can be easily
done with Microsoft Test Manager or VS, and scripts can be
maintained on the fly. Data-driven testing is supported for
any data source supported by .NET framework. CUITs
seamlessly integrates with Team Foundation Server (TFS),
supports Application Lifecycle Management (ALM) and can
even execute web-based test on Internet Explorer browser
only. CUITs are very easy to use by people who are familiar
with VS development but not an option for those who are
not.

H. SilkTest

SilkTest is focused to automated function and regression
testing of enterprise applications and consists of two parts:
host that contains all the source script files and agent that
translates the script commands into GUI commands.
Separation of test design and test implementation, together
with keyword-driven framework, object-oriented approach
and both ability to capture objects from UI or use descriptive
programming, makes the tool a great candidate to consider.
SilkTest was originally developed by Segue Software,
acquired by Borland in 2006, which was also acquired by
Micro Focus International in 2009. Those acquisitions, and
the fact this is the oldest tool among the finalists (more than
23 years), logically brings some issues, e.g., GUI interface is
not modern and looks too complex to non-developers. While
the installation is smooth, recording mode generates code
that is hard to read, and sometimes there is no other way to
interact with specific objects other than coordinate-based.
Also, online documentation needs improvement.

I. Ranorex

Ranorex is a GUI test automation framework for desktop,
web-based and mobile applications that also supports unit
tests. Installation is straightforward, and there is plenty of
online documentation and video tutorials. Element
recognition is very reliable (XPath and image-based) and
both record/replay tool and descriptive programming in C#
and VB.NET are supported. Test suites generate executable
files that can be easily run by launching the .EXE file where
needed. Tests can be recorded by people with no
programming skills, and logs are easy to navigate through.
However, test execution is unstable at times, especially on
remote or virtual machines. Also, the logs are not in common
format, so they need to be additionally parsed to include in
most CI/CD systems. Another drawback is that no additional
plugins are supported.

J. Oracle Application Testing Suite (OATS)

OATS is a web-based comprehensive, integrated testing
solution. It has excellent co-relation with all Oracle
applications and uses a functional testing module called
OpenScript. Same script can be run on different instances.
The report that is generated is quite detailed and useful but
becomes too big. Performance is slower compared to the
most tools, browser often runs out of memory, and
significant programming knowledge is needed. Data-driven
testing is supported using a feature called Data bank.

VII. CONCLUSION

There is no perfect GUI test automation tool. The fact
that even the top scoring tool achieved only 29 out of 40
points shows that each of these tools has its drawbacks and
room for improvement. Also, the difference between the first
and the last of the finalist tools is just 10 points, which
suggests that one should take all factors under consideration
when choosing GUI automation tools.

This paper can be extended in future by adding more
automation tools, adding more assessment factors and
modifying the methodology for the existing ones, but the key

 23 / 128

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1 15

points in creating a successful automated tool for software
testing on GUI level are clear: such a tool needs to support
both engineers with no programming skills (via
Record/Replay features, understandable GUI, image-based
recognition) and engineers with good programming skills
(with Java and .NET being the most popular programming
platforms). The tool should support additional plugins,
CI/CD integration, reporting tools and high customization on
different levels. The proper replaying of recorded scripts is a
must, and the maintainability of test scripts is crucial. Last,
but not least, tool maturity and popularity, good support,
online documentation and big community are important
additions for a complete product.

The findings of this paper may be valuable for the
scientific community and the industry as a reference list for
educational purposes or as baseline for picking the right
testing tool. The initial list could produce completely
different results if comparison is made against different
criteria, according to specific needs of individual or business,
project, environment and budget.

ACKNOWLEDGMENT

This work is supported by the National Scientific
Research Fund under the contract ДФНИ-И02/13.

REFERENCES

[1] M. Cohn, Succeeding with Agile: Software Development
Using Scrum, Upper Saddle River, NJ: Addison Wesley,
2009, pp. 312-314.

[2] PractiTest, Tea Time with Testers, "State of Testing Report,"
PractiTest, Rehovot, Israel, 2016.

[3] Wikimedia Foundation, "Comparison of GUI testing tools,"
[Online]. Available:
https://en.wikipedia.org/wiki/Comparison_of_GUI_testing_to
ols. [Accessed 14 01 2017].

[4] Y. Ben-Hur, "QA Testing Tools: All About Software Testing
Tools," [Online]. Available:
http://qatestingtools.com/compare-gui-testing-tools.
[Accessed 14 01 2017].

[5] A. B. C. Brahim, "Evaluation of Tools of automated testing
for Java/Swing GUI," Paris, 2014.

[6] Google Inc., "Google Search," Google Inc., [Online].
Available: https://www.google.com. [Accessed 14 01 2017].

[7] Google Inc., "Google Scholar," Google Inc., [Online].
Available: https://scholar.google.com/. [Accessed 14 01
2017].

[8] ResearchGate, "ResearchGate," researchgate.net, [Online].
Available: https://www.researchgate.net/home. [Accessed 14
01 2017].

[9] Alexa Internet, Inc. , "Find Website Traffic, Statistics, and
Analytics," Alexa Internet, Inc. , [Online]. Available:
http://www.alexa.com/siteinfo. [Accessed 14 01 2017].

[10] Wikimedia Foundation, "Wikipedia:Web statistics tool,"
Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Wikipedia:Web_statistics_tool.
[Accessed 14 01 2017].

[11] Wikimedia Foundation, "Comparison of continuous
integration software," Wikipedia, [Online]. Available:
https://en.wikipedia.org/wiki/Comparison_of_continuous_inte
gration_software. [Accessed 15 01 2017].

[12] International Organization for Standardization, ISO/DIS
9241-11.2: Ergonomics of human-system interaction - Part
11: Usability: Definitions and concepts, Geneva: ISO, 2016.

[13] J. Brooke, "SUS-A quick and dirty usability scale," Usability
evaluation in industry, vol. 189, no. 194, pp. 4-7, 1996.

 24 / 128

Chimera: A Distributed High-throughput Low-latency Data Processing and Streaming
System

Pascal Lau, Paolo Maresca

Infrastructure Engineering, TSG
Verisign

1752 Villars-sur-Glâne, Switzerland
Email: {plau, pmaresca}@verisign.com

Abstract—On a daily basis, Internet services experience growing
amount of traffic that needs to be ingested first, and processed
subsequently. Technologies to streamline data target horizontal
distribution as design tenet, giving off maintainability and oper-
ational friendliness. The advent of the Internet of Things (IoT)
and the progressive adoption of IPv6 require a new generation
of data streamline platforms, bearing in mind easy distribution,
maintainability and deployment. Chimera is an ultra-fast and
scalable Extract Transform and Load (ETL) platform, designed
for distribution on commodity hardware, and to serve ultra-
high volumes of inbound data while processing in real-time.
It strives at putting together top performance technologies to
solve the problem of ingesting huge amount of data delivered
by geographically distributed agents. It has been conceived to
propose a novel paradigm of distribution, leveraging a shared
nothing architecture, easy to elastically scale and to maintain. It
reliably ingests and processes huge volumes of data: operating
at the line rate, it is able to distribute the processing among
stateless processors, which can join and leave the infrastructure at
any time. Experimental tests show relevant outcomes intended as
the ability to systematically saturate the I/O (network and disk),
preserving reliable computations (at-least-once delivery policy).

Keywords–Distributed computing, High performance comput-
ing, Data systems.

I. INTRODUCTION

With the gigantic growth of information-sensing devices
(Internet of Things) [1] such as mobile phones and smart
devices, the predicted quantity of data produced far exceeds the
capability of traditional information management techniques.
To accommodate the left-shift in the scale [2], [3], new
paradigms and architectures must be considered. The big data
branch of computer science defines these big volumes of data
and is concerned in applying new techniques to bring insights
to the data and turn it into valuable business assets.

Modern data ingestion platforms distribute their compu-
tations horizontally [4] to scale the overall processing ca-
pability. The problem with this approach is in the way the
distribution is accomplished: through distributed processors,
prior to vertically move the data in the pipeline (i.e., between
stages), they need coordination, generating horizontal traffic.
This coordination is primarily used to accomplish reliability
and delivery guarantees. Considering this, and taking into
account the expected growth in compound volumes of data,
it is clear that the horizontal exchanges represent a source
of high pressure both for the network and infrastructure: the
volumes of data supposed to flow vertically is amplified by
a given factor due to the coordination supporting the com-
putations, prior to any movement. Distributing computations

and reducing the number of horizontal exchanges is a complex
challenge. If one was to state the problem, it would sound like:
to reduce the multiplicative factor in volumes of data to fulfill
coherent computations, a new paradigm is necessary and such
paradigm should be able to i. provide lightweight and stateful
distributed processing, ii. preserve reliable delivery and, at the
same time, iii. reduce the overall computation overhead, which
is inherently introduced by the distributed nature.

An instance of the said problem can be identified in pre-
dictive analytics [5], [6] for monitoring purposes. Monitoring
is all about: i. actively produce synthetic data, ii. passively
observe and correlate, and iii. reactively or pro actively spot
anomalies with high accuracy. Clearly, achieving correctness
in anomaly detection needs the data to be ingested at line rate,
processed on-the-fly and streamlined to polyglot storage [7],
[8], with the minimum possible delay.

From an architectural perspective, an infrastructure en-
abling analytics must have a pipelined upstream tier able
to i. ingest data from various sources, ii. apply correlation,
aggregation and enrichment kinds of processing on the data,
and eventually iii. streamline such data to databases. The at-
tentive reader would argue about the ETL-like nature of such a
platform, where similarities in the conception and organization
are undeniable; however, ETL-like kind of processing is what
is needed to reliably streamline data from sources to sinks.
The way this is accomplished has to be revolutionary given the
context and technical challenges to alleviate the consequences
of exploding costs and maintenance complexity.

All discussed so far settled a working context for our team
to come up with a novel approach to distribute the workload
on processors, while preserving determinism and reducing
the coordination traffic to a minimum. Chimera (the name
Chimera has been used in [9]; the work presented in this
paper addresses different aspects of the data ingestion) was
born as an ultra-high-throughput processing and streamlining
system able to ingest and process time series data [10] at line
rate, preserving a delivery guarantee of at least once with an
out of the box configuration, and exactly once with a specific
and tuned setup. The key design tenets for Chimera were:
i. low-latency operations, ii. deterministic workload sharding,
iii. backpropagated snapshotting acknowledgements, and iv.
traffic persistence with on-demand replay. Experimental tests
proved the effectiveness of those tenets, showing promising
performance in the order of millions of samples processed per
second with an easy to deploy and maintain infrastructure.

The remainder of this paper is organized as follows. Section
II focuses on the state-of-the-art, with an emphasis on the

16Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 25 / 128

current technologies and solutions meanwhile arguing why
those are not enough to satisfy the forecasts relative to the
advent of the IoT and the incremental adoption of IPv6.
Section III presents Chimera and its architectural internals,
with a strong focus on the enabling tiers and the most relevant
communication protocols. Section IV presents the results from
the experimental campaign conducted to validate Chimera and
its design tenets. Section V concludes this work and opens to
future developments on the same track, while sharing a few
lessons learned from the field.

II. RELATED WORK

When it comes to assessing the state of the art of streamline
platforms, a twofold classification can be approached: 1. ETL
platforms originally designed to solve the problem (used in
the industry for many years, to support data loading into
data warehouses [11]), and 2. Analytics platforms designed
to distribute the computations serving complex queries on big
data, then readapted to perform the typical tasks of ingestion
too. On top of those, there are hybrid platforms that try to
bring into play features from both categories.

The ETL paradigm [12] has been around for decades and
is simple: data from multiple sources is transformed into an
internal format, then processed with the intent to correlate,
aggregate and enrich with other sources; the data is eventually
moved into a storage. Apart of commercial solutions, plenty
of open-source frameworks have been widely adopted in the
industry; it is the case of Mozilla Heka [13], Apache Flume
and Nifi [14], [15], [16]. Heka has been used as a primary ETL
for a considerable amount of time, prior to being dismissed for
its inherent design pitfalls: the single process, multi-threaded
design based on green threads (Goroutines [17] are runtime
threads multiplexed to a small number of system threads) had
scalability bottlenecks that were impossible to fix without a re-
design. In terms of capabilities, Heka provided valid supports:
a set of customizable processors for correlation, augmentation
and enrichment. Apache Flume and Nifi are very similar in
terms of conception, but different in terms of implementation:
Nifi was designed with security and auditing in mind, as
well as enhanced control capabilities. Both Flume and Nifi
can be distributed; they implement a multi-staged architecture
common to Heka too. The design principles adopted by both
solutions are based on data serialization and stateful proces-
sors. This require a large amount of computational resources
as well as network round trips. The poor overall throughput
makes them unsuited solutions for the stated problem.

On the other hand, analytics platforms adapted to ETL-like
tasks are Apache Storm, Spark and Flink [18], [19]; all of them
have a common design tenet: a task and resource scheduler dis-
tributes computations on custom processors. The frameworks
provide smart scheduling policies that invoke, at runtime, the
processing logic wrapped into the custom processors. Such a
design brings a few drawbacks: the most important resides
in the need of heavyweight acknowledgement mechanisms or,
complex distributed snapshotting to ensure reliable and stateful
computations. This is achieved at the cost of performance and
throughput [20]. From [21], a significant measure of the mes-
sage rate can be extrapolated from the first benchmark. Storm
(best in class) is able to process approx. 250K messages/s with
a level of parallelism of eight, meaning 31K messages/s per
node with a 22% message loss in case of failure.

Figure 1. Chimera 10K feet view. Architectural sketch capturing the main
tiers, their interactions, as well as relationships.

The hybrid category consists of platforms that try to bring
the best of the two previous categories into sophisticated stacks
of technologies; exemplar of this category is Kafka Streams
[22], [23], a library for stream processing built on top of Kafka
[24], which is unfortunately complex to setup and maintain.
In distributed, Kafka heavily uses ZooKeeper [25] to maintain
the topology of brokers. Topic offset management and parallel
consumers balancing relies on ZooKeeper too; clearly, a Kafka
cluster needs at least a ZooKeeper cluster. However, Kafka
Stream provides on average interesting levels of throughput.

As shown, three categories of platforms exist, and several
authoritative implementations are provided to the community
by as many open-source projects. Unfortunately, none of them
is suitable to the given context and inherent needs.

III. ANATOMY OF CHIMERA

Clearly, a novel approach able to tackle and solve the
weaknesses highlighted by each of the categories described
in Section II is needed. Chimera is an attempt to remedy
those weaknesses by providing a shared nothing processing
architecture, moving the data vertically with the minimum
amount of horizontal coordination and targeting at-least-once
delivery guarantee. The remainder of this section presents
Chimera and its anatomy, intended as the specification of its
key internals.

A. High Level Overview

Figure 1 presents Chimera by its component tiers. Chimera
isolates three layers: i. queuing, ii. processing and iii. persis-
tence. To have Chimera working, we would therefore need at
least three nodes, each of which assigned to one of the three
layers. Each node is focused on a specific task and only excels
at that task. Multiple reasons drive such a decision. First, the
separation of concerns simplifies the overall system. Second,
it was a requirement to have something easy to scale out
(by distributing the tasks into independent nodes, scaling out
only requires the addition of new nodes). Finally, reliability:
avoiding a single point of failure was a key design aspect.

17Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 26 / 128

B. Fundamental Queuing Tier
The fundamental queuing layer plays the central role of

consistently sharding the inbound traffic to the processors.
Consistency is achieved through a cycle-based algorithm,
allowing dynamic join(s) and leave(s) of both queue nodes
and processors. To maintain statelessness of each component,
a coordinator ensures coordination between queue nodes and
processors. Figure 2 gives a high-level view of a queue node.

Let X = {X1, X2, . . . , XN} be the inbound traffic, where
N is the current total number of queue nodes. Xn denotes
the traffic queue node n is responsible to shard. Let Y =
{y11, y12, . . . , y1M , y21, . . . y2M , . . . , yNM}, with M the cur-
rent total number of processors, be the data moving from queue
node to processors. It follows that Xn = {yn1, yn2, . . . , ynM},
where ynm, n ∈ [1, N] and m ∈ [1,M], is the traffic directed
at processor m from queue node n. Note that Ym is all the traf-
fic directed at processor m, i.e., Ym = {y1m, y2m, . . . , yNm}.

As suggested above, the sharding operates at two levels.
The first one operates at the queue nodes. Each node n only
accounts for a subset Xn of the inbound data, reducing the
traffic over the network by avoiding sending duplicate data.
Xn is determined using a hash function on the data d (data
here means a sample, a message, or any unit of information
that needs to be processed), i.e., d ∈ Xn ⇐⇒ hash(d)
mod N = n. The second sharding operates at the processor
level, where ∀d ∈ Xn, d ∈ Ym ⇐⇒ hash(d) mod M = m.
See Algorithm 1.

N and M are variables maintained by the coordinator, and
each queue node keeps a local copy of these variables (to adapt
the range of the hash functions). The coordinator updates N
and M whenever a queue node joins/leaves, respectively a
processor joins/leaves. This triggers a watch: the coordinator
sends a notification to all the queue nodes, with the updated
values for N and/or M . However, the local values in each
queue node is not immediately updated, rather it waits for the
end of the current cycle. A cycle can be defined as a batch
of messages. This means that each ynm belongs to a cycle.
Let us denote ynmc

the traffic directed to processor m by
queue node n during cycle c. Under normal circumstances (no
failure), all the traffic directed at processor m during cycle
c (i.e., Ymc

) will be received. Queue node n will advertise
the coordinator that it has completed cycle c (see Algorithm
2). Upon receiving all the data and successfully flushing it,
processor m will also advertise that cycle c has been properly
processed and stored. As soon as all the processors advertise
that they have successfully processed cycle c, the queue nodes
move to cycle c+ 1 and start over.

Let us now consider a scenario with a failure. First, the
failure is detected by the coordinator, which keeps track of
live nodes by the mean of heartbeats. Let us assume the case
of a processor m failing. By detecting it, the coordinator adapts
M = M − 1, and advertises this new value to all the queue
nodes. The latter do not react immediately, but wait for the
end of the current cycle c. At cycle c + 1, the data that has
been lost during cycle c (∀d ∈ Ymc) are resharded and sent
over again to the new set of live processors. This is possible
because all the data has been persisted by the journaler. This
generalizes easily to more processors failing. See Algorithm
3.

Secondly, let us consider the case where a queue node

Figure 2. Fundamental queuing internals. A ring buffer disciplines the
low-latency interactions between producers and consumers, respectively the

sourcers that pull data from the sources, and the channels and journalers that
perform the I/O for fundamental persistence and forwarding for processing.

fails during cycle c. A similar process occurs: the coordinator
notices that a queue node is not responsive anymore, and
therefore adapts N = N−1, before advertising this new value
to the remaining queue nodes. At cycle c = c+ 1, ∀d ∈ Xnc

are resharded among the set of live queue nodes, and the data
sent over again. Similarly, this generalizes to multiple queue
nodes failing. The case of queue node(s) / processor(s) joining
is trivial and will therefore not be discussed here.

Note that the approach described above ensures that the
data is guaranteed to be delivered at least once. It however does
not ensure exactly-once delivery. Section III-E3 complements
the above explanations.

Byzantine failures [26] are out of scope and will there-
fore not be treated. It is worth emphasizing that introducing
resiliency to such failures would require a stateful protocol,
which is exactly what Chimera avoids. Below, details about
the three main components of the fundamental queuing tier
are given.

1) Ring Buffer: The ring buffer is based on a multi-
producers and multi-consumers scheme. As such, its design
resolves around coping with high concurrency. It is an imple-
mentation of a lock-free circular buffer [27] which is able to
guarantee sub-microsecond operations and, on average, ultra-
high-throughput.

2) Journaler: The journaler is a component dealing with
disk I/O for durable persistence. In general, I/O is a known
bottleneck in high performance applications. To mitigate per-
formance hit, the journaler uses memory-mapped file (MMFs)
[28].

3) Channel: Communications between fundamental queu-
ing and processors is implemented via the channel module,
which is a custom implementation of a push-based client/server
raw bytes asynchronous channel, able to work at line rate. It is
a point to point application link and serves as an unidirectional
pipe (queuing tier to one instance of processor). Despite the
efforts in designing the serialization and deserialization from
scratch, the extraction module in the processor will prove to
be the major bottleneck (refer to Section IV).

18Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 27 / 128

Figure 3. Processor internals. A ring buffer disciplines the interactions
between producers and consumers, respectively the inbound channels

receiving the data samples to process, and the staging and flushing sub-stages
that store the data either for further processing or for durable persistence.

C. Shared-nothing Processing Tier
A processor is a shared-nothing process, able to perform

a set of diversified computations. It is composed of three
major components, which are the extractor, the stager and the
flusher, as depicted on Figure 3. A processor only needs to
advertise itself to the coordinator in order to start receiving
traffic at the next cycle. Being stateless, it allows indefinite
horizontal scaling. Details about the two main components of
the processing tier are given below.

1) Extractor: The extractor module is the component that
asynchronously rebuilds the data received from the queue
nodes into Chimera’s internal model. It is the downstream of
the channel (as per Section III-B3).

2) Staging: The warehouse is the implementation of the
staging area in Figure 3. It is an abstraction of an associative
data structure in which the data is staged for the duration of a
cycle; it is pluggable and has an on-heap and off-heap imple-
mentation. It supports various kinds of stateful processing, i.e.,
computations for which the output is function of a previously
stored computation. As an example, the processor used for
benchmarking Chimera has the inbound data aggregated on-
the-fly for maximum efficiency; at the end of the cycle, all
the data currently sitting in the warehouse gets flushed to the
database. However, partial data is not committed, meaning that
unless all the data from a cycle c is received (i.e., Ymc

), the
warehouse will not flush.

D. Persistence Tier
The persistence tier is a node of the ingestion pipeline that

runs a database. This is the sole task of such kind of nodes.
Chimera makes use of a time series database (TSDB) [29] built
on top of Apache Cassandra. At design time, the choice was
made considering the expected throughput and the possibility
to horizontally scale this tier too.

E. Core Protocols
The focus of this section is on the core protocols, in-

tended as the main algorithms implemented at the fundamental
queuing and processor components; their design targeted the

Algorithm 1: Cyclic ingestion and continuous forward-
ing in the fundamental queuing tier.

Data: queueNodeId, N, M
Result: continuous ingestion and sharding.
while alive do

curr = buffer.next();
n = hash(current) mod N;
if n == queueNodeId then

m = hash(curr) mod M;
send(curr, m);

end
if endOfCycle then

c = c+1;
advertise(queueNodeId, c);

end
end

Algorithm 2: Cyclic reception, processing and flushing.
Data: processorId, data
Result: continuous processing and cyclic flushing.
initialization;
while alive do

extracted = extract(data);
processed = process(extracted);
if to be staged then

stage(processed);
else

flush();
c = c+1;
advertise(processorId, c);

end
end

distributed and shared nothing paradigm: coordination traffic is
backpropagated and produced individually by every processor.
The backpropagation of acknowledgements refers to the com-
mit of the traffic shard emitted by the target processor upon
completion of a flush operations. This commit is addressed to
the coordinator only. To make sense of these protocols, the key
concepts to be taken into consideration are: ingestion cycle and
ingestion group, as per their definitions.

1) Cyclic Operations: The ingestion pipeline works on
ingestion cycles, which are configurable batching units; the
overall functioning is independent of the cycle length, which
may be an adaptive time window or any batch policy, ranging
from a single unit to any number of units fitting the needs,
context and type of data. Algorithm 1 presents the pseudo-
code for the cyclic operations of Chimera on the fundamental
queuing tier, and Algorithm 2 presents the pseudo-code for the
processing tier.

2) On-demand Replay: On-demand replay needs to be
implemented in case of any disruptive events occurring in the
ingestion group, e.g., a failed processor or queue node. In order
to reinforce reliable processing, the shard of data originally
processed by the faulty member needs to be replayed, and this
has to happen on the next ingestion cycle. The design of the
cyclic ingestion with replay mechanism allows to mitigate the
effect of dynamic join and leave: the online readaptation only

19Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 28 / 128

Algorithm 3: Data samples on-demand replay, upon
failures (processor(s) not able to commit the cycle).

Data: cycleOfFailure, queueNodeId, prevM, M,
failedProcessorId

Result: replay traffic according to the missing
processor(s) commit(s).

initialization;
while alive do

data = retrieve(cycleOfFailure);
while data.hasNext() do

current = data.next();
if hash(current) mod N == queueNodeId then

if (hash(current) mod prevM) ==
failedProcessorId then

m = hash(current) mod M;
send(curr, m);

end
end

end
end

happens in the next cycle, without any impact on the actual
one.

Algorithm 3 presents the main flow of operations needed
to make sure that any non committed shard of traffic is first
re-processed consistently, and then properly flushed onto the
storage. Note that this process of replaying can be nested in
case of successive failures. It provides eventual consistency in
the sense that the data will eventually be processed.

3) Dynamic Join/Leave: Any dynamic join(s) and leave(s)
are automatically managed with the group membership and
the distribution protocol. Join means any event related to a
processor/queue node advertising itself to the cluster manager
(or coordinator); instead, leave means any event related to
a processor leaving the ingestion group and stop advertising
itself to the cluster manager. Upon the arrival of a new pro-
cessor, nothing happens immediately. Instead at the beginning
of the next cycle, it is targeted with its shard of traffic;
whenever a processor leaves the cluster (e.g., a failure), a
missing commit for the cycle is detected and the on-demand
replay is triggered to have the shard of traffic re-processed and
eventually persisted by one of the live processors.

IV. EXPERIMENTAL CAMPAIGN

In order to assess Chimera performance with a focus to
validate its design, a test campaign has been carried out. In
this section, the performance figures are presented, notes are
systematically added to give context to the figures and to
share with the reader the observations from the implemented
campaign.

A. Testbench

Performance testing has been conducted on a small cluster
of three bare metal machines, each of which runs on CentOS
v7. Machines were equipped with two CPUs of six cores each,
48 GB of DDR3 and a HDD; they were connected by the mean
of a 1 Gbit switched network.

Figure 4. Graphical representation of the experimental methodology used to
assess the performance of Chimera, tier by tier.

B. Experiments

The synthetic workloads were generated randomly. The
data was formatted to reflect the expected traffic in a pro-
duction environment. For each test scenario, twenty iterations
were run; the results for each iteration were then averaged and
summarized.

Figure 4 presents the testbench organization: probes were
put in points A, B and C to capture relevant performance
figures. As evident, the experiments were carried out with a
strong focus on assessing the performance of each one of the
composing tiers, in terms of inbound and outbound aggregated
traffic.

The processor used for the tests performs a statistical
aggregation of the received data points on per cycle basis;
this was to alleviate the load on the database, which was not
able to keep up with Chimera’s average throughput.

The remainder of this section presents the results with
reference to this methodology.

C. Results

1) Fundamental Queuing Inbound Throughput:

a) Parsing: At the very entrance of any pipeline sits the
parsing submodule, which is currently implemented following
a basic scheme. This is mostly because the parsing logic highly
relates to the kind of data that would be ingested by the system.
As such, parsing optimization can only be carried out when
actual data is pumped into Chimera. Nevertheless, stress testing
has been conducted to assess the performance of a general
purpose parser. The test flow is as follow: synthetic workloads
is created and loaded up in memory, before being pumped
into the parsing module, which in turns pushes its output to
the ring buffer. The results summarized in Table I are fairly
good: a single threaded parsing submodule was able to parse
712K messages per second, on average. Clearly, as soon as the
submodule makes use of multiple threads, the parser was able
to saturate the ring buffer capacity.

b) Ring Buffer: The synthetic workload generator sim-
ulated many different sources pushing messages of 500 byte
(with a slight variance due to randomness) on a multi-threaded
parsing module. In order to push the limits of the actual
implementation, the traffic was entirely loaded in memory and
offloaded to the ring buffer. The results were fair, the ring
buffer was always able to go over 4M data samples ingested
per second; a summary of the results as a function of the input
bulks is provided in 5(a);

20Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 29 / 128

TABLE I. Summary of the experienced throughputs in millions per second. This table provides a quantitative characterization of Chimera as composed by its
two main stages and inherent submodules. Parsing and Extraction were multi-threaded, using a variable pool of cached workers (up to the limit of (N ∗ 2 + 1)
where N was the number of CPUs available). Tests were repeated with a local processor to overcome the 1 Gbit network link saturation problem. The results

involving the network are shown in the light gray shaded rows.

Queuing [M/s] Processing [M/s]

Direction Parsing Ring Buffer Journaler Channel Extraction Staging

Inbound 6 4.3 4.3 0.2 0.2 0.2
Outbound 4.3 4.3 3.7 0.2 0.2 0.2

Inbound 6 4.3 4.3 4.3 0.9 0.9
Outbound 4.3 4.3 3.7 4.2 0.9 0.9

(a) Ring buffer stress test results. Synthetic traffic was generated as
messages of average size 500 Byte.

(b) Journaler stress test results. Synthetic traffic was as per ring buffer.

Figure 5. Performance of the ring buffer and journaler.

c) Journaler: As specified in Section IV, the testbench
machines were equipped with HDDs, clearly the disk was a
bottleneck, which systematically induced backpressure to the
ring buffer. Preliminary tests using the HDD were confirmed
the hypothesis: the maximum I/O throughput possible was
about 115 MByte/s. That was far too slow considering the
performance Chimera strives to achieve. As no machine with
a Solid State Drive (SSD) was available, the testing was carried
out on the temporary file system (tmpfs, which is backed by
the memory) to emulate the performance of an SSD. Running
the same stress tests, a write throughput of around 1.6 GByte/s
has been registered. By the time of writing, the latter is a
number achieved by a good SSD [30], and which is perfectly
in line with ring buffer experienced throughput (approx. 2
GByte/s of brokered traffic data). Figure 5(b) gives a graphical
representation of the results.

2) Fundamental Queuing Outbound Throughput:

a) Channel: Results from channel stress testing are
shown in Figure 6(a). The testbench works on bare metal
machines on a 1 Gbit switched network, which is, as for the
case of the HDD, a considerable bottleneck for Chimera. Over
the network, 220K data points per second were transferred
(approx. 0.9 Gbit/s), maxing out the network bandwidth.
Stress tests were repeated with a local setup, approaching the
same reasoning as per the case of journaler. The results are
reported in Figure 6(b), which demonstrate the ultra high-level
of throughput achievable by the outbound submodule of the
fundamental queuing tier: the channel keeps up with the ring
buffer, being able to push up to 4M data points per second.

3) Processor Inbound Throughput:
a) Channel: The channel is a common component,

which acts as sender on the queuing side, and as receiver
on the processor side. The performance to expect has already
been assessed, so for the inbound throughput of the processor
the focus would be on the warehouse, which is a fundamental
component for stateful processing. Note that processors operate
in a stateless way, meaning that they can join and leave dy-
namically, but, of course, they can perform stateful processing
by staging the data as needed and as by design of the custom
processing logic.

b) Staging Area: Assessing the performance of this
component was critical to shape the expected performance
curve for a typical processor. The configuration under test
made use of an on-heap warehouse (see Section III-C2), which
guarantees a throughput of 3.5M operations per second, as
shown on Figure 7(a). Figure 7(b) shows the result obtained
from a similar test, but under concurrent writes; going off-
heap was proven to be overkilling as further serialization and
deserialization were needed, clearly slowing down the entire
inbound stage of the processor to 440K operations per second.

c) Extractor: This module was proven to be the bot-
tleneck of Chimera. It has to deserialize the byte stream and
unmarshal it into a domain object. The multi-threaded imple-
mentation was able to go up to 0.9M data points rebuilt per
second: a high backpressure was experienced on the channels
pushing data at the line rate, producing high GC overhead on
long runs.

4) Processor Outbound Throughput:

21Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 30 / 128

(a) Channel stress test results. Synthetic traffic was pulled from the
ring buffer and pushed on the network, targeting the designated
processor.

(b) Channel stress test results. Synthetic traffic was pulled from the ring
buffer and pushed on the network, targeting the designated localhost
processor.

Figure 6. Performance of the channel.

(a) Warehouse (i.e., staging area) stress test results. Scenario with
non-concurrent writes.

(b) Warehouse (i.e., staging area) stress test results. Scenario with
concurrent writes.

Figure 7. Performance of the staging area.

a) Flusher: It was very related to the specific aggregat-
ing processor and it was assessed to be approx. 85 MByte/s,
which is reasonable considered the aggregation performed on
the data falling into a batching on the cycle. The characteristic
of this tier may variate with the support used for the storage.

D. Discussion

The test campaign was aimed at pushing the limits of each
single module of the staged architecture. The setup put in
place was single process both for the fundamental queuing
and processor tiers, so the performance figures showed in the
previous sections were referring to such setup.

The experimental campaign has confirmed the ideas around
the design of Chimera. As per Table I, Chimera is a platform
able to handle millions of data samples flowing vertically in
the pipeline, with a basic setup consisting of single queuing
and processing tiers. No test have been performed with scaled
setups (i.e., several queuing components and many processors),
but considered the almost shared nothing architecture targeted
for the processing tier (slowest stage in the pipe having the
bottleneck in the extraction module), a linear scalability is

expected, as well as a linear increase of the overall throughput
as the number of processors grows up.

During the test campaign, resource thrashing phenomenon
was observed [31]. The journaler pushed the write limits of the
HDD, inducing the exhaustion of the kernel direct memory
pages. The HDD was only able to write at a rate of 115
MByte/s, and therefore, during normal runs, the memory gets
filled up within a few seconds, inducing the operating system
into a continuous swapping loop, bringing in and out virtual
memory pages.

Figure 8 presents a plot of specific measurements to
confirm the resource thrashing hypothesis. The tests consisted
in writing over several ingestion cycles a given amount of
Chimera data points to disk, namely one and three millions
per cycle. The case of one million data points per batch shows
resource thrashing after seven cycles: write times to HDD
bump up considerably, the virtual memory stats confirmed
pages being continuously swapped in and out; the case of three
millions data points per batch shows resource thrashing after
only two cycles, which is expected. High response times were
caused by the cost of flushing the data currently in memory to

22Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 31 / 128

Figure 8. Experimented HDD-induced thrashing phenomenon. The I/O
bottleneck put backpressure on the kernel, inducing high thrashing, which

was impacting the overall functioning of the machine.

the slow disk, meanwhile the virtual direct memory was filled
up and swapped in and out by the kernel to create room for
new data, as confirmed in [32].

V. CONCLUSION

Chimera is a prototype solution implementing the proposed
ingestion paradigm, which is able to distribute the queuing
(intended as traffic persistence and replay) and processing
tiers into a vertical pipeline, horizontally scaled, and shar-
ing nothing among the processors (control flow is vertical,
from queuing to processors, and from processors to queuing).
The innovative distribution protocols allow to implement the
backpropagated incremental acknowledgement, which is a key
aspect for the delivery guarantee of the overall infrastructure:
in case of failure, a targeted replay can redistribute the data
on the live processors and any newly joining one(s). This
same mechanism allows to redistribute the load, in case of
backpressure, on newly joining members with a structured
approach: the redistribution is implemented on a cyclic basis,
meaning that a newly joined processor, once bootstrapped, start
receiving traffic only during the next useful ingestion cycle.
This innovative approach solves the problems highlighted with
the solutions currently adopted in the industry, keeping the
level of complexity of the overall infrastructure very low: the
decoupled nature of the queuing and processing tiers, as well
as the backpropagation mechanism are as many design tenets
that enable easy distribution and guarantee reliability despite
the very high level of overall throughput.

From a performance standpoint, experimental evidences
demonstrate that Chimera is able to work at line rate, maxing
out the bandwidth. The queuing tier outperforms the process-
ing tier: on average a far less number of CPU cycles is needed
to first transform and second persist the inbound traffic, and
this is clear if compared to the kind of processing described
as example from the experimental campaign.

A. Lessons Learned
The journey to design, implement and validate experimen-

tally the platform was long and arduous. A few lessons have
been learned by engineering for low-latency (to strive for the
best from the single process on the single node) and distribut-
ing by sharing almost nothing (coordinate the computations on
distributed nodes, by clearly separating the tasks and trusting
deterministic load sharding). First lesson might be summarized
as: serialization is a key aspect in I/O (disk and network), a
slow serialization framework can compromise the throughput

of an entire infrastructure. Second lesson might summarized
as:memory allocation and deallocation are the evil in managed
languages, when operating at line rate, the backpressure from
the automated garbage collector can jeopardize the perfor-
mances, or worse, kill nodes (in the worst case, a process
crash can be induced). Third lesson might be summarized
as: achieving shared nothing architecture is a chimera (i.e.,
something unique) by itself, meaning that it looks almost
impossible to let machines collaborate/cooperate without any
sort of synchronization/snapshotting. Forth and last lesson
might be summarized as: tiering vertically allows to scale but
it inevitably introduces some coupling, this was experienced
with the backpropagation and the replay mechanism in the
attempt to have ensure stateless and reliable processors.

B. Future Work
The first step into improving Chimera would be to work on

a better serialization framework. Indeed, as shown in the test
campaign, bottlenecks were found whenever data serialization
comes into play. Existing open-source frameworks are avail-
able, such as Kryo [33] for Java. Secondly, in order to further
assess the performance of Chimera, it would be necessary to
run a testbench where multiple queue nodes and processors
are live. Indeed, the test campaign has only been focused on
one queue node and one processor. This would also allow to
further assess Chimera’s resiliency to failures, and recovery
mechanisms. Indeed, Byzantine failures have been excluded
from the scope of this work, but resiliency with respect to
such failures are necessary to enforce robustness and security.

VI. ACKNOWLEDGEMENT

This work has been carried out in collaboration with
the École Polytechnique Fédérale de Lausanne (EPFL) as
partial fulfillment of the first author master thesis work. A
special thank goes to Prof. Katerina Argyraki for her valuable
mentoring and her continuous feedback.

REFERENCES
[1] D. Evans, “The Internet of Things,” Cisco, Inc., Tech. Rep., 2011.
[2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”

Computer networks, vol. 54, no. 15, 2010, pp. 2787–2805.
[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things

(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, 2013, pp. 1645–1660.

[4] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for
data stream processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 6, 2014, pp. 1447–1463.

[5] H. Chen, R. H. Chiang, and V. C. Storey, “Business intelligence and
analytics: From big data to big impact.” MIS quarterly, vol. 36, no. 4,
2012, pp. 1165–1188.

[6] P. Russom et al., “Big data analytics,” TDWI best practices report, fourth
quarter, 2011, pp. 1–35.

[7] M. Fowler and P. Sadalage, “Nosql database and polyglot persistence,”
Personal Website: http://martinfowler. com/articles/nosql-intro-original.
pdf, 2012.

[8] A. Marcus, “The nosql ecosystem,” The Architecture of Open Source
Applications, 2011, pp. 185–205.

[9] K. Borders, J. Springer, and M. Burnside, “Chimera: A declarative
language for streaming network traffic analysis.” in USENIX Security
Symposium, 2012, pp. 365–379.

[10] D. R. Brillinger, Time series: data analysis and theory. SIAM, 2001.
[11] R. Kimball and J. Caserta, The Data Warehouse? ETL Toolkit: Practical

Techniques for Extracting, Cleaning, Conforming, and Delivering Data.
John Wiley & Sons, 2011.

23Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 32 / 128

[12] P. Vassiliadis, “A survey of extract–transform–load technology,” Inter-
national Journal of Data Warehousing and Mining (IJDWM), vol. 5,
no. 3, 2009, pp. 1–27.

[13] “Introducing Heka,” https://blog.mozilla.org/services/2013/04/30/introducing-
heka/, 2017, [Online; accessed 3-March-2017].

[14] D. Namiot, “On big data stream processing,” International Journal of
Open Information Technologies, vol. 3, no. 8, 2015, pp. 48–51.

[15] C. Wang, I. A. Rayan, and K. Schwan, “Faster, larger, easier: reining
real-time big data processing in cloud,” in Proceedings of the Posters
and Demo Track. ACM, 2012, p. 4.

[16] J. N. Hughes, M. D. Zimmerman, C. N. Eichelberger, and A. D. Fox, “A
survey of techniques and open-source tools for processing streams of
spatio-temporal events,” in Proceedings of the 7th ACM SIGSPATIAL
International Workshop on GeoStreaming. ACM, 2016, p. 6.

[17] R. Pike, “The go programming language,” Talk given at Googles Tech
Talks, 2009.

[18] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Data Engineering, 2015, p. 28.

[19] S. Kamburugamuve and G. Fox, “Survey of distributed stream process-
ing,” http://dsc.soic.indiana.edu/publications, 2016, [Online; accessed 3-
March-2017].

[20] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng et al., “Benchmarking
streaming computation engines: Storm, flink and spark streaming,” in
Parallel and Distributed Processing Symposium Workshops, 2016 IEEE
International. IEEE, 2016, pp. 1789–1792.

[21] M. A. Lopez, A. Lobato, and O. Duarte, “A performance comparison
of open-source stream processing platforms,” in IEEE Global Commu-
nications Conference (Globecom), Washington, USA, 2016.

[22] “Kafka Streams,” http://docs.confluent.io/3.0.0/streams/, 2017, [Online;
accessed 3-March-2017].

[23] “Introducing Kafka Streams: Stream Processing Made Simple,”
http://bit.ly/2nASDDw, 2017, [Online; accessed 3-March-2017].

[24] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, 2011, pp.
1–7.

[25] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.” in USENIX annual technical
conference, vol. 8, 2010, p. 9.

[26] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 4, no. 3, 1982, pp. 382–401.

[27] M. Thompson, “Lmax disruptor. high performance inter-thread messag-
ing library.”

[28] S. T. Rao, E. Prasad, N. Venkateswarlu, and B. Reddy, “Significant
performance evaluation of memory mapped files with clustering al-
gorithms,” in IADIS International conference on applied computing,
Portugal, 2008, pp. 455–460.

[29] “KairosDB,” https://kairosdb.github.io/, 2015, [Online; accessed 3-
March-2017].

[30] “Intel SSD Data Center Family,” http://intel.ly/2nASMqy, 2017, [On-
line; accessed 3-March-2017].

[31] P. J. Denning, “Thrashing: Its causes and prevention,” in Proceedings of
the December 9-11, 1968, fall joint computer conference, part I. ACM,
1968, pp. 915–922.

[32] L. Wirzenius and J. Oja, “The linux system administrators guide,”
versión 0.6, vol. 2, 1993.

[33] “Kyro Serialization Framework,” https://github.com/EsotericSoftware/kryo,
2017, [Online; accessed 5-April-2017].

24Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 33 / 128

Integrating Static Taint Analysis in an Iterative
Software Development Life Cycle

Thomas Lie and Pål Ellingsen
Department of Computing, Mathematics and Physics

Western Norway University of Applied Sciences
Bergen, Norway

Email: thomas.lie@student.hib.no, pal.ellingsen@hvl.no

Abstract—Web applications expose their host systems to the end-
user. The nature of this exposure makes all Web applications
susceptible to security vulnerabilities in various ways. Two of
the top problems are information flow based, namely injection
and cross-site scripting. A way to detect information flow based
security flaws is by performing static taint analysis. The idea is
that variables that can directly or indirectly be modified by the
user are identified as tainted. If a tainted variable is used to
execute a critical command, a potential security flaw is detected.
In this paper, we study how to integrate static taint analysis
in an iterative and incremental development process to detect
information flow based security vulnerabilities.

Keywords–Taint Analysis; iterative development; software secu-
rity; injection attacks.

I. INTRODUCTION

The Open Web Application Security Project (OWASP)
analyses data from software security firms and periodically
publishes a report about the top 10 most common security
vulnerabilities found in Web applications. The data analysed
covers over 500,000 vulnerabilities over thousands of applica-
tions making this list a well documented ranking of the most
common vulnerabilities present in Web applications today [1].
Two of the types of vulnerabilities at the top of the OWASP top
10 list are information flow based, namely injection and cross-
site scripting. Being information flow based means that in order
for an attacker to successfully exploit the type of vulnerability,
untrusted data must enter the application. This untrusted data
then bypasses the validation due to a poor validation routine
or a complete lack of validation. When the untrusted data
eventually reaches the critical command the attacker aimed for,
the vulnerability is exploited. In the category of injection based
vulnerabilities reside numerous exploitable implementations,
such as queries for SQL (Structured Query Language), LDAP
(Lightweight Directory Access Protocol), Xpath, NoSQL and
command injection in the form of operating system commands
or program arguments. Due to the widespread use of database
access based on SQL in Web applications, the most common
injection vulnerability is therefore SQL injection. Two other
types of information flow vulnerabilities that are worth briefly
mentioning are path traversal and HTTP (Hypertext Transfer
Protocol) response splitting. Path traversal allows an attacker to
access or control files that are not intended by the application.
This can happen if the application fails to restrict access to the
file system. Path traversal belongs in the category of insecure
direct object references in the OWASP top 10 [1] [2].

Numerous approaches for detecting SQL injection and

cross-site scripting are documented. Some of them are briefly
described in the following paragraphs. SQLUnitGen is a tool
to detect SQL injection vulnerabilities in Java applications.
First, the tool traces input values that are used for an SQL
query. Based on this analysis, test cases are generated in the
form of unit tests with attack input. Lastly, the test cases are
executed and a test result summary showing vulnerable code
locations is provided [3]. Fine-grained access control is more
of a way of eliminating the possibility for SQL injection rather
than detecting it. The concept is to restrict database access to
information only the authenticated user is allowed to view.
This is done by assigning a key to the user, which is required
in order to successfully query the database. Access control is
in fact moved from the application layer to the database layer.
Any attempt to execute SQL injection cannot affect the data
of different users [4].

SQLCHECKER is a runtime checking algorithm imple-
mentation for preventing SQL injection. It checks whether
an SQL query matches the established query grammar rules,
and the policy specifying permitted syntactic forms in regards
to the external input used in the query. This means that any
external input is not allowed to modify the syntactic structure
of the SQL query. Meta-characters are applied to external
input functioning as a secret key, for identifying which data
originated externally [5]. Brower-enforced embedded policies
is a method for preventing cross-site scripting vulnerabilities.
The concept is to include policies about which scripts are
safe to run in the Web application. Two types of policies
are supported. A whitelisting policy is provided by the Web
application as a list of valid hashes of safe scripts. Whenever
a script is detected in the browser, it is passed to a hook
function hashing it with a one-way hashing algorithm. Any
script whose hash is not in the provided list is rejected [6]. The
second policy, Document Object Model (DOM) sandboxing,
is used to enable the use of unknown scripts. This could be
a necessary evil for a Web site that, for example, requires
scripts in third-party ads. Contrary to the first policy, this is
a blacklisting policy. The Web page structure is mapped, and
any occurrences of the noexecute keyword within a <div>
or element enables sandbox mode in that element,
disallowing running scripts [6]. The methods covered in the
preceding paragraphs for both detecting and/or preventing SQL
injection and cross-site scripting have one thing in common.
All approaches present detection solutions limited to their
respective vulnerability, being it either SQL injection or cross-
site scripting. Since both types of vulnerabilities belong to
the same category of vulnerabilities, information flow vulner-

25Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 34 / 128

abilities, a mutual approach is desirable to explore. Such an
approach should also be able to detect all forms of information
flow vulnerabilities. FindBugs [7] is a popular static analysis
tool for Java. It has a plugin architecture allowing convenient
adding of bug detectors presently detecting both SQL injection
and cross-site scripting. The bug detectors analyse the Java
bytecode in order to detect occurrences of bug patterns. Up
to 50% false warnings may be acceptable if the goal of the
analysis is just to get a general idea of where to do coding
improvements in a development process. Having a much more
precise analysis reporting none or low false warnings saves
the developers time. Therefore, finding a method with a much
higher accuracy is preferable. The approach that is explored in
this paper in order to detect information flow vulnerabilities,
is the approach called taint analysis.

In the following, we want to study how taint analysis can
be integrated in the development process, and how suitable
the existing implementations are for this kind of integration.
To carry out this study, we have applied the analysis to the
development of a Java Enterprise Edition (Java EE) application
throughout the development process. The outline of the rest of
this paper is as follows. Section II describes the principles of
taint analysis, and some implementations of this technique. In
Section III, the methodology used in this study is presented.
Based on this, the results and an analysis of these is presented
in Section V. Finally, our findings are summed up in Section
VI.

II. TAINT ANALYSIS

Taint analysis resides within the domain of information
flow analyses. Essentially, this means that tracking how vari-
ables propagate throughout the application of analysis is the
core idea. In order to detect information flow vulnerabilities,
entry points for external inputs in the application need to
be identified. The external inputs could be data from any
source outside the application that is not trusted. In other
words, it must be determined where there is a crossing in the
applications established trust boundary. In a Web application
context, this is typically user input fetched from a Web
page form, but would also include, e.g., URL parameters,
HTTP header data and cookies. In taint analysis, the identified
entry points are called sources. The sources are marked as
tainted, and the analysis tracks how these tainted variables
propagate throughout the application. A tainted variable rarely
exclusively resides in the original assigned variable, and thus
it propagates. This means that it affects variables other than
its original assignment. This can happen directly or indirectly.
Directly in that, e.g., a tainted string object is assigned either
fully or partly to a new object of some sort. An example of
indirect propagation is when a tainted variable that contains an
id is used to determine what data is assigned to a new variable,
see Figure 1 [8].
A tainted variable in itself is not harmful to an application. It is

Figure 1: A tainted source variable containing an id to fetch data
from a HashMap indirectly induces taint on an object.

when a tainted variable is used in a critical operation without
proper sanitization, that vulnerabilities could be introduced.
Sanitizing a variable means to remove data or format it in
such a way that it will not contain any data that could exploit
the critical command in which it will be used. An example
is when querying a database with a tainted string, it could
open for SQL injection if the string contains characters that
either change the intended query, or split it into additional
new queries. Proper sanitization would remove the unwanted
characters, eliminating the possibility of unintended queries
and essentially preventing SQL injection. Contrary to input
data being assigned as sources, methods that executes critical
operations are called sinks in taint analysis. When a tainted
variable has the possibility to be used within a sink, a success-
ful taint analysis implementation would detect this as a vul-
nerability. Taint analysis can be divided into two approaches,
dynamic taint analysis and static taint analysis. The dynamic
taint analysis approach analyses the different executed paths
in an application specific runtime environment. Tracking the
information flow between identified source memory addresses
and sink memory addresses is generally how this kind of
analysis is carried out. A potential vulnerability is detected
if an information flow between a source memory address and
a sink memory address is detected. Static taint analysis is a
method that analyses the application source code. This means
that, ultimately, all possible execution paths can be covered
in this type of analysis, whereas in a dynamic taint analysis
context, only those paths specifically included in the analysis
are covered.

Dynamic taint analysis can be used in test case generation
to automatically generate input to test applications. This is
suitable for detecting how the behaviour of an application
changes with different types of input. Such an analysis could
be desirable as a step in the development testing phase of a
deployed application since this could also detect vulnerabilities
that are implementation specific. Dynamic taint analysis can
also be used as a malware analysis in revealing how informa-
tion flows through a malicious software binary [9]. Taking this
analysis one step further enables malicious software detection
of, e.g., keyloggers, packet sniffers and stealth backdoors. The
concept is to mark input from keyboard, network interface
and hard disk tainted, and then track the taint propagation to
generate a taint graph. By using the taint graph in automatically
generating policies through profiling on a malicious software
free system, detection of anomalies is possible. E.g., in the case
of detecting keyloggers, the profile includes which modules
would normally access the keyboard input on a per application
basis. When a keylogger is trying to access a specific profiled
application, this could be detected [10]. In both static and
dynamic taint analysis implementations, the precision of the
analysis is important for it to be trustworthy. Generally, two
outcomes can affect the analysis precision. The first scenario is
when the analysis for some reason marks a variable as tainted
that has not propagated from a tainted variable. This is called
over tainting and leads to false positives, which means that
the reported error is not truly an error. The second outcome is
when the analysis misses an information flow from a source to
a sink. Thus, the analysis does not report an error that actually
is present. This is called under tainting, and the term false
negative describes the absence of an actual error [9]. Dynamic
taint analysis has, as shown in previous paragraphs, several

26Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 35 / 128

types of applications. However, static taint analysis may be a
better fit for integration within the development process due to
the direct analysis of source code. There are different ways to
implement static taint analysis, and we have considered three
different implementations for Java, which are elaborated in the
following.

A. Implementations of taint analysis

An implementation of taint analysis for Java, described
by Tripp et al. [11], consists of two analysis phases. The
first phase performs a pointer analysis and builds a call
graph. Pointer analysis, also called points-to analysis, enables
mapping of what objects a variable can point to. A call graph
in this context is static, which means that it is an approximation
of every possible way to run the program in regards to invoking
methods. Tripp et al. describe an implementation of specific
algorithms, but the analysis design is flexible in that using
any set of desired algorithms is feasible [11]. The second
phase takes the results of the first phase as input and uses a
hybrid thin slicing algorithm to track tainted information flow.
Thin slicing is a method to find all the relevant statements
affecting the point of interest, which is called the seed. In
comparison to a traditional program slicing algorithm, thin
slicing is lightweight in that it only includes the statements
producing the value at the seed. This means that the statements
that explain why producers affect the seed are excluded in a
thin slice [12]. Thin slicing works well with taint analysis
because the statements most relevant to a tainted flow are
captured. Hybrid thin slicing essentially produces a Hybrid
System Dependence Graph (HSDG) consisting of nodes corre-
sponding to load, call and store statements. The call statements
represent source and sink methods. The HSDG has two types
of edges, direct edges and summary edges, that represent data
dependence. The data dependence information is computed in
the first phase by pointer analysis. Tainted flows are found
by computing reachability in the HSDG from each source
call statement, adding the necessary data dependence edges
on demand [11]. The way this implementation defines sources
and sinks is through security rules. Security rules exist in the
form (S1, S2, S3). S1 is a set of sources. A source is a method
having a return value which is considered tainted. S2 is a set
of sanitizers. A sanitizer is a method that takes a tainted input
as parameter and returns that parameter in a taint-free form. S3
is a set of sinks. Each sink is defined as a pair (m,P), where
m is the method performing the security sensitive operation
and P defines the parameters in m that are vulnerable when
assigned with tainted data [11]. This implementation of taint
analysis for Java includes ways to incorporate Web application
frameworks in the analysis. External configuration files often
define how the inner workings of a framework is laid out.
Therefore, a conservative approximation of possible behaviour
is modelled. For the Apache Struts framework, which is an
implementation of the Model View Controller (MVC) pattern,
the Action and Action Form classes are treated as sources.
These classes contain execute methods taking an ActionForm
instance as a parameter. This instance contains fields which
are populated by the framework based on user input meaning
it should be considered tainted. Thus, the analysis implements
a model treating the Action classes as entry points.

An alternative static taint analysis implementation is
similar to Taint Analysis for Java in that it is based on

pointer analysis and construction of a call graph. However,
this implementation depends on pointer analysis and call
graph alone in detecting tainted flows. The analysis uses
binary decision diagrams in the form of a tool called
bddbddb (BDD-Based Deductive DataBase), which includes
pointer analysis and a call graph representation [2]. Binary
decision diagrams can be utilized in adding compression to
a standard binary decision tree based on reduction rules.
In the context of this analysis, the compression of the
representation of all paths in the call graph makes it possible
to efficiently represent as many as 10 contexts. This allows
the analysis implementation to scale to applications consisting
of almost 1000 classes [2]. In order to detect vulnerabilities,
specific vulnerability patterns need to be expressed by
the user. A pattern consists of source descriptors, sink
descriptors and derivation descriptors. Source descriptors
specify where user input enters the application, e.g.,
HttpServletRequest.getParameter(String).
Sink descriptors specify a critical command that can be
executed, e.g., Connection.executeQuery(String).
Lastly, derivation descriptors specify how an object can
propagate within the application, e.g., through construction
of strings with StringBuffer.append(String) [2].
Tainted Object Propagation Analysis does not implement any
handling of Web application frameworks.

A third implementation, Type-based Taint Analysis, differs
from the preceding approaches in that a type system is the basis
of the analysis. The implemented type system is called SFlow,
which is a context-sensitive type system for secure information
flow. SFlow has two basic type qualifiers, namely tainted and
safe. Sources and sinks are identified in these methods, and
fields are annotated using these type qualifiers. A type system
is a system that intends to prove that no type error can occur
based on the rules established. This is done by assigning a type
to each computed value in the type system, and the flow of
these values is then examined. This concept is called subtyping
[8]. The subtyping hierarchy is defined as safe <: tainted.
This means that a flow from tainted sources to safe sinks is
disallowed. The other way around, assigning a safe variable
to a tainted variable is allowed. A third type of qualifier,
poly, is included in order to correctly propagate tainted and
safe variables through object manipulation, e.g., with String
methods append and toString. All object manipulation
methods, such as String append and toString, would
be annotated as poly. The poly qualifier in combination with
viewpoint adaptation rules ensures that the implementation is
context-sensitive. This means that parameters returned from
such methods inherit the manipulated inbound parameters type
qualifier (tainted or safe). As a result, the subtyping hierarchy
becomes safe <: poly <: tainted [8]. Another benefit with the
poly qualifier implementation is that tainted variables properly
propagate in third-party libraries. As a result all application
code is included in the analysis. Type-based Taint Analysis
also supports Web application frameworks in the same way
as the regular Java API is supported, namely by annotating
the relevant fields and methods. An example of this is that for
the Apache Struts framework, the Action class containing the
execute method is what needs to be annotated. This method
takes an ActionForm instance as a parameter, that contains
fields which are populated by the framework based on tainted
user input. Simply annotating the ActionForm parameter as

27Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 36 / 128

Require-
ments

Design Development Test Deployment

Figure 2: The Software Development Life Cycle [13].

tainted would include the framework in the analysis [8]. Type
inference implies identifying a valid typing based on the
subtyping rules defined in the SFlow type system. A succeeded
inference means that there are no flows from sources to sinks.
If the type inference fails, a type error is evident meaning that
a flow from a tainted source to a safe sink is present.

III. METHODOLOGY

When developing software, a common approach is to estab-
lish a Software Development Life Cycle (SDLC). The SDLCs
function is to cover all processes associated with the software
developed. Different types of SDLC models exist. However,
whether it being Waterfall, Agile or some other model, the
processes in the SDLC can be partitioned into different phases.
In this paper, the phases are named according to Merkow and
Raghavan [13] as Requirements, Design, Development, Test
and Deployment, see Figure 2. Developing software requires
planning of both functional requirements and non-functional
requirements in order to deliver an acceptable end product.
The functional requirements refer to the functionality of the
software, whereas non-functional requirements refer to quality
attributes, e.g., capacity, efficiency, performance, privacy and
security. The Requirements phase addresses the gathering and
analysis of requirements regarding the environment in which
the software is going to operate. Non-functional requirements
based on security policies and standards, and other relevant
industry standards that affect the type of software developed,
are included in this phase. The Design phase is where the
functional requirements of the software developed are planned,
based on the mapping of requirements in the first phase. This
phase also includes architectural choices that determine the
technologies used in the development of the software. The
Development phase contains the actual coding of the software
developed. Both functional requirements and non-functional
requirements from the earlier planning phases are being ad-
dressed. A common approach is to develop the functional
requirements in small programs called units. These units are
then tested for their functionality, a methodology called Unit
Testing. The Test phase is where test cases are built, based on
requirements criteria from earlier phases. Both test cases for
functional requirements and non-functional requirements are
included. The test phase is iterative in nature meaning that
the problems found would need to be addressed and fixed
in the development phase. After the problems are fixed, the
system would need to go through the test phase once again.
The deployment phase is the final phase in the cycle, and the
main activity is to install the software and make it ready to
run in its intended environment, or released into the market.
At this point, both testing of functional requirements and non-
functional requirements are finished [13].

The problem description (see Section I) states that we will
study how to integrate static taint analysis in the development
process of a Java EE Web application. Given the tools proposed

in Section I for detecting information flow vulnerabilities,
static taint analysis is explored in this experiment. This choice
is based on the fact that this type of analysis embraces the
detection of the whole domain of information flow vulnera-
bilities. Static taint analysis may also have significantly fewer
false warnings compared to e.g., analyses depending on code
patterns such as the FindBugs static analysis tool. The research
approach regarding the problem description is to carry out a
case study in two main parts. The first part is to develop a
prototype Java EE Web application of an acceptable size so that
it is not too small with regard to performing taint analysis on
it. This means that the prototype application should preferably
have multiple modules interacting with external processes, i.e.,
at a minimum implementing a database connection. Further,
the user interaction would naturally be done through a website
utilizing specific Java EE technologies. The goal of the last
part in the case study is to architect a solution to the taint
analysis integration. Many aspects regarding this integration
would need to be clarified. Based on the experiences with the
implementation of taint analysis in the specific prototype appli-
cation, general conclusions regarding the problem description
can be drawn. Some important approaches to implementing
static taint analysis for Java are given in [2], [8], [10] and
[14]. From these approaches, summarized in Section II-A, the
Type-based Taint Analysis from [8] was selected. This choice
was convenient in that the analysis platform is available as an
open source project and Type-based Taint Analysis also looks
promising with regard to how Web application frameworks are
handled. Analysing frameworks are especially relevant in Java
EE Web applications, e.g., in the form of the Java Server Faces
(JSF) framework managing the applications front-end. Based
on how this analysis method is described in [8], it would seem
that the implementation is feasible as an integrated step in a
Java EE Web application development context.

IV. INTEGRATING TAINT ANALYSIS IN THE SDLC

Considering that modern development practices are team
based, and in fact multi-team based on big projects, it is
important to include this observation in assessing whether
static taint analysis can efficiently be integrated in the SDLC.
An agile development methodology including an iterative and
incremental workflow leads to developing a piece of software
in numerous modules. Being able to properly test both a
single module and a set of modules for detecting information
flow vulnerabilities is preferable. According to Huang et al.
[8], the taint analysis implementation is modular, meaning
that a whole program is not necessary for analysis. This
is promising considering the modern development practice
described in the previous paragraph. Additionally, the taint
analysis implementation should be included in the development
phase along with other testing activities (see Section III)
describing the different phases in the SDLC [8]. In addition to
the development phase, the testing phase could include static
taint analysis. However, the reason to avoid integration within

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 37 / 128

the testing phase is that anything added to that phase adds
unnecessary overhead. Even if the overhead of running the
analysis is eliminated by making it fully automated, a system
for countering the output in form of requested fixes for the
next development phase iteration needs some resources. Also,
a known concept is that the earlier vulnerabilities are found
in the SDLC, the cheaper it is to get them fixed. The aim is
therefore to craft a solution to integrate static taint analysis into
the development phase. Some methods for detecting and/or
preventing information flow vulnerabilities are listed in Section
I. Most of these methods focus exclusively on either SQL
injection or cross-site scripting rendering detection of other
information flow attacks uncovered. Although FindBugs is
an example of a static analysis covering most, if not all,
the information flow vulnerabilities, its detecting algorithm is
prone to have a high percentage of false positives. The choice
of type-based taint analysis in the form of SFlow was done
because it can detect a high number of vulnerabilities and also
has a low number of false positives.

For the case study, a Java EE based Web application
for remotely controlling an automated production system was
developed. The size of the project was determined to be
sufficiently large to do a realistic study on the integration of
static taint analysis in the development process, while at the
same time being sufficiently small to focus on the research
question at hand. The development resources for the case study
application amounted to one developer limited to roughly three
months development time. As in one man team, a natural
SDLC approach to adopt is the Big Bang Model. This is
simply a term made to cover an SDLC, which contains no or
little planning and does not follow any specific processes [15].
Although a complete SDLC methodology was not followed
during the case study project, several key activities were
integrated in the SDLC in order to ensure delivery of an
acceptable end product. Enabling development of the prototype
application iteratively and incrementally was done by applying
continuous delivery. This means that the functionality was split
up and developed in smaller tasks and delivered in predefined
iteration cycles of, e.g., two weeks. The prototype application
was developed in iterations with an integrated static taint
analysis as a part of the SDLC. While the prototype application
has a limited size with a moderate number of iterations of
development, we consider taint analysis conducted during the
development cycle to be adequate in order to draw conclusions.
The bigger the application the more value of frequent analysis.
This is because the issues found earlier in a big application
environment would contribute knowledge to prevent making
the same mistakes over and over as the application progresses,
thus saving developer resources.

V. ANALYSIS

A main challenge during the implementation was to prop-
erly annotate external libraries, e.g., frameworks, in order
to enable a working analysis without developer intervention.
Adding annotations manually was not an option because, in
addition to creating extra work for the developer, it is prone
to errors. For SFlow to be a successful security analysis tool,
we found that the annotation process needs to be improved.
One approach in changing the annotation process could be to
use a strategy from the paper by Sridharan et al. [14]. This
paper describes a framework as a solution for adding Web

application frameworks to a taint analysis implementation. In a
similar way, a framework for adding annotations to the SFlow
annotated Java Development Kit (JDK) could be developed
easing the work of figuring out how to conduct the process
of annotation. This framework could also include verification
routines for testing that the annotations are working correctly
[14]. Another change SFlow must undergo is the way the anal-
ysis is conducted. In its current form, SFlow exists as a manual
command-line tool. For this tool to exist in the development
phase without unnecessary overhead, an automatic integration
of the analysis is required. Therefore, integrating SFlow as a
plugin in an IDE (Integrated Development Environment) by
utilizing this support by The Checker Framework could be a
good solution. This would make the taint analysis convenient
and seamless for the developer enabling analysis whenever
the developer builds the application and/or desires to run it.
However, deciding if the integration is not creating too much
overhead for the developer boils down to the running time
of the taint analysis implementation. Results from Huang et
al. [8] state that analysing 13 relatively large applications
resulted in running times of less than four minutes for all
applications except one. The analysis ran on a server with
Intel Xeon X3460 2.8GHz processor and 8GB RAM. As for
the smaller prototype application, the running time is about
30 seconds on a laptop with Intel Core i5-3210M 2.5GHz
processor and 6GB RAM [8]. Even though the running time of
the taint analysis is done within minutes and may not introduce
a significant overhead for the developer running the analysis
in the background, implementation in a different way could
be advantageous. This solution is to incorporate taint analysis
in a continuous integration tool, e.g., Jenkins, by integrating
SFlow in the build system it uses, e.g., Maven. By doing this,
the taint analysis will automatically run on every build. The
errors will then show up as compiler errors and warnings in
the continuous integration tool for the developers to address.
SFlow needs to undergo at least two significant changes in
order to become a powerful taint analysis security tool for
integration in the development phase in the SDLC. First, the
annotation process for adding Web application frameworks and
external libraries must become more user-friendly in order
to be practical. As suggested, a solution to this would be
to develop a framework for easing the annotation process.
And secondly, the analysis should be integrated either in the
developers development environment, or preferably within the
build system of the continuous integration tool.

VI. CONCLUSION

Information flow vulnerabilities can occur when appli-
cations handle untrusted data. SQL injection and cross-site
scripting are the most common information flow vulnerabil-
ities. There are numerous methods presented in countering
these vulnerabilities. One method, static taint analysis, looks
promising in that it has the ability to cover detection of
all kinds of information flow vulnerabilities. Out of three
static taint analysis implementations presented in this paper,
Type-based taint analysis was chosen as the preferred imple-
mentation. This approach looked promising in the way Web
application frameworks are handled. The implementation is
also freely available as an open-source project. A proposed
solution in integrating this taint analysis approach in an itera-
tive and incremental development process was presented. The

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 38 / 128

proposed solution used the developed prototype application
as a manageable sized concept application for implementing
taint analysis. Annotations of sources and sinks are needed
to detect information flow vulnerabilities. Some libraries are
already annotated in the taint analysis implementation, referred
to as the annotated JDK. To properly analyse an application,
all libraries containing sources and sinks in a developed
application need to be included in the annotated JDK. The
development of the prototype application gave a good technical
understanding of the inner workings of the application. This
was advantageous in order to identify what needed to be
annotated. The approach of mapping the attack surface of
the prototype application turned out to be an effective way
to identify the libraries containing sources and sinks.

Preparing the taint analysis implementation for analysis
is mostly about making sure the libraries that are used are
included in the annotated JDK and are also working properly.
The experiences with annotation indicates that this is not a
straight forward process, and could need many resources in
order to get it right. A framework for easing the process of
annotation, including verification that the annotation works
correctly, is proposed as a solution to this challenge. Multiple
approaches to conducting the taint analysis are possible. Run-
ning the taint analysis manually in command line, integrating
it in the developers IDE and integrating it in the continuous
integration tool are all possibilities. The latter suggestion is
proposed as the most effective solution; implementing taint
analysis in the continuous integration tools build system. This
is considered an effective approach because an analysis could
take several minutes to complete depending on application
size. Also, processes done automatically and by an external
instance will not be a distraction for the developer. When
to counter any detected type errors is then up to when the
developer monitors the notifications given in the continuous
integration tool.

VII. FURTHER WORK

In order to support static taint analysis during the devel-
opment process, the next step would be to get the annotations
of the application’s classes to work properly. A course worth
researching, as suggested, could be to develop a framework
for easing the process of annotating. Further work could also
include more research in the area of how to best integrate
taint analysis in a development process. The proposed solution
of integrating the analysis in a continuous integration tools
build system is probably worth exploring. An actual proof-
of-concept implementation could be using Jenkins continuous
integration tool with the Maven build system.

REFERENCES

[1] OWASP Foundation, “OWASP top 10 - 2013: The ten most critical
web application security risks,” 2013, Accessed: 2017-04-13. [On-
line]. Available: https://www.owasp.org/images/f/f8/OWASP Top 10 -

2013.pdf
[2] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java

applications with static analysis.” in Usenix Proceedings of the 14th
Conference on USENIX Security Symposium, vol. 2013, 2005, pp. 271–
286.

[3] Y. Shin, L. Williams, and T. Xie, “Sqlunitgen: Test case generation
for sql injection detection,” North Carolina State University, Raleigh
Technical report, NCSU CSC TR, vol. 21, 2006, p. 2006.

[4] A. Roichman and E. Gudes, “Fine-grained access control to web
databases,” in Proceedings of the 12th ACM symposium on Access
control models and technologies. ACM, 2007, pp. 31–40.

[5] Z. Su and G. Wassermann, “The essence of command injection attacks
in web applications,” in ACM SIGPLAN Notices, vol. 41, no. 1. ACM,
2006, pp. 372–382.

[6] T. Jim, N. Swamy, and M. Hicks, “Defeating script injection attacks
with browser-enforced embedded policies,” in Proceedings of the 16th
international conference on World Wide Web. ACM, 2007, pp. 601–
610.

[7] The FindBugs Project, “Findbugs,” 2015, Accessed: 2017-04-13.
[Online]. Available: http://findbugs.sourceforge.net/

[8] W. Huang, Y. Dong, and A. Milanova, “Type-based taint analysis for
java web applications,” in International Conference on Fundamental
Approaches to Software Engineering. Springer, 2014, pp. 140–154.

[9] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in 2010 IEEE Symposium on Security
and Privacy. IEEE, 2010, pp. 317–331.

[10] H. Yin and D. Song, “Whole-system fine-grained taint analysis for
automatic malware detection and analysis,” 2007, Accessed: 2017-04-
13. [Online]. Available: http://bitblaze.cs.berkeley.edu/papers/malware-
detect.pdf

[11] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “Taj:
effective taint analysis of web applications,” in ACM Sigplan Notices,
vol. 44, no. 6. ACM, 2009, pp. 87–97.

[12] M. Sridharan, S. J. Fink, and R. Bodik, “Thin slicing,” ACM SIGPLAN
Notices, vol. 42, no. 6, 2007, pp. 112–122.

[13] M. S. Merkow and L. Raghavan, Secure and Resilient Software Devel-
opment. CRC Press, 2010.

[14] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg,
“F4F: taint analysis of framework-based web applications,” ACM
SIGPLAN Notices, vol. 46, no. 10, 2011, pp. 1053–1068.

[15] T. Bhuvaneswari and S. Prabaharan, “A survey on software development
life cycle models,” Journal of Computer Science and Information
Technology, Vol2 (5), 2013, pp. 263–265.

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 39 / 128

Method for Automatic Resumption of Runtime Verification Monitors

Christian Drabek, Gereon Weiss

Fraunhofer ESK
Munich, Germany

e-mails: {christian.drabek,gereon.weiss}@esk.fraunhofer.de

Bernhard Bauer

Department of Computer Science
University of Augsburg, Germany

e-mail: bauer@informatik.uni-augsburg.de

Abstract—In networked embedded systems created with parts
from different suppliers, deviations from the expected commu-
nication behavior often cause integration problems. Therefore,
runtime verification monitors are used to detect if observed
communication behavior fulfills defined correctness properties.
However, in order to resume verification if unspecified behavior
is observed, the runtime monitor needs a definition of the
resumption. Otherwise, further deviations may be overlooked.
We present a method for extending state-based runtime monitors
with resumption in an automated way. This enables continuous
monitoring without interruption. The method may exploit diverse
resumption algorithms. In an evaluation, we show how to find
the best suited resumption extension for a specific application
scenario and compare the algorithms.

Keywords–resumption; runtime verification; monitor; state ma-
chine; networked embedded systems; model-based.

I. INTRODUCTION

In-car infotainment systems are an example for the increas-
ing complexity of software services in networked embedded
systems. Common basic architectures are utilized to enable
faster development cycles, reuse, and shared development of
non-differentiating functionality. Interoperable standards en-
able the integration of software components from multiple
vendors into one platform. However, the integration of such
services remains a challenge, since not only static interfaces
have to be compatible but also the interaction behavior.

Even though single functions are tested thoroughly for
their compliance to the specification, deviations in the behavior
occur often when new functions are integrated into a complete
system, e.g., caused by side-effects on timing by other func-
tions, misconfiguration or incomplete specifications. Further,
isolated testing is not feasible for all functionality, because
of the exhaustive and sometimes unknown test-contexts that
would be required. In these situations, it is vital to be able
to monitor the interactions of the integrated system at runtime
to detect deviations from the expected behavior. Nevertheless,
a robust system continues its work after a non-critical failure
or deviation from its specification; therefore, its monitors must
also be able to resume verification after an observed deviation.

A finite state machine (FSM) can be used to specify the
communication behavior in the networked embedded system.
Such a reference model can also be generated from observed
behavior and is quite versatile. It can be used as reference for
development, but may also serve as basis for a restbus simula-
tion, or the generation of test cases. Further, a reference model
can be used as a monitor [1]. It is run in parallel to the system
under test (SUT) and cross-checks the observed interactions
with its own modeled communications (cf. Figure 1). As this

Figure 1. Monitor using a reference model to verify communication behavior.

model is directly derived from the specification, the monitor
effectively compares the observation with the specification.

However, specifications often leave room for interpretation,
in particular concerning handling of errors. Hence, it is un-
defined how a monitor based on such a specification should
continue after a deviation. The adaptation to make the monitor
resilient is usually done manually and needs to be maintained.

To reduce the effort and room for mistakes, we promote
using a specification-based monitor and automating the process
of making it resilient. We introduce a method that completes
the transition function of such a monitor. Thereby, the extended
monitor is granted the ability to resume its observation after
deviations. The same monitor instance can be used to find
multiple deviations. We call this resumption. When using
a resumption extension, the same model can be used to
define valid behavior in the specification and to verify its
implementation, i.e., no separate verification model needs to be
created. Moreover, resumption eliminates the need to split the
specification into multiple properties. If available, we suggest
to use the reference model of the specification as basis for
the monitor. Thereby, it is easier to understand deviations, as
they can be presented in the context of the whole specification.
Further, the reuse of the specification guarantees compliance
of the monitor. By exchanging the resumption algorithm (R)
generating the extension, the monitor’s resilience can be opti-
mized for the current application scenario.

This work introduces the general method of resumption and
how resumption algorithms can be evaluated. To demonstrate
the evaluation, we also present and compare different algo-
rithms. They recreate patterns that we found to be commonly
used when manually improving the resilience of a FSM. The
evaluation framework and metrics help to find the best suited
extension for individual systems.

The rest of this paper is structured as follows. After
discussing related work in Section II, Section III describes
the concept of specification-based monitors and the necessary
notation. Section IV introduces the method of resumption and

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 40 / 128

the algorithms considered in this paper. In Section V, we
present the evaluation and discuss the findings. Section VI
concludes the paper and gives an outlook on future work.

II. RELATED WORK

Various areas address the problem of detecting differences
between a SUT’s behavior and its specification model. This
section gives a brief overview of how existing approaches
match specified model and observed behavior.

Conformance checking compares an existing process model
with event logs of the same process to uncover where the
real process deviates from the modeled process [2]. It is used
offline, i.e., after the SUT finished its execution, because
the employed data mining techniques to match model and
execution are computationally intensive and can only be used
efficiently once the complete logs are available. In contrast,
the presented resumption uses assumptions on the expected
deviations to provide lean algorithms that work at runtime.

Model-based testing aims to find differences between the
behavior of a SUT and a valid behavior model [3]. An
environmental [4] or embedded [5] test context stimulates
the SUT with test sets, i.e., selected input sequences. The
SUT’s outputs are then compared with the expected output
from the behavior model. Before each test set, the SUT
is actively maneuvered into a known state using a homing
sequence. Generally, these sequences reduce the current state
uncertainty by utilizing separating or merging sequences [6].
Former assure different outputs for two states, latter move the
machine into the same state for a given set of initial states.
Minimized Mealy machines are guaranteed to have a homing
sequence [6]. However, a passive monitor should not influence
the SUT. Therefore, the presented resumption cannot actively
force the system to a known state. Nevertheless, occurrences
of separating and merging sequences can be tracked during
observation to reduce the number of possible candidates for
the current state.

In general, runtime verification can be seen as a form of
passive testing with a monitor, which checks if a certain run
of a SUT satisfies or violates a correctness property [7]. The
observation of communication is well suited for black box
systems, as no details about the inner states of the SUT are
needed. Further, the influence on the SUT by the test system
is reduced by limiting the intrusion to observation. In case
the deviations are solely gaps in the observation, a Hidden
Markov Model can be used to perform runtime verification
with state estimation [8]. Runtime verification frameworks,
such as TRACEMATCHES [9] or JAVAMOP [10], preprocess
and filter the input before it is passed to a monitor instance.
Thereby, each monitor only sees relevant events. A property-
based monitor checks if a certain subset of the specification
is fulfilled or violated. Unless extended with resumption,
it will only report a single deviation. Nevertheless, if the
properties are carefully chosen, the respective monitor can
match an arbitrary slice of the input trace. Then, the monitor
is instantiated and matched against different slices of the
trace. However, this requires that the complete specification
is split into multiple of such properties and implies additional
design work. Thereby, or if the properties are extracted by data
mining techniques from a running system or traces [11][12],
a secondary specification is created that needs to be kept in
sync. In contrast, resumption enables the reuse of an available

q0 q1 q2 q3
join ack

reject

info

leave

ack
info

Figure 2. FSM of the communication behavior related to a subscription
service.

specification by automatically augmenting its robustness for
verification.

III. SPECIFICATION-BASED RUNTIME MONITORS

A monitor is “a system that observes and analyses the
behavior of another system” [13]. The core of a monitor is an
analyzer which is created from the requirements and different
languages can be used to specify the analyzer [14], e.g., linear
temporal logic [7]. However, without loss of generality, such
a description can be mapped to a set of states and a set of
transitions between the states [15], i.e., a (finite) state machine.

In diverse embedded system domains like automotive, state
machines are often used for the specification of communi-
cation protocols or component interactions. We call such a
state machine a reference model and a monitor that uses the
reference model to check conformance of observed interactions
a specification-based monitor. Reference models usually focus
on capturing the valid behavior and include only critical or
exemplary deviations. Therefore, they only describe a partially
defined transition function and a subset of all possible error
states. The respective specification-based monitor reports an
accepting verdict (>) for valid behavior and a rejecting verdict
(⊥) or another associated verdict for deviations. The FSM
in Figure 2 shows a FSM that specifies the communication
behavior related to a subscription service. It has only accepting
transitions; a possible resolution of implicit transitions is
shown in Figure 3a. If an event without transition in the
original FSM occurs, q⊥ is entered. However, such a monitor
will only detect the first deviation. To overcome this, the next
section introduces resumption and how the resolution can be
performed to overcome this.

Beforehand, we introduce the necessary notation. A mon-
itor M : 〈D,A,Q, q0, δ, γ〉 consists of a verdict domain D,
an observation alphabet A, a set of states Q, an initial state
q0 ∈ Q, a transition function δ : A × Q → Q and a verdict
function γ : A × Q → D. For a specification-based monitor,
M is identical to the reference model and, thereby, identical to
the specification. The observation alphabet A and the verdict
domain D of the monitor are the input and output sets of the
state machine. The latter is a set of verdicts, at least containing
> and ⊥. The former is a set of semantic events used to
distinguish the different interactions of the SUT relevant for
the monitor. At runtime, there are various ways to extract
the semantic events by preprocessing and slicing the observed
interactions, e.g., [9][10][15][1]. In the following, we will refer
to them in general as events.

Let dom(δ) be the domain of a partial function, such as
δ , i.e., the set of elements with a defined mapping. Let Aq be
the set of events with a defined transition in state q (1), Qe be
the set of states with a defined transition for event e (2) and
Qe,δ be the set of defined target states for event e (3).

Aq = {e ∈ A | 〈e, q〉 ∈ dom(δ)} (1)

32Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 41 / 128

q0 q1 q2 q3

q⊥

join ack

reject

info

leave

ack
info

* * *
*

*

(a) FSM with implicit transitions resolved.

q0 q1 q2 q3
join ack

reject

info

leave

ack
info

* * * *

(b) Rwait

q0 q1 q2 q3
join ack

reject

info

leave

ack
info

reject

ack,info

leave

join info

leave

join
ack,reject join

reject leave

(c) Rnear

q0 q1 q2 q3
join ack

reject

info

leave

ack
info

*

join info

leave

*
joinreject

leave

(d) Rn-o-w

q0 q1 q2 q3

qR

join ack
reject

info

leave

ack
info

*
* *

reject

leave

join

leave

join

reject

join

reject

leave

join

*

leave
reject

(e) Ru-e

q0 q1 q2 q3

q0, q2q2, q3

join ack
reject

info

leave

ack
info

reject

leave

ackinfo

join

leave

info

join

reject

ack
join

reject

leave

join

ack

leave

reject

info
join

info

leave

reject,ack

(f) Ru-s

Figure 3. FSMs with states and transitions (dashed) added by the implicit error assumption (a) and different R (b)-(f). Bold labels indicate an accepting,
regular labels a rejecting, and italic labels an inconclusive verdict. The wild-card ’*’ matches all events that have no other transition in the state.

Qe = {q ∈ Q | 〈e, q〉 ∈ dom(δ)} (2)

Qe,δ = {qt ∈ Q | ∃qs ∈ Qe : δ(e, qs) 7→ qt} (3)

IV. RESUMPTION

A specification-based monitor, such as shown in Figure 3a,
will only be able to find the first deviation from the specifica-
tion, since it enters the final state q⊥ at this point. Different
techniques can be applied in order to create resilient monitors
and to find deviations beyond the first. Up to now this is
usually done manually and requires additional design work,
e.g., to repeatedly add additional transitions and triggers or
to artificially split the specification into multiple properties
that can be checked separately. However, we suggest using
a generic definition for how the monitor can resume its duty.

This section presents the method for resumption that en-
ables a monitor to analyze the trace for additional deviations
with respect to the same property. This can be used to resume
the operation of the monitor, e.g., after a deviation was detected
or for initialization, and is especially useful when the system
under test cannot be forced into a known state.

Example 1 (Resumption): Let’s assume M in state q ob-
serves event χ ∈ A \ Aq , i.e., the specification defines no
transition for χ in the active state. By the definition of a
specification-based monitor, a deviation is reported. However,
as the event is undefined for this state in the specification,
additional information is required for the monitor to continue
observation. If the application scenario allows to ignore the
deviating event, the monitor can stay in the same active state
and continue its work.

A. Resumption Extension
Any specification-based monitor may be extended with the

help of a resumption extension. Even a monitor that has a
complete transition function may have need for resumption, if

it has unrecoverable states like q⊥ in Figure 3a. To distinguish
between the original monitor, the extension, the extended
monitor and their components the sub-scripts L, R and E are
used respectively. ME is created by combining the sets and
functions of ML with MR , where ML is preferred. However,
δR may override δR for choosable verdicts, e.g., ⊥.

Example 2 (Resumption Extension): Figure 3b shows a
possible extensions of the FSM given in Figure 2. Instead
of entering a final rejecting state for unexpected events, the
extended monitor ignores the event and stays in the currently
active state. The resulting FSM has a complete transition
function and can continue to monitor after reporting deviations.
Thereby, the original monitor is extended with resumption.

While a resumption extension can be created in an arbitrary
way, we suggest to use a resumption algorithm (R) to create
the extension. The algorithm’s core function (4) takes an event
and a set of (possible) active states as input. It returns the
set of states that are candidates for resumption. The R-based
resumption extension can be easily exchanged to adjust the
monitor to the current application scenario. Let QC = QL ∪
{qR} and P (QC) be the set of all subsets of QC .

R : A × P (QC)→ P (QC) (4)

Using R, the additional states and transitions that are
needed for the extension of the original monitor can be derived.
For finite sets QL and A, a preparation step creates the states
P (QC) \QC . The transitions are derived by evaluating R to
find the target state. If R(e, q) returns an empty set or solely
states that cannot reach any state in QC , it reached a finally
non resumable state. The existence of such states depends on
R and the specification. All states not reachable from a state
in QC can be pruned.

33Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 42 / 128

An alternative is using R at runtime as transition function
during resumption. If R returns solely a single state in QL ,
ML can resume verification in that state. Otherwise, the set of
candidates is stored and given to R with the next event.

γR is defined as follows: it accepts the transitions from QR
to QL , rejects transitions from QL , and returns an inconclu-
sive verdict otherwise. Thereby, the resulting γE reports the
specified verdicts, rejects unexpected deviations and accepts
events as soon as it has resumed verification.

B. Resumption Algorithms
This section introduces algorithms that can be used for

resumption. Often, these algorithms are mimicked to extend
specifications manually to create resilient monitors. Based
on an observed event and a set of candidates for the active
state R will determine the possible states of the SUT with
respect to the observed property. The results of applying the
algorithms on the FSM from Figure 2 are shown in Figure 3.
The presented algorithms can generally be categorized into
local and global algorithms. The former are influenced by the
state that was active before the deviation, while the latter look
at all states equally.

The local algorithm Waiting (5) resumes verification with
the next event accepted by the previously active state q, i.e., it
stays in q and skips all events not in Aq . Rwait assumes that
a deviation was caused by a superfluous message that may be
ignored. It is expected to perform bad for other deviations.

Rwait(e,Qin) = Qin (5)

An obvious danger is, the SUT may never emit an event
that is accepted by the active state. Therefore, the next algo-
rithms also look at states around the active state. The used
distance measure ‖qs, qt‖ is the number of transitions ∈ δL in
the shortest path between a source state qs and a target state qt.
The extension ‖Qs,Qt‖ is the transition count of the shortest
path between any state in Qs and any state in Qt.

The algorithm Nearest (6) resumes verification with the
next event accepted by any state reachable from the active
state. If multiple transitions match, it chooses the transition
reachable with the fewest steps from the previously active state.

Rnear(e,Qin) = argmin
qt∈Q

e,δL
C

min
qs∈Qin

‖qs, qt‖ (6)

Rnear assumes that the deviations will be caused by skipped
messages. It will resume on the next matched event unless the
two closest valid states require the same number of steps. As
it only looks forward, superfluous or altered messages may
cause it to errantly skip ahead.

The algorithm Nearest-or-Waiting (7) resumes verification
like Nearest, except if the selected state is more steps away
from the active state than the active state is from any other
state that could match the event. The idea is to ignore su-
perfluous messages and identify them by looking as far back
as was required to look forward to find a match. Rn-o-w is a
combination of the previous two algorithms and shows how
algorithms can be combined to create new ones.

Rn-o-w(e,Qin) =
{
Rwait, if ‖QeC ,Qin‖ < ‖Qin,Rnear‖
Rnear, otherwise

(7)

Global algorithms assume that you need to consider the
whole specification to identify the current communication
state. Therefore, they look at all states equally to keep all
options open for resumption.

Unique-Event (8) resumes verification if the event is
unique, i.e., the event is used on transitions to a single state
only. Ru-e is the only examined R that ignores all input states.
As there is only one target state of a unique event in the state
machine, the algorithm considers this a synchronization point.

Ru-e(e,Qin) =

{
Qe,δLC , if |Qe,δLC | = 1

{qR}, otherwise
(8)

Unique-Sequence (9) extends the previous algorithm to
unique sequences of events as unique events may not be
available or regularly observable in every specification. Ru-s
follows all valid paths simultaneously and resumes verification
if there remains exactly one target state for an observed
sequence.

Ru-s(e,Qin) =

Qe,δLin , if Qe,δLin 6= ∅
Qe,δLC , if Qe,δLin = ∅ ∧Qe,δLC 6= ∅
{qR}, otherwise

(9)

Similar to homing sequences used in model-based testing,
Ru-s aims to reduce the current state uncertainty with each step.
In each iteration of the algorithm, it evaluates which of the
input states accept the event. If the observed event is part of a
separating sequence, the non matching states are removed from
the set. If a merging sequence was found, the following δL -
step returns the same state for two input states and the number
of candidates is further reduced. If there are homing sequences
for L and the SUT emits one, Ru-s will detect it. Any deviation
in the behavior causes Qe,δLin to be empty and therefore resets
the set of possible candidates to any state accepting the event,
i.e., the resumption is resumed.

V. EVALUATION

This section presents an evaluation of the introduced
method for automatic resumption of runtime verification mon-
itors. Therefore, a framework is employed to compare the
presented algorithms.

A. Evaluation Framework
An overview of the evaluation setup is depicted in Figure 4.

A specific Application Scenario usually provides the speci-
fication and, thereby, a Reference Model. However, to make
general statements about the algorithms, a generator creates the
models. The resulting FSMs use global events across the whole
machine and local groups. To classify the FSMs, different
metrics of their structure are collected, e.g., number of states
and uniqueness. Uniqueness is the likelihood of an occurring
event being unique. It is approximated by the fraction of all
transitions in the FSM that have a unique event.

For each reference model, multiple traces are generated
by randomly selecting paths from the respective FSM. The
Deviation Generator manipulates the FSM used by the trace-
generator by adding new states and transitions. These tran-
sitions use undefined events (χ 6∈ Aqs) of the source state
qs. This guarantees that deviations are detected at this event,

34Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 43 / 128

Figure 4. Overview of the evaluation framework for resumption algorithms.

if the monitor knows the current state. The added deviations
are characterized by the different transition targets qt: super-
fluous (qt = qs), altered (∃e : δL(e, qs) 7→ qt), skipped
(∃e : δL(e, qs) 7→ qi ∧ δL(χ, qi) 7→ qt) and random events
(qt ∈ QL). Additionally, shuffled events are simulated by
choosing a chain of two transitions and creating copies in
inverse order with a new intermediate state. This is a special
case of two altered events in sequence. If a scenario expects
more complex deviations, they can be simulated by combining
deviations. However, to evaluate the influence of each deviation
kind, we apply only one kind of deviation per trace. For later
analyses, the injected deviations are marked in the meta-data
of the trace invisible to the monitor.

The traces are eventually checked using the original FSM
extended with eachR. For the evaluation an Eclipse-based tool
capable of using reference models as monitors [1] was used
and extended. Using hooks in the tool’s model execution run-
time, resumption is injected if needed. Thereby, all introduced
algorithms can easily be exchanged.

The goal of the evaluation framework is to measure how
well a monitor is at finding multiple deviations in a given appli-
cation scenario. Therefore, the Reported Deviations Evaluator
rates each algorithm’s performance by comparing the detected
and the injected deviations. It calculates the well established
metrics from information retrieval precision and recall [16]
for each extended monitor. Precision (10) is the fraction of
reported deviations (rd) that were true (td), i.e., injected by
the deviation generator. Recall (11) is the fraction of injected
deviations that were reported. Both values are combined to
their harmonic mean, also known as F1 score (12).

p = |td ∩ rd|/|rd| (10)

r = |td ∩ rd|/|td| (11)

F1 = 2 · p · r
p+ r

(12)

A monitor that reports only and all true deviations has a
perfect precision p = 1 and recall r = 1. Up to the first
deviation, all extended monitors exhibit this precision, as they
work like regular monitors in this case. Regular monitors only
maintain this precision by ignoring everything that follows.
Extended monitors may loose precision as they attempt to find
further deviations. Therefore, recall estimates how likely all
true deviations are reported. A regular monitor’s recall is |td|−1
as it reports only the first deviation.

B. Comparison of Resumption Algorithms
The subscription service example evaluates to the F1

scores: Rwait = 0.53, Rnear = 0.68, Rn-o-w = 0.79, Ru-e =
0.80, Ru-s = 0.78. For the general evaluation, traces with a
total of 55 million deviations in 220 different FSMs with up to
360 states have been generated and were analyzed by monitors
extended with the algorithms. Each trace included 20 injected
deviations on average, so the recall for a regular monitor is
0.05 and its F1 score 0.095. Figure 5 shows the precision and
recall for each R per kind of deviation. While Rwait has the
worst precision for most deviations, it shows very high recall
scores overall and a perfect result for superfluous deviations.
Besides that, each algorithm performs very similar for altered
and superfluous deviations. When comparing Rnear and Rn-o-w,
the former has slightly less precision, however, it provides a
better recall. Ru-e has a low recall independent of deviation
but also the best precision for shuffled and skipped deviations.
Ru-s enables better precision for the other deviations, plus a
very high recall.

Figure 6 compares the F1 scores of the algorithms for
different levels of uniqueness and numbers of states of the
generated FSMs. The low overall score of Rwait is clearly
visible for both metrics. For FSMs with low uniqueness,
Ru-s outperforms the other algorithms. However, its F1 score
slightly drops with increased uniqueness. The other algorithms
benefit from an increase of uniqueness, especially Ru-e. For
very high uniqueness, Ru-s and Ru-e are identical. Neverthe-
less, both Rn-o-w and Rnear perform better, then. An increase
of the state count leads to a declined performance for Ru-e,
Rn-o-w and Rnear. Ru-e even drops below Rwait. Rwait and Ru-s
are hardly affected by the state count.

C. Discussion
The perfect precision and recall of Rwait for superfluous

deviations were as expected, since this deviation matches
exactly the resumption behavior of the algorithm. This shows

altered random shuffled skipped superfluous
0

0.2

0.4

0.6

0.8

1

pr
ec

is
io

n

altered random shuffled skipped superfluous
0

0.2

0.4

0.6

0.8

1

kind of deviation

re
ca

ll

Rwait Rnear Rn-o-w Ru-e Ru-s

Figure 5. Precision and recall of R compared for different kinds of
deviations.

35Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 44 / 128

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.3

0.4

0.5

0.6

0.7

0.8

uniqueness

F
1

sc
or

e

0 50 100 150 200 250 300 350 400

0.2

0.4

0.6

0.8

state count

F
1

sc
or

e

Rwait Rnear Rn-o-w Ru-e Ru-s

Figure 6. F1 scores of R compared for metrics uniqueness and state count.

that knowing which deviations are expected can help formulate
specialized algorithms. However, Rwait performs worst for all
other kinds of deviations, as the SUT transitioned internally
to a different state already and would have to return to the
original state. It benefits from unique events as they prevent
taking wrong transitions in the meantime.

The metric uniqueness helps to decide the class of al-
gorithm that is needed for a scenario. For low values, the
algorithm needs to combine multiple events in order to reliably
synchronize model and SUT. Of the examined algorithms, only
Ru-s takes multiple events into account and, therefore, should
be preferred in this case. However, Ru-s slightly drops its
precision with increasing uniqueness, as the chance increases
to overeagerly synchronize with an erroneous unique event. For
example, if all events are unique, any observed deviation is an
unique event and the algorithm will resume with the associated
state. As the next valid event is unique again, the monitor will
jump back. However, it registered two deviations when there
actually was only one. The same holds for Ru-e. Therefore,
especially with a high uniqueness, it may be desirable to limit
the options for which an algorithm may resume and use a
local resumption algorithm. The choice between Rnear and
Rn-o-w depends on the desired precision and recall. According
to the F1 score, Rn-o-w is slightly favorable. However, as these
algorithms may maneuver themselves into dead-ends, they
are less suited for higher state counts. A bias towards lower
uniqueness for higher state counts in the sample set severs
the impact on Ru-e. Nevertheless, in all cases, the F1 scores
of the extended monitors are always better than what can be
calculated for a regular monitor.

The results for the subscription service example (unique-
ness 0.43, 4 states) and the respective results from Figure 6
match well. While the evaluation framework can be used to
identify the best suited algorithm, this example shows that
the metrics state count and uniqueness can be used as an
estimation.

VI. CONCLUSION

In this paper, we introduce a method for extending run-
time monitors with resumption. Such an extension allows
a specification-based monitor to find subsequent deviations.
Thereby, an existing reference model of the system can be
used directly without creating a secondary specification for test
purposes only. Each of the presented resumption algorithms
has its strength and weaknesses. The presented framework and
metrics help to find the best suited algorithm for an application
scenario. Future work includes improving the method for re-
sumption, e.g., by taking event parameters into account and by
handling partially-independent behavior. Moreover, enhanced
algorithms that target specific real world scenarios will be
examined.

ACKNOWLEDGMENT

The project was funded by the Bavarian Ministry of Eco-
nomic Affairs, Infrastructure, Transport and Technology.

REFERENCES
[1] C. Drabek, A. Paulic, and G. Weiss, “Reducing the Verification Effort

for Interfaces of Automotive Infotainment Software,” SAE Technical
Paper 2015-01-0166, 2015.

[2] W. van der Aalst, A. Adriansyah, and B. van Dongen, “Replaying
history on process models for conformance checking and performance
analysis,” Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, vol. 2, no. 2, 2012, pp. 182–192.

[3] A. Pretschner and M. Leucker, “Model-Based Testing A Glossary,” in
Model-Based Testing of Reactive Systems. Springer Heidelberg, 2005,
pp. 607–609.

[4] T. Herpel, T. Hoiss, and J. Schroeder, “Enhanced Simulation-Based
Verification and Validation of Automotive Electronic Control Units,” in
Electronics, Communications and Networks V, ser. LNEE. Springer
Singapore, 2016, no. 382, pp. 203–213.

[5] A. Kurtz, B. Bauer, and M. Koeberl, “Software Based Test Automation
Approach Using Integrated Signal Simulation,” in SOFTENG 2016,
Feb. 2016, pp. 117–122.

[6] S. Sandberg, “Homing and Synchronizing Sequences,” in Model-Based
Testing of Reactive Systems. Springer Heidelberg, 2005, pp. 5–33.

[7] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
The Journal of Logic and Algebraic Programming, vol. 78, no. 5, May
2009, pp. 293–303.

[8] S. D. Stoller et al., “Runtime Verification with State Estimation,” in
Runtime Verification. Springer Berlin Heidelberg, 2012, pp. 193–207.

[9] C. Allan et al., “Adding Trace Matching with Free Variables to AspectJ,”
in OOPSLA ’05. ACM, 2005, pp. 345–364.

[10] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Rou, “An overview
of the MOP runtime verification framework,” Int J Software Tools
Technology Transfer, vol. 14, no. 3, Apr. 2011, pp. 249–289.

[11] A. Danese, T. Ghasempouri, and G. Pravadelli, “Automatic Extraction
of Assertions from Execution Traces of Behavioural Models,” in DATE
’15, 2015, pp. 67–72.

[12] F. Langer and E. Oswald, “Using Reference Traces for Validation of
Communication in Embedded Systems,” in ICONS 2014, pp. 203–208.

[13] D. K. Peters, “Automated Testing of Real-Time Systems,” Proc. New-
foundland Electrical and Computer Engineering Conference, 1999.

[14] N. Delgado, A. Gates, and S. Roach, “A taxonomy and catalog of run-
time software-fault monitoring tools,” IEEE Transactions on Software
Engineering, vol. 30, 2004, pp. 859–872.

[15] Y. Falcone, K. Havelund, and G. Reger, “A Tutorial on Runtime
Verification.” Engineering Dependable Software Systems, vol. 34, 2013,
pp. 141–175.

[16] D. M. W. Powers, “Evaluation: From Precision, Recall and F-Measure to
ROC, Informedness, Markedness and Correlation,” Journal of Machine
Learning Technologies, vol. 2, no. 1, 2011, pp. 37–63.

36Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 45 / 128

Quality Evaluation of Test Oracles Using Mutation

Ana Claudia Maciel, Rafael Oliveira and Márcio Delamaro
ICMC/USP

University of São Paulo
São Carlos, BRA

anamaciel@usp.br, rpaes@icmc.usp.br, delamaro@icmc.usp.br

Abstract—In software development, product quality is directly
related to the quality of the development process. Therefore,
Verification, Validation & Test (VV&T) activities performed
through methods, techniques, and tools are needed for increasing
productivity, quality, and cost reduction in software
development. An essential point for the software testing activity is
its automation, making it more reliable and less expensive. For
the automation of testing activities, automated test oracles are
crucial, representing a mechanism (program, process, or data)
that indicates whether the output obtained for a test case is
correct. In this paper, we use the concept of program mutation to
create alternative implementations of oracles and evaluate their
quality. The main contributions of this paper are: (1) propose
specific mutation operators for oracles; (2) present a useful
support tool for such mutation operators; and (3) establish an
alternative to evaluate assertion-based test oracles. Through an
empirical evaluation, our main finding is that mutations may help
in assessing and improving the quality of test oracles, generating
new oracles and/or test cases and decreasing the rate of test
oracles errors.

Keywords–Test Oracles; Mutation Testing; Mutation Operators;

I. INTRODUCTION

Automated test oracles are essential components in
software testing activities. Defining a test oracle involves
synthesizing an automated structure that is able to offer the
tester an indicative verdict of system accuracy [1]. Thus,
oracle is the mechanism that defines and gives a verdict about
the correctness of a test execution [2]. Despite the importance
of the oracle mechanisms, there is no systematic way to
evaluate their quality [3].

In some cases, the results of running a test suite may have
unwanted results, not due to problems in test data or program
under test, but because of errors in the oracle implementation.
Accordingly, test oracles correctness is as important as the
selection of test inputs and, therefore, should be systematically
implemented according to well-defined requirements [2].

This study aims to provide an alternative to improve the
quality of test oracles, proposing an automated strategy for
assessing quality of oracles, inserted in the cost amortization
of realization of software testing. We extended the idea of
mutation testing, applying it to evaluate the quality of test
oracles implemented using the JUnit framework [4], a test
framework which uses annotations to identify methods that
specify a test. The main idea is to use test oracles to verify
whether the oracles with mutations may contribute to reveal
defects in programs.

We designed and created mutation operators to assertion-
based test oracles written in JUnit format, based on the method
assert signatures and its parameters. Operators have been
developed to generate assertions that the tester did not create,

or to correct oracles that have been written in the wrong way.
Following the concepts of mutation test, oracles can be
evaluated automatically. Thus, this work provides specific
mutation operators to test oracles in order to systematize the
evaluation of oracles.

The main contributions of this paper are related to the
context of automation of processes associated with software
engineering. In view of this, four contributions are provided
through the following work:

- The definition and evaluation of mutation operators
specific to assertion-based test oracles;

- MuJava 4 JUnit: a tool to generate the mutantoracles;

- Using the approach and tools with real programs of
different functions, showing main operating characteristics
and limitations of the proposed strategy; and

- Discussion on automated quality assessment of auto-
mated oracles and its importance for the improvement of
automated tests.

The remainder of this paper is organized as follows: In
Section II, we present the background with the main concepts
related to this research. In Section III, we describe our mutation
operators for JUnit assertion-based test oracles and our tool:
MuJava 4 JUnit. In Section IV, we explain our empirical
evaluation by describing the experiment design, research
questions, research design and our experiment procedure. In
Section V and Section VI we discuss the results of the
experiment and threats to validity, respectively. Finally, we
present the final remarks of our study in Section VII.

II. BACKGROUND

This section presents and discusses the concepts related to
test oracles and mutation testing.

A. Test Oracles

Test oracles can be defined as a tester (“human oracle”) or
an external mechanism that can decide whether the output
produced by a program is correct [5]. Typically, a test oracle is
composed of two parts: (1) the expected behavior that is used
to check the actual behavior of the System Under Test (SUT);
and (2) a procedure to check if the actual result matches the
expected output [2]. In this context, one can define that test
oracle is a software testing technology, which can be associated
with different processes and test techniques [6].

The “oracle problem” happens in cases when, depending on
the SUT, it is extremely difficult to predict expected behaviors
to be compared against current behaviors [5]. Depending on
the oracle, problems like false positives and false negatives
may occur:

37Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 46 / 128

• False positive: a test execution is identified as failing
when in reality it passed, or the functionality works
properly; and

• False negative: a test execution is identified as passing
when in reality it failed, or there is some problem in
functionality.

In this work, we use oracles in JUnit classes format. In
JUnit framework, test oracles are written in the form of
assertions [7] and tests are units, contributing to expose flaws
in the current version of the program or regression faults
introduced during maintenance.
B. Mutation Testing

Mutation [8] is a fault-based testing technique. The pro-
gram being tested is changed several times, generating a set
of alternative versions with syntactic changes. This technique
measures the fault-finding effectiveness of test suites, on the
basis of induced faults. The general principle underlying
Mutation Testing is that the faults used by Mutation Testing
represent the mistakes that programmers often make [9].

A transformation rule that generates a mutant from the
original program is known as mutation operator [10]. Typical
mutation operators are designed to modify variables and
expressions by replacement, insertion or deletion operators [9].

III. MUTATION OPERATORS FOR ASSERTION-BASED TEST

ORACLES

This section presents the mutation tool and a novel
mutation operators set, which is specifically designed for test
oracles written as JUnit classes.
A. MuJava 4 JUnit - a mutation testing tool for JUnit test
oracles

We have adapted MuJava [11] to create a tool (MuJava 4
JUnit) to include our new mutation operators to test oracles, in
order to systematize the evaluation of the oracles written using
JUnit assertions. Operators were included in MuJava, using the
existing code structure. The tool MuJava 4 JUnit is publicly
available in [12].
B. Definition of “MuJava 4 JUnit’s” operators

We defined generic mutation operators to introduce changes
in the most common types of assertions of JUnit. Signature
variations of the statements were created adding, removing,
modifying, or replacing some setting values. In order to
automate and systematize the evaluation of test oracles, we
establish four classes of operators:

• Adding: parameters are added to the method assert;

• Modifying: parameters from the method assert are
changed;

• Replacing: the method assert is replaced with another
method assert; and

• Removing: parameters are removed from the method
assert.

The mutation operators for assertion-based test oracles
were classified in two levels:

• Signature level: changes are made on the type of
method assert, or on the parameters received by the
assert method; and

• Annotation level: changes are applied by replacing
annotations, removing, or replacing its parameters.

1) Signature-based mutation operators: These mutation
operators to test oracles were defined by combining the
signatures of assert methods adding or removing parameters,
or replacing the assert method by other assert method,
improving the quality of test oracles through the creation of
new oracles, or even adding new test cases.

The operators of this level are described in Table I. These
operators were created according to the JUnit’s specifications
and can simulate problems, made by the tester, at the coding
test oracles.

TABLE I. SIGNATURE LEVEL MUTATION OPERATORS.

Signature Level
Class Description Acronym
1 Adding Adding Threshold Value ATV
2 Modifying Decrement Constant from Threshold Value DCfTV
3 Modifying Increment Constant to Threshold Value ICtTV
4 Replacing Replace Boolean Assertion RBA
5 Removing Removing Threshold Value RTV

2) Annotation-based mutation operators: We created the
operators at the level of annotation changing or removing the
timeout value, and adding possible exceptions that may occur
in the execution of the oracles which were not previously
thought by the tester. The operators from annotation level are
presented in Table II.

TABLE II. ANNOTATION LEVEL MUTATION OPERATORS.

Annotation Level

Class Description Acronym

1 Adding Adding Expected Class AEC

2 Modifying Decrement Constant from Timeout DCfT

3 Modifying Increment Constant to Timeout ICfT

4 Removing Removing Timeout RTA

C. Discussion analysis of each individual mutation operator

Next, we present an individual analysis of the effect of
each mutation operator. The operators and their effects are:

ATV: adds the delta parameter, which is the thirdparameter
of assertEquals(expected, actual, delta) method and kills
mutants in two situations: (i) deprecated assert; and (ii)
depending on the test value and the constant value.

The purpose of the delta parameter is to determine the
maximum value of the difference between the numbers
expected and actual so that they are considered the same
value.

The ATV operator is a signature-level operator and belongs
to the addition class. It adds the delta parameter. With this, one
has a mutated version of the original oracle, in which the result
is accepted as correct, considering an error rate. However, it is
not always easy to know the acceptable value for a particular
application. Currently, only the value 0001 is used as delta,
but other values could be considered, taking into account the
actual expected value. For example: expected/2, expected/10,
expected/100, expected/1000, etc.

Figure 1 calculates a function of the second degree by
means of the Bhaskara formula in which the coefficients are
1, 2 and 1. Depending on the value of the coefficients, the
roots can generate values with several decimal places, so it
is important to add the delta value (Figure 1, Line 5).
Implementations with and without the delta value may have
the same or different results depending on the value of the

38Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 47 / 128

delta and the coefficients in question. If the difference between
oracles is never revealed, this may indicate that the fragility
is in the test case or the error may be directly in the program
being executed by the oracle.

Figure 1. ATV example.

DCfTV: decrements the delta parameter, which is the third
parameter of the method assertEquals(expected, actual, delta).
It kills the mutant depending on the decrement value and the
value obtained during testing. If the oracle is designed with
a case such that changing the precision value will change the
result by applying this operator, the mutant oracle will have
different results from the original oracle.

Figure 2 uses the assertEquals(expected, actual, delta)
method in line 7, and a calculation of a rate over the value of
a given product is being tested. The DCfTV operator allows
the tester to adjust the delta value, decrementing it, according
to his/her needs.

Figure 2. DCfTV example.

In the example, the tester should provide a test case that
has an error less than the initial error, but near it, ie: 0.0001 <
error ≤ 0.001. For one such case, the original oracle indicates
that the test passes but the mutant oracle indicates a failure.
Thus, the mutant helps the tester verify his oracle or plan new
test cases that exercise his oracle.

As in the case of the ATV operator, it is difficult to define
how much the delta value decreases. Thus, one can think of
extending the DCfTV operator using values such as error/2,
error/10, error/100, error/1000, etc.

ICfTV: increments the delta parameter, the third parameter
of the method assertEquals(expected, actual, delta). It kills
mutants depending on the incremented value. If the oracle
is designed in the sense of changing the precision value, it will
affect the result by applying this operator, then the mutant
oracle will have different results from the original oracle.

The ICfTV operator follows the same logic as the DCfTV
operator. However, one increment the value of the delta
(ICfTV) and another decrement the value of the delta
(DCfTV). In Figure 3, the oracle is on line 4, where the
assertEquals method checks the result of a multiplication with
the value of delta 0.1. By applying the ICfTV operator, a
mutant oracle is generated with this increased delta value. The
two implementations, original oracle and mutant oracle, may
have the same or different results depending on the incremental

value, which is set by the tester. If the difference between
oracles is never revealed, this indicates the fragility of the test
oracle.

Figure 3. ICfTV example.

As in the case of the ATV and DCfTV operators, it is
difficult to define how much the delta value decreases. Thus,
one can think of extending the ICfTV operator using values
as error/2, error/10, error/100, error/1000, etc.

RBA: replaces boolean assertions (assertTrue,
assertFalse). It produces high rate of dead mutants.
Useful to reveal defects in oracles designed to Boolean cases,
the replacement of the statements, the mutant oracle can
improve the quality of the original oracle.

In Figure 4, the oracle presented in line 4 with the
assertTrue method checks whether the String “Dog’s
god” is a palindrome, by applying the RBA operator, the
assertFalse will be executed. If the result of the mutant
oracle is different from the original oracle, the mutant will be
considered dead. If the mutant or original oracles present the
same result, the tester should check the test case and/or the
program being tested.

Figure 4. RBA example.

RTV: removes the delta value, kills mutants depending on
the test oracle. If the oracle is designed with a case that
changing the precision value it changes the result by applying
this operator, the mutant oracle will have different results from
the original oracle.

In Figure 5 the arithmetic mean between two numbers is
performed, and the oracle in line 5 has the value 0.001 of
delta. The RTV operator removes this delta value. The two
implementations, with the delta value and no delta value, may
have the same or different results depending on the incremental
value, which is set by the tester. In this case, we can have two
correct implementations, in which it will be up to the tester to
perform the analysis of the mutant oracle’s correctness.

Figure 5. RTV example.

It is not recommended that an oracle be designed depending
on the delta value. Therefore, if removing this value changes
the result of the oracle, this can suggest to the tester to design
new test cases that do not depend on this error value. In
practice, this operator corresponds to changing the delta value
to zero.

39Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 48 / 128

AEC: adds an expected class in annotation @Test. Kills
mutants depending on the executed exception and the oracle
running.

The AEC operator assists the tester in handling the
exceptions that may occur during oracle execution. For
example, in Figure 6 the
exceptionNullPointerException avoids a month that
does not exist be called in the getAllDays method.

Figure 6. AEC example.

AEC operator can add the exceptions: IOException,
NullPointerException, IllegalArgumentException, ClassNot-
FoundException, ArrayIndexOutOfBoundsException, Arith-
meticException and Exception.

The tester must add the exception according to the
operation being performed, as well as done in Figure 6, where
it is possible to avoid calling a null value.

DCfT: decrements a constant value of the timeout. Kills
mutants depending on the decrement value and the value of
the timeout. If the oracle depends on the previously established
timeout value, using this operator, the mutant oracle will have
different results from the original oracle;

Figure 7 is set to a value of timeout in 10 seconds. The
DCfT operator can reduce this value, depending on the amount
of records that are registered in the database, reducing this
timeout is a good solution because it decreases the waiting
time for the result. However, the tester must make a decision
on how much to decrease in order to improve the performance
of the test oracle.

Figure 7. DCfT example.

Deciding how much to decrease from this timeout value
is not an easy decision, it is necessary to analyze how long it
takes to process the method being tested. One solution is to
use some predefined values: timeout − 10, timeout − 100,
timeout − 1000, timeout/2, timeout/10, etc.

ICtT: increments a constant value of the timeout. Kills
mutants depending on the increment value and the value of the
timeout. If the oracle depends on the previously established
timeout value, using this operator, the mutant oracle will have
different results from the original oracle.

Figure 8 performs a test of a connection in the database,
with the timeout of 1000 milliseconds. The mutant oracle
generated by the ICtT operator may give a different result from
the mutant oracle, causing the timeout value to be sufficient,
or the mutant oracle may still live, giving the same result as
the original oracle, showing that the problem may not be in

the test program, but the program that performs the database
connection. In this case, it is up to the tester to check the
program and identify the error.

Figure 8. ICfT example.

In the example presented in Figure 8, the tester must define
a test case whose runtime is higher than the original timeout
value, but lower than the mutated value, ie 1000 < runtime ≤
10000.

RTA: removes the timeout value. Kills mutants depending
on the value of the timeout. If the oracle depends on the
previously established timeout value, using this operator, the
mutant oracle will have different results from the original
oracle.

In JUnit, it is possible for a test to have a maximum time
to run. For example, if the tester wants the test to take no
more than 500 milliseconds, the following operation can be
performed (Figure 9). However, some operations may take
longer than the time set in the timeout parameter, and for this,
the RTA operator removes this parameter, causing the test run
to use the default JUnit timeout time.

Figure 9. RTA example.

This mutation operator causes the mutating oracle to not
depend on the execution time of the test case and, in theory,
could run for an infinite amount of time. In the case of the
mutant being killed, that is, indicating that the test has passed,
while the original oracle indicates that it has failed, there is an
indication that the test case actually does not depend on the
execution time and that the timeout clause was improperly
used.

IV. EMPIRICAL EVALUATION

In this section, we present an empirical evaluation
involving the mutation of test oracles and some subject
programs. The idea of this study is to apply specific operators
to assertion- based test oracles (written with JUnit) and
generate mutants. The syntactic modifications provided by the
mutant test oracles are minimal. They reproduce faults in the
signatures or annotations of assertion methods, as described in
the previous section.

The generation of mutated test oracles suggest some repairs
in unit tests previously defined. Further, new test cases can be
found to improve the quality of the original test set.

A. Experiment Design

The experiment was conducted in order to verify whether
the mutated oracles are able to identify failures that were not
identified by original oracles, and analyze mutated test oracles
for the purpose of their evaluation with respect to effectiveness
and efficiency from the point of view of the tester revealing
defects in faulty programs.

40Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 49 / 128

Figure 10 illustrates the steps performed in the experiment,
namely: (1) run the original oracle against the subject program;
(2) apply MuJava 4 JUnit mutation operators in the test oracles,
generating the mutant oracles; (3) run all mutant oracles
against the original subject programs; and (4) analyze the
results.

Figure 10. Step-by-step followed in this experiment.

B. Research Questions

The following Research Questions has been defined:

RQ1 Are the mutant test oracles able to improve the
quality of the original oracle?

RQ2 Does the operator efficiency change depending on the
program in test?

Aiming at answer these questions, we applied the mutation
operators for test oracles in the assertion-based oracles of 5
subjects programs, which provided mutant oracles that are
supposed to improve the original oracle.

C. Subject Programs

We selected five programs with different cyclomatic
complexities, ranging from 1 to 6, to verify the effectiveness
of the mutants in oracles, so revealing defects in the original
oracles. The subject programs and their complexities are
presented in Table III.

Each subject program has a test oracle written in JUnit
form. Information about test oracles, including the number of
failures in each test oracle used in the experiment are shown in
Table IV.

TABLE III. SUBJECT PROGRAMS.

Program #Cyclomatic Complexity #Lines of code
Calculator 1 19
CheckPalindrome 3 16
BinarySearch 4 31
BubbleSort 4 66
ShoppingCart 6 117

TABLE IV. TEST ORACLES FROM SUBJECT PROGRAMS.

V. RESULTS DISCUSSION

In total, MuJava 4 JUnit tool implements 10 mutation
operators to oracles from which 5 are signature level and 5 are
annotation level. In this section, we provided a detailed
analysis on the effects of using slightly modified version of
test oracles to improve the quality of the test class.

A. Answers to RQs

[RQ1] Are the mutant test oracles able to improve the
quality of the original oracle?

Some operators generate more mutants than others. The
generation of mutants will depend on the assertion used, the
parameters used in this assertion and which annotation is
being employed. In this experiment, we collect data about the
mutants generated by each operator implemented in MuJava 4
JUnit.

The percentages of live and dead mutants by each operator
of the MuJava 4 JUnit tool are summarized in Table V. It can
be observed that some operators kill more mutants than others.
It is also observed that the MuJava 4 JUnit tool operators
worked well in the generation of the mutant oracles.

TABLE V. MUTANTS ALIVE AND DEAD BY OPERATOR.

Alive(%) Dead(%)
ATV 94,74 5,26
DCfTV 80,00 20,00
ICtTV 80,00 20,00
RBA 50,00 50,00
RTV 62,50 37,50
AEC 78,57 21,43
DCfT 87,50 12,50
ICtT 70,00 30,00
RTA 100,00 0,0

[RQ2] Does the operator efficiency change depending
on the program in test?

Each operator generates mutants according to the Assert
method and their parameters, or the annotations used. There-
fore, when performing the experiment, we conclude that the
type of data that the subject program is using is what will
determine which operator is more efficient in that situation.

In the context of our experiment, CheckPalindrome
program, for example, works with boolean values, so that the
operators which use these values are more efficient, in this
case, RBA. The Calculator program works with integer
and double values, causing the ATV, DCfTV, ICtTV and RTV
operators more efficient. The BinarySearch,
ShoppingCart, and BubbleSort programs perform
operations with boolean, integer and double values, thus using
all operators of these genres. Table VI shows the number of
mutants generated by each operator in each program used in
the experiment.

TABLE VI. MUTANTS GENERATED IN EACH PROGRAM SEPARATED
BY OPERATOR.

D. Experimental Procedure

The experiment was divided in 3 steps (Figure 10). Five
small programs were selected. Each original program had a
correspondent testing class with some assertion-based oracle
written through JUnit unit tests. Then, our mutation operators
for test oracles were applied to each oracle, and the living and
dead mutants were analyzed.

The most interesting mutant oracles are those giving
results equal to the original oracles. They can suggest

Oracle #Cyclomatic Complexity #Lines of Code #Failures
TestingCalculator 1 58 7
TestingCheckPalindrome 1 61 2
TestingBinarySearch 1 114 2
TestingBubbleSort 1 146 3
TestingShoppingCart 1 212 13

Calculator CheckPalindrome BinarySearch BubbleSort ShoppingCart
ATV 4 0 0 0 34
DCfTV 5 0 5 5 5
ICtTV 4 0 5 5 6
RBA 0 14 14 0 28
RTV 5 0 0 0 3
AEC 78 90 72 78 102
DCfT 3 0 0 0 5
ICtT 4 0 0 0 6
RTA 3 0 0 0 4

41Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 50 / 128

new test cases, indicate weaknesses in the test case, and then
identify errors in the program being tested.

In Table V, it is possible to observe that the generated
mutants have a higher rate of live mutants compared to the
dead mutants. Therefore, the answer to the QP1 research
question in the context of this experiment is yes. However, in
the future, a detailed analysis of mutants should be carried out
for this result to be consolidated.

B. Pros and cons

In this first experiment, the operators performed well and
we observed their behavior in different situations. We focused
this experiment on operator’s behavior, but we also collected
some numbers about live mutants and dead mutants for further
analysis.

ATV, DCfTV, ICtTV, and RTV are useful when a mutant is
dead, because it indicates that the precision value that is
making a difference in the outcome of the oracle. In practice, to
obtain a mutant in this condition, the tester must pay attention
to the fact that the test case is not necessary for the test case,
and then change their oracle so that the precision value does
not need to interfere to change the final value of the oracle’s
execution.

The AEC operator, in practice, to obtain a mutant in this
condition, the tester must pay attention to the fact that the test
case requires the exception added by the operator and it is
interesting that the tester designed the oracle taking into
account all the situations that may occur for the required
exceptions.

DCfT, ICfT and RTA operators generate mutants that can
be dead or alive. They are useful when a mutant is dead,
because it shows that the timeout should be reconsidered by
the tester when designing the test oracle.

VI. THREATS TO VALIDITY

This section presents the threats of this study on four
different perspectives:

Internal validity: Our study is designed with a narrow scope
– assertion-based test oracles. The experiment was designed to
answer our RQs. We believe that the results were consistent
to answers our RQs, leading to a high and acceptable internal
validity.

External validity: The study evaluates the effectiveness of
the mutation operators for assertion-based test oracles in five
small Java applications. However, our experiment does notpro-
vide results to assume that the behavior of our technique will
be the same in industrial-real-world systems. Further work is
required in this context. In addition to that, our tool is designed
only for Java applications, reducing the generalizations of our
results.

Construct validity: The concept of mutation is useful in
several contexts, making our construction validity higher.
Hence, the size, and complexity, of the chosen applications
are suitable to show the mutation operators effectiveness for
JUnit-based test oracles.

Conclusion validity: We have presented our methodology
in detail and we are providing the code of the tool we have
developed. In this context, our results are associated with our
results, and we therefore, claim that we have high conclusion
validity.

VII. CONCLUSION

There were no systematic ways to assess the quality or
accuracy of an automated test oracle. Thus, it is possible that in
some cases, the results of running a test suite present unwanted
results, not by problems in test data or test program, but
because of errors in the implementation of the oracle.
Therefore, this study designs mutation operators to oracles,
until then, there was no work in this direction. Operators have
been developed to test oracles written in JUnit format and
defined replacing signatures of assert methods, adding
parameters assert method, or removing parameters assert
method.

Operators were implemented and included in MuJava tool.
The experiment conducted in this study highlights the behavior
of the operators when applied to simple programs and different
ciclomatic complexities, data were collected from living and
dead mutants, as well as detailed data for each operator in
different cases.

We can conclude that using mutation test oracles
collaborates in improving the quality of test oracles. The work
also contributes presenting a systematic way of assessing the
quality of oracles, which has not yet found in the literature.

Mutation operators to test oracles do not have a high rate
of generation of dead mutants, however, they may reveal
weaknesses in the original or even new test cases oracle, even
not generating mutants dead. Therefore, the generated mutants
should be scrutinized to make the actual operators.

As future work, we will carry out further experiments with
real-world programs, seeking to affirm the results obtained
with this work. In addition, we will design mutation operators
to other oracle types.

ACKNOWLEDGMENT

Ana is supported by Fapesp (Grant Number 2014/09629-1).

REFERENCES

[1] R. A. Oliveira, U. Kanewala, and P. A. Nardi, “Automated test oracles:
State of the art, taxonomies, and trends,” Advances In Computers, Vol
95, vol. 95, 2014, pp. 113–199.

[2] M. Pezz and C. Zhang, “Automated test oracles: A survey,” Advances
in Computers, vol. 95, 2014, pp. 1–48.

[3] K. Shrestha and M. Rutherford, “An Empirical Evaluation of Assertions
as Oracles,” in Proceedings of the 4th ICST, March 2011, pp. 110–119.

[4] E. Beck and K. Gamma, “JUnit: A cook’s tour,” Java Report, vol. 4,
no. 5, May 1999, pp. 27–38.

[5] E. J. Weyuker, “On testing non-testable programs,” The Computer
Journal, vol. 25, no. 4, 1982, pp. 465–470.

[6] L. Baresi and M. Young, “Test oracles,” Technical Report CISTR-
01, vol. 2, 2001, p. 9.

[7] D. S. Rosenblum, “Towards a method of programming with
assertions,” in Proceedings of the 14th ICSE. ACM, 1992, pp. 92–
104.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” IEEE Computer Society
Press, vol. 11, no. 4, Apr. 1978, pp. 34–41.

[9] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engeneering, vol. 37,
no. 5, 2011, pp. 649–678.

[10] R. Abraham and M. Erwig, “Mutation operators for spreadsheets,” IEEE
Transactions on Software Engineering, vol. 35, no. 1, January 2009, pp.
94–108.

[11] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “MuJava: A Mutation System for
Java,” in Proceedings of the 28th ICSE. New York, NY, USA: ACM,
2006, pp. 827–830.

[12] A. Maciel. MuJava 4 JUnit. [Online]. Available: https://goo.gl/ZGXqI5
(2016)

42Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 51 / 128

Visual Component-based Development of Formal Models

Sergey Ostroumov, Marina Waldén
Faculty of Science and Engineering

Åbo Akademi University
Turku, Finland

E-Mail: {Sergey.Ostroumov, Marina.Walden}@abo.fi

Abstract—Formal methods, such as Event-B provide a means
for system-level specification and verification supported by
correctness proofs. However, the formal Event-B specification
of a system requires background knowledge, which prevents a
fruitful communication between the developer and the
customer. In addition, scalability and reusability are limiting
factors in using formal methods, such as Event-B in complex
system development. This paper presents an approach to
facilitate scalability of formal development in Event-B. Our
aim is to build a formal library of parameterized visual
components that can be reused whenever needed. Each
component is formally developed and proved correct by
utilizing the advantages of Event-B. Furthermore, each
component has a unique graphical representation that eases
the rigorous development by applying the “drag-and-drop”
approach and enhances the communication between a
developer and a customer. We present a subset of components
from the digital hydraulics domain and outline the
compositionality mechanism.

Keywords-Components Library; Visual Design; Event-B;
Formal Components.

I. INTRODUCTION
Event-B [1] is a formal method that allows designers to

build systems in such a manner that the correctness of the
development process is supported by mathematical proofs.
The specification (or the model) of a system in Event-B
captures the functional behaviour, as well as the essential
properties that must hold (invariants). The development
process proceeds in a top-down fashion starting from an
abstract (usually non-deterministic) specification. This
specification is then stepwise refined by adding the details
about the system until the implementable level is reached.
The process of transforming an abstract specification into an
implementable one via a number of correctness preserving
steps is known as refinement [2]. It helps the designers to
deal with the system requirements in a stepwise manner,
which makes the correctness proof along the development
easier. However, as more details are added to the system
specification, it becomes complex and hard to handle. This
limits the scalability and reusability of this approach.
Moreover, as more details are added to the specification
through refinement, it is harder to convince the stake holders
about the fact that the system specification embodies all the
necessary requirements.

This paper proposes an approach to visual system design
whose aim is to enhance scalability and reusability, as well
as to facilitate the communication between a developer and a
customer. In addition, the visual design is aimed at making
the rigorous development process easier. The idea behind our
approach is to build a formal library of parameterized visual
components. Each component is formally developed and
proved correct by utilizing the Event-B engine. Moreover,
each component is tied to a unique graphical representation.
The development process then proceeds according to the
“drag-and-drop” approach, where the developer picks the
necessary components from the library and instantiates them.
Since the components are parameterized and are in the
library, they can be reused in various application domains
depending on the requirements. The specification of a system
is then twofold: a visual model whose correctness is
supported by the underlying Event-B language. We present a
pattern for the development of formal components and create
a subset of components from the digital hydraulics domain.
We also outline the compositionality mechanism.

The paper remainder is as follows. Section II outlines the
Event-B notation and outlines proof obligations that provide
the correctness proof. Section III presents the formal library
of parameterized visual components. Section IV outlines the
compositionality mechanism. Section V gives an overview
of the existing approaches. Finally, Section VI concludes the
paper and summarizes the directions of our future work.

II. PRELIMINARIES: EVENT-B
Event-B [1] is a state-based formalism that offers several

advantages. First, it allows us to build system level models.
Second, the development follows the top-down refinement
approach, where each step is shown correct by mathematical
proofs. Finally, it has a mature tool support extensible with
plug-ins, namely the Rodin platform [3]. Currently, Event-B
is limited to modelling discrete time, but the work on its
extension to continuous models is on-going [4].

An Event-B specification consists of contexts and
machines. A context can be extended by another context
whereas a machine can be refined by another machine.
Moreover, a machine can refer to the contents of the context
via “sees” (see Figure 1).

A context specifies static structures, such as data types in
terms of sets, constants and properties given as a set of
axioms. One can also postulate and prove theorems that ease
proving effort during the model development.

43Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 52 / 128

extends refines

sees machine
variables invariants theorems variant events

context
sets constants axioms theorems

machine
variables invariants theorems variant events

context
sets constants axioms theorems

sees

Figure 1. Event-B contexts, machines and relationship [1].

A machine models the behaviour of a system. The
machine includes state variables, theorems, invariants and
events. The invariants represent constraining predicates that
define types of the state variables, as well as essential
properties of the system. The overall system invariant is
defined as the conjunction of these predicates. An event
describes a transition from a state to a state. The syntax of
the event is as follows:

E = ANY x WHERE g THEN a END

where x is a list of event local variables. The guard g stands
for a conjunction of predicates over the state variables and
the local variables. The action a describes a collection of
assignments to the state variables.

We can observe that an event models a guarded
transition. When the guard g holds, the transition can take
place. In case several guards hold simultaneously, any of the
enabled transitions can be chosen for execution non-
deterministically. If none of the guards holds, the system
terminates or deadlocks. Sometimes, the system should never
terminate, i.e., it has to be deadlock free. To achieve this, one
needs to postulate a machine theorem that requires the
disjunction of the guards of all the events to hold.

When a transition takes place, the action a is performed.
The action a is a parallel composition (||) of the assignments
to the state variables executed simultaneously. An
assignment can be either deterministic or non-deterministic.
The deterministic assignment is defined as v := E(w), where
v is a list of state variables, E is a list of expressions over
some set of state variables w (w might include v). The non-
deterministic assignment that we use in this paper is
specified as v :∈ Q, where Q is a set of possible values.

These denotations allow for describing semantics of
Event-B in terms of before-after predicates (BA) [5].
Essentially, a transition is a BA that establishes a relationship
between the model state before (v) and after (v’) the
execution of an event. This enables one to prove the model
correctness by checking if the events preserve the invariants
(Inv∧ gE ⇒ [BAE]Inv) and are feasible to execute in case the
event action is non-deterministic (Inv ∧ gE ⇒ ∃ v’ . BAE).

The refinement relation between the more abstract and
more concrete specifications is also corroborated by the
correctness proofs. Particularly, the more concrete events
have to preserve the functionality of their abstract counter
parts [6]. This paper however does not focus on this aspect.

The Rodin platform [3], tool support for Event-B,
automatically generates and attempts to discharge (prove) the
necessary proof obligations (POs). The best practices
encompass the model development in such a manner that 90-
95% of the POs are discharged automatically. Nonetheless,

the tool sometimes requires user assistance provided via the
interactive prover.

III. LIBRARY OF FORMAL COMPONENTS
Our idea is to create a formal library of visual

components. Each component is developed formally within
the Event-B formal framework and is tied to a unique
graphical symbol. Moreover, the components in the library
have to be parameterized whenever possible in order to be
reusable during the development process. The system
specification/development is then a process of picking,
instantiating and connecting the needed components, so that
the system is developed in the “drag-and-drop” fashion.

At present, the library contains components from the
digital hydraulics and railway domains. The library also
includes a generic component used to create a placeholder to
be replaced by a specific one. Although our library consists
of generic components parameterized for reuse, one can see
that our approach is related to the work on domain specific
languages, where the language is aimed at a specific problem
domain [7][8]. Despite this, the formal language behind the
components is Event-B and not domain specific.

Next, we present a pattern for the component
development and overview some components from the
digital hydraulics domain, namely an electro-valve and a
cylinder. We focus on the crucial parts of the models whose
details, as well as more examples can be found in our TR [9].

A. Component Functionality
We start by describing the generic functionality of a

component. A component is a reactive device that updates its
outputs according to the input stimuli. The component
typically consists of two parts: an interface and a body
(Figure 2, a). The interface is comprised of the set of inputs
and outputs that are seen by the outside world whilst the
body performs the component functions.

The operation of the component has to be deterministic in
order to precisely determine the output result. That is, the
same input stimuli must generate the same output results and
the order of operations to compute these outputs according to
the input stimuli is known a priori. To achieve this, we use a
common pattern for control systems [10] in which the
component first reads the inputs (environment) and then
produces the outputs (control). In other words, a component
has at least two indefinitely alternating modes: read of the
inputs and production of the outputs (Figure 2, b)). Thus, the
non-termination (deadlock freedom) is the main property of
a component.

We model components as Event-B machines that contain
shared variables and rely on the principle of shared variables

Component
body

Component
interface

Read
inputs

Update
outputs

a) b)

Figure 2. A component pattern: a) component structure, b) automaton.

44Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 53 / 128

Ctrl

Flow in Flow out

Electrical
signal

Figure 3. A symbolic representation of an electro-valve with the interface.

composition within Event-B when composing the
components [11][12]. The variables that are local to a
machine are considered private, while the shared variables
are shared between machines and provide communication
facilities in form of inputs and outputs. The inputs and the
outputs of a component also form the interface of the
component and are distinguished by the suffixes _I and _O
(e.g., in Event-B we could have an input variable in_I and an
output variable out_O).

B. Hydraulic component: an electro-valve
As an example of a parameterized visual component we

develop and add to the library an electro-valve. Its visual
symbol is shown in Figure 3 whereas the corresponding
formal model is illustrated by Figure 4 and Figure 5.

The electro-valve is a physical device that transfers a
flow of liquid from one port to another. It contains a plunger
controlled by an electrical signal. The application of a
positive control signal moves the plunger, so as to open the
valve, whilst the negative signal closes it. If no signal is
present on the control input, the plunger and therefore the
valve keep the current position. Moreover, the valve opens
and closes with some rate due to physical laws. The
specification of a valve then has the following parameters
(context Valve_parameters in Figure 4): the minimum
(valve_flow_min) and the maximum (valve_flow_max) flow
the valve can let trough and the rate (valve_rate) with which
the valve opens and closes. The rate cannot be greater than
the difference between the maximum and the minimum flow
(valve_rate ≤ valve_flow_max – valve_flow_min). Assuming
that when the valve is closed, so that the outlet is fully closed
as well (no flow can come through), the minimum flow
equals to zero and the rate cannot be greater than the
maximum. Moreover, if the rate equals to the maximum, the
valve is simply open or closed. The minimum flow, the
maximum flow and the rate parameters, as well as the set of
control signals (valve_CONTROL) are all captured by
constants in the context Valve_parameters (Figure 4).

The interface of a valve consists of two inputs and one
output, namely the control signal (valve_control_I), the input

context Valve_parameters
constants
 valve_flow_min valve_flow_max valve_rate valve_CONTROL
axioms
 valve_flow_min = 0 ∧ valve_flow_max ∈ ℕ1 ∧
 valve_CONTROL = {−1,0,1} ∧
 valve_rate ∈ ℕ1 ∧ valve_rate ≤ valve_flow_max – valve_flow_min
end

Figure 4. Parameters of a generic valve.

port (valve_flow_I) and the output port (valve_flow_O),
respectively (see Figure 5). Additionally, the valve has a
variable that shows the current position of the plunger
(valve_position), as well as the mode variable (valve_mode)
that models the deterministic order of the transitions between
the inputs read and outputs production states.

The valve has the property that the flow from the output
port cannot be greater than the flow on the input port
(valve_mode = 0 ⇒ valve_flow_O ≤ valve_flow_I). Moreover,
the position of the plunge regulates the output flow, so that
the output flow cannot be stronger than allowed
(valve_flow_O ≤ valve_position). Additionally, the output
flow always has to be updated when the new inputs are read
(i.e., the non-termination property as it was stated earlier).
The former properties are captured as invariants. The latter is
stated as a deadlock freedom theorem (see in Figure 5,

machine Valve_Behaviour sees Valve_parameters
variables valve_control_I valve_flow_I valve_flow_O
 valve_mode valve_position
invariants
 valve_control_I ∈ valve_CONTROL ∧ valve_mode ∈ 0..1 ∧
 valve_flow_I ∈ valve_flow_min..valve_flow_max ∧
 valve_flow_O ∈ valve_flow_min..valve_flow_max ∧
 valve_position ∈ valve_flow_min..valve_flow_max ∧
// The output flow cannot be stronger than allowed nor input
 valve_flow_O ≤ valve_position ∧
 (valve_mode = 0 ⇒ valve_flow_O ≤ valve_flow_I)
// The property of non-termination
theorem (valve_mode = 0 ∨
 (valve_mode = 1 ∧ valve_control_I = 1 ∧
 valve_position + valve_rate ≤ valve_flow_max) ∨
 (valve_mode = 1 ∧ valve_control_I = −1 ∧
 valve_position − valve_rate ≥ valve_flow_min) ∨
 (valve_mode = 1 ∧ (valve_control_I = 0 ∨
 (valve_control_I = 1 ∧
 valve_position + valve_rate > valve_flow_max) ∨
 (valve_control_I = −1 ∧
 valve_position − valve_rate < valve_flow_min))))
events ...
 event valve_environment
 where valve_mode = 0
 then valve_mode := 1 || valve_control_I :∈ valve_CONTROL ||
 valve_flow_I :∈ valve_flow_min..valve_flow_max
 end

 event valve_opening
 any valve_flow_O_new
 where valve_control_I = 1 ∧ valve_mode = 1 ∧
 (valve_position + valve_rate ≤ valve_flow_max) ∧
 (valve_position + valve_rate < valve_flow_I ⇒
 valve_flow_O_new = valve_position+valve_rate) ∧
 (valve_position + valve_rate ≥ valve_flow_I ⇒
 valve_flow_O_new = valve_flow_I)
 then valve_flow_O := valve_flow_O_new || valve_mode := 0 ||
 valve_position := valve_position + valve_rate
 end
end

Figure 5. The excerpt of the machine of a generic valve.

45Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 54 / 128

cap
Flow in

head

Flow in

piston

Figure 6. Visual representation of a cylinder.

theorem (valve_mode = 0 ∨ ...), which evaluates to true and
supports the fact that the component always works.

The functionality of the valve includes: reading the
control signal and the input flow, opening the valve, closing
the valve and keeping the previous position (i.e., neither
opening nor closing). Initially, the valve is idle. There might
be some input flow, but the valve is closed. Hence, there is
no output flow. The mode is set to reading the new inputs.

In order for a valve to produce the intended outputs, the
valve first needs to read the inputs. This is captured by an
environmental event that updates the inputs of the model.
We assume that all inputs of the valve are updated
simultaneously as shown in event valve_environment in
Figure 5. The input flow is read non-deterministically
bounded to the parameters of the valve.

Once the inputs are read (valve_mode = 1), the valve can
perform the following operations: open with some rate, close
with the same rate or keep the current position. These
operations are modelled using the three events shown below.

The valve opening event (event valve_opening) can
clearly take place when the control signal (the command) is
to open the valve (valve_control_I = 1). However, the valve
cannot open more than allowed, that is, it cannot exceed the
maximum (valve_position + valve_rate ≤ valve_flow_max).
When the valve is opening, the output flow increases
according to the rate and the current position of the plunge
(valve_position + valve_rate < valve_flow_I ⇒
valve_flow_O_new = valve_position + valve_rate). Notice
however that if the diameter of the valve allows a flow
stronger than the input flow to come through, the output flow
is simply the same as the input one (valve_position +
valve_rate ≥ valve_flow_I ⇒ valve_flow_O_new = valve_flow_I).

The valve closing event is specified similarly considering
the fact that it is opposite to the opening of the valve. It can
take place when the command is to close the valve
(valve_control_I = −1) and proceeds as long as the valve is
not completely closed (valve_position − valve_rate ≥
valve_flow_min).

context Cylinder_parameters
constants
 cylinder_input_flow_min cylinder_input_flow_max
 cylinder_cap_pos cylinder_head_pos
axioms
 cylinder_input_flow_min = 0 ∧ cylinder_cap_pos = 0 ∧
 cylinder_input_flow_max ∈ ℕ1 ∧ cylinder_head_pos ∈ ℕ1
end

Figure 7. Parameters of a cylinder.

Finally, if the command is neither open nor closed
(valve_control_I = 0) or the valve is fully closed or open, it
keeps its position. In other words, the valve is idle or
stopped. Therefore, the output flow remains unchanged with
respect to the current flow (valve_flow_I ≥ valve_flow_O ⇒
valve_flow_O_new = valve_flow_O) or the input flow
(valve_flow_I < valve_flow_O ⇒ valve_flow_O_new =
valve_flow_I).

The visual symbol and the specification of the electro-
valve component extend the formal library of visual
components. The specification was modelled and proved in
the Rodin platform. The tool generated 24 POs out of which
20 were proved automatically.

C. Hydraulic component: a cylinder
Another example of a hydraulic component for the

component library is a cylinder. The cylinder reacts on liquid
flows only and does not have any electrical inputs.
Nonetheless, it is a reactive device whose outputs are
updated according to the input stimuli. The visual symbol of
a cylinder is shown in Figure 6.

The cylinder contains a piston that can move forward and
backward in the cylinder body depending on the differences
between the liquid flows. The liquid flows via the cap and
the head into the cylinder and is transformed into piston
movement. The piston moves forward (extends) if the
pressure of the flow coming into the cap is greater than the
liquid flow coming into the head. In the opposite case, the
piston moves backward. Clearly, if the pressure of both input
flows is the same, the piston keeps the position. Due to
physical laws, the piston moves with some rate. This rate is
also determined by the difference in the input flows.

The cylinder specification has four parameters (Figure 7).
Two of them define the minimum (cylinder_input_flow_min)
and maximum (cylinder_input_flow_max) input flow of the
liquid. We assume that both inputs are of the same size, so
that the motion of the piston is proper. The other two
parameters specify the limits of the piston motion
(cylinder_head_pos and cylinder_cap_pos). The difference
between cylinder_head_pos and cylinder_cap_pos sets the
length that the piston can move.

The interface of the cylinder has two inputs (flows)
(cylinder_flow_cap_I and cylinder_flow_head_I), as well as one
output cylinder_piston_position_O (see Figure 8). The inputs
allow the liquid to flow into the body of the cylinder via the
cap and the head. The output of the cylinder is the piston that
moves according to the difference in the input flows.
Moreover, there is a variable that specifies the modes of the
cylinder component, cylinder_mode (Figure 8). The main
property of the cylinder is the deadlock freedom theorem.
The theorem evaluates to true, which supports the fact that
the cylinder is non-terminating.

Initially, there are no input flows, the piston is at some
position within the cylinder body and the mode is set to read
the inputs. In order for the piston to move, both of the inputs
have to be updated (similar to the valve component).

There are three possible reactions to the input flows. The
piston can move forward (extend), if the flow coming into

46Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 55 / 128

machine Cylinder_behaviour sees Cylinder_parameters
variables
 cylinder_flow_cap_I
 cylinder_flow_head_I
 cylinder_piston_position_O
 cylinder_mode
invariants
 // Current position of the piston in the cylinder
 cylinder_piston_position_O ∈
 cylinder_cap_pos..cylinder_head_pos ∧
 // Input to move the piston to the right
 cylinder_flow_cap_I ∈
 cylinder_input_flow_min..cylinder_input_flow_max ∧
 // Input to move the piston to the left
 cylinder_flow_head_I ∈
 cylinder_input_flow_min..cylinder_input_flow_max ∧
 cylinder_mode ∈ 0..1 ∧
 // Deadlock freedom – non-termination
theorem cylinder_mode = 0 ∨
 (cylinder_mode = 1 ∧
 cylinder_flow_cap_I > cylinder_flow_head_I ∧
 cylinder_flow_cap_I > cylinder_input_flow_min ∧
 cylinder_piston_position_O + cylinder_flow_cap_I –
 cylinder_flow_head_I ≤ cylinder_head_pos) ∨
 … // Guards of other events

Figure 8. Variables and properties of a cylinder.

the cap is larger than the flow coming into the head
(cylinder_flow_cap_I > cylinder_flow_head_I). Moreover, the
flow must be present on the cap input (cylinder_flow_cap_I >
cylinder_input_flow_min) and there has to be space for the
piston to extend (cylinder_piston_position_O + cylinder_rate ≤
cylinder_head_pos). If these conditions are met, the piston
extends with a rate equal to the difference between the input
flows (Figure 9). The piston retracting is modelled in a
corresponding manner.

Finally, if the flows are the same (cylinder_flow_head_I =
cylinder_flow_cap_I) or there is no space for the piston to
extend (cylinder_piston_position_O + cylinder_rate >
cylinder_head_pos) nor to retract (cylinder_piston_position_O
+ cylinder_rate < cylinder_cap_pos), the piston keeps its
position. In other words, the piston is stopped (Figure 10.).
The complete formal model of a cylinder can be found in [9].

event cylinder_extending
 any cylinder_rate
 where
 cylinder_rate = cylinder_flow_cap_I − cylinder_flow_head_I ∧
 cylinder_mode = 1 ∧
 cylinder_flow_cap_I > cylinder_flow_head_I ∧
 cylinder_flow_cap_I > cylinder_input_flow_min ∧
 cylinder_piston_position_O + cylinder_rate ≤

 cylinder_head_pos
 then
 cylinder_mode := 0 || cylinder_piston_position_O :=
 cylinder_piston_position_O + cylinder_rate
 end

Figure 9. Forward motion of the piston (extend).

event cylinder_stop
 any cylinder_rate
 where
 cylinder_rate = cylinder_flow_cap_I−cylinder_flow_head_I ∧
 cylinder_mode = 1 ∧
 (cylinder_flow_head_I = cylinder_flow_cap_I ∨
 cylinder_piston_position_O + cylinder_rate >
 cylinder_head_pos ∨
 cylinder_piston_position_O + cylinder_rate <
 cylinder_cap_pos)
 then cylinder_mode := 0
 end

Figure 10. Keep the position of the piston (stop).

IV. RIGOROUS DESIGN USING THE LIBRARY
Once the components are developed and added to the

library, one can (re)use/instantiate them while designing a
system. The idea behind rigorous design with the library is
the use of the “drag-and-drop” approach. Specifically, the
developer picks and instantiates the necessary components
by providing specific values for the parameters, a component
name and adds them to the system model (Figure 11).

A. Composition of decomposed machines
The components can be seen as sub-unit machines which

can be composed via parallel composition (||) [11][13]. For
example, the machines A and B are composed into the
(system) machine A || B, where the variables, invariants and
events of A and B are merged. Overlapping variable and
event names are renamed before composition. Note that
composition is associative and commutative, but it cannot be
reversed.

A way of refining a system is to superpose a new feature
on its existing model (specification). The existing model is
left unchanged while new variables and events modifying
them are added to the model. The superposed feature and the
existing model can be seen as components that can be
composed. All these components in form of features or
existing models are here considered to form library
components. In addition, the composed models can form
new library components.

The library components to be composed are connected
via a connector. A connector is represented as a shared
variable of a system machine whose mission is to promote
the value of the output from one component to the input of
the other one. Figure 12 illustrates a generic composition of
two machines Component_n and Component_m into a single
system machine System_M. The system model embodies the
parameters of the components, their interfaces (environment
events) and the connections between them. The functional
events of the components are stored in separate machines
and are included in the system.

B. Composition of library components
To show the connectivity mechanism, we will use a part

of the Landing Gear (LG) case study whose details and
formal model are described in [14]. Here, we will only show
the connectivity of the valve and cylinder components as

47Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 56 / 128

Formal library of parameterized
visual components

VisualisationSpecification

...

Parameters

System specification

Visual
layer

Formal
layer

Instantiated

...

Parameters

Instantiated

“Drag-and-
drop" of

component
symbol

Automated
“drag-and-
drop” for

component
specification

context
…
end
machine sees
context
…
end

context
…
end
machine sees
context
…
end

Connector
context
…
end
machine sees
context
…
end

context
…
end
machine sees
context
…
end

Figure 11. “Drag-and-drop” approach for visual system design in Event-B.

context SystemC
constants SYSTEM_CONTROL
 // Component n constants
 // Component m constants
axioms SYSTEM_CONTROL = {0,1,2}
 // Component n axioms
 // Component m axioms
end
machine System_M sees System_C
includes Component_n Component_m
variables Control connection_Comp_n_Comp_m
 // Shared variables of Component n
 // Shared variables of Component m
invariants Control ∈ SYSTEM_CONTROL ∧
 connection_Comp_n_Comp_m ∈ <COMPONENT_n_OUTPUT_TYPE>
 // Component n invariants
 // Component m invariants
variant max(SYSTEM_CONTROL) – Control
events
 event INITIALISATION extends INITIALISATION then
 Control := 0 || connection_Comp_n_Comp_m := <INIT_VALUE>
 end

 event Comp_n_environment refines Comp_n_environment
 where … // Guards derived from component n
 ∧ Control = 0
 then … // Actions derived from component n
 || Control := 1
 end

 convergent event system_connection_Component_i_Component_k
 where Control = 1 ∧ <Component_n_mode> = 0
 // Ensure that the component n has updated its outputs
 then Control := 2 ||
 connection_Comp_n_Comp_m:= <Comp_n_Out>
 end

 event Comp_m_environment refines Comp_m_environment
 where … // Guards derived from the component m
 ∧ Control = 2
 then … // Actions derived from the component m
 || Control := 0
 end
end

Figure 12. Composition of Component n and Component m machines.

visually depicted in Figure 11. More details about various
components, connectivity mechanisms and refinement
patterns, can be found in the technical reports [9][14].

The main purpose of the LG system is to extend the
landing wheels (connected to the hydraulic cylinders) when
an airplane is to be landed and to retract them during the
flight. The extension/retraction of the cylinders is controlled
by the valves. Thus, the valves are connected to the cylinders
sequentially (see Figure 11, visual layer).

The formal layer of the visual representation of Figure 11
is shown in Figure 13 and Figure 14. The context machine
contains the constants and axioms of the valve and the
cylinder. The theorem supports the connectivity between the
components. It shows that the output of the source
component is compatible with the input of the target
component. Generally, the maximum diameter of the valve
output should be the same as the maximum input flow of the
cylinder connected to it.

The system machine LG_System_M includes the library
components valve (Valve_Behaviour) and cylinder
(Cylinder_Behaviour) (see Figure 14). The connectivity
between these components is represented by the variable
connection_Valve_Cylinder_head. When the valve updates its

context LG_System_C
constants CONTROL__HEAD
 valve_0_flow_min valve_0_flow_max valve_0_CONTROL
 valve_0_rate cylinder_0_cap_pos cylinder_0_input_flow_min
 cylinder_0_input_flow_max cylinder_0_head_pos
axioms
 // valve_0
 valve_0_flow_min = 0 ∧ valve_0_flow_max = 10 ∧
 valve_0_CONTROL = {−1,0,1} ∧ valve_0_rate = valve_0_flow_max ∧
 // cylinder_0
 cylinder_0_input_flow_min = 0 ∧ cylinder_0_input_flow_max=10 ∧
 cylinder_0_cap_pos = 0 ∧ cylinder_0_head_pos ∈ ℕ1 ∧
 // system_1
 CONTROL_HEAD = {0,1,2}
 theorem // system_1
 cylinder_0_input_flow_max = valve_0_flow_max
end

Figure 13. The parameters of the LG system: a valve, a cylinder and
system parameters.

48Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 57 / 128

output value (i.e., when its mode is 0), this value is then used
to update the value of the connector
(connection_valve_cylinder_head := valve_0_flow_O in
convergent event Connection_Valve_Cylinder). This value is
in turn used as the input to the cylinder
(cylinder_0_flow_head_I := connection_valve_cylinder_head in
event cylinder_0_environment). Hence, the overall scheme is
as follows. First, the valve inputs are updated, so that the
valve component can update its output. Then, the value of
the connector is updated according to the valve output.
Finally, the inputs of the cylinder are updated according to
the value of the connector.

Several connectors can be added in one refinement step
following the same pattern. The proof of the connectivity
mechanism relies on the superposition refinement rule,
where the machine of the composed system refines the
machine of each component.

machine LG_System_M sees LG_System_C
includes Valve_Behaviour Cylinder_Behaviour
variables Control_head connection_valve_cylinder_head
 valve_0_control_I valve_0_flow_I valve_0_flow_O
 valve_0_mode valve_0_position
 cylinder_0_piston_position_O cylinder_0_flow_cap_I
 cylinder_0_flow_head_I cylinder_0_mode
invariants
 … // Valve_0 type definitions and main invariants
 … // Cylinder_0 type definitions and main invariants
 control_head ∈ CONTROL_HEAD ∧
 connection_Valve_Cylinder_head ∈
 cylinder_0_input_flow_min .. cylinder_0_input_flow_max
variant max(CONTROL_HEAD) - control_head

events
 ...
 event valve_0_environment refines valve_0_environment
 where
 mode = 0 ∧ control_head = 0
 then
 valve_0_mode := 1 || valve_0_control_I :∈ valve_0_CONTROL ||
 valve_0_flow_I := <INPUT> || control_head := 1
 end

 convergent event Connection_Valve_Cylinder
 where
 valve_0_mode = 0 ∧ control_head = 1
 then
 control_head := 2 ||
 connection_valve_cylinder_head := valve_0_flow_O
 end

 event cylinder_0_environment
 where
 cylinder_0_mode = 0 ∧ control_head = 2
 then
 cylinder_0_mode := 1 || cylinder_0_flow_cap_I := <NEW_VALUE>
 || cylinder_0_flow_head_I := connection_valve_cylinder_head
 || control_head := 2
 end
end

Figure 14. An instantiated valve connected with an instantiated cylinder.

V. RELATED WORK
BMotionStudio has been proposed as an approach to

visual simulation of the Event-B models [15][16]. The idea
behind BMotionStudio is that the designer creates a domain
specific image and links it to the model using a “gluing”
code written in JavaScript. The simulation is based on the
ProB animator and model checker [17], so that whenever the
model is executed the corresponding graphical element
reacts is updated. The BMotionStudio tool also supports
interaction with a user – the user can provide an input via
visual elements instead of manipulating the model directly.

In contrast to the BMotionStudio approach, we aim for
creating visual descriptions of models via a library of
predefined components that have a formal, as well as a visual
representation. The development of the specification is then
a process of the instantiation of the necessary components
and the connection of them into a system. That is, the
developer does not need to redraw the graphical
representation of the components, but simply to reuse them.
Eventually, the designer obtains a graphical representation of
the system whereas its specification is in fact written in
Event-B and supported by correctness proofs. Certainly, our
approach can be complemented by BMotionStudio in order
to obtain visualisation of the model execution.

Snook and Butler [18] proposed an approach to merge
visual UML [19] with B [20]. The latter is supposed to give a
formal precise semantics to the former at the same time as
the former is aimed at reducing the effort in training to
overcome the mathematical barrier. This approach has then
been extended to Event-B and is called iUML-B [21]. The
authors define semantics of UML by translating it to Event-
B. The use of the UML-B profile provides specialisation of
UML entities to support refinement. The authors also present
tools that generate an Event-B model from UML.

A component based reuse methodology for Event-B was
presented by Edmunds et al. [22], where the composition is
based on the shared events principle. Their idea is to have a
library of Event-B components where the component
instances and the relationships between them are represented
diagrammatically using an approach based on iUML-B.

Instead of using UML as a visualisation tool as in both
the above cases, we aim to create a formal library of
parameterised components, each of which has its own
graphical representation. The system specification is then a
visual model that represents a composition of the instantiated
versions of these components. Nevertheless, we target
automated generation of the necessary data structures and
Event-B elements whenever our approach is applied.

An approach to a component-based formal design within
Event-B has been proposed by Ostroumov, Tsiopoulos,
Plosila and Sere [23]. The aim of this work is the generation
of a structural VHDL [24] description from a formal Event-B
model. The authors present a one-to-one mapping between
formal functions defined in an Event-B context and VHDL
library components. The authors rely on an additional
refinement step where regular operations are replaced with
function calls. This allows for automated generation of
structural VHDL descriptions.

49Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 58 / 128

Instead of focusing on code generation, we propose an
approach to systems development in Event-B in a visual
manner. This approach is not limited to VHDL descriptions
and allows the designers to utilize various components from
different application domains. Our goal is to create a formal
library of parameterized Event-B specifications that capture
the generic behaviour of these components. Our approach is
to facilitate component reuse, where the developers can
specify systems in a “drag-and-drop” manner.

VI. CONCLUSION AND FUTURE WORK
We have proposed an approach to the development of

rigorous components augmented with unique graphical
symbols. It is based on the pattern that allows seamless
integration of components into a system. We have illustrated
the proposed approach using components from the digital
hydraulics domain, where each component has been formally
developed and proved correct within Event-B. The
components constitute the library, which captures the
graphical representations, formal specifications and a one-to-
one relation between them. The library enables components
reuse and instantiation in various applications depending on
the requirements. In addition, visual design structures the
specifications and facilitates scalability of the rigorous
development. Moreover, it is useful in the communication
between developer and customer. This will need an
evaluation via empirical studies comparing our approach to
the traditional formal development. We believe that the
proposed approach is applicable to other than Event-B
formalisms as well considering their syntactical specifics.

The components connectivity outlined in this paper is an
important element of systems development. We are currently
extending this mechanism considering various types of
connections and stepwise refinement. Moreover, the tool
support is one of the key factors for facilitating an easy
access to the proposed approach. Thus, our future work also
includes providing the tool support, which will include an
interface to “drag-and-drop” components, maintenance and
extension of the library, as well as automated application of
the connectivity patterns through instantiation in order to
derive a composed system. The proofs will be conducted via
the tool support for Event-B.

ACKNOWLEDGMENT
The authors would like to thank Dr. Marta Olszewska

and Dr. Andrew Edmunds for the fruitful discussions. The
work was done within the project ADVICeS funded by the
Academy of Finland, grant No. 266373.

REFERENCES
[1] J.-R. Abrial, Modeling in Event-B: System and Software

Engineering, Cambridge: Cambridge University Press, 2010.
[2] R. J. Back and J. Wright, Refinement Calculus: A Systematic

Introduction, New York: Springer-Verlag, 1998.
[3] RODIN IDE. [Online]. Available from: http://sourceforge.net/

projects/rodin-b-sharp/, February 2017.
[4] R. Banacha, M. Butler, S. Qinc, N. Vermad, and H. Zhue,

“Core Hybrid Event-B I: Single Hybrid Event-B machines”,

Science of Computer Programming, vol. 105, Elsivier, pp. 92-
123, 2015.

[5] C. Métayer, J.-R. Abrial, and L. Voisin, Event B language,
vol. 3.2, RODIN Deliverables. [Online]. Available from:
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, May 2005.

[6] K. Robinson, System Modelling & Designing using Event-B.
[Online]. Available from: http://wiki.event-b.org/images/
SM%26D-KAR.pdf, October 2010.

[7] A. van Deursen, P. Klint, and J. Visser, “Domain-specific
languages: An annotated bibliography”, vol. 35(6), SIGPLAN
Notices, pp. 26–36, 2000.

[8] P. Boström, Formal Verification and Design of Systems using
Domain Specific Languages, TUCS Dissertations 110, 2008.

[9] S. Ostroumov and M. Waldén, Formal Library of Visual
Components, TUCS TR, vol. 1147. [Online]. Available: http:
//tucs.fi/publications/view/?pub_id=tOsWa15a, May 2015.

[10] M. Butler, E. Sekerinski, and K. Sere, “An Action System
Approach to the Steam Boiler Problem”, Formal Methods For
Industrial Applications, vol. 1165, LNCS: Springer-Verlag,
pp. 129-148, 1996.

[11] J.-R. Abrial, Event Model Decomposition, ETH Zurich TR,
vol. 626. [Online]. Available from: http://wiki.event-b.org/
images/Event_Model_Decomposition-1.3.pdf, April 2009.

[12] T. S. Hoang, A. Iliasov, R. A. Silva, and W. Wei, “A Survey
on Event-B Decomposition”, Workshop on Automated
Verification of Critical Systems, vol. 46, Electonic
Communication of the EASST, pp. 1-15, 2011.

[13] R. J. Back, “Refinement calculus, part II: Parallel and reactive
programs”, Stepwise Refinement of Distributed Systems:
Models, Formalisms, Correctness, vol. 430, LNCS: Springer-
Verlag, pp. 67–93, 1990.

[14] S. Ostroumov and M. Waldén, Facilitating Formal Event-B
Development by Visual Component-based Design, TUCS TR,
vol. 1148. [Online]. Available from: http://tucs.fi/
publications/view/?pub_id=tOsWa15b, September 2015.

[15] L. Ladenberger, J. Bendisposto, and M. Leuschel,
“Visualising Event-B Models with B-Motion Studio”,
Workshop on Formal Methods for Industrial Critical Systems,
vol. 5825, LNCS: Springer-Verlag, pp. 202-204, 2009.

[16] BMotion Studio for ProB Handbook. [Online]. Available
from: https://www3.hhu.de/stups/handbook/bmotion/current/
html/index.html, April 2015.

[17] M. Leuschel and M. Butler, “ProB: A Model Checker for B”,
Symposium of Formal Methods Europe, vol. 2805, LNCS:
Springer-Verlag, pp. 855-874, 2003.

[18] C. Snook and M. Butler, “UML-B: Formal Modeling and
Design Aided by UML”, ACM Transactions on Software
Engineering and Methodology, Vol. 15(1), pp. 92–122, 2006.

[19] G. Booch, I. Jacobson, and J. Rumbaugh, Unified modeling
language Reference Manual, The (2nd edition), USA: Pearson
Higher Education, 2004.

[20] S. Schneider, The B-method: An Introduction, Basingstoke:
Palgrave, 2001.

[21] C. Snook and M. Butler, “UML-B and Event-B: an
integration of languages and tools”, IASTED Conference on
Software Engineering, pp. 12-17, 2008.

[22] A. Edmunds, C. Snook, and M. Walden, “On Component-
Based Reuse for Event-B”, ABZ Conference on ASM, Alloy,
B, TLA, VDM, and Z, vol. 9675, LNCS: Springer-Verlag,
pp. 151-166, 2016.

[23] S. Ostroumov, L. Tsiopoulos, J. Plosila, and K. Sere,
“Generation of Structural VHDL Code with Library
Components From Formal Event-B Models”, DSD Euromicro
Conference, IEEE, pp. 111-118, 2013.

[24] IEEE Standard: VHDL Language Reference Manual, IEEE
1076, 2008.

50Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 59 / 128

Analysing the Need for Training in Program Design Patterns

An empirical exploration of two social worlds

Viggo Holmstedt
University College of South-East Norway

School of Business, Department of Business and IT
Horten, Norway

email: vh@usn.no

Shegaw A. Mengiste
University College of South-East Norway

School of Business, Department of Business and IT
Horten, Norway

email: sme@usn.no

Abstract- This paper addresses the implications of design
patterns knowledge in the social worlds of practitioners and
managers from the context of Norwegian software
companies. Although there are diverse perspectives on the
role and importance of design patterns for object-oriented
systems, many academic institutions believe in their
relevance, particularly in improving software quality
through reusable design. However, when invoking the topic
of the relevance of Design Patterns (DP) in a software
development process, the engagement varies from no interest
to enthusiasm. It was this diverse perspective on the
relevance of design patterns that drive us to explore this
topic. The paper analyzed practitioners and managers
perspectives and our findings revealed a convincing evidence
for practitioners’ confidence in pattern knowledge and its
positive influence on their coding abilities. Our findings are
relevant to software design and production, as it addresses
methodological issues in software development.

Keywords-design patterns; object oriented system;practitioner;
perspective; manager.

I. INTRODUCTION

The success rate of global systems development was
29% in the year 2015 [41]. Such low rate of success
indicates that systems development is a complex process
and needs to be addressed with proper planning and
guiding. In systems development, earlier design decisions
can have a significant impact on software quality; they can
also be the most costly to revoke [1]. Design Patterns
(hereafter DP, used in plural form) constitute an important
tool for improving software quality by providing reusable
solutions for recurring design problems.

Design patterns are best practices of specifying and
allocating responsibilities to program elements, like
classes, packages and components. DP also support the
construction of mechanisms based on patterns of class
cooperation. Industrial usage and success over a long time
typically establishes and confirms a specific design
pattern, accepted as a guide to construct mechanisms in
complicated systems development contexts.

As Shlezinger et al. [2] indicated, design patterns have
over the years provided solutions to design problems with
the goal of assuring reusable and maintainable solutions.

As a result, DP now exist for a wide range of software
development topics, from process patterns to code pattern
at various levels of abstraction to maintenance patterns [3].
In the context of object-oriented programming, design
patterns are used as building blocks of the architecture and
to allow change to evolve in a way that prevents an erosion
of the software design [4]. From a software
implementation perspective, the value of a design pattern
comes from the codification of its specification [5-6].
Regarding usage of DP, Subburaj [13] described the
importance of aspects of searching, finding and applying
specific patterns, and also convey how an incorrectly
applied pattern poses disadvantages.

DP also transfer industrial experience about
performing creation and allocating behavior to the
internals of classes [7]. Separation of concerns, as between
data, logic and presentation, is a success condition in
almost all types of systems development [8-11]. Naming is
an important characteristic of DP, enabling precise
communication and query based search [12]. DP must be
constructed and instantiated by developers with experience
and ability to realize abstractions with success, including
creating and customizing the DP instances.

In terms of usability of DP, a research conducted by
Manolescu [14] also indicates that only half of the
developers and architects in a software organization tend
to use design patterns. The cost of finding and proving the
right pattern for a specific mechanism can simply be too
high. Despite the fact that there are successful and durable
industrial experiences in using DP, as Subburaj [13]
clearly noted, DP could be applied in wrong instances and
contexts. This alone is a good reason to discuss possible
impacts of DP [15], and the importance of training DP
skills and knowledge.

Subburaj (ibid) refers to Rising [16], for a debate on
formal DP training. Much work is done to construct and
establish searchable libraries of DP, reducing the need for
formal training. But, pattern catalogs have become too
abstract to use for untrained practitioners. We assume that
the formal training of classical DP and GRASP (General
Responsibility Assignment Software Patterns), which is a
methodological approach to learning basic object design
[5], would give the practitioner necessary background to
assess new in-house patterns, utilize pattern catalogs and

51Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 60 / 128

correctly instantiate patterns from the practitioner’s own
knowledge base whenever needed. Formal training would
reduce the impact of the abstraction level of pattern
catalogs. The debate on the merits of formal training is
minimal, and, in this paper, we would like to contribute to
this research void.

To meet the huge challenges reported on the usability
of DP in practice, academic institutions like our own are
offering courses in DP for Object Oriented Systems.
Campus students are often impressed by the relevance DP
have to their system problems and solutions. Out of
campus, we sometimes initiate informal talks with IT
directors, developers, managers and other industry
practitioners. When invoking the topic of the relevance of
DP in a software development process, the engagement
varies from no interest to enthusiasm. These informally
observed opposites gave us motivation to explore what our
own DP students have experienced after leaving school,
and after having practiced for a while. We also approached
IT employers and other relevant stakeholders without
formal training on DP, to have their perception of the
importance and relevance of trained DP developers in their
respective companies. We acknowledge that many other
researchers have investigated the power of DP training to
improve the software produced under pattern rules. We
appreciate the works of Khomh [15] and Wydaeghe [17]
who study and evaluate DP quality attributes. The bottom-
line for our investigation is to assess the value or relevance
of DP to help software developers to produce better
software by guiding them in code production. This will
help in assessing the different perspectives on the
relevance of running courses in DP, particularly in terms
of the experience and minds of the social worlds of
practitioners (software developers) and their employers (IT
managers and other staff members). To address this
research problem, we formulated the following research
questions:

Q1: How, when and why do DP trained practitioners
perceive relevance of DP knowledge?

Q2: How mutual is practitioners’ and managers’
understanding of the relevance of DP?

It is our conviction that by answering these research
questions, we can contribute to the ongoing research
debate between research of DP as a tool to improve
software versus DP as a tool to improve thinking and the
quality of the practitioner.

The paper is organized as follows: Section II provides
an overview of the theoretical framework; and section III
presents the research approach and methods, while section
IV presents the findings. The last section presents analysis,
discussion, and concluding remarks.

II. CONCEPTUAL FRAMEWORK : THE SOCIAL WORLDS

FRAMEWORK

The social worlds framework is an analytical
framework that has been used in many Science and
Technology Studies (STS) [19], and has its roots in the
American sociological tradition of symbolic

interactionism. The framework focuses on meaning-
making among groups of actors- collectives of various
sorts – and on collective action – people doing things
together and working with shared objects [19]. Strauss
[19] citing Shibutani [20] noted that each social world is
an arena in which there is some kind of organization; and
each social world is a cultural area, where its boundaries
are set neither by territory or formal membership but only
by the limits of effective communication. The social
worlds perspective, as such, conceptualizes organizations
“…as being mutually constituted and constituting the
systemic order of organizational actions and interactions
kept together by individuals and groups commitment to
organizational life and work [22]. The notion of groups in
this description involves all collective actors (be it a
formal organization or group of people) committed to act
and interact within the specific social world [23]. In the
social world, various issues are debated, negotiated, fought
out, forced and manipulated by representatives of the
participating social worlds [20].

Huysman & Elkjær [23] argued that organizations
could be viewed as arenas where members of different
social worlds take different positions, seek different ends,
engage in contest and make or break alliances in order to
do things they wish to do (ibid, p.8). Over time, social
worlds typically segment into multiple worlds (sub-
worlds), intersect with other worlds with which they share
substantive/topical interests and commitments, and merge
[19].

The social worlds perspective has also introduced the
notion of agency as well as tension and conflict as triggers
for learning among actors in different social worlds
[23][25]. Agency is used to denote “various organizational
actions and learning and how these are enacted by
different kinds of agencies” [23]. Tension and conflict are
results of different commitments to different interests,
practices and values.

In the context of the study, we adopted the social world
perspective as our theoretical framework. We identified
two important social worlds: the social world of software
developers (practitioners), and the social world of
managers (practitioners’ superiors). The agencies of both
worlds are the production of software, including the
learning of best practices to enhance the return on
investments.

III. RESEARCH APPROACH AND METHODS

A. Research Approach

Our research approach is informed by the priciples of
engaged scholarship which advocates a participative form
of research to get the perspectives of key stakeholders to
understand a complex social problem [25]. One of the
main forms of the engaged scholarship research approach
is the informed basic research. In this form of research, the
researcher acts as a detached outsider of the social system
being examined, but solicits advice and feedback from key
stakeholders [25][26]. We adopted the informed basic
research mainly as our role is detached outsiders, but also

52Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 61 / 128

we wanted some of our informants in formulating the
questionnaire. We already have prepared some grounding
by educating a little more than half of the informants
through the years 2000 to 2015. Having run DP courses
those years, we trusted the benefits to be solid. However,
in the research context, that would be like a research lab
generated bias, as opposed to the Van de Ven’s
interactional view. In his view, both the professional and
research practices contribute to their common growth of
knowledge.

B. Data Collection Methods

We collected data from 28 informants (20 practitioners
and 8 IT managers). Both groups contain former students
and external contacts. The reason for having some of the
former students in the managers’ stakeholder group was to
assure that most respondents should have at least some
knowledge of DP. Van de Ven raises the important
question “… why organizational professionals and
executives want to participate in informed basic research”
[26]. We held this question as an important factor in
selecting our respondents. As such we approached only
managers with some knowledge of DP, to ascertain their
motivation to take part in our investigation.

Our second group of respondents is composed of
former students who are now working as system
developers in organizations in Norway. Getting the contact
information was a challenge since our institution lacks a
mechanism to trace former students. So, we relied on
technologies like LinkedIn, acquaintances, and a data tool
constructed for the purpose. We located about 110 of our
former students from courses on DP. We also got a list of
about 60 externally collected contacts. Then we used the
list and managed to talk to nine of them by phone or face
to face, to ascertain that our topic of investigation was
relevant to them. During the conversations, we discussed
the design of our questionnaire and our chances for having
the actual interlocutor as respondent. Those nine helped us
in preparing the questionnaires, by giving different
comments and sharing their insights.

NVivo [42] is a tool for qualitative research that is
specialized for coding and analyzing and for finding trends
and interesting opinions. In preparing the questionnaire,
we emphasized that all questionnaire items are open to any
formulation. This is possible, because the NVivo tool lets
us code and analyze the respondents’ contributions
independent of prior organizing. We let each respondent
know that we wanted to learn how, when and why
knowledge of design patterns had any importance on
his/her professional life after the end of training. We also
used each respondent as a possible source of contact
information to relevant managers that might have opinions
on the relevance of DP.

Finally, we distributed the questionnaire to 170
potential respondents, both managers and practitioners.
Out of the 170 emails we sent, we received a total of 28
answered questionnaires that have been analyzed and used
in this paper.

The data we got from the 28 respondents has been
analyzed using NVivo. As NVivo has huge possibilities
for automatic and semi-automatic text analyses, the tool
labeled each answer with a code in the place of the full
text instruction. The existence of tools for programming
the docx format to filter out relevant content from complex
structures, available for several programming languages,
made this content transformation possible. The transferring
of informant documents alleviated the NVivo analysis
activities a lot. The filtering of questionnaire content also
raised the analysis quality by assuring the non-existence of
irrelevant text in the sources.

IV. FINDINGS

In this section, we present our findings. As our focus
was to know the perspectives and views of the two social
worlds (practitioners and managers) on the relevance and
value of design patters in work settings, we present our
findings accordingly for the two social worlds. Then, we
make a comparison of our findings in the two stakeholder
groups.

A. Relevance of DP from the practitioner’s perspective

An important occasion for many people in their
professional career is the job interview. Therefore, we
asked our respondents to comment on what they really
think about the relevance of DP knowledge when they
apply for a new job in the IT industry. The typical
response we received was that: “I hope and believe that it
is mandatory to have a good knowledge of Software
Design Patterns (SDP). I think SDP is one of the most
important aspects of programming.” An interesting finding
was the distinction between junior and senior developers
that reads as follows. “If you apply for a junior position it
might not be that relevant because they wouldn’t expect
you to have knowledge about design patterns, but if you
apply for a medium/senior development position it is very
relevant.” This evidence relies to a discussion concerning
introductory training in DP. Some respondents also
indicated that Knowledge of DP did not have quite a lot to
say when they got their current job.

When we looked for the informants’ general
perception of DP, we found good evidence for positive
perceptions like: “Whenever I need to work on new
features / product development, I use design patterns”. We
also found typical evidence like “it helps with code
structure”. An interesting finding from respondents free
comments is that: “if I have used a common SDP, it might
have been easy to understand what I have coded”, and
“Also DP makes it easier for my colleagues to
understand“. More evidence for relevance is “I mostly use
patterns to communicate intent behind non-trivial code
structures.”

We wanted to test the evidence material for any sign of
enthusiasm, which we interpret as more than just a notion
of relevance. We found formulations that we think
conveys enthusiasm: “SDP had a big role in my evolution
with object oriented programming”, and one referring to
training: “It has been a great year for me - From finishing

53Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 62 / 128

school to this point in time I've become a much better
coder and problem solver.”

Some of the expressions from our respondents on the
use of DP show us when and why DP is being used in
work settings:

Practitioner 1: “Yes, weekly, to solve problems.”

Practitioner 2: “Yes. I used it every day. The main
purpose is to be able to understand the code faster and
easier if it needs to be changed later on.”

Practitioner 3: “Daily. … . We use it in our own
development, but it is also essential to understand
different design patterns when debugging other
developers code efficiently.”

One informant also specify two relevant situations:
“Yes, first under the design phase of the project and
then in the implementation phase.”

Much of the evidence refers to daily use: “Everyday,
solving problems or reading code in an architectural way
to find or create solutions at the right places keeping the
code maintainable.” There is also evidence in the context
of how often, that add concern of code quality: “Most of
the time, usually to handle complex situations that would
otherwise result in spaghetti code“.

As our findings reveal, most of the practitioners
believe that DP usage and knowledge improve their code.
Our findings also confirm that the improvement is in fact
a distinct purpose for using DP as some of the practitioners
use DP in order to improve the way they write the code so
that to make it as clear and logical as possible.

Our findings also revealed the relevance of DP as a
communication agent. As one of the informants indicated:
“The software design patterns knowledge will give some
help in having meaningful discussions with partners”. DP
is relevant as a knowledge framework in some situations,
helping participants from both different and same social
worlds discuss and elaborate solutions.

We specifically asked for informants’ perception of the
DP influence on time balance in projects. A typical answer
for this group is “projects may take a longer time to finish.
But it is usually worth it and may save time later.” We
summarized our findings in the following table (Table 1).

TABLE I. SUMMARY OF PRACTITIONERS’ PERCEPTIONS.
Question Practitioners’ perception

How • has a big role in practitioner’s evolution

• is a very important aspect of
programming

• studying DP has been great

• makes much better coders and problem
solvers

• allows for architectural perspective

• keeps code maintainable

• is timesaver in the longer run

• is a knowledge framework

When • weekly

• daily

• needing to change existing code

• debugging

• applying for a job

• applying for medium/senior
development position

• starting new features and product
development

Why • helps with code structure

• easy to understand what is coded

• communicate intent behind non-trivial
code

• solve problems

• understand others code quickly

• long term code maintainability

• using DP is doing it right

B. Relevance of DP from Managers’ perspective

It was important to have informant practitioners with
sufficient knowledge of DP to make the questionnaire
relevant. The relevance is for managers to have a stake in
development. Again, the communication between
management and practitioner profits on a mutual
understanding of tools and methodologies. Relevant to this
concern is evidence like “I think the application of design
patterns are very useful for designing faster and more
structured applications”. More directly targeted at a mutual
understanding between practitioners and managers is the
following evidence: “Use SDP to increase effectivity in
their daily work and to reuse code or methodology from
project to project. “

Evidence also displays the relevance of new hires
knowledge of DP as follows: “I think very much. It would
help keep the number of code lines down overhaul in an
application and in the long run perhaps save money“.

Managers believe in the positive influence of DP on
code improvement:

Manager 1:”Yes, absolutely.”

Manager 2: “Yes, because for other people with
the same design pattern knowledge, will make it much
easier to understand and thereby perhaps much easier
to improve upon later“.

Manager 2 also confirms the communication and
mutual understanding aspects of using DP as follows:

“The software design patterns knowledge will give
some help in having meaningful discussions with
partners”. We also found an interesting reflection in
“it makes me aware of need for pattern creation to
create re-usability and standardization.”

Interestingly we found more strong evidence of
positive management perceptions of DP. Manger 3 stated
the following:

54Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 63 / 128

“I want all employers to be as effective as possible,
and in this regard use SDP.”

Another informant (manager 4) formulated his
perception even stronger: “Extremely important”. In our
material, the positive perception of DP has strong
prevalence before any other alternative.

Managers’ concern for DP knowledge and new hires
are expressed in attitudes like:

“My understanding is that this influence them”,

“I imagine it does make them more effective.”, and

“This has not been on my criteria list (until now).”

The statement “Very relevant, most employers look for
design patterns knowledge” represents the most prominent
perception among managers. We also found variants of
that statement, like “have a positive attitude to design
patterns” and “In the current company it is high interest
and positivity for it.“ Some informants thought company
size decides level of interest, and stated accordingly: “In
bigger companies where you have 100++ employees there
is an interest and maintenance of this at a manager level.”

A manager focus relevance like this: “It helps seeing
pitfalls that has to be handled in the project.” Our findings
regarding managers’ preceptions towards the relevance of
DP are presented in the following table (Table 2).

TABLE II. SUMMARY OF MANAGERS’ PERCEPTIONS

Question Managers’ Perception

How • designing faster and more structured
applications

• opens for meaningful discussions

• better communication between
developers

• positive outlook on SDP

• reuse code or methodology

• seeing pitfalls

When • employing new hires

• manager is reminded

• daily work

Why • makes hires more effective

• code improvement

• keeps the number of code lines down

• perhaps saves money

• has lower maintenance requirement

• makes it easier to improve production
software later

• increases effectivity

• create re-usability and standardization

V. ANALYSIS AND DISCUSSION

This section contains analysis of our findings and how
they contribute to answering the research questions we set
in the introduction. Our findings pointed out that the social

world of IT managers have a mixed interest and
knowledge about DP and its relevance towards enhancing
software development practices. Our findings also
demonstrated that the social world of practitioners had a
more common interest towards DP with better engagement
and knowledge; and even with good understanding of the
positive influence of DP usage.

In our research, we wanted to find out how, when and
why DP had relevance to practitioners. We constructed a
questionnaire that aimed to reveal if DP had any relevance
or not in work settings. As highlighted in our findings,
most of the practitioners answered positively on the
relevance of knowledge in DP to software development.
There was only one feeble evidence on the irrelevance of
DP among practitioners.

So, in the following subsections, we analyze and
discuss our findings around the two research questions we
set in the introduction.

A. How, when and why do DP trained practitioners
perceive relevance of DP knowledge

We find that the study of DP has been a great personal
satisfaction for some of the informants. They also
generally think DP give important aspects of programming
activities in themselves. DP infer better coding, keep the
code maintainable and even give coders a view into
architectural considerations. DP also affects problem-
solving abilities, and is a timesaver in the long run. The
timesaving aspect is especially important in terms of
system change claims, which also answers the “when”
question. Using DP also creates a knowledge framework
to be used for the facilitation of communication between
stakeholders. It can even be used to enhance program
understanding through pattern reverse-engineering [40].

The reasons for DP’s relevance to practitioners are
close to the answers for “how” and “when”. The
understandability is important in multiple directions, that
is when coders shall understand other’s code, when other
shall understand “my code”, and even when the coder shall
understand his own code. This aspect is also tied to
intentions behind code that are difficult to understand
without the DP references. The “why” aspect also reveals
practitioner responsibility for future needs, as using DP is
considered doing the right thing. The same responsibility
is even deeper, as it emphasizes positive effect on long
term maintainability. Practitioners who have concerns for
long term effects of their work, do actually share managers
perspectives and interests like return on investment (ROI),
e.g. interest of ROI.

Based on our evidence, we assume that knowledge and
use of DP is so advanced, that it infers a reinforced
perception of ownership to the work. Even more
interesting is whether advanced knowledge improves
productivity through enhanced self-esteem, as some of our
evidence indicated. Judge and Bono [28] pointed out the
relevance of self-esteem for job satisfaction and
performance. Pierce and Gardner [29] delve deep into
these questions in their review of organization-based self-

55Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 64 / 128

esteem literature. It is much more difficult to find literature
on DP knowledge affecting self-esteem and practitioner
productivity.

B. How mutual is practitioners’ and managers’
understanding of the relevance of DP?

The DP literature argues on the importance of IT
managers to have insights, reasoning, and techniques to
promote and implement design patterns in order to gain
operational efficiency and provide strategic benefit for
their IT organization. Learning and organizing DP provide
an important step [31]. Fowler also state that developers
should adapt design patterns to their own environment, and
that implementing a pattern for a particular purpose is one
of the best ways to learn about it. Cline [31] noted, as
design patterns capture distilled experience, they could be
used as a tool to improve communication between
software developers and other stakeholders, including less
experienced developers and managers. Moudam et al. [12]
also referred to DP as a communication agent.

Our findings actually highlighted DP as a
communication tool to facilitate the interaction between
the social worlds of managers and practitioners. The social
worlds of managers and practitioners are different, but
importantly influenced by the limits of effective mutual
communication. Generally, the communication between
management and practitioners profits on a mutual
understanding of tools and methodology. The hierarchical
positions of each member makes the mutual understanding
of methods and tools a critical factor. We wanted to gather
evidence of the practitioner’s perception of the
management’s and industry’s general understanding and
attitudes towards DP. Since managers have the model
power [33, 34], their knowledge of DP is critical to the
practitioners’ access to DP and in creating mutual
understanding between the two worlds. DP can create
mutual understanding by providing a standard vocabulary
among practitioners and managers. Under such
circumstances, we assume that practitioners who want to
use DP will suffer from a weak mutuality of DP
understanding and interest.

Even more problematic are the possibilities of
misunderstandings and errors induced by different
understanding. Literature on this topic for other disciplines
exists for example in Hantho et al. [33]. Much closer to
our research is Margaret [34] who reports a study of the
communication between systems analysts and clients to
create requirements. Marne [35] actually construct a DP
library as a communication tool. We differ from this by
focusing the importance of communication between
practitioners and their superiors. DP is by evidence
depicted as a tool of communication between individuals
of both our social worlds.

We have evidence that most managers have little
knowledge of DP, but still express considerable
confidence in their employees’ usage of them. Managers
naturally possess an economical mind-set. The
practitioners’ more technical mind-set actually has some
commonalities with their superiors, which support the

mutual understanding between the two social worlds. We
found evidence of practitioners’ concern for ROI, and also
manager’s concern for building faster applications more
effectively. This is evidence of mutual interests, which is
likely to infer a shared interest of communication.

Some managers appreciate relevance of DP based on
their assumptions of faster and more structured
applications, terms applied to faster designing and
development, rather than meaning the application run
faster. Still, the interesting part is that the evidence implies
an interest for the practitioner’s concerns. Besides a
general positive appreciation of DP, managers also believe
in reuse, enhanced communication between stakeholders
in the software process. There is also evidence that
managers find DP useful in detecting architectural and
technical pitfalls.

There is convincing evidence of mutual understanding
between our two social worlds. Even if the mind-sets and
perspectives are different, we claim that the reasons mostly
fall under the practitioners’ concerns as well. DP increases
effectivity, and more specifically makes hires more
effective. The code improvement, as in lowered number of
code lines, is in both stakeholder group’s interest. Lower
maintenance requirements and easier software
improvement are also a concern of practitioners.
Reusability is of course also in the practical interest of the
coder, while standardization is a general interest of the
growing software community that embrace open source
solutions. Coherence in DP perceptions between the two
social worlds, as well as self-confidence based on
knowledge, likely enhance productivity in both social
worlds.

Despite the fact that the DP community has been
successful in promoting good software engineering
practices [37], adoption rates are still low for IT
organizations due to lack of discovery and limited
education around how to apply design patterns to specific
domain contexts [14]. This low adoption rate attributed to
the fact that finding DP relevant to a particular problem
isn’t trivial [14]. This challenge is, in part, due to the
nature of how patterns often match a problem domain and
each domain needs a distinct approach [37].

When Khom et al. [15] considered criticism to DP;
they discussed three GoF [7] examples. Patterns like
Flyweight can be a topic of internal discussion, and thus
act as social glue among participants. Classical patterns are
important not only to infer high software quality, but also
to let developers feel at home and find their way in
complicated code. Confident and pattern-aware
programmers can influence software quality positively, if
they are comfortable with the specific pattern instance in
use. If the developer finds that a pattern actually decreases
the understanding of a software area, it might be because
the wrong pattern is used, or that the pattern infers
abstractions that decreases both learnability,
understandability and the simplicity of debugging. Such
abstractions may even amount to emotional resistance
[38]. The quality of discussions is better when it is
grounded in well-known DP topics, awakening the feel-

56Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 65 / 128

good of being “at home”, even at work. We would like to
promote formal instruction and common knowledge of DP
as a social glue between individuals from both the social
worlds of practitioners and managers. We would also like
to see the construction of meet-up arrangements for the
discussion of DP, in order to strengthen the
communication attributes of the topic.

Khom et al. [15] states “we consider reusability as the
reusability of the piece of code in which a pattern is
implemented”. We oppose this, and stated earlier that DP
must be constructed and instantiated on site. We find it
important to apply the reusability term to the pattern and
not the pattern instance code. A target for a specific pattern
usage is to improve understandability. A misplaced or
miscoded pattern might be the cause of reducing
understandability. Internalized pattern knowledge can lead
to creative solutions, as opposed to solutions searched by
catalogue. The catalogue solutions have to be tested and
found usable for the specific problem, and are often only
partially understood. We therefore promote formal
instruction of DP to internalize a small set of pattern
repertoire in the minds of the social worlds’ individuals.

VI. CONCLUSION

In this paper, we empirically assessed whether or not
knowledge of DP is relevant for managers and
practitioners in software development companies. Our
findings revealed that there are differences between the
social worlds of managers and practitioners in how they
perceive DP as a vehicle to enhance performance of
development teams. Practitioners expressed high level of
relevance for the knowledge of DP, while managers put a
lower level of relevance to DP. However, our findings also
revealed that both social worlds believed in DP’s ability to
act as a communication tool, and that the quality of
mutuality in DP perceptions between the two social worlds
is good.

Several works focus on measurable characteristics by
inspecting collections of code. Hegedus et. al. [39] inspect
the quantitative grounding for evaluating the effect of DP
on software maintainability. In contrast, we wanted to
investigate the effect on human thinking and courage in
software building. Meaningful naming of components, like
classes, fields and enum type items, is an example of less
measurable code characteristics that still may have huge
effect on software maintainability, because of its ability to
guide human understanding.

We do not focus DP’s characteristics as a direct
software improving tool, but indirect as a human helper.
DP help humans think, and thereby help humans improve
design and program code. Tahvildari et al. [40] focus on
their own classification schemas to help designers
understand relationships between patterns, but do not
connect DP directly to the assistance to think, or to the
user’s attitudes towards DP. Even if the correct usage of
DP reduces risk, the adoption rates are still low.
Manolescu [14] claimed low discovery and education to be
important factors, which makes it interesting to investigate
the present attitudes of employers and former students of

DP, and detect any importance for their professional life. If
practitioners’ knowledge and usage of DP enhance them as
coders, it is of great significance when their managers find
positive relevance in their usage of DP. The practitioners
will feel support and encouragement to continue their good
work.

Measuring attributes of software created with patterns
would oversee all the varying ways of instantiation, all the
varying machine and OS variants and escape future
changes in OS/machine dependencies. We therefore and
alternatively suggest the discussion of practitioners’ self-
confidence and its effect on productivity, a coherence that
can prove to be more future-proof, being grounded in the
human nature.

REFERENCES

[1] E. Folmer. and J. Bosch “A pattern framework for software
quality assessment and tradeoff analysis.” International Journal of
Software Engineering and Knowledge Engineering, Vol.17, no.
04, pp.515-538, 2007.

[2] G. Shlezinger, I. Reinhartz-Berger, and D. Dori. “Modeling design
patterns for semi-automatic reuse in system design. Cross-
Disciplinary Models and Applications of Database Management:
Advancing Approaches.” Advancing Approaches, pp.29, 2011.

[3] S. Henninger. and V. Corrêa. “Software pattern communities:
Current practices and challenges.” In Proceedings of the 14th
Conference on Pattern Languages of Programs, ACM,, 2007.

[4] D. J. Ram and M.S. Rajasree. “Enabling Design Evolution in
Software through Pattern Oriented Approach, in Object-Oriented
Information Systems” In Proceedings of 9th INternational
Conference, OOIS 2003, Geneva, Switzerland, PP. 179- 190,
September 2003.

[5] C. Larman. Applying UML and patterns: an introduction to object-
oriented analysis and design and iterative development. 2005:
Pearson Education India.

[6] L. Ackerman and C. Gonzalez. “The value of pattern
implementations.” DR DOBBS JOURNAL, Vol. 23, no. 6, pp.
28-34, 2007.

[7] J. Vlissides, et al. “Design patterns: Elements of reusable object-
oriented software.” Reading: Addison-Wesley, Vol. 49, no. 120,
pp. 11, 1995..

[8] P. Tarret al. «N degrees of separation: multi-dimensional
separation of concerns.” In Proceedings of the 21st international
conference on Software engineering. 1999. ACM.

[9] V. Kulkarni and S. Reddy “Separation of concerns in model-driven
development.” IEEE software, Vol. 20, no. 5. Pp. 64- 69, 2003.

[10] M. Aksit, B. Tekinerdogan, and L. Bergmans. Achieving
adaptability through separation and composition of concerns. 1997.

[11] T. Mens and M. Wermelinger “Separation of concerns for software
evolution.” Journal of software maintenance and evolution:
research and practice, vol. 14, no. 5, pp. 311-315, 2002.

[12] Z. Moudam and N. Chenfour “Design Pattern Support System:
Help Making Decision in the Choice of Appropriate Pattern.”
Procedia Technology, Vol. 4, pp. 355-359, 2012.

[13] R. Subburaj, G. Jekese, and C. Hwata “Impact of Object Oriented
Design Patterns on Software Development.” International Journal
of Scientific & Engineering Research, vol. 6, no. 2, pp. 961-967,
2015.

[14] D. Manolescu et al. “The growing divide in the patterns world.”
Software, IEEE, vol. 24, no. 4. Pp. 61-67, 2007.

[15] F. Khomh and Y. G. Guéhéneuc. “Do design patterns impact
software quality positively?” In Software Maintenance and
Reengineering, 2008. CSMR 2008. 12th European Conference on.
2008. IEEE.

57Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 66 / 128

[16] L. Rising. “The Benefit of Patterns.” IEEE software, vol. 27, no. 5,
pp. 15-17, 2010.

[17] B. Wydaeghe et al. «Building an OMT-editor using design
patterns: An experience report.” In Technology of Object-
Oriented Languages, 1998. TOOLS 26. Proceedings. 1998. IEEE.

[18] A. E. Clarke. and S.L. Star “The social worlds framework: A
theory/methods package.” The Handbook of Science &
Technology Studies, vol. 3, pp. 113-137, 2008.

[19] A. L. Strauss. Scientists and the evolution of policy arenas: The
case of AIDS., in stone symposium of the society for the study of
symbolic interaction. 1991: San Fransico, CA.

[20] T. Shibutani. “Reference Groups as Perspectives.” American
Journal of Sociology, vol. 60, no. 6, pp. 562-569, 1955.

[21] B. Elkjær. “Organizational learning the ‘third way’.”Management
learning, vol. 35, no. 4, pp. 419-434, 2004.

[22] B. Elkjærand M. Huysman “Social worlds theory and the power of
tension.” IN: D., Barry & H., Hansen (Eds.), The SAGE handbook
of new approaches in management and organization, pp. 170-177,
2008.

[23] M. Huysman and B. Elkjær. “Organizations as arenas of social
worlds: Towards an alternative perspective on organizational
learning?” In Organizational Learning and Knowledge Capabilities
Conference. 2006.

[24] A. E. Clarke.. Social organization and social process: Essays in
honor of Anselm Strauss, 1991.

[25] A. H. Van de Ven Engaged scholarship : a guide for organizational
and social research. 2007, Oxford ; New York: Oxford University
Press. xii, 330 p.

[26] A. H. Van de Ven Engaged scholarship a guide for organizational
and social research. 2007, Oxford University Press: Oxford ; New
York. p. 1 online resource.

[27] A. Alnusair T. Zhao, and G. Yan “Rule-based detection of design
patterns in program code.” International Journal on Software Tools
for Technology Transfer, vol. 16, pp. 315-334, 2014.

[28] T. A. Judge and J.E. Bono. “Relationship of core self-evaluations
traits—self-esteem, generalized self-efficacy, locus of control, and
emotional stability—with job satisfaction and job performance: A
meta-analysis.” Journal of Applied Psychology, vol. 86, pp. 80-92,
2001.

[29] J. L. Pierce and D.G. Gardner. “Self-Esteem Within the Work and
Organizational Context: A Review of the Organization-Based Self-
Esteem Literature.” Journal of Management, vol. 30, no. 5, pp.
591-622, 2004.

[30] D. Alur et al. Core J2EE Patterns (Core Design Series): Best
Practices and Design Strategies. 2003: Sun Microsystems, Inc.

[31] M. P. Cline. “The pros and cons of adopting and applying design
patterns in the real world.” Communications of the ACM, vol. 39,
no. 10, pp. 47-49, 1996.

[32] A. M. Kanstrup and E. Christiansen. Model power: still an issue?,
in Proceedings of the 4th decennial conference on Critical
computing: between sense and sensibility, pp. 165-168, 2005,
ACM: Aarhus, Denmark.

[33] A. Hantho, L. Jensen, and K. Malterud. “Mutual understanding: a
communication model for general practice. “Scandinavian Journal
of Primary Health Care, vol. 20, no. 4, pp. 244-251, 2002.

[34] T. Margaret. “Establishing Mutual Understanding in Systems
Design: An Empirical Study.” Journal of Management Information
Systems, vol. 10, no. 4, pp. 159-182, 1994.

[35] B. Marne et al. “A Design Pattern Library for Mutual
Understanding and Cooperation in Serious Game Design, in
Intelligent Tutoring Systems”. 11th International Conference, ITS
2012, Chania, Crete, Greece, June 14-18, 2012. Proceedings, S.A.
Cerri, et al., Editors., pp. 135-140, 2012, Springer Berlin
Heidelberg: Berlin, Heidelberg.

[36] F. Buschmann, K. Henney, and D. Schimdt. Pattern Oriented
Software Architecture, vol. 5, 2007: John Wiley & Sons.

[37] S. J. Bleistein et al. Linking requirements goal modeling
techniques to strategic e-business patterns and best practice. in 8th
Australian Workshop on Requirements Engineering (AWRE’03).
2003. Citeseer.

[38] V. Holmstedt and S. A. Mengiste. «Effect of Code Maintenance on
Confidence in introductory object oriented programming Courses.”
IN: IRIS2016. 2016: Sweden. Unpublished

[39] P. Hegedűs et al.. Myth or reality? analyzing the effect of design
patterns on software maintainability, in Computer Applications for
Software Engineering, Disaster Recovery, and Business
Continuity, pp. 138-145, 2012, Springer.

[40] L. Tahvildari and K. Kontogiannis. «On the role of design patterns
in quality-driven re-engineering. in Software Maintenance and
Reengineering.” IN: Proceedingsof Sixth European Conference
on. 2002. IEEE.

[41] Standish Group 2015 Chaos Report, available at:
https://www.infoq.com/articles/standish-chaos-2015 [accessed
March 2017]

[42] http://www.qsrinternational.com/what-is-nvivo [accessed March
2017]

58Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 67 / 128

A Model-Driven Approach for Evaluating Traceability Information

Hendrik Bünder

itemis AG,
Bonn, Germany

Email: buender@itemis.de

Christoph Rieger, Herbert Kuchen

ERCIS, University of Münster,
Münster, Germany

Email: {c.rieger,kuchen}@uni-muenster.de

Abstract—A traceability information model (TIM), in terms of
requirement traceability, describes the relation of all artifacts
that specify, implement, test, or document a software system.
Creating and maintaining these models takes a lot of effort, but
the inherent information on project progress and quality is seldom
utilized. This paper introduces a domain-specific language (DSL)
based approach to leverage this information by specifying and
evaluating company- or project-specific analyses. The capabilities
of the Traceability Analysis Language (TAL) are shown by
defining coverage, impact and consistency analysis for a model
according to the Automotive Software Process Improvement and
Capability Determination (A-SPICE) standard. Every analysis
is defined as a rule expression that compares a customizable
metric’s value (aggregated from the TIM) against an individual
threshold. The focus of the Traceability Analysis Language is
to make the definition and execution of information aggregation
and evaluation from a TIM configurable and thereby allow users
to define their own analyses based on their regulatory, project-
specific, or individual needs. The paper elaborates analysis
use cases within the automotive industry and reports on first
experiences from using it.

Keywords–Traceability; Domain-Specific Language; Software
Metrics; Model-driven Software Development; Xtext.

I. INTRODUCTION

Traceability is the ability to describe and follow an artifact
and all its linked artifacts through its whole life in forward
and backward direction [1]. Although many companies create
traceability information models for their software development
activities either because they are obligated by regulations [2]
or because it is prescribed by process maturity models, there
is a lack of support for the analysis of such models [3].

On the one hand, recent research describes how to define
and query traceability information models [4][5]. This is an
essential prerequisite for retrieving specific trace information
from a Traceability Information Model (TIM). However, far
too little attention has been paid to taking advantage of
further processing the gathered trace information. In particular,
information retrieved from a TIM can be aggregated in order
to support software development and project management
activities with a real-time overview of the state of development.

On the other hand, research has been done on defining
relevant metrics for TIMs [6], but the data collection process
is non-configurable. As a result, potential analyses are limited
to predefined questions and cannot provide comprehensive
answers to ad hoc or recurring information needs. For example,
projects using an iterative software development approach might
be interested in the achievement of objectives within each
development phase, whereas other projects might focus on a

comprehensive documentation along the process of creating
and modifying software artifacts.

The approach presented in this paper fills the gap between
both areas by introducing the Traceability Analysis Language.
By defining coverage, impact and consistency analyses for a
model based on the Automotive Software Process Improvement
and Capability Determination (A-SPICE) standard use cases
for the Traceability Analysis Language (TAL) features are
exemplified. Analyses are specified as rule expressions that com-
pare individual metrics to specified thresholds. The underlying
metrics values are computed by evaluating metrics expressions
that offer functionalities to aggregate results of a query
statement. The TAL comes with an interpreter implementation
for each part of the language, so that rule, metric, and query
expressions cannot only be defined, but can also be executed
against a traceability information model. More specifically,
the analysis language is based on a traceability meta model
defining the abstract artifact types that are relevant within the
development process. All TAL expressions therefore target the
structural characteristics of the TIM.

The contributions of this paper are threefold: first, we
provide a domain-specific Traceability Analysis Language to
define rules, metrics, and queries in a fully configurable and
integrated way. Second, we demonstrate the feasibility of our
work with a prototypical interpreter implementation for real-
time evaluation of those trace analyses. In addition, we illustrate
the TAL’s capabilities in the context of the A-SPICE standard
and report on first experiences from real-world projects in the
automotive sector.

Having discussed related work in Section II, Section III
presents the capabilities of the TAL by exemplifying impact,
coverage, and consistency analyses, as well as the respective
rule, metrics, and query features for retrieving information from
the TIM in an automotive context. In Section IV, the language,
our prototypical implementation, and first usage experiences
are discussed before the paper concludes in Section V.

II. RELATED WORK

Requirements traceability is essential for the verification of
the progress and completeness of a software implementation
[7]. While, e.g., in the aviation or medical industry traceability
is prescribed by law [2], there are also process maturity models
requesting a certain level of traceability [8].

Traceable artifacts such as Software Requirement, Software
Unit, or Test Specification, and the links between those such as
details, implements, and tests constitute the TIM [9]. Retrieving
traceability information and establishing a TIM is beyond the

59Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 68 / 128

scope of this paper and approaches for standardization such as
[10] have already been researched.

In contrast to the high effort that is made to create and
maintain a TIM, only a fraction of practitioners takes advantage
of the inherent information [2]. However, Rempel and Mäder
(2015) have shown that the number of related requirements
or the average distance between related requirements have a
positive correlation with the number of defects associated with
this requirement. Traceability models not only ease maintenance
tasks and the evolution of software systems [11] but can also
support analyses in diverse fields of software engineering such
as development practices, product quality, or productivity [12].
In addition, other model-driven domains, such as variability
management in software product lines, benefit from traceability
information [13].

Due to the lack of sophisticated tool support, these opportu-
nities are often missed [3]. On the one hand, query languages for
TIMs have been researched extensively, including Traceability
Query Language (TQL) [4], Visual Trace Modeling Language
(VTML) [5], and Traceability Representation Language (TRL)
[14]. On the other hand, traceability tools mostly offer a
predefined set of evaluations, often with simple tree or matrix
views, e.g., [15]. Hence, especially company- or project-specific
information regarding software quality and project progress
cannot be retrieved and remains unused.

Our approach integrates both fields of research using a
textual DSL [16] that is focused on describing customized rule,
metric and query expressions. In contrast to the Traceability
Metamodelling Language [17] defining a domain-specific
configuration of traceable artifacts, our work builds on a model
regarding the specification of type-safe expressions and for
deriving the scope of available elements from concrete TIM
instances.

III. AN INTEGRATED TRACEABILITY ANALYSIS
LANGUAGE

A. Scenarios for Traceability Analyses

The capabilities of the TAL will be demonstrated by
defining analyses from the categories of coverage, impact and
consistency analysis as introduced by the A-SPICE standard
[18]. In addition to these rather static analyses, there are also
traceability analyses focusing on data mining techniques as
introduced by [12]. Even though some of these could be defined
using the introduced domain-specific language, they remain
out of scope of this paper.

The first scenario focuses on measuring the impact of the
alteration of one or more artifacts on the whole system [19].
Recent research has shown that artifacts with a high number
of trace links are more likely to cause bugs when they are
changed [6]. Moreover, the impact analysis can be a good basis
for the estimation of the costs of changing a certain part of the
software. This estimation then not only includes the costs of
implementing the change itself, but also the effort needed to
adjust and test the dependent components [20].

The second scenario appears to be the most common, since
many TIM analyses are concerned with verifying that a certain
path and subsequently a particular coverage is given, e.g., “are
all requirements covered by a test case” or “have all test cases
a link to a positive test result” [3]. In addition to verifying that

Figure 1. Traceability Information Configuration Model.

certain paths are available within a TIM, coverage metrics are
mostly concerned with the identification of missing paths [9].

The third use case describes the consistency between
traceable artifacts. Besides ensuring that all requirements
are implemented, consistency analyses should also ensure
that there are no unrequested changes to the implementation
[21]. Consistency is generally required between all artifacts
within a TIM in accordance to the Traceability Information
Configuration Model (TICM), so that all required trace links
for the traced artifacts are available [18].

Figure 1 shows a simplified TICM based on the A-
SPICE standard [18] that defines the traceable artifact types
Change Request, Software Requirement, Software Architecture,
Software Unit, Software Integration Test Specification, and
Software Integration Test Result. Also, the link types changes,
details, implements, tests, and documents are specified by the
configuration model. The arrowheads in Figure 1 represent
the primary trace link direction, however, trace links can be
traversed in both directions [22]. The traceable artifact Software
Integration Test Result also defines a customizable attribute
called “status” that holds the actual result.

Considering the triad of economic, technical, and social
problem space, the flexibility to adapt to existing work practices
increases the productivity of a traceability solution [23].
Therefore, configuration models provide the abstract description
of traced artifact types in a company context. A TIM captures
the concrete artifact representations and their relationships
according to such a TICM and constitutes the basis for the
analyses (cf. Section III-B).

Figure 2 shows a traceability information model based on
the sample TICM described above. The TIM contains multiple
instances of the classes defined in the TICM that can be
understood as proxies of the original artifacts. Those artifacts
may be of different format, e.g., Word, Excel or Class files.
Within the traceability software, adapters can be configured to
parse an artifact’s content and create a traceable proxy object in
accordance to the TICM. In addition, the underlying traceability
software product offers the possibility to enhance the proxy
objects with customizable attributes. The Software Integration
Test Result from Figure 1, for example, holds the actual result
of the test case in the customizable attribute “status”.

1) Impact Analysis: The impact analysis shown in Figure 3
checks the number of related requirements (NRR) [6] starting
from every Change Request by using the aggregated results of
a metric expression which is based on a query. The analysis
begins after the rule keyword that is followed by an arbitrary
name. The right hand side of the equation specifies the severity

60Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 69 / 128

Figure 2. Sample Traceability Information Model.

of breaking the rule stated in the parentheses. In this case, a
rule breach will lead to a warning message with the text in
quotation marks. The most important part of the analysis is
the comparison part that specifies the threshold which in this
case, is a number of related requirements greater than 2. If the
metrics’ value is greater, the warning message will be returned
as a result of the analysis.

Figure 3. Metric: Number of related requirements (NRR).

The second component of the TAL expression is the metric
expression that in this case, counts the related requirements.
Each metric is introduced by the keyword metric, again followed
by an arbitrary name which is used to reference a metric either
from another metric or from a rule as shown in Figure 3. The
expression uses the count function to compute the number
of related requirements. The count function takes a column
reference to count all rows that have the same value in the given
column. In the metric expression shown above, all traces from
one Software Requirement to a Software Requirement have the
name of the source Software Requirement in their first column,
so that the count function will count all traces per Software
Requirement. As shown in Table I, the result of the metric
evaluation is a tabular data structure with always two columns.
The first holds the source artifact and the second column holds
the evaluated metric value. For the given example, the first
column holds the name of each Software Requirement and the
second column contains the evaluated number of directly and
indirectly referenced Software Requirements.

Finally, the metric is based on a query expression that is
used to retrieve information from the underlying TIM. The
tracesFrom... to... function returns all paths between source
and target artifact passed into the function as parameters.
In comparison to expressing this statement in other query
languages such as Structured Query Language (SQL), no
knowledge about the potential paths between the source and

TABLE I. NRR METRIC: TABULAR RESULT STRUCTURE.

Software Requirement NRR
SR1 1
SR2 2
SR3 2
SR4 2
SR5 1

target artifacts in the TIM is needed.
Figure 3 shows that the columns of the tabular result

structure are defined in the brackets after the keyword collect.
In the first column the name of the Software Requirement of
each path is given and in the second column the name of each
target Software Requirement is given. Both columns can contain
the same artifacts multiple times, but the combination of each
target with each source artifact is only contained once.

2) Coverage Analysis: Figure 4 shows a coverage analysis
that is concerned with the number of related test case results
per software requirement. In contrast to the analysis shown in
Figure 3, it introduces two new concepts. First, the analysis is

Figure 4. Software Requirement Test Result Coverage Analysis.

not dependent on a metric expression, but directly bound to
a query result. Since metric and query expression results are
returned in the same tabular structure, rules can be applied to
both. Second, the analysis shown in Figure 4 demonstrates the
concept of a staggered analysis, i.e., one column or metric is
referenced once from a warning and error rule, respectively.
The rule interpreter will recognize this construct and will return
the analysis result with the highest severity, e.g., when the error
rule applies, the warning rule message is omitted. The rules
shown above ensure that the test of each Software Requirement

61Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 70 / 128

is documented by at least one test result. However, to fulfill
the rule completely, each Software Requirement should be
covered by two Software Integration Tests and subsequently
two Software Integration Test Results.

TABLE II. COVERAGE ANALYSIS: TABULAR RESULT STRUCTURE.

Software Requirement Analysis Result
SR1 No test results found!
SR2 Ok
SR3 Ok
SR4 No test results found!
SR5 No test results found!
SR6 Low number of test results!

Table II shows the result of the staggered analysis. The test
coverage analysis returns an “Ok” message for two of the six
Software Requirements, while one is marked with a warning
message and the remaining three caused an error message.

The query expressions result is limited to Software Inte-
gration Test Results with status “passed” by evaluating the
customizable attribute “status” using a where clause. Since the
query language offers some functions to do basic aggregation,
it is possible to bypass metric expressions in this case. In
Figure 4 the aggregation is done by the groupBy and the count
function. The second column specifies an aggregation function
that counts all entries in a given column per row based on the
column name passed as parameter. In general, the result of this
function will be 1 per row since there is only one value per row
and column but in combination with the “groupBy” function the
number of aggregated values per cell is computed. The resulting
tabular structure contains one row per Software Requirement
with the respective name and the cumulated number of traces
to different Software Integration Test Results as columns.

3) Consistency Analysis: The following will show two
consistency analysis samples to verify that all Software Require-
ments are linked to at least one Software Unit and vice versa.
Figure 5 shows a consistency analysis composed of a rule and

Figure 5. Consistency Analysis.

a query expression. The rule notCoveredError returns an error
message if the number of traces between Software Requirements
and Software Units is smaller than one which means that the
particular Software Requirements is not implemented.

TABLE III. CONSISTENCY ANALYSIS: SOFTWARE REQUIREMENT
IMPLEMENTATION.

Name Analysis Result
SR1 Ok
SR2 Ok
SR3 Ok
SR4 The Software Requirement is not implemented!
SR5 The Software Requirement is not implemented!
SR6 Ok

Table III shows the result of the analysis as defined in
Figure 5. For “SR4” and “SR5” there is no trace to a Software
Unit so that the analysis marks these two with an error message.

To verify that all implemented Software Units are requested
by a Software Requirement, the query can easily be altered by
switching the parameters of the “tracesFrom... to...” function
and by changing the error message. Table IV shows the result
of the altered analysis revealing that “SU3” despite all others
has not been requested.

TABLE IV. CONSISTENCY ANALYSIS: SOFTWARE UNIT REQUESTED.

Name Analysis Result
SU1 Ok
SU2 Ok
SU3 The Software Requirement has not been requested!
SU4 Ok
SU5 Ok
SU6 Ok

These examples show that the language offers extensive
support for retrieving and aggregating information in TIMs. The
following sections will demonstrate how the TAL integrates
with the traceability solution it is build upon, and how the
different parts of the language are defined.

B. Composition of the Traceability Analysis Language
1) Modeling Layers: Figure 6 shows the integration between

the different model layers referred to in this paper, starting from
the Eclipse Ecore Model as shared meta meta model [24]. The
Xtext framework which is used to define the analysis language
generates an instance of this model [25] to represent the
Analysis Language Meta Model (ALMM). Individual queries,
metrics, and rules are specified within a concrete instance, the
Analysis Language Model (ALM), using the created domain-
specific language. An interpreter was implemented using Xtend,
a Java extension developed as part of the Xtext framework and
specially designed to navigate and interact with the analysis
language’s Eclipse Ecore models [26].

Figure 6. Conceptual Integration of Model Layers.

Likewise, the Traceability Information Model used in this
paper contains the actual traceability information, for example
the concrete software requirement SR1. It is again an instance
of a formal abstract description, the so called TICM. The TICM
describes traceable artifact types, e.g., Software Requirement
or Software Architecture, and the available link types, e.g.,
details. This model itself is based on a proprietary Traceability
Information Meta Model (TIMM) defining the basic traceability
constructs such as an artifact type and link type. To structure
the DSL, the TAL itself is hierarchically subdivided into three
components, namely rule, metric, and query expressions.

62Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 71 / 128

2) Rule Grammar: Since a query result or a metric value
alone delivers few insights into the quality or the progress of
a project, rule expressions are the main part of the TAL. Only
by comparing the metric value to a pre-defined threshold or
another metrics’ value information is exposed. The grammar
contains rules for standard comparison operations which are
equal, not equal, greater than, smaller than, greater or equals,
and smaller or equals. A rule expression can either return
a warning or an error result after executing the comparison
including an individual message. Since query and metrics result
descriptions implement the same tabular result interface, rules
can be applied to both. Accordingly, the result of an evaluated
rule expression is also stored using the same tabular interface.

Figure 7. Rule Grammar.

The RuleBody rule shown in Figure 7 is the central part of
the rule grammar. On the left side of the Operator a metric
expression or a column from a query expression result can be
referenced. The next part of the rule is the comparison Operator
followed by a RuleAtomic value to compare the expression
to. The RuleAtomic value is either a constant number or a
reference to another metrics expression.

3) Metrics Grammar: Complimentary to recent research that
focuses on specific traceability metrics and their meaningfulness
[6], the approach described in this paper allows for the definition
of individual metrics. An extended Backus-Naur form (EBNF)-
like Xtext grammar defines the available features including
arithmetic operations, operator precedence using parentheses,
and the integration of query expressions. The metrics grammar
of the TAL itself has two main components. One is the
ResultDeclaration that encapsulates the result of a previously
specified query. The other is an arbitrary number of metrics
definitions that may aggregate query results or other metrics
recursively.

Figure 8. Grammar rules for metrics expressions.

Figure 8 shows a part of the metric grammar defining the
support for the basic four arithmetic operations as well as
the correct use of parentheses. Since the corresponding parser
generated by Another Tool for Language Recognition (ANTLR)
works top-down, the grammar must not be left recursive [27].
First, the rule Factor allows for the usage of constant double
values. Second, metric expressions can contain pre-defined
functions such as sum, length, or count to be applied to the
results of a query. Due to a lack of space, their grammar
rules are not elaborated further. Third, columns from the result
of a query can be referenced so that metric expressions per
query expression result row can be computed. Finally, metric
expressions can refer to other metric expressions to further
aggregate already accumulated values. Thereby, interpreting
metric expressions can be modularized to reuse intermediate
metrics and to ensure maintainability.

The metrics grammar as part of the TAL defines arithmetic
operations that aggregate the results of an interpreted query ex-
pression. The combination of a configurable query expressions
with configurable metric definitions allows users to define their
individual metrics.

4) Query Grammar: The analyses defined using metric and
rule expressions depend on the result of a query that retrieves
the raw data from the underlying TIM. Although there are many
existing query languages available, a proprietary implementation
is currently used because of three reasons.

First, the query language should reuse the types from
TICM to enable live validation of analyses even before they
are executed. The Xtext-based implementation offers easy
mechanisms to satisfy this requirement, while others such
as SQL are evaluated only at runtime. Second, some of the
existing query languages such as SQL or Language Integrated
Query (LINQ) are too verbose (cf. Figure 9) or do not offer
predefined functions to query graphs. Finally, other languages
such as SEMMLE QL [28] or RASCAL [29] are focused on
source code analyses and do not interact well with Eclipse
Modeling Framework (EMF) models.

The formal description of the syntax of a query is quite
lengthy and out of scope of this paper, where we focus on the
metrics and rules language. From the example in Section III,
the reader gets an idea, how a query looks like. The query
expressions offer a powerful and well-integrated mechanism
to retrieve information from a given TIM. Especially, the
integration with the traceability information configuration model
enables the reuse of already known terms such as the trace
artifact type names. Furthermore, complex graph traversals
are completely hidden from the user who only specifies the
traceable source and target artifact based on the TICM. For
example, the concise query of Figure 4 already requires a
complex statement when expressed in SQL syntax (cf. Figure 9).

Figure 9. SQL equivalent to query of Figure 4.

IV. DISCUSSION

A. Eclipse Integration and Performance
To demonstrate the feasibility of the designed TAL and

perform flexible evaluations of traceability information models,
a prototype was developed. The analysis language is based
on the aforementioned Xtext framework and integrated in
the integrated development environment Eclipse using its
plug-in mechanism [30]. The introduced interpreter evaluates
rule, metric, and query expressions whenever the respective
expression is modified and saved in the editor.

Currently, both components are tentatively integrated in
a software solution that envisages a commercial application.
Therefore, the analysis language is configured to utilize a
proprietary TIMM from which traceability information config-
uration models and concrete TIMs are defined. At runtime, the

63Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 72 / 128

expression editor triggers the interpreter to request the current
TIM from the underlying software solution and subsequently
perform the given analysis. Within our implementation, trace-
able artifacts from custom traceability information configuration
models as shown in Figure 1 can be used for query, metrics,
and rule definitions. Due to an efficient implementation used
by the tracesFrom... to... function, analysis are re-executed
immediately when an analysis is saved or can be triggered
from a menu entry. The efficiency of the depth-first algorithm
implementation was verified by interpreting expressions using
TIMs ranging from 1,000 to 50,000 artificially created traceable
artifacts. The underlying TICM was build according to the
traceable artifact definitions of the A-SPICE standard [18].

TABLE V. DURATION OF TAL EVALUATION.

Artifacts Start Artifacts Duration (in s)
1,000 300 0.012
8,000 1,500 0.1

50,000 8,500 2.2

Table V shows the duration for interpreting the analysis
expression from Figure 4 against TIMs of different sizes. The
first column shows the overall number of traceable artifacts
and links in the TIM. The second column gives the number
of start artifacts for the depth-first algorithm implementation,
i.e., the number of Software Requirements for the exemplary
analysis expression. The third column contains the execution
time on an Intel Core i7-4700MQ processor at 2.4 GHz and
16 GB RAM. As shown, executing expressions can be done
efficiently even for large size models, sufficient for real-world
applications to regular reporting and ad hoc analysis purposes.

B. Applying the Analysis Language
Defining and evaluating analysis statements with the proto-

typical implementation has shown that the approach is feasible
to collect metrics for different kinds of traceability projects.
The most basic metric expression reads like the proportion
of artifacts of type A that have no trace to artifacts of type
B. Some generic scenarios focused on impact, coverage, and
consistency analyses have been exemplified in Section III-A.
However, there are more specific metrics that are applicable
and reasonable for a particular industry sector, a specific project
organization, or a certain development process.

Industry-specific metrics, e.g., in the banking sector, could
focus on the impact of a certain change request regarding coor-
dination and test effort estimation. Project-specific management
rules may for instance highlight components causing a high
number of reported defects to indicate where to perform quality
measures, e.g., code reviews. Moreover, the current progress of
a software development project can be exposed by defining a
staggered analysis relating design phase artifacts (e.g., Software
Requirements that are not linked to a Software Architecture) and
implementation artifacts (e.g., Software Architectures without
trace to a Software Unit) in relation to the overall number
of Software Requirements. Analysis expressions could also be
specific to the software development process. In agile projects
for example the velocity of an iteration could be combined
with the number of bugs related to the delivered functionality.
Thereby, it could be determined whether the number of bugs
correlates with the scope of delivered functionality. These use
cases emphasize the flexibility of the analysis language — in

combination with an adaptable configuration model — for
applying traceability analyses to a variety of domains, not
necessarily bound to programming or software development in
general. For example, a TIM for an academic paper may define
traceable artifacts such as authors, chapters, and references.
An analysis on such a paper could find all papers that cite a
certain author or the average number of citations per chapter.
It is therefore possible to execute analyses on other domains
with graph-based structures that can benefit from traceability
information.

Besides theoretical usage scenarios for the TAL, first expe-
riences in real-world projects were gained with an automotive
company. The Traceability Analysis Language was used in five
projects with TIMs ranging from 30,000 to 80,000 traceable
artifacts defined in accordance to the Automotive SPICE
standard. For all five projects, a predefined analysis was created
to compute the test coverage of each system requirement. A
system requirement is considered fully tested when all linked
system and software requirements have a test case with a
positive test result linked (cf. Section III-A2). The execution
time of the analysis in the real world projects confirmed the
results from the artificial sample explained in Table V. The
predefined analysis has replaced a complex SQL statement that
included seven joins to follow the links trough the traceability
information model. Because the tracesFrom... to... function
encapsulates the graph traversal, the TAL analysis is also more
resilient to changes of the traceability configuration model.

C. Limitations
The approach presented in this paper is bound to limitations

regarding both technical and organizational aspects. Regarding
the impact of the developed DSL on software quality manage-
ment practices, first investigations have taken place, however,
more are needed to draw sustainable conclusions.

Using the TAL in industry projects has shown the need
for additional analysis capabilities. One main requirement is
to evaluate how much of an expected trace path is available
in a certain TIM. If there is no complete path from a System
Requirement to a Software Integration Test Result, it would
be beneficial to show partial matches, for instance if there is
no Software Integration Test Result or if there is no Software
Integration Test Specification at all. Extending the result of an
analysis in accordance to this requirement would enhance the
information about the progress of a project.

From a language user perspective, the big advantage of
being free to configure any query, metric or rule expression
is also a challenge. A language user has to be aware of the
traceable artifacts and links in the TIM and how this trace
information could be connected to extract reasonable measures.
Moreover, the context-dependent choice of suitable metrics
in terms of type, number, and thresholds is subject to further
research. These limitations do not impede the value of our work,
though. In fact, in combination with the discussed application
scenarios they provide the foundation for our future work.

V. CONCLUSION

This work describes a textual domain-specific language to
analyze existing traceability information models. The TAL
is divided into query, metric, and rule parts that are all
implemented with the state-of-the-art framework Xtext. The
introduced approach goes beyond existing tool support for

64Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 73 / 128

querying traceability information models. By closing the gap
between information retrieval, metric definition, and result
evaluation, the analysis capabilities are solid ground for project-
or company-specific metrics. Since the proposed analysis
language reuses the artifact type names from the traceability
information configuration model, the expressions are defined
using well known terms. In addition to reusing such terms,
the editor proposes possible language statements at the current
cursor position while writing analysis expressions. Utilizing
this feature could lower the initial effort for defining analysis
expressions and could result in faster evolving traceability
information models.

On the one hand, the introduced approach is based on an
Eclipse Ecore model and is thereby completely independent
of the specific type of traced artifacts. On the other hand,
it is well integrated into an existing TICM and IDE using
Xtext and the Eclipse platform. All parts of the TAL are fully
configurable regarding analysis expression, limit thresholds,
and query statements in an integrated approach to close the
gap between querying and analyzing traceability information
models. Subsequently, measures for traceability information
models can be specific to a certain industry sector, a company, a
project or even a role within a project. The scenarios described
in section III-A propose areas in which configurable analyses
provide benefits for project managers, quality managers, and
developers. Using the implemented interpreter for real-time
execution of expressions, first project experiences within
the automotive industry have shown that the TAL analyses
are evaluated efficiently and are more resilient than other
approaches, e.g., SQL-based analyses.

Future work could focus on further assessing the applicabil-
ity in real world projects and defining a structured process to
identify reasonable metrics for a specific setting. Such a process
might not only support sophisticated traceability analyses but
could also propose industry-proven metrics and thresholds.
Some advanced features such as metrics comparisons over
time using TIM snapshots to further enhance the analysis are
yet to be implemented. In addition to evaluating the metrics
against static values, future work might also focus on utilizing
statistical methods from the data mining field. Classification
algorithms or association rules for example could be used to
find patterns in traceability information models and thus gain
additional insights from large-scale TIMs.

REFERENCES
[1] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the requirements

traceability problem,” in Proceedings of IEEE International Conference
on Requirements Engineering, 1994, pp. 94–101.

[2] J. Cleland-Huang, O. Gotel, J. Huffman Hayes, P. Mäder, and A. Zisman,
“Software traceability: Trends and future directions,” in Proceedings of
the on Future of Software Engineering. ACM, 2014, pp. 55–69.

[3] E. Bouillon, P. Mäder, and I. Philippow, “A survey on usage scenarios
for requirements traceability in practice,” in Requirements Engineering:
Foundation for Software Quality. Springer, 2013, pp. 158–173.

[4] J. I. Maletic and M. L. Collard, “Tql: A query language to support
traceability,” in ICSE Workshop on Traceability in Emerging Forms of
Software Engineering, 2009, pp. 16–20.

[5] P. Mäder and J. Cleland-Huang, “A visual language for modeling and
executing traceability queries,” Software and Systems Modeling, vol. 12,
no. 3, 2013, pp. 537–553.

[6] P. Rempel and P. Mäder, “Estimating the implementation risk of
requirements in agile software development projects with traceability
metrics,” in Requirements Engineering: Foundation for Software Quality.
Springer, 2015, pp. 81–97.

[7] M. Völter, DSL engineering: Designing, implementing and using domain-
specific languages. CreateSpace Independent Publishing Platform, 2013.

[8] J. Cleland-Huang, M. Heimdahl, J. Huffman Hayes, R. Lutz, and
P. Maeder, “Trace queries for safety requirements in high assurance
systems,” LNCS, vol. 7195, 2012, pp. 179–193.

[9] P. Mader, O. Gotel, and I. Philippow, “Getting back to basics: Promoting
the use of a traceability information model in practice,” 7th Intl.
Workshop on Traceability in Emerging Forms of Software Engineering,
2013, pp. 21–25.

[10] A. Graf, N. Sasidharan, and Ö. Gürsoy, “Requirements, traceability
and dsls in eclipse with the requirements interchange format (reqif),”
in Second International Conference on Complex Systems Design &
Management. Springer, 2012, pp. 187–199.

[11] P. Mäder and A. Egyed, “Do developers benefit from requirements trace-
ability when evolving and maintaining a software system?” Empirical
Softw. Eng., vol. 20, no. 2, 2015, pp. 413–441.

[12] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data
scientists in software engineering,” in 36th International Conference on
Software Engineering. ACM, 2014, pp. 12–23.

[13] N. Anquetil et al., “A model-driven traceability framework for software
product lines,” Software & Systems Modeling, vol. 9, no. 4, 2010, pp.
427–451.

[14] A. Marques, F. Ramalho, and W. L. Andrade, “Trl: A traceability
representation language,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing. ACM, 2015, pp. 1358–1363.

[15] H. Schwarz, Universal traceability. Logos Verlag Berlin, 2012.
[16] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop

domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, 2005,
pp. 316–344.

[17] N. Drivalos, D. S. Kolovos, R. F. Paige, and K. J. Fernandes, “Engineer-
ing a dsl for software traceability,” in Software Language Engineering.
Springer, 2009, vol. 5452, pp. 151–167.

[18] Automotive Special Interest Group, “Automotive spice process
reference model,” 2015, URL: http://automotivespice.com/fileadmin/
software-download/Automotive SPICE PAM 30.pdf [retrieved:
1.3.2017].

[19] R. S. Arnold and S. A. Bohner, “Impact analysis-towards a framework
for comparison,” in ICSM, vol. 93, 1993, pp. 292–301.

[20] C. Ingram and S. Riddle, “Cost-benefits of traceability,” in Software
and Systems Traceability, J. Cleland-Huang, O. Gotel, and A. Zisman,
Eds. Springer London, 2012, pp. 23–42.

[21] N. Kececi, J. Garbajosa, and P. Bourque, “Modeling functional re-
quirements to support traceability analysis,” in 2006 IEEE International
Symposium on Industrial Electronics, vol. 4, 2006, pp. 3305–3310.

[22] J. Cleland-Huang, O. Gotel, and A. Zisman, Eds., Software and Systems
Traceability. Springer London, 2012.

[23] H. U. Asuncion, F. François, and R. N. Taylor, “An end-to-end industrial
software traceability tool,” in 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering. ACM, 2007, pp. 115–124.

[24] R. C. Gronback, Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit, 1st ed. Addison-Wesley Professional, 2009.

[25] The Eclipse Foundation, “Xtext documentation,” 2017, URL: https:
//eclipse.org/Xtext/documentation/ [retrieved: 1.3.2017].

[26] ——, “Xtend modernized java,” 2017, URL: http://eclipse.org/xtend/
[retrieved: 1.3.2017].

[27] L. Bettini, Implementing domain-specific languages with Xtext and
Xtend. Packt Pub, 2013.

[28] M. Verbaere, E. Hajiyev, and O. d. Moor, “Improve software quality
with SemmleCode: An eclipse plugin for semantic code search,” in 22nd
ACM SIGPLAN Conference on Object-oriented Programming Systems
and Applications Companion. ACM, 2007, pp. 880–881.

[29] P. Klint, T. van der Storm, and J. Vinju, “Rascal: A domain specific
language for source code analysis and manipulation,” in 9th IEEE
International Working Conference on Source Code Analysis and
Manipulation. IEEE Computer Society, 2009, pp. 168–177.

[30] The Eclipse Foundation, “PDE/user guide,” 2017, URL: http://wiki.
eclipse.org/PDE/User Guide [retrieved: 1.3.2017].

65Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 74 / 128

On the Effect of Minimum Support and Maximum Gap for Code Clone Detection

－ An Approach Using Apriori-based Algorithm －

Yoshihisa Udagawa
Computer Science Department, Faculty of Engineering,

Tokyo Polytechnic University
Atsugi-city, Kanagawa, Japan

e-mail: udagawa@cs.t-kougei.ac.jp

Abstract— Software clones are introduced to source code by
copying and slightly modifying code fragments for reuse. Thus,
detection of code clones requires a partial match of code
fragments. The essential idea of the proposed approach is a
combination of a partial string match using the longest-
common-subsequence (LCS) and an apriori-based mining for
finding frequent sequences. The novelty of our approach
includes the maximal frequent sequences to find the most
compact representation of sequential patterns. After outlining
the proposed methods, the paper reports on the results of a
case study using Java SDK 1.8.0_101 awt graphics package
with highlighting the effect analysis on thresholds of the
proposed algorithm, i.e., a minimum support and a maximum
gap. The results demonstrate the proposed algorithm can
detect all possible code clones in the sense that code clones are
similar code segments that occur at least twice in source code
under consideration.

Keywords—Code clone; Maximal frequent sequence; Longest
common subsequence(LCS) algorithm; Java source code.

I. INTRODUCTION

Two fragments of source code are called software clones
if they are identical or similar to each other. Software clones
are very common in large software because they can
significantly reduce programming effort and shorten
programming time. However, many researchers in clone
code detection point out that software clones introduce
difficulties in software maintenance and cause bug
propagation. For example, if there are many copy-pasted
code fragments in software source code and a bug is found in
one code clone, the bug has to be detected within a piece of
software thoroughly and fixed consistently.

Different types of software clones exist depending on the
degree of similarity between two code fragments [1][2].
Type 1 is an exact copy without modification, with the
exception of layout and comments. Type 2 is a slightly
different copy typically due to renaming of variables or
constants. Type 3 is a copy with further modifications
typically due to adding, removing, or changing code units of
at least one code unit.

Research on Type 3 clones has been conducted in recent
decades because there are substantially more significant
clones of Type 3 than there are of Types 1 or 2 in software
for industrial applications. Our approach also focuses on
finding Type 3 clones. To find such type of clone, the
following problems must be addressed.

(1) How to handle gaps in a context of similarity.
There are many algorithms that are tailored to handle
gaps in similarity measure such as sequence alignment,
dynamic pattern matching, tree-based matching and
graph-based matching techniques [2].

(2) How to find frequently occurring patterns.
The detection of frequently occurring patterns in a set of
sequence data has been conducted intensively, as
reported in sequential pattern mining literature [3]-[8].
There are several studies [9]-[12] using the apriori-
based algorithm to discover software clones in source
code.

Code clones are defined as a set of syntactically and/or
semantically similar fragments of source code [1][2]. Since
source code is represented by a sequence of statements,
finding clone code is a problem of finding similar sequences
that occur at least twice. Apriori-based sequential pattern
mining algorithms are worth studying because they are
designed to detect a set of frequently occurring sequences.
The algorithms take a positive integer threshold set by a user
called “minimum support” or “minSup” for short. The
minSup controls the level of frequency [3][8].

In [12], Udagawa shows that repeated structures in a
method adversely affect the performance especially when a
minSup is two or three. This paper pushes forward the study
using a large scale software, i.e., Java SDK 1.8.0_101 awt,
and analyzes to what extent a minSup affects the number of
retrieved sequences and time performance. For this purpose,
a proposed apriori-based sequential mining algorithm is
properly revised to deal with the repeated structures in a
method.

The contributions of this paper are as follows:
(I) the design and implementation of a code transformation

parser that extracts code matching statements, including
control statements and typed method calls;

(II) the design and implementation of a sequential data
mining algorithm that maintains performance at a practical
level until a threshold minSup reaches down to two;

(III) the evaluation of the proposed algorithm using Java
SDK 1.8.0_101 awt with respect to minSup of two to ten
and gap size of zero to three. In addition to time
performance, the number of retrieved sequences is
analyzed for each length of sequences showing that the
number of repeated structures in a method accounts for a
large part on numbers especially in the case when minSup
is two.

66Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 75 / 128

The remainder of the paper is organized as follows. After
presenting some basic definitions and terminologies on
frequent sequence mining technique in Section II, we
overview the proposed approach in Section III. Section IV
describes the proposed algorithm for discovering clone
candidates using an apriori-based maximal frequent
sequence mining technique. Section V presents the
experimental results using Java SDK 1.8.0_101 awt package.
Section VI presents some of the most related work. Section
VII concludes the paper with our plans for future work.

II. BASIC DEFINITIONS

Defnition 1 (sequence and sequence database). Let I = { i1,
i2,…, ih} be a set of items (symbols). A sequence sx is an
ordered list of items sx= xj1→ xj2→…→xjn such that xjk ⊆ I
(1 ≤ jk ≤ h). A sequence database SDB is a list of sequences
SDB = <s1, s2,…, sp> having sequence identifiers (SIDs) 1,
2,…,p.

Denition 2 (sequence containment). A sequence sa = a1→

a2→…→an is said to be contained in a sequence sb = b1→b2

→…→bm (n ≤ m) iff there exists the strictly increasing
sequence of integers q taken from [1, n], 1 ≤ q[1] < q[2] <
… < q[n] ≤ m such that a1=bq[1], a2=bq[2],…, an=bq[n]
(denoted as sa ⊑ sb).

Definition 3 (gapped sequence containment). Let maxGap
be a threshold set by the user. A sequence sa = a1→a2→…→
an is said to be contained in a sequence sb = b1→b2→…→bm
with respect to maxGap iff we have a1=bq[1], a2=bq[2],…,
an=bq[n] and q[j] – q[j – 1] – 1 ≤ maxGap for all 2 ≤ j ≤ n.

Denition 4 (prefx and postfix with respect to maxGap). A
sequence sa = a1→a2→…→an is called a prefix of a sequence
sb = b1→b2→…→bm iff sa is a gapped sequence containment
of maxGap. A subsequence s'b= bn+1→…→bm is called
postfix of sb with respect to prefix sa donoted as sb= sa→s'b.

Denition 5 (support with respect to maxGap). Given a
maxGap, the support of a sequence sb in a sequence
database SDB with respect to maxGap is defined as the
number of sequences s ∊ SDB such that sb ⊑ s with respect
to maxGap and is denoted by supmaxGap(sb).

Denition 6 (multi occurrence mode and single
occurrence mode). Given a maxGap and a sequence sb = b1

→b2→…→bm with a prefix sa, the sequence sb has the
support of supmaxGap(sb) that is greater than zero.

When the prefix sa is contained in a postfix of sb, i.e., s'b=
bn+1→…→bm, the support is calculated as supmaxGap(sb) + 1.

This calculation is recursively applied for each postfix of
sb to count the support number. The support number
recursively calculated is named the support number in multi
occurrence mode in this paper. This mode is critical when
dealing with long sequences such as nucleotide DNA
sequences [4] [5] and periodically repeated patterns over
time [6]. On the other hand, the support number without the

calculation of the postfix of sb is named the support number
in single occurrence mode. The algorithm proposed in the
paper supports both of the modes.

Denition 7 (frequent sequences with maxGap). Let
maxGap and minSup be a threshold set by the user. A
sequence sb is called a frequent sequences with respect to
maxGap iff supmaxGap(sb) ≤ minSup. The problem of
sequence mining on a sequence database SDB is to discover
all frequent sequences for given integers maxGap and
minSup.

Definition 8 (closed frequent sequence). A closed frequent
sequence is defined to be a frequent sequence for which
there exists no super sequence that has the same support
count as the original sequence [5][8].

Definition 9 (maximal frequent sequence). A maximal
frequent sequence is defined to be a frequent sequence for
which none of its immediate super sequences are frequent
[7][8].

The closed frequent sequence is widely used when a
system is designed to generate an association rule [3][8] that
is inferred from a support number of a frequent sequence.
On the other hand, the maximal frequent sequence is
valuable, because it provides the most compact
representation of frequent sequences [7][13].

III. OVERVIEW OF PROPOSED APPROACH

Fig. 1 depicts an overview of the proposed approach [12].
According to the terminology in the survey [1], our approach
can be summarized in three steps, i.e., transformation, match
detection and formatting, and aggregation.

Figure 1. Overview of the proposed approach.

A. Extraction of code matching statements

Under the assumption that method calls and control
statements characterize a program, the proposed parser
extracts them in a Java program. Generally, the instance
method is preceded by a variable whose type refers to a class

67Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 76 / 128

object to which the method belongs. The proposed parser
traces a type declaration of a variable and translates a
variable identifier to its data type or class identifier as
follows. The translation allows us to deal with Type 2 clone.

<variable>.<method identifier>
is translated into

 <data type>.<method identifier> or
 <class identifier>.<method identifier>.
The parser extracts control statements with various levels

of nesting. A block is represented by the "{" and "}" symbols.
Thus, the number of "{" symbols indicates the number of
nesting levels. The following Java keywords for 15 control
statements are processed by the proposed parser.

if, else if, else, switch, while, do, for, break, continue,
return, throw, synchronized, try, catch, finally

We selected the Java SDK 1.8.0_101 awt package as our
target of the study. The number of total lines is 166,016,
which means the awt package is a kind of large scale
software in industry.

Fig. 2 shows an example of the extracted structure of the
getFlavorsForNatives(String[] natives) method in the
SystemFlavorMap.java file of the java.awt.datatransfer
package. The three numbers preceded by the # symbol are
the number of comments, and blank and code lines,
respectively.

In this study, we deal only with Java. However, a clever
modification of the parser allows us to apply the proposed
approach to other languages such as C/C++ and Visual Basic.

Figure 2. Example of the extracted structure.

B. Encoding statements in three 32-decimal digits

The conventional longest-common-subsequence (LCS)
algorithm takes two given strings as input and returns values
depending on the number of matching characters of the
strings. Due to fact that the length of statements in program
code differs, the conventional LCS algorithm does not work
effectively. In other words, for short statements, such as if
and try statements, the LCS algorithm returns small LCS
values for matching. For long statements, such as

synchronized statements or a long method identifier, the LCS
algorithm returns large LCS values.

 We have developed an encoder that converts a statement
to three 32-decimal digits (to cope with 32,768 identifiers),
which results in a fair base for a similarity metric in clone
detection. Fig. 3 shows the encoded statements that
correspond to the code shown in Fig. 2. Fig. 4 shows a part
of the mapping table between three 32-decimal digits and a
code matching statement extracted from the original source
files.

Figure 3. Encoded statements corresponding to Fig. 2.

Figure 4. Mapping table between three 32-decimal digits and a code
 matching statement used to encode statements in Fig. 3.

C. Apriori-based mining algorithm for finding frequent
sequences with gaps

We have developed a mining algorithm to find frequent
sequences based on the apriori principle [3][8], i.e, if an
itemset is frequent, then all of its subsets must be frequent.

Frequent sequence mining is essentially different from
itemset mining because a subsequence can repeat not only in
different sequences but also within each sequence. For
example, given two sequences C→C→A and B→C→A→B
→A→C→A, there are three occurrences of the subsequence
C→A. The repetitions within a sequence [4]-[6] are critical
when dealing with long sequences such as protein sequences,
stock exchange rates, customer purchase histories.

Note that the proposed algorithm is implemented to run in
two modes, i.e., multi occurrence mode to find all
subsequences included in a given sequence, and single
occurrence mode to find a subsequence in a given sequence
even if there exists several subsequences.

As described in Section V, the multi occurrence mode
detects so many code matching that it has an adverse effect
on performance especially when a minSup is two and a
maxGap is one to three.

The LCS algorithm is also tailored to match three 32-
decimal digits as a unit. That algorithm can match two given
sequences even if there is a “gap.” Given two sequences of
matching strings S1 and S2, let |lcs| be the length of their
longest common subsequence, and let |common (S1, S2)| be
the common length of S1 and S2 from a back trace
algorithm. The “gap size” gs is defined as gs = |common (S1,
S2)| – |lcs|.

SystemFlavorMap::getFlavorsForNatives (String[] natives)
→001→004→0VH→0VQ→003→044→04E→0VI→0VR
→003→009→003

68Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 77 / 128

D. Mining maximal frequent sequences

Frequent sequence mining tends to result in a very large
number of sequential patterns, making it difficult for users
to analyze the results. A closed and maximal frequent
sequences are two representations for alleviating this
drawback. The closed frequent sequence needs to be used in
case a system under consideration is designed to deal with
an association rule [3][8] that plays an important role for
knowledge discovery. The maximal frequent sequence is
such a sequence that are frequent in a sequence database and
that is not contained in any other longer frequent sequence.
It is a subset of the closed frequent sequence. It is
representative in the sense that all sequential patterns can be
derived from it [7]. Because we are just interested in finding
a set of frequent sequences that are representative of code
clone, we developed an algorithm to discover the maximal
frequent sequences.

IV. PROPOSED FREQUENT SEQUENCE MINING

We have developed two algorithms for detecting software
clones with gaps. The first is for mining frequent sequences,
and the second is for extracting the maximal frequent
sequences from a set of frequent sequences.

A. Proposed Frequent Sequence Mining Algorithm

The proposed approach is based on frequent sequence
mining. A subsequence is considered frequent when it occurs
no less than a user-specified minimum support threshold (i.e.,
minSup) in a sequence database. Note that a subsequence is
not necessarily contiguous in an original sequence.

We assume that a sequence is “a list of items,” whereas
several algorithms for sequential pattern mining [4]-[7] deal
with a sequence that consists of “a list of sets of items.” Our
assumption is rational because we focus on detecting code
clones that consist of “a list of statements.” In addition, the
assumption simplifies the implementation of the proposed
algorithm, which makes it possible to achieve high
performance as described in Section V.

The proposed frequent sequence mining algorithm
comprises two methods, i.e., GProbe (Fig. 5) and

Figure 5. Frequent sequence detection of the proposed algorithm.

Retrieve_Cand (Fig. 6). It follows the key idea behind
apriori principle; if a sequence S in a sequence database
appears N times, so does every subsequence R of S at least.
The algorithm takes two arguments, minSup and maxGap
(the allowable maximal number of gaps).

Figure 6. Candidate sequences retrieval for the next repetition.

The variable k indicates the count of the repetition (line 2,
Fig. 5). LinkedList < String > Sk is initialized to hold 15
control statements. The Retrieve_Cand method (line 5, Fig.
5) discovers a set of sequences of length k+1 from a
sequence database that matches statement sequences in Sk.
The while loop (lines 9–17) finds frequent sequences and
sequence IDs in a sequence database. Lines 12–14 maintain
the frequent sequences. Note that the proposed algorithm
handles gapped sequences. Thus, both a frequent sequence
and its “gap synonyms” are prepared for the next repetition.
Here, “gap synonyms” means a set of sequences that match a
given subsequence under a given gap constraint.

Briefly, the Retrieve_Cand() method in Fig. 6 works as
follows. HashMap <String, Integer> Ck holds a sequence
(String) and its frequency (Integer). First, Ck is cleared (line
2, Fig. 6). The three for loops examine all possible matches
between an element in Sk and sequences in a sequence
database. The longest common subsequence algorithm is
tailored to compute the match count and gap count (line 6,
Fig. 6). The if statement (line 7, Fig. 6) screens a sequence
based on the match count and gap count. Lines 8–10
maintain the frequency of sequences and its “gap
synonyms.”

B. Extracting Frequent Sequences

In our approach, we assume a program structure is
represented as a sequence of statements preceded by a class-
method ID. Each statement is encoded to three 32-decimal
digits so that the LCS algorithm works correctly, regardless
of the length of the original program statement.

The proposed algorithm is illustrated for the given sample
sequence database in Fig. 7. MTHD# is an abbreviated
notation for a class-method ID.

Figure 7. Example sequence database.

MTHD1→005→003
MTHD2→005→00A→003→003
MTHD3→005→003→00F→006→005→003
MTHD4→005→006→003→005→00C

69Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 78 / 128

Fig. 8 shows the result of the frequent sequences in the
multi occurrence mode for a gap of 0 and minSup of 50%,
which is equivalent to a minSup count of 2. “005” is a
frequent sequence with a minSup count of 6 because “005”
occurs once in the first and second sequences and twice in
the third and fourth sequences. The proposed algorithm
maintains an ID-List, which indicates the positions where a
frequent sequence appears in a sequence database. The ID-
List for “005” is 1|2|3+3|4+4.

Similarly, 005→003→ is a frequent sequence with a
minSup count of 3, i.e., the ID-List for 005→003→ is 1|3+3.

Figure 8. Result of the frequent sequences (gap, 0; minSup, 50%).

Fig. 9 shows the result of the frequent sequences for a gap
of 1 and minSup of 50%. “005” is a frequent sequence with a
minSup count of 6, which is the same in the case of a gap of
0.

Similarly, 005→003→ is a frequent sequence with a
minSup count of 5. In addition to the consecutive sequence
005 → 003 → , the proposed algorithm detects gapped
sequences. In the case of 005→003→, the algorithm detects
005→00A→003→ in the second sequence and 005→006→
003→ in the fourth sequence. Thus, the ID-List for 005→
003→ is 1|2|3+3|4.

Figure 9. Result of the frequent sequences (gap, 1; minSup, 50%).

Fig. 10 shows the result of the frequent sequences for a
gap of 2 and minSup of 50%. In addition to 005→ and 005
→003→, 005→006→ is detected as a frequent sequence
because 005→003→00F→006→ in the third sequence
matches 005→006→ with a gap of 2, and 005→006→ in the
fourth sequence with a gap of 0. Thus, the ID-List for 005→
006→ is 3|4.

Figure 10. Result of the frequent sequences (gap, 2; minSup, 50%).

C. Extracting Maximal Frequent Sequences

A frequent sequence is a maximal frequent sequence and
no super sequence of it is a frequent sequence. In addition, it
is representative because it can be used to recover all
frequent sequences. Several algorithms for finding maximal
frequent sequences and/or itemsets employ sophisticated
search and pruning techniques to reduce the number of
sequence and/or itemset candidates during the mining
process.

However, we wish to measure the effects of a maximal
frequent sequence; therefore, the proposed algorithm first
extracts a set of frequent sequences and then detects a set of
maximal frequent sequences.

Screening maximal frequent sequences from frequent
sequences with a gap of zero is fairly simple. Given a set of
frequent sequences Fs, the set of maximal frequent
sequences MaxFs is defined by the following formula:

MaxFs = {x∈Fs ｜ ∀y∈Fs (x ⊄ y) ∧ (|x| + 1 = |y|)}.

x ⊄ y says that a sequence x is not included in a sequence y.
Since a gap equals zero, the length of the immediate super
sequence is |x| + 1.

The proposed algorithm is described using the sample
sequence database in Fig. 11.

Figure 11. Example frequent sequences.

Fig. 12 shows a set of maximal frequent sequences. The
frequent sequence 001→ is not a maximal frequent
sequence because there is a frequent sequence 001→005→
that includes a sequence 001 and whose length is two. For
the same reason, 003→, 004→, 005→ are not maximal
frequent sequences. In this manner, we see that the sequence
004→003→ is not a maximal frequent sequence. However,
001→005→ is a maximal frequent sequence because there
are no super-sequences that exactly include 001→005→.
004→003→005→ and 004→001→004→003→ are
maximal frequent sequences.

Figure 12. Result of maximal frequent sequences (gap, 0).

The definition of the maximal frequent sequence is simply
extended to those dealing with gaps, as described in [12].

V. EXPERIMENTAL RESULTS

This section shows statistical evaluation of experimental
results using Java SDK 1.8.0_101 awt package. The number
of total source code lines is 166,016. The extracted
statement sequences comprise 5,108 lines which are roughly
corresponding to the number of methods in the package.
The number of extracted unique IDs is 3,175. We performed
the experiments using the following environment:

005→ N=6（1|2|3+3|4+4）
005→003→ N=3（1|3+3）

005→ N=6（1|2|3+3|4+4）
005→003→ N=5（1|2|3+3|4）

005→ N=6（1|2|3+3|4+4）
005→003→ N=5（1|2|3+3|4）
005→006→ N=2（3|4）

001→
003→
004→
005→
001→005→
004→003→
004→003→005→
004→001→004→003→

001→005→
004→003→005→
004→001→004→003→

70Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 79 / 128

CPU: Intel Core i7-6700 (3.40 GHz)
Main memory: 8 GB
OS: Windows 10 HOME 64 Bit
Programming Language: Java 1.8.0_101.

A. Numbers of Retrieved Frequent Sequences

Fig. 13 compares the number of retrieved frequent
sequences with respect to maxGap (0 to 3) and minSup (2 to
10) with the number of retrieved frequent itemsets for the
apriori algorithm [14]. The proposed algorithm for a
maxGap of zero is comparable to the apriori algorithm for a
minSups of six to ten. The apriori algorithm fails to generate
frequent itemsets for a minSup of two, due to it never
completes the process in three hours.

As expected, the number of retrieved frequent sequences
increases as maxGap increases and minSup decreases. The
proposed algorithm can find frequent sequences that occur at
least twice in the sequence database, which is necessary for
finding all possible code clones. One of the important
findings of the experiment is that the effect of repetitions
within a sequence becomes conspicuous when a minSup
equals two. A detailed analysis of the retrieved frequent
sequences is discussed in Subsection “C. Sequence Length
Analysis.”

Figure 13. Numbers of retrieved frequent sequences (gap size, 0 and 1-3;

minSup, 2-10) and frequent itemsets for apriori algorithm.

Fig. 14 shows the ratio of the number of maximal
frequent sequences to the number of frequent sequences. In
most of the cases, the ratio decreases as minSup values
decrease. This can be explained by the fact that decreasing
minSup values probably has a negative effect on the
relevance of frequent sequences. Thus, redundant frequent
sequences are likely mined as minSup values decrease,
resulting in the low ratio of the number of maximal frequent
sequences to the number of frequent sequences.

The ratios are generally smaller in the multi occurrence
mode than in the single occurrence mode. It can be a fair
explanation that the single occurrence mode suppresses
extraction of frequent subsequences caused by repetitions
within a sequence. The results show that the gap size affects
the ratio up to approximately 5.55% for a maxGap of two.

Figure 14. Ratio of the number of maximal frequent sequences to the

number of frequent sequences (gap size, 0 and 1-3; minSup, 2-10).

B. Time Analysis

Fig. 15 shows the elapsed time in milliseconds for
retrieving frequent sequences for a minSup of two to ten.
The proposed algorithm for a maxGap of zero is comparable
to the apriori algorithm for a minSup of five to ten as for
performance.

The proposed algorithm can retrieve frequent sequences
fairly efficiently. For example, it takes 816,534 milliseconds
to identify 27,435 frequent sequences for a maxGap of one
and a minSup of two in the single occurrence mode. Note
that elapsed time increases as maxGap increases. This
tendency is obvious for a minSup ranging from two through
ten. As for a minSup of two in the multi occurrence mode,
the elapsed time jumps up from 2.36 (for a maxGap of
three) to 4.65 (for a maxGap of one) times of those for a
minSup of three in the multi occurrence mode. A reason for
performance degradation is analyzed in the next subsection.

Figure 15. Elapsed time (milliseconds) for retrieving frequent sequences
(gap size, 0-3; minSup, 2-10) and frequent itemsets for apriori algorithm.

C. Sequence Length Analysis

Fig. 16 shows the number of retrieved sequences for each
length of sequences in the multi occurrence mode and a
maxGap of three with a minSup ranging from two to five.
The maximum length of the retrieved sequence is 244. Note

71Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 80 / 128

that Fig. 16 omits the results on 31 to 244 of the length of
sequence. The number of retrieved sequences reaches peaks
around a sequence length of eight to ten for each minSup of
two to five. This suggests that code clones of length eight to
ten occur most frequently.

The sequence length of 244 is extracted from the
GetLayoutInfo() method in GridBagLayout.java file of
java.awt package, consisting of 569 source lines including
comments and blank lines. The sequence is detected as a
frequent sequence, because the sequence includes “if{ * }”
statements 244 times caused by repetitions within the
sequence of GetLayoutInfo() method. It is clear that the
detection is not preferable for finding code clone detection.

Figure 16. Number of retrieved sequences for each length in multi

occurrence mode and maxGap of three.

Fig. 17 shows the number of retrieved sequences for each
length of sequence in the single occurrence mode and a
maxGap of three with a minSup ranging from two to five.

Figure 17. Number of retrieved sequences for each length in single

occurrence mode and maxGap of three.

The maximum length of the retrieved sequence is 53 in the
single occurrence mode. The sequence of length 53 is
extracted from the getDataElements() method in Banded
SampleModel.java file of java.awt.image package and the
getDataElements() method in ComponentSample Model.java
file. The two methods are the same except for minor
syntactic structure, e.g., if <single statement> and if {<single
statement>}, which suggests that they are code clone. Fig. 18
shows the encoded sequence of getDataElements() method
in BandedSampleModel.java file.

Figure 18. Encoded sequence of getDataElements() method
in BandedSampleModel.java file.

VI. RELATED WORK

Zhu and Wu [4] propose an apriori-like algorithm to mine
a set of gap constrained sequential patterns which can be
found in a long sequences such as stock exchange rates,
DNA and protein sequences. Ding et al. [5] discuss an
algorithm to mine repetitive gapped subsequence and apply
the proposed algorithm to program execution traces. Kiran et
al. [6] propose a model to mine periodic-frequent patterns
that occurs at regular intervals or gaps. Fournier-Viger et al.
[7] discuss the importance of the maximal sequential pattern
mining and propose an efficient algorithm to find the
maximal patterns.

Wahler et al. [9] propose a method to detect clones of the
Types 1 and 2 which are represented as an abstract syntax
tree (AST) in the Extensible Markup Language (XML) by
applying a frequent itemset mining technique. Their tool uses
the apriori algorithm to identify features as frequent itemsets
in large amounts of software program statements. They
devise an efficient link structure and a hash table for
achieving efficiency for practical applications.

Li et al. propose a tool named CP-Miner [10] that uses the
closed frequent patterns mining technique to detect frequent
subsequences including statements with gaps. CP-Miner
shows that a frequent subsequence mining technique can
avert redundant comparisons, which leads to improved time
performance.

El-Matarawy et al. [11] propose a clone detection
technique based on sequential pattern mining. Their method
treats source code lines as transactions and statements as
items. Their algorithm is applied to discover frequent
itemsets in the source code that exceed a given frequency
threshold, i.e., minSup. Finally, their method finds the
maximum frequent sequential patterns [7][8] of code clone
sequences. Their method is fairly similar to ours except for a
code transformation parser and systematic handling of gaps
of similar sequences based on an LCS algorithm.

Accurate detection of near-miss intentional clones
(NICAD) [15] is a text-based code clone detection technique.
NICAD uses a parser that extracts functions and performs
pretty-printing to standardize code format and the longest-
common-subsequence (LCS) algorithm [16] to compare
potential clones with gaps. Unlike an apriori-based approach,
NICAD compares each potential clone with all of the others.
Regarding LCS, Iliopoulos and Rahman [17] introduce the
idea of gap constraint in LCS to address the problem of
extracting multiple sequence alignment in DNA sequences.

BandedSampleModel::getDataElements(int x:int y:Object
obj:DataBuffer data) →
001→004→003→24A→24B→007→008→004→003→006→
003→04E→24C→003→00M→008→008→004→003→006→
003→04E→24D→003→00M→008→004→003→006→003→
04E→24E→003→00M→008→004→003→006→003→04E→
24F→003→00M→008→004→003→006→003→04E→24G→

003→00M→003→009→003

72Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 81 / 128

Murakami et al. [18] propose a token-based method. The
method detects gapped software clones using a well-known
local sequence-alignment algorithm, i.e., the Smith-
Waterman algorithm [19]. They discuss a sophisticated
backtracking algorithm tailored for code clone detection.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an attempt to identify
Type 3 code clones. Our approach consists of four steps, i.e.,
extraction of code matching statements, encoding statements
in 32-decimal digits, detecting frequent sequences with gaps,
and mining the maximal frequent sequences. The paper
mainly deals with the last two steps.

Through the experiments using Java SDK 1.8.0_101 awt
package source code, the proposed algorithm works out
successfully for finding clones with respect to a maxGap of
zero through three and a minSup of two through ten.

Because a minSup of two poses heavy process loads for
the proposed algorithm, we analyze the effect of the repeated
subsequences in a method and conclude that the repeated
subsequences have adverse effects on both performance and
the quality of retrieved code clone especially lower minSup,
i.e., minSup of two or three.

So long as code clone is syntactically defined as similar
code segments that occur at least twice, the proposed
algorithm achieves 100% recall and 100% precision due to
the nature of the aprior-based data mining with a minSup of
two [11]. However, we do not believe that the situation is so
simple that syntactically defined recall and precision
evaluate the quality of mined code clones. Actually, we find
a large number of mined code sequences that mainly consist
of control statements. Many of these sequences are not clone
from programmer's point of view. We are still only halfway
to detecting code clones for industry use especially regarding
the quality of mined code clones.

Future work will include the development of functions for
clustering and ranking mined code clones for the
programmer's sake, and the improvement of the
transformation for extracting code matching statements.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous
reviewers for their invaluable feedback. This research is
supported by the JSPS KAKENHI under grant number
16K00161.

REFERENCES
[1] C. K. Roy and J. R. Cordy “A survey on software clone

detection research,” Queen's Technical Report:541 Queen's
Uni-versity at Kingston, Ontario, Canada, Sep. 2007, pp.1-
115.

[2] A. Sheneamer and J. Kalita. “A survey of software clone
detection techniques,” International Journal of Computer
Applications, Vol.137, Issue 10, Mar. 2016, pp.1-21.

[3] R. Agrawal, T. Imielinski, and A. Swami “Mining association
rules between sets of items in large databases,” Proc. ACM

SIGMOD International Conference on Management of Data,
June 1993, pp.207-216.

[4] X. Zhu, and X. Wu “Mining complex patterns across
sequences with gap requirements,” Proc. 20th International
Joint Conference on Artifical Intelligence(IJCAI'07), Jan.
2007, pp.2934-2940.

[5] B. Ding, D. Lo, J. Han,and S-C. Khoo “Efficient Mining of
Closed Repetitive Gapped Subsequences from a Sequence
Database,” Proc. 25th IEEE International Conference on Data
Engineering (ICDE 2009), March 2009, pp.1024-1035.

[6] R. U. Kiran, M. Kitsuregawa, and P. K. Reddy “Efficient
discovery of periodic-frequent patterns in very large
databases,” Journal of Systems and Software, Vol.112, Issue
C, Feb. 2016, pp.110-121.

[7] P. Fournier-Viger, C-W. Wu, A. Gomariz, and V. S-M. Tseng
“VMSP: Efficient Vertical Mining of Maximal Sequential
Patterns,” Proc. 27th Canadian Conference on Artificial
Intelligence (AI 2014), May 2014, pp.83-94.

[8] P-N. Tan, M. Steinbach, and V. Kumar “Introduction to Data
Mining,” Addison-Wesley, March 2006.

[9] V. Wahler, D. Seipel, J. Wolff, and G. Fischer “Clone
detection in source code by frequent itemset techniques,” Proc.
IEEE International Workshop on Source Code Analysis and
Manipulation, Oct. 2004, pp.128-135.

[10] Z. Li, S. Lu, S. Myagmar, and Y. Zhou “CP-Miner: A tool for
finding copy-paste and related bugs in operating system
code,” Proc. 6th Symposium on Operating System Design and
Implementation, Dec, 2004, pp.289-302.

[11] A. El-Matarawy, M. El-Ramly, and R. Bahgat “Code clone
detection using sequential pattern mining,” International
Journal of Computer Applications, Vol.127, Issue 2, Oct.
2015, pp.10-18.

[12] Y. Udagawa, “Maximal Frequent Sequence Mining for
Finding Software Clones,” Proc. 18th International
Conference on Information Integration and Web-based
Applications & Services (iiWAS 2016), Nov. 2016, pp.28-35.

[13] R. Verma, “Compact Representation of Frequent Itemset,”
http://www.hypertextbookshop.com/dataminingbook/public_v
ersion/contents/chapters/chapter002/section004/blue/page001.
html, 2009.

[14] M. Monperrus, N. Magnus, and S. Yibin “Java
implementation of the Apriori algorithm for mining frequent
itemsets,” GitHub, Inc., https://gist.github.com/monperrus/
7157717, 2010.

[15] C. K. Roy and J. R. Cordy “NICAD: Accurate detection of
near-miss intentional clons using flexible pretty-printing and
code normalization,” Proc. 16th IEEE International
Conference on Program Comprehension, June 2008, pp.172-
181.

[16] J. Hunt, W. and Szymanski, T. G. “A fast algorithm for
computing longest common subsequences,” Comm. ACM,
Vol.20, Issue.5, May 1977, pp.350-353.

[17] C. S. Iliopoulos and M. S. Rahman “Algorithms for
computing variants of the longest common subsequence
problem,” Theoretical Computer Science Vol.395, Issues 2–3,
May 2008, pp.255–267.

[18] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S.Kusumoto
“Gapped code detection with lightweight source code
analysis,” Proc. IEEE 21st International Conference on
Program Comprehension (ICPC), May 2013, pp.93-102.

[19] “Smith–Waterman algorithm,” https://en.wikipedia.org/wiki
/Smith%E2%80%93Waterman_algorithm, Aug. 2016.

73Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 82 / 128

Function Points and Service-Oriented Architectures

A reference model for component based architectures

Roberto Meli

Data Processing Organization Srl
Rome, Italy

email: roberto.meli@dpo.it

Abstract — Software Service Oriented Architectures (SOA) are
characterized by the distribution of data processing components
on separate and cooperating technology platforms.
Unfortunately, this model represents a technology perspective
that is not useful to identify software objects to be measured
starting from the user’s (business) point of view, as required by
international standards of functional measurement (ISO 14143).
To solve this problem we have defined the concept of Measurable
Software Application (MSA). In the proposed model, each MSA
must lie in one and only one layer but may use or incorporate
services belonging to different layers. In each layer, we can find
generalized software components designed to give a specific and
reusable support to the implementation of particular functional
or non-functional requirements of the business (application)
layer. The identification of generalized software components that
belong to lower level layers with respect to the business one, is
also crucial to quantify the rate of reuse that should be computed
in each project measure for the correct calculation of economical
reward, as defined in a customer-supplier contract.

Keywords-function point analysis; SOA; component; middleware;
measurement.

I. INTRODUCTION

The goal of this paper is to show a model of a software
application specifically suited to allow Functional Size
Measurement Methods (also known as Function Points) to be
applied to this kind of architecture.

Software Service Oriented Architectures (SOA) are
characterized by the distribution of data and processing logic
components among separate and cooperating technology
platforms [1]-[5].

The execution of a process is often implemented
dynamically on the most appropriate element of the
architecture at any given time. This organization allows to
reuse generalized components (often called services), through
standardization and specialization, in order to construct any
new transaction. Models that describe these architectures use
the concept of layers, which is a way to aggregate those
components on the basis of homogeneity of logical
representation and usage.

These model, however, are seen from a technological
perspective, oriented to the software design and
implementation rather than the to the final user point of view.

One of the main values of Function Point Analysis is to
allow comparing the convenience of implementing the same
user functional requirements (same FP size) with competitive
architectures in such a way to choose the most productive one.

If any different technical organization of the implemented user
requirements had a different logical size this comparison
would not be possible. On the other side we should have a
practical way to allocate size and consequently effort and costs
in the places where that effort and cost is originated. This is
the goal that we had in mind in proposing the following
approach.

Section II recalls some concepts related to a typical SOA
architecture; Section III presents a model for functional
measurement of component based architecture; Section IV
illustrates how to consider embedded services provided by an
application to another one; Section V presents a comparison
with related works; Section VI explains the needs for further
research and finally Section VII shows the conclusions.

II. A TYPICAL SOA MODEL

In a distributed architecture, the business layer is associated
to the user needs and the typical way of using a system
requested by the final user. A Data Base Management System
(DBMS) layer, instead, is associated to the requirements of
data treatment and storage regardless to their semantic content
for the end user; in other words, it is a layer that manipulates
the information from a structural point of view rather than from
the final user semantic point of view. To the DBMS point of
view, the user "meaning" of a table and its data fields is not
important. The structured relationships between tables and data
fields, the integrity rules, the allowed operations, etc., are
important independently by the business meaning of the entity
represented by the table(s).

The most used layers to aggregate software components are
(Figure 1):

• Presentation Layer: contains the user interface,
typically the internet browser. From this layer it is only
possible to call services/classes that are in the Business
Layer.

• Business Layer: contains services/classes that perform
the processing functions required. They can be called
either by one or more classes in the Presentation Layer,
or even from classes that are in the Business layer
itself.

• Data Access Layer: contains services/classes that
enable the management of DB data. They can be called
only by the Business Layer services/classes.

74Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 83 / 128

Figure 1. Three-Layers Architectural Scheme

In fact, this scheme highlights the distribution and
relationship of client and server components on the specific
physical nodes of an information system network of data
processing.

But this kind of elements is not relevant and useful for the
identification of the software objects to be measured from the
user’s (business) point of view. From the final user point of
view, a typical elementary process (also known as Base
Functional Component in the ISO standards for Functional
Measurement [2]) normally begins with the business user that
activates a functionality (i.e., a trigger to collect information
for searching or writing data) handled by the Presentation
Layer. This action activates specific features of the business
logic (Business Layer) and, according to the business rules, it
executes the steps needed to fulfil user requests, generally
through accessing or writing permanent archives (Data Access
Layer). The scenario ends crossing the layers again (in the
opposite direction) to show the results to the requesting user
(or to other destination users) through the Presentation Layer
features. This set of steps, which are considered by the user
meaningful and self-contained as a whole, crosses the layers
previously identified several times.

This means that a partitioning of software application in
such a way doesn’t allow the proper identification of the right
software items to be measured in the user functional
perspective.

III. MODEL FOR FUNCTIONAL MEASUREMENT OF

COMPONENT BASED ARCHITECTURE

A more usable model for a functional measurement is
shown in Figure 2.

Figure 2. Multi-Layer Model for a Functional Measurement point of view

In the diagram, we see that an enterprise system can be
considered as an interface for the activation of a set of
applications that are available for the users in a multi-channel
way and that rest, in turn, on various underlying software
layers, each of them providing "services" to the above layer in
a direct or indirect manner.

To clearly identify the entire domain of what to measure,
from the user’s point of view, we introduce the concept of
Measurable Software Application (MSA).

A MSA is defined as "an aggregate of specific functional
features conceived from a user point of view, homogeneous in
terms of level of logical abstraction."

The term “Measurable” is necessary since very often, as
we have already seen, the term Application alone is often
already associated (in organization's catalogues) to groups of
functionalities aggregated on a technological base instead of a
logical one.

For example, in a web environment we may distinguish
between a client application (browser), a data base server
application, a Content Management System, a generalized
“log on” feature and a library of components/web services.
From the user’s point of view, all these pieces are technically
cooperating to support a Business Application at a logical
level that is unitary in the user’s view. This aggregation is
called MSA.

A layer is linked, therefore, to a certain level of abstraction
in the representation of data and related functions, this, in turn,
determine a different concept of user associated with that
particular layer.

Any MSA, by definition, should lie down on a specific and
unique layer. An MSA may belong to one and only one layer
so the measurement is consistent in terms of level of
abstraction and it does not depend on the internal modular
organization but only on the external functional user
requirements.

In Figure 2, the arrows show the “call direction” of the
components on the underlying layers. Between the typical
Application layer and the Operating System one or two
intermediate layers have been inserted: the layer of
generalized business components and the one that includes
generalized technical components.

The former are business functions recognizable by the user
at the application level, but not sufficiently independent to be
considered part of the upper level (otherwise such these
business functions would be recognizable as further MSAs).

In fact they represent a kind of "recognizable pieces" of
software that need to be "composed" and "aggregated"
together in order to fulfil a unique user need (i.e., a component
for the verification of a Security Social Number, to be inserted
in several elementary processes of the Application component
layer).

The latter are technical generalized functions that enables
features for the management of applications (such as print
programs, or a piece of software for the design of generic
form, as well as a physical security service, a network service,
access identification and management or client-server services
too).

So, any MSA might incorporate and execute components
that are distributed across multiple layers, each one containing
generalized software (technical or business) components

75Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 84 / 128

designed to give specific support to the implementation of
reusable and specific functional or non-functional
requirements.

Therefore, in this model, a middleware layer contains a set
of functions defined by the “software architect”, working to
aid specific requirements of factorization and independence
from hardware, operating systems and DBMS environments.

As the middleware functionalities are generalized, they can
then be used by different MSA (Figure 3), even not initially
considered in defining the technical architecture layers.

Figure 3. Link between architectural components

The IFPUG Function Point Analysis [7] requires the
measurements of the software functionalities as recognized by
the final user, while the functionality provided by the
middleware are usually not perceived by the user him/herself,
although he/she takes advantages of their presence in the
systems. For example, a logon transaction for authentication
of authorized users of a system can be considered as an EI
(External Input) from the user’s point of view since, from the
software designer point of view, there may be many other
elementary functions and/or intermediate software
transactions, performed by the middleware and necessary for
the completion of authentication service.

The functional requirements can be represented in the
system specifications at different, and often not entirely
consistent, conceptual and decomposition levels.

In this case a mapping activity can be necessary to
correctly assign the functional user requirements (FUR)
among the different software layers, to identify the software
components to be measured independently each from the
others.

Information exchange between different layers may be
modeled and measured but different layer’s measures can only
be cumulated for managerial or contractual reasons. Given a
certain MSA, its unique size is calculated on a single specific
layer defined by its users.

In other words, the baseline FP measure of an MSA
(useful, for example, to define specific service level
agreements) must not be obtained as the sum of single
measures performed on different layers.

It is possible to measure components at a lower level or
macro functions at a higher level if we do not add their values
in the asset evaluation for that specific MSA.

For example, a measurement on a Technical Generalized
Services Layer can be performed to reward the development
of middleware components that the supplier needs to design
and build to fulfil non-functional user requirements or
technological constrains that cannot be satisfied by
standardized commercial-off-the-shelf solutions.

The identification of generalized software components that
belong to lower level layers with respect to the business one is
also crucial to quantify the rate of reuse that should be
computed in each project measure for the right calculation of
compensation, as defined in the contract.

The previous concepts are incorporated into the Simple
Function Point specification [8], which is a more recent
Functional Size Measurement Method with respect to the
IFPUG one.

IV. HOW TO CONSIDER EMBEDDED SERVICES PROVIDED BY

OTHER MSA

Sometimes it can be necessary to perform a new software
development or a software enhancement of an MSA including
elementary processes that use services of other MSA that have
to be developed, modified, cancelled or remain unchanged for
this purpose.

Figure 4. shows the various functional elements introduced
so far to help in the understanding of what and where counting
in such cases. A software development or enhancement of an
MSA (MSA01 in the picture), which involves the add, change
or delete of common services of another MSA (MSA02 in the
picture), will count:
- within the MSA01 domain, the user functionality

required;
- within the MSA02 domain, the common services that

MSA02 “published” to make them available for other
MSA that are affected by add, change or delete operations
in order to implement the functional user requirements of
MSA02.

Figure 4. Relationships between MSA’s components

The main cases that may occur are listed below. Suppose
that an elementary process EP0103 (that is part of MSA01)
uses the “published service” PS0203 (that is part of MSA02).

76Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 85 / 128

The most relevant scenarios are:
1) ADD of Elementary Process EP0103 (within MSA01) involves

ADD of “Published Service” PS0203 (within MSA02)

2) ADD of Elementary Process EP0103 (within MSA01) involves

CHG of “Published Service” PS0203 (within MSA02)

3) ADD of Elementary Process EP0103 (within MSA01) involves

doing nothing for “Published Service” PS0203 (within MSA02)

4) CHG of Elementary Process EP0103 (within MSA01)

involves ADD of “Published Service” PS0203 (within MSA02)

5) CHG of Elementary Process EP0103 (within MSA01)

involves CHG of “Published Service” PS0203 (within MSA02)

6) CHG of Elementary Process EP0103 (within MSA01)

involves DEL of “Published Service” PS0203 (within MSA02)

7) CHG of Elementary Process EP0103 (within MSA01)

involves doing nothing for “Published Service” PS0203 (within

MSA02)

8) DEL of Elementary Process EP0103 (within MSA01) involves

CHG of “Published Service” PS0203 (within MSA02)

9) DEL of Elementary Process EP0103 (within MSA01) involves

DEL of “Published Service” PS0203 (within MSA02)

10) DEL of Elementary Process EP0103 (within MSA01) involves

doing nothing for “Published Service” PS0203 (within MSA02)

11) Doing nothing for Elementary Process EP0103 (within

MSA01) involves CHG of “Published Service” PS0203 (within

MSA02)

As an example, let’s concentrate on the first case:
1) ADD of Elementary Process EP0103 (within MSA01) involves

ADD of “Published Service” PS0203 (within MSA02)

In this case the elementary process EP0103 in MSA01 is
created simultaneously with the creation of a common service
(PS0203) in MSA02. From the perspective of MSA01, the
measurement of the elementary process EP0103 is reduced
because of the advantage (in terms of effort savings) earned
using components “published” by the service PS0203.

This lowering is not applicable in case of baseline
measurement that is a measurement for asset evaluation
purposes.

From the perspective of MSA02, the service PS0203 was
not pre-existing, so it is completely counted and charged as
ADD, and classified as a middleware elementary process.

As in this case it is possible that some new functionalities
can be built starting from pre-existing software component,
allowing to obtain a significant reuse. In such cases it’s
possible to adopt a “lowering by reuse”, applying a reducing
factor (50% for example) to the data and/or transactional
functions that are reusing such components.

The reuse of logical entities within a new software
development means the use of logical archives already
implemented in other MSAs. In this case it’s no necessary to
design and maintain a new data structure in the database,
cause it can be reused an existing one.

This is a constraint that must be followed mainly to assure
project and data integrity, and that has a consequent impact on
the right calculation of FP functional size.

For transactional functions the reuse may be related to the
integration of common services and application components

defined and made available by corporate software
frameworks.

A common service can be a set of architectural classes,
support and/or shared services that have to be specially used to
standardize the software behaviour and to obtain the same
technical solution for some common application issues.

Any “lowering by reuse” should not be carried out in case
of baseline measurement (that is a measurement for asset
evaluation purposes) but only to determine the right size of
new software development and enhancements.

Using this approach it is possible to allocate an adequate
amount of size to the appropriate development teams that are
responsible to maintain different MSA. The total size
recognized for the development or enhancement task is so still
consistent with an external user point of view but, at the same
time, it is useful for management of different teams or even
suppliers and contracts.

In an analogous way, it is possible to deal with the other 10
cases listed before.

To be clear with IFPUG experts, we are not proposing a
change in IFPUG counting rules but a smart usage of the
delivered size measure which becomes "worked or workable"
size measure useful for managerial goals. If we look at the
released functions, the standard IFPUG measure (without
reuse impact) gives a size value to the end user consumable
solution. The new measure (Corrected or Contractual
Functional Size) is closer to the "worked size" which may be
very different to the "usable size". Existing productivity rates
(like ISBSG data) may be used on the Corrected Functional
Size more consistently because are non "polluted" by the reuse
factor.

V. COMPARISON WITH RELATED WORKS

Measuring Function Points of a SOA software application
has been frequently approached using a traditional way
[9][10][11].

The most used approach consists in setting the boundaries
of the "objects" to be measured between the "calling" software
and the "called" services, separating them and measuring the
interactions among them as if they were "peer to peer"
applications. This may be useful to assign to a single (used)
service a sizing weight on its own but it is confusing when we
consider the "calling" software that, in addition to its usual
"end user interactions", has to add functionalities to deal with
the usage of lower "incorporated" components in order to
release "end user" transactions. This may easily lead to an
over-measurement of functional size which is in contrast with
the idea that software developed in a SOA environment should
be "smaller" than software developed in a traditional way
because of reusable component. If we have a library of
reusable components we need to develop less functionalities
"by scratch" and we would like to express this "saving"
quantifying the software size that is reused and the size which
remains to be developed completely. In the model presented in
this paper, we approach the measuring of a SOA based
application as a situation of component reuse: the delivered
external size of the application (the released functionalities) is
calculated as usual and it is not dependent on its internal
architecture. In addition to this size we may calculate e second
size - called "worked" or "contractual" size - which can be

77Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 86 / 128

more useful for estimation goals. Single services may still be
measured separately in the traditional way if we like to
manage them by metrics.

VI. NEED FOR FURTHER RESEARCH

In order to confirm the validity of the proposed approach
for software governance goals an empirical research is needed
to provide evidence that effort and costs may be correlated to
the functional size so configured.

VII. CONCLUSIONS

The approach presented here, to measure software
applications organized by the use of SOA architectures, is
consistent with the ISO/IEC 14143 requirements but, at the
same time, it might be useful to manage distributed efforts in
software development and enhancement processes and
contract management.

REFERENCES

[1] The Open Group, SOA Source Book (First Edition), Van Haren
Publishing, Apr 2009

[2] A. Schmietendorf and R. Dumke, “Guidelines for the Service-
Development within Service-oriented Architectures”, SMEF2007, 2007

[3] P.C. Clemens, “Software Architecture Documentation in Practice”, SEI
Symposium, Pittsburgh, 2000

[4] OASIS SOA Reference Model Technical Committee, “Reference Model
for Service Oriented Architecture 1.0 OASIS Standard”, 12 October
2006, Organisation for the Advancement of Structured Information
Standards, https://www.oasis-open.org/standards#soa-rmv1.0, [retrieved:
Mar, 2017].

[5] T. Erl, “Service-Oriented Architecture – Concepts, Technology, and
Design”, Prentice Hall/PearsonPTR, 2006.

[6] ISO/IEC 14143-1:2007, Information Technology – Software
Measurement – Functional Size Measurement – Part 1: Definition of
Concepts, February 2007

[7] International Function Point Users Group, “Function Point Counting
Practices Manual - Release 4.3.1”, January 2010.

[8] SiFPA, "Simple Function Point Functional Size Measurement Method -
Reference Manual SiFP-01.00-RM-EN-01.01",
http://www.sifpa.org/en/index.htm, [retrieved: Mar, 2017].

[9] L. Santillo, `Seizing and sizing SOA applications with COSMIC
function points', Proc. Fourth Software Measurement European Forum,
(SMEF 2007), May 2007, Roma, Italy.

[10] J. Lindskoog,: Applying function points within a SOA environment,
IFPUG Proceedings ISMA4,
http://www.ifpug.org/Conference%20Proceedings/ISMA4-
2009/ISMA2009-20-Lindskoog-APPLYING-FUNCTION-POINTS-
WITHIN-A-SOA-ENVIRONMENT.pdf, [retrieved: Mar, 2017]

[11] Y. M. P. Gomes, "Functional Size, Effort and Cost of the SOA Projects
with Function Points", Service Technology Magazine, Issue LXVIII•
November 2012

78Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 87 / 128

Overview of a Domain-Driven Design Approach

to Build Microservice-Based Applications

Roland H. Steinegger, Pascal Giessler, Benjamin Hippchen and Sebastian Abeck

Research Group Cooperation & Management (C&M)
Karlsruhe Institute of Technology (KIT)

Zirkel 2, 76131 Karlsruhe, Germany
Email: (steinegger | pascal.giessler | abeck)@kit.edu, benjamin.hippchen@student.kit.edu

Abstract—The current trend of building web applications using
microservice architectures is based on the domain-driven design
(DDD) concept, as described by Evans. Among practitioners,
DDD is a widely accepted approach to building applications. Ap-
plying and extending the concepts and tasks of DDD is challenging
because it lacks a software development process description
and classification within existing software development process
approaches. For these reasons, we provide a brief overview
of a DDD-based software development process for building
resource-oriented microservices that takes into consideration the
requirements of the desired application. Following the widely
accepted engineering approach suggested by Brügge et al., the
emphasis is on the analysis, design, implementation and testing
phases. Furthermore, we classify DDD and microservice-based
application into regular software development activities and
software architecture concepts. After the process is described,
it is applied to a case study in order to demonstrate its potential
applications and limitations.

Keywords–Domain-driven design, API, resource-orientation, do-
main model, software development process, microservices, backend-
for-frontend

I. INTRODUCTION

Over the past few years, microservice architectures have
evolved into a popular method for building multiplatform
applications. A well-known example is Netflix, who offers
applications for a number of platforms, including mobile
devices, smart TVs and gaming consoles [1]. Service-oriented
architectures are the foundation of microservice architectures,
as microservices have special properties [2]. A microservice
is autonomous and provides a limited set of (business) func-
tions. In service-oriented architectures, designing services and
selecting boundaries is a key problem.

The traditional approach, as discussed by Erl [3], suggests
a technical and functional separation of services. In contrast,
according to Evans [4], domain-driven design (DDD) provides
the key concepts required to compartmentalize microservices
[1]. The DDD approach provides a means of representing the
real world in the architecture, e.g., by using bounded contexts
representing organizational units [5], and also identifies and
focuses on the core domain; both of these characteristics lead
to improved software architecture quality [6]. In microservice
architectures, these bounded contexts are used to arrange and
identify microservices [1]. Using DDD is a key success factor
in building microservice-based applications [1].

When applying DDD to the development of microservice-
based applications, several problems may arise, depending on

the level of experience of the development team. Domain-
driven design offers principles, patterns, activities and ex-
amples of how to build a domain model, which is its core
artifact. However, it neither provides a detailed and systematic
development process for applying these principles and patterns
nor does it classify them into the field of software engineer-
ing. Classifying the activities, introduced by DDD, into the
activities of a software development process could improve the
applicability. Futher, the classification of the patterns and prin-
ciples into software architecture concepts, such as architecture
perspectives and architecture requirements, supports software
architects in desiging microservice architectures.

In addition, there are no clear proceeding regarding how to
derive the necessary web application programming interfaces
(web APIs) that act as a service contract between microservices
and the application. The importance of a service contract
is described by Erl [3]. From the business perspective, the
web APIs also have strategic value; therefore, they must be
designed in manner that emphasizes quality [7].

Furthermore, applications and, in particular, user interfaces,
are often not considered or only considered superficially during
the process of designing service-oriented architectures [1]
[3]. However, the application can play a major role when
building the underlying microservices. Domain-driven design
emphasizes that the application is necessary to determine the
underlying domain logic of microservices; the user interface
is important to consider when designing specific web APIs for
the UI when using the backends for frontends (BFF) pattern
[1]. When designing microservices within the software-as-a-
service (SaaS) context, there is no graphical user interface;
instead, there is a technical one. The target group shifts from
end users to external companies or independent developers
who can benefit from the capabilities of the service offered. For
this reason, a web API has to be designed in such a manner
that it can map as many possible use cases for a particular
domain as possible. The resulting set of use cases represents
the requirements that must be handled by the web API and the
microservices.

We experienced these challenges when establishing a soft-
ware development process based on DDD to build SmartCam-
pus, a service-oriented web application. During the process
we could not find literature that addressed these problems.
Thus, we classify DDD activities within the field of software
engineering, arrange the components of a microservice-based
application according to the layers of DDD and describe the ac-

79Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 88 / 128

tivities necessary in building microservice-based applications.
We apply these activities in an agile software development
process used to build parts of the SmartCampus application
and discuss both the results and limitations.

This article is structured as follows: In Section II, DDD
and microservice architecture, including a general introduction
to software architecture and development and other related
concepts, are introduced. Section III classifies DDD and mi-
croservices and introduces the software development activities
required in building microservice-based applications according
to the requirements of DDD. In the next section, a case
study demonstrates the application of these activities within
a software development process, including artifacts. The limi-
tations discovered while applying the activities are described in
Section V. A conclusion regarding the activities and possible
future areas of inquiry is presented in Section VI.

II. FOUNDATION AND RELATED WORK

This section provides an overview of model-driven engi-
neering (an approach that is similar to DDD), DDD itself,
traditional software engineering activities (which are used to
classify DDD activites), software architecture in general (as the
foundation being the foundation for classifying microservice
architecture) and microservice architecture.

A. Model-Driven Engineering
Douglas C. Schmidt [8] describes Model-Driven Engineer-

ing (MDE) as an approach that is used to effectively express
domains in models. The Object Management Group (OMG)
introduced their framework model-driven architecture (MDA)
[9] to support the implementation of MDE. MDA identifies
three steps necessary in moving from the abstract design to
the implementation of an application. Three models are created
by carrying out these steps: 1) computation independent model
(CIM) provides domain concepts without taking technological
aspects into consideration, 2) platform independent model
(PIM) enriches the CIM with computational aspects; and 3)
platform specific model (PSM) enriches the PIM with the
aspects of implementation that are specific to a particular
technological platform.

B. Software Engineering Activities and Domain-Driven De-
sign

Brügge et al. [10] describe a widely accepted software
engineering approach in the context of object-orientation. We
use their concepts to classify the activities we identified
to build microservice-based applications using DDD. This
object-oriented approach works well when small teams build
applications that range over few domains implemented. [10]
offers an overview of the activities that take place during
software development: requirements elicitation, analysis, sys-
tems design, object design, implementation, and testing. (These
activites are discussed further in the article’s introduction of
the development activities.)

Domain-driven design is an approach that is used in appli-
cation development where the domain model is the central
artifact. Eric Evans introduced this approach in the book
Domain-Driven Design and identified the essential principles,
activities and patterns required when using DDD [4].

A domain model that conforms to Evans’ DDD approach
contains everything that necessary to understand the domain

[4]. This approach goes beyond the traditional understanding
of a domain model, which is connected to a formalized
model using the unified modeling language (UML) [11]. To
distinguish between the two concepts, following Fairbanks
[12], we use the term information model which corresponds
to a computation independent model (CIM). It is a part of
the domain model and consists of concepts, relationships and
constraints. In order to support downstream implementation,
Evans adds implementation specific details to the model. The
resulting domain model corresponds to a PIM. In Evans’
approach to DDD, the central principle is to align the intended
application with the domain model. The domain model shapes
the ubiquitous language that is used among the team members
and functions as a tool used to achieve this goal.

C. Microservice Architectures
Vogel et al. provide a comprehensive framework for the

area of software architecture [13], which is used to classify
microservices and DDD. Their architecture framework has
six dimensions: 1) architectures and architecture disciplines,
2) architecture perspectives, 3) architecture requirements, 4)
architecture means, 5) organizations and individuals and 6)
architecture methods. The essential terms used in describing
an architecture are: systems, which consist of software and
hardware building blocks; a software building block can be
a functional, technical or platform building block. Building
blocks can also consist of other building blocks and may
require them. The authors also introduce the concept of ar-
chitecture views; their definition is influenced by the IEEE
[14]. Architecture views are part of the documentation that
describes the architecture. Architecture views are motivated by
stakeholders’ concerns. These concerns specify the viewpoint
on the architecture and, thus, specify the views.

Newman provides a comprehensive overview of microser-
vices and related topics from and industry perspective [1].
He defines a microservice as a “small, autonomous service”
that does one thing well; and adds that the term “small”
is difficult to define. In contrast to services in a service-
oriented architecture according to Erl [3], the single purpose
principle results in microservices having similar sizes within an
architecture [2]. Two mapping studies regarding microservices
and microservice architecture reveal that a gap in the litera-
ture regarding these topics exists [15] [16]. (Further relevant
information is discussed during the section of this article that
classifies microservice architectures.)

III. PROCESS

This section classifies the activities involved in of DDD
and concepts related to microservice architectures; further-
more, the software development activities involved in building
microservice-based applications using DDD are introduced.
The activities discussed can be applied to various software
process models. However, DDD requires one to continuously
question and adapt one’s understanding of the domain. Thus,
agile software development processes are most suitable.

A. Classification
We identify specifications, that are missing when just

applying DDD to build a microservice-based application, by
classifying DDD and microservice architecture using the soft-
ware architecture concepts of Vogel et al. [13]. We divide the

80Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 89 / 128

classification process into two parts: first, we discuss the archi-
tecture perspective and second the architecture requirements.

Concerning the architecture perspective, software architec-
ture can be divided into macro- and micro-architecture; it can
further be divided into organization, system and building block
level. The organization and system levels form the macro-
architecture whereas the building block level can be assigned
either to the macro or micro-architecture depending on what
is required for the concrete architecture. [13]

Despite their names, microservice architecture and the
domain model describe the macro-architecture. A microservice
is a functional or technical software building block that require
a platform to run on. Neither DDD nor microservices limit
the underlying platform. When using DDD, microservices are
structured according to the organizational units using bounded
contexts from the domain model [1] [17]. The domain objects
within a bounded context specify the core architecture of a
microservice.

Figure 1. Software building blocks and their layers in a microservice-based
application

Domain-driven design requires a layered architecture to
separate the domain from other concerns [4]. Evans suggests
a four layered architecture, consisting of the user interface,
application, domain and infrastructure layers. Figure 1 shows
the distribution of these layers among the software building
blocks of microservice-based applications. On the highest ab-
straction level, microservice-based applications can be divided
into applications and microservices. The application consists of
a frontend, which is either thin or thick (meaning that it is with
or without application logic), and its backend, which provides
the application logic. The backend uses the microservices to
access the domain layer or general infrastructure functional-
ity. Each microservice has an application layer on top. The
application layer translates requests into either the domain or
infrastructure layers.Infrastructure logic may be part of each
software building block. In our approach, we applied the layer
distribution following Miller’s approach [18].

In a layered architecture, higher layers can communicate
with lower layers. Figure 2 depicts the layered architecture’s
communication process applied to the above-mentioned soft-
ware building blocks [18]. The frontend should not directly call
the microservices; we emphasize this by using dashed arrows.

Concerning architecture requirements, the decision to build
microservice-based applications is taken at the organizational
level (see the classification of service-oriented applications in
[13]). Along with a microservice architecture, the organization

Figure 2. Communication between components

should choose a protocol that allows all of the microservices
within the organization to communicate; e.g., using represen-
tational state transfer (REST) over hypertext transfer protocol
(HTTP) with a set of guidelines or an event bus. The platform
running the microservices (e.g., docker), the database technolo-
gies, the implementation of identity and access management
etc. might also be organizational requirements; when building
a microservice architecture the software architects have to
decide, whether or not these concerns should be homogenous.
We could not identify any requirements concerning the sys-
tem or building block levels that are based on DDD or the
microservice approach.

Some specification is still missing. The domain model
specifies the functional view on the domain but does not
consider technical aspects [4]. Thus, in addition to the domain
model, there is a need for artifacts that describe the mi-
croservice architecture, including technical microservices and
platform architecture. Furthermore, assuming that the domain
model describes the architecture of the domain layer, the user
interface, application, and infrastructure layer are not specified.
Translating this into the context of the software building
blocks, the frontend and backend may require specification.
The decision to add further artifacts could be based on the
risks involved in the application, as discussed by Fairbanks
[12]. In our activities, we decided to add a user interface
(UI)/user experience (UX) design, which specifies both the
user interface and the user’s interaction. Thus, this artifact
specifies the frontend and backend.

B. Activity Overview
Next, we introduce the activities involved in building

microservice-based applications. These activities facilitate the
development of applications within similar domains. We align
our activities with the traditional software development activ-
ities described by Brügge et al. [10]. Therefore, the activities
end after testing, and we do not discuss deployment and/or
maintenance. Figure 3 depicts the three activities and their
interrelations: requirements elicitation and analysis, design and
implementation and testing.

During the requirements elicitation and analysis, two sub-
activities take place: first, the information model, as part of
the domain model, is created by “crunching knowledge” with
domain experts; second, a prototype is designed and is dis-
cussed with both the user and customer. As both activities are
closely related (when discussing prototypes, the knowledge of
the domain gets deeper, and when discovering the information

81Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 90 / 128

Figure 3. Overview of the activities used in building microservice-based
applications

model, terms or workflows might change), we combined them
into a single activity.

The design is comprised of the sub-activities involved in
designing the domain and the APIs of the microservices. Based
on the UI/UX design and further discussions with the user, the
information model is refined, e.g., design decisions are made,
and design patterns are applied. Domain design is comparable
to the system design activity discussed by Brügge et al.
[10]. The system is divided into subsystems that, according
to Conway’s Law [5], can be realized by individual teams
using bounded contexts. Domain design results in a domain
model that must be bound to the implementation artifacts.
As the microservices offer access to the domain model and
translate from the application layer to the domain layer, both
the UI/UX design (representing the user interface layer and the
application layer) as well as the domain model (representing
the domain layer of DDD) is used to design the web APIs of
the microservices. If using a BFF, its web API is designed,
too. This activity can be assigned to the object design activity
discussed by Brügge et al. [10].

After this preliminary work, the microservices are imple-
mented and tested. The web APIs describe the microservices’
entry points. These entry points and their application logic
are implemented and tested, as the microservices’ domain
model. The constraints defined in the domain model, such as
multiplicities or directed associations, are sources for domain
tests.

Evans states that developing a “deep model” with which
to facilitate software development requires “exploration and
experimentation” [4]. Thus, software developers have to be
open-minded to gain insights into the domain across the
whole software development activities. This knowledge prob-
ably leads to changes in artifacts created during the previous
activities. Therefore, iterations and jumping back to previous
phases is possible in each phase. To be more clear, it is
common to switch between phases and activities. Of course,
experienced developers may do fewer mistakes and discover
insights earlier, but hidden knowledge and misunderstandings
are common. In the next sections, the phases are explained in
more detail.

C. Requirements Elicitation and Analysis
The first activity is about understanding the needs of

the user. Two non-chronological ordered activities take place
in this phase: exploration of the domain and designing a
prototype. These activities highly influence each other, e.g.,
the terms from the domain model are used in the prototype
while new insights might change them. We see a strong binding

between the origination process of the domain model and
design prototyping, due to the missing specifications that are
not captured during domain modeling. Every domain concept
displayed on the design prototype has to be modeled in the
domain model and vice versa. Small iterations within the
analysis are needed in order to validate that both artifacts are
consistent.

1) Domain Analysis: Exploring the Domain with DDD:
Without a complete understanding, building satisfying appli-
cations is getting hard. In our presented approach, we focus
on Evans book “Domain-Driven Design: Tackling Complexity
in the Heart of Software” (DDD) to understand the needs and,
thus, the domain through modeling [4]. Creating a compre-
hensive domain model in this phase needs experienced domain
modelers to gain knowledge. After this step, we have a domain
model that is equal to an information model (see Section II-B).
Unified Modeling Language (UML) class diagram syntax is
used to describe concepts and their relationships, constraints,
etc. [19] [12].

According to DDD, collaboration with customers is es-
sential to explore and particularly model the domain. So the
first and recurring step of DDD is Knowledge Crunching [4].
Simultaneously to discussions with customers, the develop-
ment team carries out the modeling activity and creates the
domain model step by step. By following the pattern Hands-
On Modelers, every team member involved in the software de-
velopment process should also be part of the domain modeling
to increase creativity [4]. In addition, a Ubiquitous Language
will be established, which is the cross-team language. The
origination process of the domain model is highly influenced
by exploration and experimentation [4]. It is far better if a
not completely satisfying model is going to implementation,
than to refine the domain model over and over again without
risking the implementation [4]. Creating the domain model
under influence of DDD, makes it an iterative activity and
fitting to principles from agile development processes, such as
short time to market.

Complex domains automatically lead to a complex domain
model. This complexity makes it hard for readers to understand
the domain model. Due to that fact, it is necessary to split
the model into multiple diagrams [18], which enables the
modeler to model different aspects of the domain. Dynamic
behavior, such as workflows, are relevant concepts of the do-
main. We adapt the view approach from software architecture
[13] and introduced a concept named domain views to model
different behaviors. We have created various types of domain
views, such as an interactional view. They are motivated by
a stakeholder with an special concern, too. During knowledge
crunching, this predefinition makes it easy to choose the right
person to discuss with.

The result of exploring the domain is a domain model,
which contains relevant concepts of the domain, also called
the domain knowledge [4]. DDD emphasizes this as focus-
ing on the core domain that is relevant for the downstream
implementation of the application [4].

2) Design Prototyping: By knowledge crunching, we get
a complete understanding of the considered domain. The
application requirements are use case specific and indicators
for domain logic that has to be modeled in the domain model
accordingly. Each identified use case based on the discussion

82Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 91 / 128

with the stakeholders will be represented as part of a so-called
design prototype. A prototype is an efficient way for trying
out new design concepts and determine their efficiency [20].
The design prototype is a specialization and focuses on the UI
and the UX of the application. Since the customer primarily
interacts with the UI, it is also an ideal artifact for further
discussions with customers along the domain model. Further
benefits by using a prototype can be found in [20]. Similar to
knowledge crunching, design prototyping is an iterative activ-
ity. Each iteration consists of a brain storming regarding design
ideas with respect to given boundary conditions, realization of
the previously chosen design ideas, presentation and review of
the resulting design prototype. The feedback from the customer
as part of the review will be collected and analyzed to derive
the necessary design changes for the next iteration. The design
prototyping is finished when the prototype represents all of the
customer needs.

D. Design Phase
Two activities take place during the design phase: Domain

and API Design. These activities require the domain model
and the UI/UX design created during the previous phase.
After the design phase, the domain model as well as the API
specification are ready to be implemented.

1) Domain Design: From Computational to Platform In-
dependent Model (PIM): An important idea of DDD is the
binding of the domain to the implementation [4]. The domain
model is the core artifact to achieve this goal in the domain
layer. During the analysis phase a computational independent
model, the information model as part of the domain model,
is created. Now, first, this model is separated into bounded
contexts and, second, these bounded contexts are extended and
refined, e.g., by applying design patterns to fulfill application
requirements. These activities are based on examples of Evans
and Vaughn [4] [17].

The organizational structure is used to decompose the
information model into bounded contexts. The task requires
experience and several iterations due to its importance [17],
[21]. The decomposition is tightly coupled to the division of
the development teams, each working on a bounded context
[1]. Thus, intermediate results are discussed with the domain
experts and other team members. The result is a context map,
showing the relations of the bounded contexts.

The next steps are mainly carried out by the development
team that is responsible for each bounded context. The goal
of the next activity is to refine and extend the domain model
according to the requirements of the applications. The UI/UX
design is the main source for the application requirements.

Probably, the domain objects in the information model
are already marked with stereotypes indicating their type, i.e.,
aggregate root, value object, entity or domain event. Even some
services might be identified during the analysis phase. Domain
objects missing a stereotype should be treated first; a stereotype
should be added. Next, the design patterns repository, factory
and domain service are added according to the requirements.
For example, if there is functionality needing to display a
domain object in the UI, a repository is added, or if there is a
complex aggregate root, a factory might be added [4]. During
the whole design process, the domain experts and other sources
of information are involved (continuous knowledge crunching).

After applying the design patterns, the domain model is ready
to get implemented.

2) API Design: Deriving the Web API from PIM: Microser-
vices expose their implemented business functionality via web
APIs [1]. A web API can be seen as a specialization of an
traditional API, which is why, we extend the definition by
Gebhart et. al a bit further: “a contract prescribing how to
interact with the underlying system [over the Web],” [22, p.
139]. From business perspective, a web API can be seen as a
highly valuable business asset [7], [23] that can also serve as
a solution for digital transformation [22].

A web API can be used for composing microservices to
map a complex business workflow onto the area of microser-
vices or offering business functionality for third-party devel-
opers [22]. To facilitate the reuse and discovery of existing
functionality in form of microservices, the exposed web APIs
have to be designed with care. According to Newman [1],
Jacobsen [23] and Mulloy [24], web APIs should adhere to the
following informal quality criteria: 1) Easy to understand, learn
and use from a service consumer point of view, 2) Abstracted
from a specific technology, 3) Consistent in look and feel and
4) Robust in terms of its evolution.

To overcome these challenges, we have to form a sys-
tematic approach on how to derive the web API from the
underlying domain model. First, we have made the decision to
build web APIs in a resource-oriented manner that can be po-
sitioned on the second level of the Richardson Maturity Model
[25]. We do not pursue the hypermedia approach by Fielding
[26] to reduce the complexity when building microservice-
based applications. Second, we have identified resources and
sub resources from the underlying PIM by looking at the
relationship between the domain objects. Third, we have
derived the required HTTP methods as well as their request and
response representations from the interactional view as one of
the mentioned domain views (see Section III-C1). Besides this,
we have also developed a set of guidelines to support architects
and developers by fulfilling the previously described informal
criteria web APIs. These guidelines were derived from existing
best practices by designing resource oriented web APIs [27].
The result of this design work is finally structured according
to OpenAPI specification, which has the goal to “define a
standard, language-agnostic interface to REST APIs which
allows both humans and computers to discover and understand
the capabilities of the service without access to source code,
documentation, or through network traffic inspection.,” [28].

3) API Design: Deriving the Web API for BFF from Design
Prototyp: A BFF is a common pattern to avoid so-called chatty
APIs [1]. Chatty APIs often result in a huge amount of requests
for the service consumer to get the needed information [24,
p. 30f]. This is mainly due the fact that the needed domain
information or logic is spread over multiple microservices
and primarily designed for reusability rather than a specific
use case in form of a concrete application. Besides, BFFs
allow a development team to focus on the UI and UX spe-
cific requirements of an application by not restricting them
on the exposed web APIs of the microservices. Additional
and necessary application logic, such as data transformation,
caching or orchestration can be implemented on the BFF level
or application layer according to DDD [4]. That is why, the
BFF can be seen as part of the UI [1].

83Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 92 / 128

In our approach, the UI and UX specific requirements
are represented through a design prototype as a result of
a conducted analysis phase (see Section III-C2). Similar to
Section III-D2, we have decided to go with a resource-oriented
style for the BFF web API and applied the same web API
guidelines. Other solutions such as a method-oriented approach
is also possible. For deriving the web API, we are looking at
each view regarding the represented information as well as
the interaction elements that cause data manipulations. This
allows us to build resources, their representations as well
as their needed operations. The resulting web API is highly
coupled with the UI and now needs to be connected with
the underlying domain represented by microservices. Since the
domain model, as well as the design prototype are designed
by using the Ubiquitous Language, the required microservices
can be identified with minimal effort and orchestrated on the
application layer to fulfill the requirements specified by the
derived BFF web API.

E. Implementation and Testing
The domain model and web API specification enable the

development team to implement the application. In this section,
the implementation and testing of the microservices is intro-
duced. We do not discuss the implementation of the UI/UX
design, as we focus on DDD and building microservices.
But, the implementation and testing of the BFF, being the
connection between front end and microservices, is discussed.

First, we focus on implementing and testing the microser-
vices. Each bounded context is implemented as an microser-
vice using the specified API. A development project, e.g., a
maven project including source code, is created and pushed
into the version control repository. We recommend to offer the
API specification as part of the microservice. It is added to the
repository and delivered through its web interface. This way,
changes to the API can be pushed to the repository together
with their implementation. DDD highly recommends to use
continuous integration [4], thus, the continuous integration
pipeline is configured, too.

Venon [17] describes how to implement REST resources
separating the application from the domain layer. The web
API describes entry points to the microservice; it can be
implemented straight forward. The logic at the entry points
should be application specific in order to separate application
specific parts from domain specific, e.g., the usage of REST.
Thus, a microservice should have an application layer on top.
Typically, this layer is implemented as an anti corruption layer;
a design pattern to achieve a clean separation of application
and domain terms [17]. Additionally, by preventing the use of
domain objects as input parameters, the coupling of domain
objects and web API is reduced. Thus, some minor changes
in the domain model do not influence the implementation of
the interface [17].

The domain layer is implemented according to the domain
model. Thus, the domain objects in the bounded context are
mapped to classes, when using an object-oriented program-
ming language. Constraints, such as multiplicities, and domain
logic is implemented in the domain object. If a domain object
from another microservice is used, a reference to the object is
saved, e.g., by using the identifier [17], [29]. Implemented do-
main objects are intelligent objects that ensure the constraints
in the domain. The application layer should never have access

to domain objects, that do not comply with the constraints.
Development approaches, such as test-driven development [30]
or even behavior-driven development [31] are a good choice
in order to achieve this goal. These constraints might be
distributed among the domain model, thus, constraints might
be overseen. Separating tester and developer of functionality,
pair-programming as well as reviews can help to overcome this
problem.

Beside of the application and domain layer, the infrastruc-
ture layer is part of the microservice. This layer contains func-
tionality to access databases, log events, enforce authorization,
cache results, discover services etc.; everything supporting the
application and domain layer. Apparent is the support for
domain repositories. If a microservice has a repository, the
infrastructure layer must offer access to a database.

Last, we discuss the implementation of the UI’s backend.
The backend is an application of the BFF pattern. Therefore,
a main goal is to offer a facade hiding the microservice
architecture. The implementation can be kept simple. Its web
API is implemented according to the specification. In our case,
the specification is oriented on the microservice web API
specification, thus, the request can be directly forwarded to
the microservice. Depending on the specification, the frontend
supports further functionality, e.g., authentication and access
control may be implemented in the UI’s backend.

IV. CASE STUDY: THESIS ADMINISTRATION

In our case study, we were attempting a modernization
of the thesis administration within the KIT department of
informatics at Karlsruhe Institute of Technology. Our goal
was to create an application based on microservices and
to provide it to the university through the service-oriented
platform SmartCampus [32] that we develop in our research
group. For project execution, we chose Scrum as our software
development process.

A. Crunching the Information Model
In relation to the presented approach, we started eliciting

the domain knowledge with knowledge crunching. When we
found the domain experts - members of the Main Examination
Committee -, we started to discuss the domain. Quickly we
noticed that the thesis is one of the main concepts of the
domain. Thus, we explored the thesis by interviewing domain
experts at first. Besides the concepts and relationships of the
thesis, we also noticed constraints, which we included in the
information model. Figure 4 shows a piece of our crunched
information model. We put the Thesis in the middle of the
model to reflect the central position within the core domain.

Figure 4. Piece of the information model showing concepts of the thesis
domain object

84Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 93 / 128

Deeper discussions about the thesis told us somewhat about
states that a thesis can occupy. At this point, we took into
account the approach of domain views. We modeled a finite
automaton to determine our understanding and discuss it with
the domain expert, as shown in Figure 5. The diagram supports
the understanding without using UML typical elements.

Figure 5. Finite automaton sketches the possible thesis states

After discussions with the domain experts, we had our
desired information model and were able to transform it into
a PIM.

B. Creating the Design Prototype
Besides crunching the information model, we started the

design prototyping and sketched each identified use case.
In Figure 6 we illustrate an information page of a specific
thesis. This prototype was used to validate the elicited domain
knowledge.

Figure 6. Design mockup (in early phase) for visualizing details about a
thesis

C. Enriching the Information Model
After eliciting the domain knowledge and creating a design

prototype, we were able to enrich our information model with
implementation details. Mainly we focused on using the DDD
patterns such as Bounded Context, Entities, Value Objects
or Repositories [4]. At first, we structured the domain into
bounded context according to Conway’s Law [5] and, thus,
divide the thesis administration domain into microservices.
Then we could create the context map by the composition
of the bounded contexts (see Figure 7).

Afterward, we started to identified entities, value objects
and made a decision about persistence within our intended
application through repositories. We oriented ourselves to the
requirements of the application when applying the patterns.
For example, we decided that the domain object ”Student” in
Figure 8 did not need a repository because it does not need to
be globally accessible.

Figure 7. Context map composing bounded contexts of the thesis
administration domain

Figure 8. Thesis specific piece of the domain model including DDD patterns

D. Design and Implementation of the API Specification
The API specification was designed according to the do-

main model and UI/UX design. Figure 9 shows how to access
a single thesis resource and its attributes. The attributes are
mainly influenced by the information modeled in the design
prototype.

Figure 9. OpenAPI specification of getting single thesis displayed with
SwaggerUI

During the implementation phase, the domain objects in
the bounded context were mapped to the source code. We used
Java and the Spring Framework, which supported to focus on
the domain layer. Spring is implemented having the concepts of
DDD in mind. We separated the application and domain layers
into different packages. We did not need an infrastructure layer,
because Spring Data directly supports repositories through spe-

85Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 94 / 128

cialization. The database can be configured using configuration
files. The entry point to the application is a Spring Controller.
Several annotations helped to map HTTP requests to methods.
Even more annotations enable the use of dependency injection,
so that we could depend on repository interfaces while spring
injected their implementation. The development team added
sequence diagrams to model the interaction of the controllers.
This is also due to a lack of experience.

E. Synergy between Approach and Scrum

It turned out that our presented approach complements
itself well with Scrum. During each activity we did, we always
had the Scrum artefacts in mind and tried to create them
directly. Also the iterative approach from Scrum fit well to
our executed activities. This corresponds to the principle of
exploration and experimentation presented by Eric Evans in
DDD [4].

Through the combination of information model and design
prototypes, we could easily fill the Product Backlog. Also we
were able to extract the user stories and their task within to
create the Sprint Backlog from the PIM and API Specification.
After each Sprint, we could adjust the PIM, transfer the
changes into the Product Backlog and start a new Sprint.

V. LIMITATIONS

The activities we introduced provide an overview of the
activities that take place when applying DDD in building
microservice-based applications. These activities represent a
first step towards a complete process that includes all of the
required artifacts. Our research indicated that several topics
require further investigation and more detailed descriptions;
for example, it is quite difficult to systematize the design of
the domain model according to DDD. Best practices could be
identified and added to the process description to support the
performance of this activity.

During the case study, we received useful feedback from
the software development team. In Section III-A on classi-
fication, we discussed concerns regarding the specification
that are not covered by the artifacts. We used the UI/UX
design in addition to DDD and the microservice approach
to provide the missing specification in the user interface
and application layers; however, the development team still
had problems implementing the functionality in the applica-
tion layer. To address these problems, they added additional
sequence diagrams that specified the usage of the domain
layer within a microservice. It is likely, that there are more
specification artifacts that must be identified, as, using the
Spring framework, which supports developers in several ways,
much of the application and infrastructure layer source code
is supplied, which makes specification unnecessary.

While discussing the implementation process and testing
activities, we noted that the implementation of a domain model
created according to DDD is (slightly) bound to object-oriented
programming languages. This is due to the fact that the
concepts and diagrams introduced in [4] have object-oriented
programming in mind. The use of a functional programming
language might require a different set of patterns and diagrams;
as such, the process identified in this article is also somewhat
bound to implementation using an object-oriented language.

VI. CONCLUSION AND FUTURE WORK

DDD offers key concepts and activities to build applica-
tions based on a microservice architecture, whereby the activ-
ities are missing links to existing software engineering knowl-
edge. We classified both into software architecture concepts
and software development activities. Further, we introduced an
overview of software development activities and artifacts for
building microservice-based applications, which extend DDD.
In a case study, we showed the application of the activities
in an agile software development process to build a thesis
management applications as part of the SmartCampus and gave
examples of the resulting artifacts. The overview of activities
and their classification is a first step towards a complete
process for developing such web applications and, thus, we
described its limitations and missing artifacts.

DDD is about focusing on the domain including its con-
cepts, their relationships and business logic. Microservice ar-
chitecture is about arranging and dividing distributed software
building blocks. We showed missing requirement specifications
and missing artifacts with our classification and the case
study. We will further refine the activities towards a software
development process to identify a sufficient set of artifacts.

A major advantage of DDD and microservices is the
reuse of existing functionality. Identity and access management
is a domain (almost) each application needs, thus, we will
investigate in building a knowledge repository and enriching
the activities and artifacts so that models and functionality in
this domain can be reused among applications. In addition to
this research topic, we will continue to focus on how we can
systematically derive web APIs for microservices with quality
aspects in mind such as evolvability. The web API also plays
a significant role in discovering and reusing microservices in
the context of a microservice landscape.

ACKNOWLEDGMENT

We are very thankful to Pascal Burkhardt for his contri-
butions, both through discussions and the input he provided
regarding his projects, as well as to Philip Hoyer for providing
his opinions during our discussions. Furthermore, we would
like to thank the following members of the development team
and domain experts for participating in the case study: Florian
BReuer, Lukas Bach, Anne Sielemann, Johanna Thiemich,
Rainer Schlund, Niko Benkler, Adis Heric, Pablo Castro,
Mark Pollmann, Iona Gheta, Johannes Theuerkorn and David
Schneiter.

REFERENCES

[1] S. Newman, Building Microservices, 1st ed. O’Reilly Media, Inc.,
2015.

[2] M. Richards, Microservices vs. service-oriented architecture. O’Reilly
Media, Inc., 2015.

[3] T. Erl, SOA Principles of Service Design (The Prentice Hall Service-
Oriented Computing Series from Thomas Erl). Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2007.

[4] E. Evans, Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2003.

[5] M. E. Conway, “How do committees invent,” Datamation, vol. 14, no. 4,
1968, pp. 28–31.

86Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 95 / 128

[6] E. Landre, H. Wesenberg, and H. Rønneberg, “Architectural improve-
ment by use of strategic level domain-driven design,” in Companion to
the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications, ser. OOPSLA ’06. ACM,
2006, pp. 809–814, URL: http://doi.acm.org/10.1145/1176617.1176728
[retrieved: 2017-03-03].

[7] B. Iyer and M. Subramaniam, “The Strategic Value of APIs,” Jan-
uary 2015, URL: https://hbr.org/2015/01/the-strategic-value-of-apis [re-
trieved: 2017-03-03].

[8] D. C. Schmidt, “Model-driven engineering,” COMPUTER-IEEE COM-
PUTER SOCIETY-, vol. 39, no. 2, 2006, p. 25.

[9] A. G. Kleppe, J. Warmer, W. Bast, and M. Explained, “The model
driven architecture: practice and promise,” 2003.

[10] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering
Using UML, Patterns and Java-(Required). Prentice Hall, 2004.

[11] I. Jacobson, G. Booch, and J. Rumbaugh, The unified software devel-
opment process. Addison-wesley Reading, 1999, vol. 1.

[12] G. Fairbanks, Just enough software architecture: a risk-driven approach.
Marshall & Brainerd, 2010.

[13] O. Vogel, I. Arnold, A. Chughtai, and T. Kehrer, Software Architecture:
A Comprehensive Framework and Guide for Practitioners. Springer
Berlin Heidelberg, 2011, URL: http://dx.doi.org/10.1007/978-3-642-
19736-9 [retrieved: 2017-03-03].

[14] I. A. W. Group et al., “Ieee recommended practice for architectural
description,” IEEE Std, vol. 1471, 1998.

[15] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in
microservice architecture,” in Service-Oriented Computing and Appli-
cations (SOCA), 2016 IEEE 9th International Conference on. IEEE,
2016, pp. 44–51.

[16] C. Pahl and P. Jamshidi, “Microservices: A systematic mapping study,”
in Proceedings of the 6th International Conference on Cloud Computing
and Services Science, 2016, pp. 137–146.

[17] V. Vernon, Implementing domain-driven design. Addison-Wesley,
2013.

[18] S. Millett, Patterns, Principles and Practices of Domain-Driven Design.
John Wiley & Sons, 2015.

[19] Y. T. Lee, “Information modeling: From design to implementation,” in
Proceedings of the second world manufacturing congress. Citeseer,
1999, pp. 315–321.

[20] J. Arnowitz, M. Arent, and N. Berger, Effective Prototyping for Soft-
ware Makers. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2006.

[21] E. Evans, “Tackling complexity in the heart of software,” January 2016,
domain-Driven Design Europe 2016, URL: https://hbr.org/2015/01/the-
strategic-value-of-apis [retrieved: 2017-03-03].

[22] M. Gebhart, P. Giessler, and S. Abeck, “Challenges of the digital
transformation in software engineering,” ICSEA 2016 : The Eleventh
International Conference on Software Engineering Advances, 2016, pp.
136–141.

[23] D. Jacobson, G. Brail, and D. Woods, APIs: A Strategy Guide. O’Reilly
Media, Inc., 2011.

[24] B. Mulloy, “Web API Design - Crafting Inter-
faces that Developers Love,” March 2012, URL:
http://pages.apigee.com/rs/apigee/images/api-design-ebook-2012-
03.pdf [retrieved: 2017-03-03].

[25] J. Webber, S. Parastatidis, and I. Robinson, REST in Practice: Hyper-
media and Systems Architecture, 1st ed. O’Reilly Media, Inc., 2010.

[26] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[27] P. Giessler, M. Gebhart, D. Sarancin, R. Steinegger, and
S. Abeck, “Best Practices for the Design of RESTful web
Services,” International Conferences of Software Advances
(ICSEA), 2015, URL: http://www.thinkmind.org/download.php?
articleid=icsea 2015 15 10 10016 [retrieved: 2017-03-03].

[28] OpenAPI, “The OpenAPI Specification (fka The Swagger Specifica-
tion),” 2017, URL: https://github.com/OAI/OpenAPI-Specification [re-
trieved: 2017-03-03].

[29] O. Gierke, “DDD & REST - Domain Driven APIs for
the Web,” November 2016, SpringOne Platform, URL:
https://www.infoq.com/presentations/ddd-rest [retrieved: 2017-03-
03].

[30] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[31] D. North, “Behavior modification: The evolution of behavior-driven
development,” Better Software, vol. 8, no. 3, 2006.

[32] R. Steinegger, J. Schäfer, M. Vogler, and S. Abeck, “Attack surface
reduction for web services based on authorization patterns,” The Eighth
International Conference on Emerging Security Information, Systems
and Technologies (SECURWARE 2014), 2014, pp. 194–201.

87Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 96 / 128

Consistent Cost Estimation for the Automotive Safety Model based Software
Development Life cycle

Demetrio Cortese
FPT Embedded Software Development

CNH Industrial
Turin, Italy

Email: Demetrio.Cortese@cnhind.com

Abstract—The Safety Model based Software Development
Life-cycle, focused on high-level executable models of the
automotive systems to be fielded, has a high maturity level. It
allows compression of the development cycles through a wide
range of exploration and analysis including high fidelity of
simulation, automatic test case generation and even test session
at low cost early in the development phase. Many Software
Development Teams in the automotive industry are already
using model-based development for their safety critical
software. The current software development effort estimation
through sophisticated models and methods (COCOMO
COnstructive COst MOdel, COCCOMOII, functional point,
etc.), obtained at the early stages of development life cycle, is
often inaccurate because of the long duration between the
initialing phase of the project and delivery phase. Also, not
many details of the functions are available at that time. All
these models require as inputs accurate estimates of specific
attributes, such as line of code (LOC), number of complex
interfaces, etc. that are difficult to predict during the initial
stage of software development. Effective software project
estimation is one of the most challenging and important
activities in software development. Proper project planning
and control is not possible without a sound and reliable
estimate. The basis of our approach for estimation of the
development cost of a new model based development project is
to describe it in terms of complexity and then to use this
description to find other similar model–based functions that
have already been completed.

Keywords-Model Based; Executable specification; Cost
estimation; Embedded Software; Autocode generation; Software
Engineering; Functional Safety.

I. INTRODUCTION

The assessment of the main risks in software
development discloses that a major threat of delays is caused
by poor effort/cost estimation of a project. As a consequence,
more projects will face budget and/or schedule overruns.
This risk can affect all phases of the software development
life cycle, i.e., Analysis, Design, Coding and Testing. Hence,
mitigating this risk may reduce the overall risk impact of the
project in a consistent way.

Existing estimation techniques, such as function point
and use case estimation, are done after the analyses phase
and the cost/effort is measured in terms of lines of codes for
each functionality to be incorporated into the software.
Therefore, it is very clear that only a specific part of the total
software development effort is estimated and this estimation

is delayed until after all the analyses and designs are
completed. Current software cost estimation methods first try
to determine the size of the software to be built. Based upon
this size, the expected effort is estimated and it is utilized to
calculate the duration (i.e., time required) and cost
(monetary/human resources) of the project.

We have adapted a different approach and suggested that
effort estimation shall be carried out for each phase of the
development process. Applying a phase-based approach
offers a project manager the possibility to estimate the cost at
different moments in the life cycle. A milestone offers the
possibility to assess each phase and to measure and analyze
possible differences between the actual and the estimated,
step by step. Each milestone should, therefore, be considered
the time for deciding whether the estimation can be adjusted.
This mechanism leads to continuous and dynamic
assessment of the relation between activities and relevant
costs estimation. The philosophy, therefore, is to identify the
project functionalities and define the software development
process in all phases. It is clear that the end of a phase is
characterized by a milestone.

Our approach is a quick and consistent method, based on:
1. Reference Model based Software Life cycle in all

phases, as described in Section II,
2. Definition of an implementation scale of the existing

model based functionalities (five levels), as described in
Section III, subsection A;

3. Definition of a complexity scale of the existing model
based functionalities (five levels), as described in
Section III, subsection B;

4. Complexity Functionality by asking System Experts for
estimate on each functionality of the new project, as
described in Section III, subsection B;

5. Calculation of uncertainty, as reported in Section IV;
6. Affinity process through comparison and tuning for the

new functionalities having as reference the historical
data from point 1 and 2, as given in Section V;

7. Corrector factors (Team Skill, process customization)
to be adjusted according to their risk, considered in
Section V;

In this paper, the application of the above effort
estimation model for a Software development project for a
new Engine ECU (Electronic Control Unit) will be also
presented.

88Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 97 / 128

II. MODEL BASED APPROACH APPLICATION

In the automotive domain, the model-based approach is a
consistent way to master the management and complexity in
the developing software systems. In last 10 years, the CNH
industrial Embedded Software Development Team targets
the Model-Based Application Software Development of the
Functional Safety Systems for all CNH Industrial application
by implementing a Methodology that ensures the safety
critically relevant process satisfies important OEM (Original
Equipment Manufacturer) requirements [8][9]:
• High quality
• Reduction in time to delivery
• Reduction in development cost

This strategy, through the CNH Industrial Infrastructure
framework, allows innovation in existing processes and
yield benefits in the medium term:
• A reduction of the Design Life-Cycle Process
• Anticipating issues at early design phases of

development, leading to reduction in systems project
risks

• Increasing effectiveness and timeliness of the system
verification life-cycle, with reduction of systems time-
to-delivery.
ISO (International Organization for Standardization

standards) [4][5][6], such as ISO 26262 (Truck & Bus), ISO
13849 (Construction equipment) and ISO 25119
(Agricultural) do not specify formally any development
process or validation tools but provide only
recommendations. A clear description of the CNH Industrial
process tailoring has been done in [1].

Here, we repeat the basic concept stating that, while the
requirements of the Functional Safety standard cannot be
tailored, the activities performed to meet the Standard can
and should be tailored. That is, while the requirements must
be met, the implementation and approach to meeting these
requirements may and should vary to reflect the system to
which they are applied. It is each software development’s
responsibility to produce evidence that they follow
development processes addressing the safety-relevant
requirements, and traceability from requirements to
implementation. Additionally, traceability from
requirements to test cases that checks the correctness of
requirements against the developed software, is required.
Besides, it is always important to verify that their
development tools do not introduce errors in the final
software product. In general, there two kinds of safety
requirements: process oriented and technical. Both need to
be addressed and properly documented within a project of
software development. In the following, we identify process
oriented requirements (what needs to be done to ensure
software safety). Technical requirements are those that
specify what the SW function must include. In order to
manage the safety requirements, the software development
process should:
• Identify, manage and monitor the safety requirements

of the software product life-cycle, including generation

of requirements, design, coding, test and operation of
the software.

• Ensure that software acquisitions, whether off the-shelf
or outsourcing, have been evaluated and assessed.

• Ensure that software verification activities include
software safety verifications

• After the Final Software delivery, ensure that all
changes and reconfigurations of the software are
analyzed for their impacts to system safety.

In the last years, a consistent Model-Based Application
software development Life–cycle (as shown in Figure 1,),
compliant with ISO 26262 “Functional Safety“, has been
identified [2] in CNH Industrial.

Figure 1 Model based Sw Life-cycle

Our approach responds to the demand of a collaborative
environment that increases productivity and drastically cuts
the development time. It will be obtained by capturing and
disseminating the expertise of different and distributed
teams. This comprehensive environment helps the Engineers
in all life cycle stages from high-level data and architecture
models through to fully tested and running Software
Modules, harmonizing life cycle phases for the OEM
application. One of the most powerful aspects of our
approach is that it establishes a common language designed
to engage all stakeholders in a process that leads to optimal
applications outcomes, rather than outcomes that are locally
optimized to the needs of any particular area.

89Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 98 / 128

Figure 1 describes our Model based Software
development life cycle, where phases and tasks have been
identified.

III. PROJECT COMPLEXITY DEFINITION

Before we begin a piece of software development
estimation, there needs to be an understanding of the scope
of the project in terms of process and functionalities of the
project. In case of the Model based development with a high
maturity level, it can be extremely challenging to estimate
the project effort through two pillars: complexity of the
development process and complexity of the functionality
content.

A. Software development process complexity

Today, engine functionalities often are large and
complex, and the usual approach in our department consists
of building the large functionality from smaller Software
components. A Software component is a unit of complexity
that required a reasonable effort, in general, and far less
difficult than the whole functionality. We identified five
different SW components: very simply, simply, medium,
complex and very complex. The above classification is
based on the timing specified by the Model based Software
development process, as consolidated in the Embedded
Software development department in FPT (FIAT
PowerTrain) Industrial.

Successfully integrating components result in the whole
SW functionality. Integrating the components into a larger
software system consists of putting them together in a
sufficiently careful manner, such that the components fit
together. The use of models consisting of different
submodels within software development has numerous
advantages. Different persons may work on different
submodels simultaneously driving forward the development
of the system. Different types of submodels allow the

separation of different aspects of the system, such as
structural aspects or dynamic behavior of system
components. On this basis, we are viewing each component
in terms of complexity of software development life cycle
phases. Each phase ends with a milestone and defined
outcomes. Using a model based approach, as defined in
previous section, we can estimate the effort needed to
perform each phase. Our approach offers the SW manager
the possibility to estimate different component/models at
different moments in the life cycle for different complexities
of the models (very simple, simple, medium, complex and
very complex). Next, the milestones and the outcomes for
each phase offer the possibility to measure and analyze
possible differences between the actual and estimate step by
step, such that the objectives, the estimate or the planning
can be adjusted. By defining its own SW lifecycles, an
organization can collect and use its own local historical data
obtained from completed MBD (Model Based
Development) projects. For example, we are using the
Model based SW development process since 2005 and,
therefore, we have consistent data to consolidate the
estimation of effort, as shown in TABLE I.

This table represents the effort for each defined phase of
the MBD Software development process for different
complexity of the models. It uses 5 functional complexity
indicators to show the development effort in 6 consolidated
phases (with relevant tasks) of the CNH Industrial Model
based Software development life-cycle. For Intellectual
Property Rights (IPR) reason, the table is empty.

This mechanism leads to continuous and dynamic
assessment of the relationship between process phase and
costs. In case of automatism, we will be able to introduce it
during the SW development process, as for example, more
automatic HIL test procedures.

TABLE I. SOFTWARE DEVELOPMENT COMPLEXITY

Embedded Software Development (ESD)

Work Estimation Details
Very

Simple
Simple Medium Complex

Very
Complex

Remarks
SW Development

Phases
Activity/Task Owner

Effort
Hrs

Effort
Hrs

Effort
Hrs

Effort
Hrs

Effort
Hrs

Requirements

Functionality Requirements
Management

SW Project
Leader

through Polarion customization

Functionality Interfaces
Requirement Specification

SW Project
Leader

Interfaces definition

Functionality Requirements
Specification

System
Engineer

traditional paper based
specification

Functionality Requirements
Traceability

MBD
Engineer

Requirements, Model, Code,
Documentation, testing)

Specification

Requirement Specification
Analysis

MBD
Engineer

through traditional review of
documents

Functionality Modelling
MBD
Engineer

through Simulink customization

Modelling checking
MBD
Engineer

through Model Advisor
customization

90Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 99 / 128

Embedded Software Development (ESD)

Work Estimation Details
Very

Simple
Simple Medium Complex

Very
Complex

Remarks
SW Development

Phases
Activity/Task Owner

Effort
Hrs

Effort
Hrs

Effort
Hrs

Effort
Hrs

Effort
Hrs

MIL Testing (including the
report generation)

MBD
Engineer

including the MIL (Model In
the loop) Test report; through
Internal and automized tools

Sw Functionality
Documentation

MBD
Engineer

through internal and automized
tools

Implementation

AutoCoding
MBD
Engineer

through Embedder coder
Customization

Code Review
MBD
Engineer

through polyspace
customization

Code Integration in the ECU
platform (with successful
Compilation)

MBD
Engineer

including configuration files,
compilation

Unit Testing
MBD
Engineer

including the unit test report

Functional Testing

Test Environment Setup
System
Engineer HIL (Hardware In the Loop)

Automatic setup including
automation in test preparation,
execution and reporting

Integration Testing
System
Engineer

Performance Testing
System
Engineer

Delivery

Software Configuration
Management

SW Project
Leader and
MBD
Engineer

Through configuration
management tool

Release/Build Updates
SW Project
Leader

based on the Basic Software
platform provided by the
supplier

Support

Post delivery Support
(eventual incremental
version)

MBD
Engineer

we plan a sw bug to consolidate
the functionality

Work Estimate
Totals

y 1,8y 3.6y 4,8y 6,4y

B. Functionality Complexity

An engine ECU Software is a collection of software
functionalities, describing features that can then be broken
down into smaller and smaller components. Our idea is to
assign a complexity rating to all functional components. The
estimates, provided by an expert who has a background in
the requirements definition, can be modified to suit the
experience/expertise and performance of the team or people
who might actually perform the work. This technique
captures the experience and the knowledge of the experts.
During the lifecycle, re-estimates should be done at major
milestones of the project, or at specific time intervals. This
decision will depend on the situation. SW Changes may be
made during the project and therefore the cost estimates
either increase or decrease. At the end of the project, a final
assessment of the results of the entire cost estimation
process should be done. This allows a company to refine the
estimation process in the future because of the data results
that were obtained, and also allows the developers to review
the development process. It is also true that there are only
very few cases where the software requirements stay fixed.
Hence, how do we deal with software requirement changes,

ambiguities or inconsistencies? During the estimation
process, an experienced expert will detect the ambiguities
and inconsistency in the requirements. As part of the
estimation process, the expert will try to solve all these
ambiguities by modifying the requirements. If the
ambiguities or inconsistent requirements stay unsolved, then
it will correspondingly affect the estimation accuracy.

The approach is flexible and allows us to account for the
effort for all components. Once we have defined the
functionality breakdown and set complexity estimates, we
will be able to have the relevant effort estimation based on
the concept introduced in the previous paragraph (Software
development process complexity). As described in TABLE
II, this is obviously a very simple spread sheet, and the
calculations made are not in any way close to being hyper-
accurate. It provides a handy mechanism to document and
trace effort against functionalities, and a framework for
distributing effort to project tasks (like requirement,
implementation, testing etc.) across the total effort.

91Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 100 / 128

TABLE II. SW FUNCTIONALITY COMPLEXITY

Sw
Layer

First level
Second

level
Name

Tasks
Number

Functional Complexity
Breakdown

Development Time Estimation (Hours)
Total
Effort

Estimation

1 2 3 4 5 1 2 3 4 5 Hours

ASW
Engine

Function
Air System AirMod 6 3 5 0 3x1,8y 5x 3,6y 0

ASW
Vehicle
Function

Active Surger
Dumper

ASDCtl 2 1 1 0 1,8y 3,6y 0 0

ASW
Engine

Function
Air System BstCtl 3 1 2 0 1,8y 2x 3,6y 0 0

ASW
Engine

Function
Air System ChrCtl 5 3 2 0 3x1,8y 2x 3,6y 0 0

ASW
Engine

Function
Air System ChrSet 4 1 1 2 0 3,6y 4,8y 2x6,4y

ASW
Engine

Function
Coordinator

Engine
CoEng 5 2 3 0 2x1,8y 3x 3,6y 0 0

ASW
Communicat

ion
Vehicle

ComVe
h

87 25 50 12 25x 50x1,8y 12x 3,6y 0 0

ASW
Vehicle
Function

Cruise
Control

DrAs 9 4 5 0 4x1,8y 5x 3,6y 0 0

…. …… ……….. ……

…… …………..
………………

……
………..

TABLE II illustrates three important indicators for each
functionality of the Application Software:
• Functional Complexity Breakdown: For each software

functionality, we followed the same approach. We
interviewed an adequate number of experts (Engine and
Vehicle System Engineers). We defined each
functionality as the composition of sub functionalities
(tasks) with different complexity, starting from the
experts experience with the most recent one and going
back as far as they could.

• Development Time estimation: For each software
functionality, the Software Manager will identify the
estimation effort based on TABLE I.

• Total effort estimation: for each functionality, we show
the effort in terms of Hours, days and months.

where
1= Very Simple, 2= Simple, 3=Medium, 4=Complex and
5=Very complex

IV. PROJECT DEFINITION ACCURACY

Accurate project estimation is one of the most
challenging aspects of a project. The estimation becomes
increasingly difficult as the project’s complexity and
uncertainty increases. Effort estimation accuracy depends on
the available information. Usually, there is less information
at the start the project (presales) and more information while
working on the project, for example, after the requirement
consolidation. In order to increase the accuracy level, the

PERT (Program Evaluation and Review Technique) three-
point estimates is used. It provides a range of project
estimates and calculates the weighted average of that range.
In order to use the PERT project estimation technique, we
provide 3 data points, the “best case”, “most likely case”
and the “worst case”.

The optimistic scenario (best case) is usually the shortest
duration and/or the least costly estimate based on the notion
that all will go well on the project. The pessimistic scenario
(worst case) is the longest duration and/or the most costly
estimate, based on the notion that problems may be
encountered during the project. The most likely scenario
falls somewhere in between the pessimistic and optimistic
estimates, based on the notion that the project will progress
under normal conditions.

In general, the experts will be asked to first provide their
worst case estimate and then the best case estimate. Once
these 2 points are agreed upon, it is easier for them to
determine the most likely case, knowing their upper and
lower limits.

Based on the above data, we obtain the PERT estimate:

 E = (o + 4m + p) / 6. (1)

where E is Estimate; o = optimistic estimate; p = pessimistic
estimate; m = most likely estimate.

92Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 101 / 128

Standard Deviation:

 SD = (p – o) / 6 (2)

where SD is Standard Deviation; p = pessimistic estimate;
o = optimistic estimate

E and SD values are then used to convert the project
estimates to confidence levels as follows:

1. Confidence level in E value is approximately 75%

2. Confidence level in E value +/- SD is approximately 85%
3. Confidence level in E value +/- 2 × SD is approximately
95%

4. Confidence level in E value +/- 3 × SD is approximately
99.5%

TABLE III describes the approach.

TABLE III. SOFTWARE COST ACCURACY

Sw
Layer

First
level

Second
level

Name

Best
case

Most
Likely
case

Worst
Case Standard

Deviation

0.75
Confidence

0.85
Confidence

0.95
Confiden

ce

0.995
Confidence

Effort
Hrs

Effort
Hrs

Effort
Hrs

Effort Hrs Effort Hrs
Effort
Hrs

Effort Hrs

ASW
Engine

Function
Air System AirMod

ASW
Vehicle
Function

Active
Surger

Dumper
ASDCtl

ASW
Engine

Function
Air System BstCtl

ASW
Engine

Function
Air System ChrCtl

ASW
Engine

Function
Air System ChrSet

ASW
Engine

Function
Coordinato

r Engine
CoEng

ASW
Communic

ation
Vehicle ComVeh

ASW
Vehicle
Function

Cruise
Control/Sp

eed
Limiter

DrAs

….
…………

…
…………
………..

……. ……… …

…...

This technique works great for several reasons:
• Psychologically, it is easier to provide a number when

you can provide a wide range
• Starting with the worst case often leads to less

resistance
• Once worst case and best case are identified, it becomes

easier to provide the most likely case
• Reduces the natural instinct to inflate estimates

V. SOFTWARE DEVELOPMENT PROCESS COST

ESTIMATION

As introduced in the previous sections, the cost of
development activities is primarily the development effort
costs. This is the most difficult to estimate and control, and
has the most significant effect on the overall project cost.
Software cost estimation is a continuing activity which
starts at the proposal stage and continues throughout the
lifetime of a project. Projects normally have a budget, and
continual cost estimation is necessary to ensure that
spending is in line with the budget. Therefore, it is very
important to estimate the software development effort as

accurately as possible. A basic cost equation can be defined
as:

Total_SW_Project = SW_Development_Labor +
Other_Labor

In fact, we may have to consider other labor costs, such as:
• Software project management, performed by the project

Manager, to plan and direct the software project
• Facility Administration, for example software

configuration management and tools maintenance. The
software development facility (SDF) is composed,
generally, of hardware, software, and services utilized
by the MBD Engineering Team to generate and test
code, perform the engineering analysis, generate all of
the required documents and manage the software
development.

• SW Process Enhancement & Innovation.
The Innovation activity is a great way to improve the

SW development process and the quality of the software
product. Enhancement actions of software development
helps organizations to establish a mature and disciplined
engineering practice that produces secure, reliable software

93Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 102 / 128

in less time and at lower costs. It gives us a potential better
way of doing business. Normally, innovation is associated
with higher costs but that’s exactly the wrong way to
looking at it. This is especially true if the company and
finally the customer do not appreciate the change. It is more
common for an automotive company, for example during a

crisis period, to look at the innovation investment, as an
item to be subject to an eventual optimization (reduction)
cost process. In order to protect and to reduce the risk of
reduction of innovation, it could be useful to allocate the
above costs among all the SW development projects.

TABLE IV. SW LIFE CYCLE COST

Software Engineering Development
Effort Element

0.75
Confidence

0.85
Confidence

0.95
Confidence

0.995
Confidence

Comments

Effort Hrs Effort Hrs Effort Hrs Effort Hrs

Project management 3.2 % of Total Project Estimate

Facility Administration 1.5 % of development Estimate

SW Process Enhancement & Innovation 2 % of Development phase Estimate

SW Development Dependent phases as from previous sheet;

SW Engineering Total Effort Estimation

TABLE IV defines the cost for other Organizational
support processes, as Project management, Facility
Administration, Sw Process Enhancement & Innovation,
depending of the direct SW development cost. The above
costs are hardly specific of the Organization structure. The
values, reported in the comments Column, are based on our
experience. The Cost estimation is based on the assumption
that the team will be composed of experienced (more 1+
year) MBD Software Engineers. In case of inexperienced
MBD SW engineers, we need to consider the learning
process cost.

VI. CONCLUSIONS

Today, many software development Managers have
problems in providing accurate and reliable cost estimates,
and, therefore sometimes do not undertake estimation at all.
Besides, the existing cost estimation methods and tools are
more complex and not customized for each specific
software development process. Our approach aims at
yielding more reliable estimates, based on the experience of
all actors involved in the software development life cycle
and it is based on the phases of the software life cycle. The
estimation process improves continuously with the
availability of more data and it continuously adjusts itself to
the evolution of the software development phases. The first
time cost estimation can be done is at the beginning of the
project after the requirements have been outlined. Cost
estimation may even be done more than once at the
beginning of the project. For example, several companies
may bid on a contract based on some preliminary or initial
requirements, and then once a company wins the bid, a
second round of estimation could be done with more refined
and detailed requirements. Doing cost estimation during the
entire life cycle allows for the refinement of the estimate

because there is more data available. Periodic re-estimation
is a way to gauge the progress of the project and whether
deadlines will be able to be met.

Effective monitoring and control of the software costs is
required for the verification and improvement of the
accuracy of the estimates. Tools are available to help
organize and manage the cost estimates and the data that is
captured during the development process. People are less
likely to gather data if the process is cumbersome or tedious,
and so using tools that are efficient and easy to use will save
time. It is not always the most expensive tool that will be
the best tool to buy, but rather the tool that is most suited to
the development environment. Therefore, the success of our
proposal is not necessarily the accuracy of the initial
estimates, but rather the rate at which the estimates
converge to the actual cost. We are using the proposed
approach for our Software development projects for All
Vehicle ECUs (i.e., Engine Control unit, Vehicle computer
Module). Therefore, we have a very valuable database
reflecting our distribution cost in all phases of the software
life cycle. These data are used to develop a software cost
estimation model tailored to all CNH Industrial applications.

REFERENCES

[1] D. Cortese, “New Model-Based Paradigm: Developing Embedded
Software to the Functional Safety Standards, as ISO 26262, ISO
25119 and ISO 13849 through an efficient automation of Sw
Development Life-Cycle” SAE Technical Paper 2014-01-2394, doi:
10.4271/2014-01-2394

[2] D. Cortese, "ISO 26262 and ISO IEC 12207: The International
Standards Tailoring Process to the whole Sw Automotive
Development Life Cycle by Model-Based Approach" SAE Technical
Paper 2011-01-0053, 2011, doi:10.4271/2011-01-0053

94Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 103 / 128

[3] D. Cortese, "Model-based Approach for the realization of a
Collaborative repository of All Vehicle Functionalities"
FISITA Technical Paper F2008-05-039, 2008

[4] Road Vehicles – Functional Safety - International Standard
ISO 26262 : 2011

[5] Tractor and machinery for agriculture and forestry – Safety-
related parts of control systems – International Standard ISO
25119: 2010

[6] Safety of machinery – Safety-related parts of control systems
– International Standard ISO 13849: 2006

[7] CNH Industrial Web site: http://www.cnhindustrial.com/it-
IT/Pages/homepage.aspx

[8] D. Cortese, Iveco Develops a Shift Range Inhibitor System
for Mechanical 9- and 16-Speed Transmissions in Six Weeks,
“https://www.mathworks.com/tagteam/71432_91989v00_IVE
CO_UserStory_final.pdf

[9] D. Cortese, “Developing Embedded Software to International
Standards and On-board Vehicle Software Architectural
Standardization” Course for PH.D. Program in Computer
Science, 2013, http://dott-
informatica.campusnet.unito.it/do/corsi.pl/Show?_id=1f5e

95Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 104 / 128

A Team Allocation Technique Ensuring Bug Assignment to Existing and New

Developers Using Their Recency and Expertise

Afrina Khatun

Institute of Information Technology
University of Dhaka
Dhaka, Bangladesh

Email: bit0411@iit.du.ac.bd

Kazi Sakib

Institute of Information Technology
University of Dhaka
Dhaka, Bangladesh

Email: sakib@iit.du.ac.bd

Abstract—Existing techniques allocate a bug fixing team using
only previous fixed bug reports. Therefore, these techniques may
lead to inactive team member allocation as well as fail to include
new developers in the suggested list. A Team Allocation approach
for ensuring bug assignment to both Existing and New developers
(TAEN) is proposed, which uses expertise and recent activities
of developers. TAEN first applies Latent Dirichlet Allocation
on previous bug reports to determine the possible bug types.
For new developers, TAEN identifies their preferred bug type,
and adds them to the list of other developers, grouped under
the identified bug types. Upon the arrival of a new bug report,
TAEN determines its type and extracts the corresponding group
of developers. A heterogeneous network is constructed using
previous reports to find the collaborations among the extracted
developers. Next, for each developer, a TAEN score is computed
combining the expertise and recency of their collaborations.
Finally, based on the incoming report’s severity, a team of N
members is allocated using the assigned TAEN score and current
workloads. A case study conducted on Eclipse Java Development
Tools (JDT), shows that TAEN outperforms K-nearest-neighbor
Search And heterogeneous Proximity based approach (KSAP)
by improving the team allocation recall from 52.88 up to 68.51,
and showing the first correct developer on average at position
1.98 in the suggested list. Besides, a lower standard deviation of
workloads, 30.05 rather than 46.33 indicates balanced workload
distribution by TAEN.

Keywords—Bug Assignment; Team Allocation; Bug Report;
Latent Dirichlet Allocation (LDA).

I. INTRODUCTION

With the increasing size of software systems, bug assign-
ment has become a crucial task for software quality assurance.
For example studies reveal that, near the release dates, about
200 bugs were reported daily for Eclipse [1]. As developers
generally work in parallel, this turns bug resolution into a
collaborative task as well. It is reported that Eclipse bug reports
involve on average a team of 10 developers contributions.
However, due to large number of bug reports, manually
identifying developer collaboration is error-prone and time-
consuming. Besides, industrial projects have reported the need
for collaborative task assignments to utilize both existing and
new developers [2]. It is common that new developers join
the company or project during software development. Random
bug report assignment to new developers always results in
unnecessary bug reassignments, and increases the time needed
for the bug to be fixed. In this context, an automatic approach
can facilitate bug assignment by allocating teams utilizing both
existing and new developers.

In order to assign newly arrived bugs to appropriate de-
velopers, available information sources such as bug reports,

source code and commit logs are analysed. Recent commits
generally exhibit developer’s recent activities and previous
bug report represent their expertise on fixing particular types
of bugs. Team assignment is generally done by analysing
previously fixed bug reports, which can help to recommend
experienced developers. With the passage of time, developers
may switch projects or company, therefore inactive members
may be recommended. On the other hand, developers who
joined recently, do not own any fixed bug reports or commits.
So, the approaches which learn from these information sources,
fail to assign tasks to new developers. Existing developers
get overloaded with a queue of bug reports, whereas new
developers are ignored in the allocation procedure. This leads
not only to prolonged bug fixing time, but also to improper
workload distribution.

Understanding the importance of bug assignment, various
techniques have been proposed in the literature. BugFixer,
a developer allocation method has been proposed by Hao
et. al [3]. This method constructs a Developer-Component-
Bug (DCB) network using past bug reports, and recommends
developers over the network. This allocated list becomes less
accurate with the joining of new developers. Baysal et al. have
proposed a bug triaging technique using the user preference of
fixing certain bugs [4]. The technique combines developer’s
expertise and preference score for ultimate suggestion. How-
ever, this technique also considers only historical activities.
Afrina et. al [5] have proposed an Expertise and Recency based
Bug Assignment (ERBA) approach that considers both fixed
reports and commit history for recommendation. This tech-
nique is applicable for single developer recommendation, and
it cannot allocate tasks to new developers. A team assignment
approach using K-nearest-neighbor Search And heterogeneous
Proximity (KSAP) has been proposed by Zhang et al. [6]. It
creates a heterogeneous network from the past bug reports, and
assigns a team based on their collaboration over the network.
The main limitation of this technique is that it over-prioritizes
previous activities.

A Team Allocation technique for ensuring bug assignment
to both Existing and New developers (TAEN), using expertise
and recency of developers has been proposed. TAEN allocates
a team in five steps. The Bug Solving Preference Elicitation
step takes bug reports, and applies Latent Dirichlet Allocation
(LDA) model on these reports to determine the possible
types of bug reports. For new developers, TAEN first elicits
their bug solving preference by presenting them with main
representative terms of each bug type, and groups them under
the corresponding type. The New Bug Report Processing step

96Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 105 / 128

extracts the summary, description and severity of incoming
reports, and determines their bug types to identify the potential
fixer group. Next, the Developer Collaboration Extraction step
generates a heterogeneous network using attributes (four types
of nodes and eight types of edges) extracted from previous
bug reports, and finds collaborations among the identified
fixer group members over the network. The Expertise and
Recency Combination step then assigns a TAEN score to
each developer by combining the number and recency of their
extracted collaboration. Finally, based on the severity of the
incoming report, the Team Allocation step suggests a team of N
developers using the TAEN score and current workloads. After
each reported bug is fixed, this step also updates developers
contribution status.

A case study on an open source project, Eclipse Java
Development Tools (JDT) has been conducted for assessment
of TAEN. To evaluate compatibility, TAEN has been compared
with an existing technique, KSAP [6]. A total of 2500 fixed
and 676 open bug reports have been taken under consideration
[7]. A test set of 250 fixed and 30 open bug reports have been
applied on both techniques. The results showed that TAEN
improved the recall of the allocated team from 52.88 up to
68.51. A decrease in the average position of the first correct
developer from 3.1 to 1.98 indicates the increased effectiveness
of TAEN. Besides, a lower standard deviation (30.05 instead
of 46.33) of developer workloads shows more balanced task
distribution by TAEN.

The remainder of the paper is organized as follows. Section
II describes the existing efforts in the field of automated bug
assignment. Section III presents the overall team allocation
procedure of TAEN by discussing the detailed processing of
each step. Section IV shows a case study on Eclipse JDT
while applying TAEN. Lastly, Section V concludes the paper
by summarizing its contribution and possible future directions.

II. RELATED WORK

Due to the increased importance of automatic bug assign-
ment, a number of techniques have been proposed. A survey
on various bug triaging techniques has been presented by
Sawant et. al [8]. The survey divided bug triaging techniques
into text categorization, reassignment, cost aware and source
based techniques etc. Studies focusing on industrial needs of
bug assignment have also been proposed in literature [2], [9].
Significant related works are outlined in this section.

Text categorization based techniques build a model that
trains from past bug reports to predict the correct rank of devel-
opers [1], [3], [4], [10], [11]. Baysal et al. have enhanced these
techniques by adding user preference in the recommendation
process [4]. The framework performs its task using three com-
ponents. The Expertise Recommendation component creates a
ranked developer list using previous expertise profiles. The
Preference Elicitation component collects and stores a rating
score regarding the preference level of fixing certain bugs
through a feedback process. Lastly, knowing the preference
and expertise of each developer, the Task Allocation component
assigns bug reports. The applicability of this technique depends
on user ratings, which can be inconsistent. Besides, for rec-
ommendation the technique does not take new developers into

account. As a result, imbalanced workload distribution among
developers may occur.

Reassignment based techniques have also been developed
by researchers [12], [13], [14]. The main focus of these
techniques is to reduce the number of passes a bug report
goes through due to incorrect assignment. In such techniques,
a graph is constructed using previous bug reports [13], [14].
As mentioned above, consideration of these past activities fail
to accommodate the new developers in final recommendation.
A fine grained incremental learning and multi feature tossing
graph based technique has been proposed by Bhattacharya et.
al [12]. It is an improvement over previous techniques because
it considers multiple bug report features, such as product and
component, when constructing the graph. Because it considers
previous information, the technique results in search failure in
case of new developers arrival.

CosTriage, a cost aware developer ranking algorithm has
been developed by Park et. al [15]. The technique converts
bug triaging into an optimization problem of accuracy and cost,
which adopts Content Boosted Collaborative Filtering (CBCF)
for ranking developers. As the input to the system is only
previous bug history, the technique contains no clue regarding
new developers to assign tasks.

Source based bug assignment techniques have also been
proposed. Matter et. al have suggested DEVELECT, a vo-
cabulary based expertise model for recommending developers
[11]. The model parses the source code and version history to
index a bag of words representing the vocabulary of source
code contributors. For new bug reports, the model checks the
report keywords against developer vocabularies using lexical
similarities. The highest scored developers are taken as fixers.
Another source based technique has been proposed in [16].
The technique first parses all the source code entities (such
as name of class, attributes, methods and method parameters)
and connects these entities with contributors to construct a
corpus. In case of new bug reports, the keywords are searched
in the index and given a weight based on frequent usage and
time metadata. The main limitation of these techniques is, it
suggests novice developers without considering their experi-
ence and preference. As these techniques require minimum
one source commits, these also fail to include new developers
in final suggestion.

Vaclav et al. have presented a study to compare the trend
of bug assignment in the open source and industrial fields
[2]. The study applies Chi-Square and t-test for evaluating the
variability of those two fields dataset, and reports identical
trends in terms of distribution. Most importantly, it concludes
with some findings highlighting the need for balanced task
assignment to individuals and team recommendation. Zhang et
al. developed a team assignment technique called KSAP [6]. It
initially constructs a heterogeneous network using existing bug
reports. When a new bug report arrives, the technique applies
cosine similarity between the document vectors of new and
existing bug reports, and extracts the K nearest similar bug
reports. Next, the commenters of these K similar bugs are
taken as the candidate list. Finally, the technique computes a
proximity score for each developer based on their collaboration
on the network. The top scored Q number of developers
are recommended as fixer team. Although this technique can
meet the need of team recommendation, it fails to cover the

97Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 106 / 128

requirement of balanced task distribution due to ignoring new
developers in the assignment process.

Various techniques for automatic bug fixer suggestion have
been proposed in the literature. Most of the techniques learn
from previous fix or source history of software repositories.
Consideration of only one of these information sources leads
to inactive or inexperienced developer recommendation. Again,
both of the sources lack information regarding the newly joined
developers. As a result, all of these techniques fail to delegate
tasks to newly joined developers resulting in unequal workload
distribution.

III. METHODOLOGY

In order to allocate teams by ensuring task allocation to
both existing and new developers, a technique called TAEN is
proposed. Most of the existing techniques learn from previous
fixed reports for recommending expert developers. Due to ig-
noring recent activities, these approaches may suggest inactive
developers. Using only expertise information cannot satisfy
the required information provided by the source contributions.
Both information sources need to be considered to allocate
expert and recent group of developers. Therefore, an expert
and recent team allocator capable of allocating tasks to both
existing and new developers is required. TAEN allocates a
team in five steps which are described below.

A. Bug Solving Preference Elicitation of New Developers

As bug tracking and version control systems do not contain
any record regarding the activities of new developers, existing
approaches fail to recommend new developers. In this case,
bugs are assigned randomly to these developers regardless
of their abilities and preferences in solving the bugs, which
always results in reassignment and prolonged fixing time. This
step determines the bug solving preference of new developers
in two phases - Developer Group Creation and Preference
Elicitation.

1) Developer Group Creation: This phase groups devel-
opers based on the types of bugs they have worked on. In
this context, first, the possible types of bugs needs to be
determined. Therefore, this step takes bug reports as input
in Extensible Markup Language (XML) format. A bug report
generally contains a number of attributes such as id, status,
resolution, fixer, commenter, severity, summary, description,
activity history etc. For training and evaluation purpose, the
bug reports which have resolved and verified as status, and
fixed as resolution property are taken into consideration. Be-
sides, in order to determine developers current workloads, the
bug reports which have bug status either of new, reopened and
started are collected.

Next, the summary and description property of each report
are extracted and processed to represent its vocabulary. The
processing steps are discussed in Subsection III-C. For iden-
tifying the type of bug reports, LDA modeling is used. Given
a list of documents having mixtures of (latent) topics, LDA
tends to determine the most relevant topic of the document.
So, the bug reports are represented as documents, and fed into
the LDA model to be divided into n types. At the end, the
LDA model determines the most relevant type for each bug

report. Each bug type is represented with the probabilities of
each word to be in the type.

Once all the bug reports are labeled with one of the n
types, the developers who have worked on similar types of
bugs are grouped together. Hence, the algorithm in Figure 1 is
proposed for creating developer groups. The GroupDevelopers
procedure of Figure 1 takes the processed bug reports as input.
This procedure keeps the grouped developers in a complex data
structure called bugTypes, as shown in line 2. The outer map of
bugTypes links each type to developers who have contributed
to that specific type of bugs. The inner map connects each
developers name to their contribution frequency on that type
of bugs.

A for loop is defined at line 4 for iterating on the inputted
bug reports. Each iteration of the loop first extracts the bug
report’s type determined by the LDA model. This task is done
by calling a method, GetBugType, as shown in line 5. The
method takes the summary and description of the report, and
returns its type. The GroupDevelopers procedure also extracts
and stores the contributor’s name of each bug report in a Set
of strings named contributors. Here, the contributors refers to
the reporter and fixers of the bug report.

1: procedure GROUPDEVELOPERS(List < BugReport >
BugReports)

2: Map<String,Map<String, Integer> > bugTypes
3: Map<String, Integer> developers, String type
4: for each b ∈ BugReports do
5: type← GETBUGTYPE(b.summary, b.description)
6: Set < String > contributors← b.contributors
7: developers ← bugTypes.get(type)
8: if developers == null then
9: developers← new Map<String, Integer>()

10: for each c ∈ contributors do
11: developers.put(c, 1)

12: bugTypes.put(type, developers)
13: else
14: for each c ∈ contributors do
15: if devlopers.contains(c) then
16: developers.replace(c, developers[c]+1)
17: else
18: developers.put(c, 1)

19: bugTypes.replace(type, developers)

Figure 1: The Algorithm of Developer Group Creation

Next, the procedure gets the list of developers mapped
against the identified bug type (line 7). If no developers are
yet mapped against this type, a new instance of inner map
named developers is initialized (line 8-9). All the contributors
are then populated into the developers map which links each
developer to their initial contribution frequency (line 10-11).
This developers map is then put against the identified bug type
(line 12). On the other hand, if a list of developers is already
mapped against the identified type, another for loop is declared
for updating the developers list (line 14). The loop then checks
whether the developers list already contains the contributors
and updates the contribution frequency of each contributor,
c (line 15-18). Finally, the procedure updates the outer map
bugType with the changed developers list (line 19).

98Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 107 / 128

2) Preference Elicitation: This step focuses to elicit the
bug solving preference of new developers for ensuring their
inclusion in the allocated team. When a new developer arrives,
the list of most representative words of each bug type is
offered to the developer. The chosen bug types are initially
considered as the types of bugs the developer can contribute
to. So, the developer is then grouped with the developers who
have worked on similar bugs determined by the previous step.

B. New Bug Report Processing

On arrival of a new bug report B, the type of the report
needs to be identified for extracting the developer group
to which it can be assigned. The summary, description and
severity properties of the report are extracted and processed.
As these property values generally contain irrelevant and noisy
terms, pre-processing is done. The processing step includes
identifier decomposition based on CamelCase letter and sep-
arator character, number and special character removal, stop
word removal and stemming. A score for each bug type is
computed using (1) similar to [15], as follows-

typeScore(i) =
∑

∀w∈B

(Probabilityi(w) ∗Distributioni(w)) (1)

where, i represents the i-th type in the LDA model, w
represents each word in B, Probabilityi(w) is the probability
of w in the i-th bug type, and the distribution of w in the
new bug report is indicated by Distributioni(w). Finally, the
bug type which gets the highest score having most similar
vocabulary with the new bug report, is determined as the type
of the new bug report. Thus, the developer’s group associated
with the determined bug type is selected. The top-K members
of this group, who have higher contributions are considered
as the developers from which a bug fixing team needs to be
allocated.

C. Developer Collaboration Extraction

It is mentioned above that bug resolution is a collabo-
rative task. To allocate a team, the collaboration among the
developers needs to be considered. So, this step extracts the
collaboration among the developers of the identified group.
A heterogeneous directed network is constructed from the
previous fixed bug reports [6]. The four types of nodes include
- Bug (B), Developer (D), Component (C) and Comment (T).
The eight types of possible relations among these nodes are
listed in Table I. For example, Type 1 relationship connects a
D node to a B node depicting the developer (D) has worked on
the bug report (B). The term work refers assignment, report,
reassignment, reopening, fixing, verifying or tossing event of
a bug. Similarly, Type 4 and Type 5 relations denote that a
comment (T) is contained by a bug (B), and a developer (D)
has written the comment (T), respectively.Developer collaboration can be identified by factors such as
how frequently two developers contribute to the same bugs and
components of the system. Keeping these factors in mind, six
types of paths similar to [6] are extracted from the network
each of which connects two developers using combinations
of the above relation edges. The paths are listed in Table II.
For example - ’D-B-T-D’ represents that a developer (D) has
worked on a bug (B), which has a comment (T) written by
another developer (D). Similarly, ’D-B-C-B-D’ depicts that

TABLE I. EIGHT TYPES OF RELATIONSHIPS AMONG NODES

Type No. Specification
1 D works on B
2 B is worked on by D
3 B contains T
4 T is contained by B
5 D writes T
6 T is written by D
7 B contains in C
8 C is contained by B

TABLE II. SIX TYPES OF DEVELOPER COLLABORATION

Path Type Collaboration on Path
1 Same Bug D-B-D
2 Same Bug D-B-T-D
3 Same Bug D-T-B-T-D
4 Same Component D-B-C-B-D
5 Same Component D-B-C-B-T-D
6 Same Component D-T-B-C-B-T-D

depicts that a developer (D) has worked on a bug (B) of a
component (C), having another bug (B), which was worked
on by another developer (D).

D. Expertise and Recency Combination

As mentioned before, ignorance of recent activities may
result in inactive developer assignment. So, this step adds re-
cency information with the extracted developer’s collaboration.
The more recent developers work or comment on a bug, the
higher the priority of that developer. For combining the recent
activities, the time when the developers collaborate on the
bug, is considered. The algorithm in Figure 2 is proposed to
compute a score called TAEN score for each developer, by
combining the expertise and recency of collaboration.

The CalculateScore procedure of Figure 2 takes a complex
data structure, named devInfos as input. This data structure
maps the developers to their identified collaboration informa-
tion of type DeveloperCollaboration.

1: procedure CALCULATESCORE(Map < String,
DeveloperCollaboration > devInfos)

2: Map < String,Double > devScores
3: for each d ∈ devInfos do
4: for each path ∈ d.sameBugs do
5: ADDSCORE(path.firstEdge,

BugReport.date)
6: ADDSCORE(path.lastEdge,

BugReport.date)
7: procedure ADDSCORE(Edge e, Date date)
8: if e.srcNode = D then
9: dev ← e.srcNode

10: else
11: dev ← e.destNode
12: if !devScores.keys.contains(dev) then
13: devScores← 1/(date− e.Date)
14: else
15: devScores+← 1/(date− e.Date)

Figure 2: The Algorithm of Expertise and Recency Combination

99Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 108 / 128

Each instance of DeveloperCollaboration contains two
properties - sameBugs and sameComponents. The former
property contains a list of paths which depicts the associated
developers collaboration on same bugs. Similarly, the later
one represents developers collaboration on same components.
The CalculateScore procedure represents the partial score
calculation process based on the same bugs only. A similar
approach is also used for calculating the collaboration score
of same components. The procedure starts with defining a data
structure called, devScores which connects the developers to
their calculated TAEN score (line 2). An outer for loop is
defined for iterating on each developer and an inner loop is
defined for iterating on their collaborated paths (line 3-4).
Each collaboration path generally connects two developers.
Therefore, for each collaborated path the score of the two
developers needs to be added or updated (line 5,6). To perform
this task, another procedure, AddScore is declared (line 7).

This procedure takes an edge and a date as input. It is seen
from Table I that developers directly collaborate by working
or commenting on bugs. So, the collaboration edge is sent as
parameter for the AddScore function. Besides, for adding the
recency information of these activities, the collaboration date
is also sent to this function. It first extracts the developer node
from the inputted edge (line 8-11). It then checks whether the
developer has a TAEN score already assigned (line 12). Based
on this checking, it adds or updates the score (line 13-15).
The score for each collaboration path is initially considered
as 1. However, this score is divided by the date difference
between the reporting date of the new bug report (date) and
the collaboration date of the developer (e.date). The smaller
the difference, the more recent the developer collaborated on
the bug, thus the higher the score the developer gets. Lines 13-
15 ensure the effect of recency information on the developer’s
TAEN score.

E. Team Allocation

Finally, for allocating a team consisting of N developers
where N<K, the technique first checks the severity property
of the newly arrived bug report. The severity property refers
to how severe the bug is, or whether it is an enhancement
request. If the severity value is any of blocker, critical and
major [7], the reported bug is considered as one that needs to
be handled by existing developers. So, TAEN considers only
the top-K contributors and sorts the developers based on their
TAEN score. The top scored N developers are allocated as the
fixer team.

If the severity value contains normal, minor, trivial or
enhancement [7], it can be handled by new developers. In
this case, TAEN considers the new developers along with the
top-K, and counts their current workload (assigned bugs). The
N developers with least workload are included in the team.
This step ensures bug assignment to new developers based
on their bug solving preference. If two developers have the
same workloads, the tie is resolved using the TAEN score.
When a bug report is fixed by a developer, this contribution is
updated in the groups of Subsection III-A. This update ensures
incremental contribution enhancement of developers as well as
their participation in bug resolution.

IV. CASE STUDY

For initial assessment of compatibility, TAEN was applied
on an open source project, Eclipse JDT [17]. This project was
chosen because this has been used for evaluation in various
related approaches [15]. Secondly, the bug repository of JDT
is available in open source. A total of 2500 fixed bug reports
between years 2009 and 2015, and 676 open bug reports
between 2015 and 2016 have been collected for experimental
analysis of TAEN.

As stated before, TAEN first takes system bug reports in
XML format [7]. The summary and description properties are
collected from the <short_desc> and <thetext> tags respec-
tively. It then applies LDA on the properties to determine the
most relevant type of each bug report. Various techniques are
available in the literature for identifying the natural number of
topics when applying LDA [15]. The case study divides the
bug reports into n=17 distinct types, as 17 has already been
used as number of topics in Eclipse [15]. The contributors,
severity, reporting time, activity properties are also extracted
from different XML tags in a similar manner. The contributors
are then grouped against the corresponding bug types identified
by LDA.

Now, on arrival of new developers, they are presented
with the most representative words of each bug type. Table
III shows a few top most representative words of bug Type-
2 and 11. The table depicts that the representative keywords
give an idea about the corresponding type. For example, the
enlisted keywords against Type-2 indicates User Interface (UI)
related terms as well as bugs. If a developer selects Type-2,
the developer is added to the group of developers associated
with Type-2 bugs.

TABLE III. FEW TOP REPRESENTATIVE WORDS OF BUG TYPE-2 AND 11

Type 2 Click Editor Select Display Dialog Event
Type 11 Mozilla Agent Gecko Build User Windows

For comparative analysis, TAEN is compared with a team
assignment approach, KSAP [5]. A randomly selected test
dataset containing 250 fixed and 30 open bug reports have been
used for checking the allocation validity. The experimental
analysis allocates a team of N developers, where N is set to
10. The reason behind setting N to 10 is that it is reported that
Eclipse bug reports include on average 10 developers contribu-
tions [6]. Besides, for ensuring validation consistency between
KSAP and TAEN, K=50 top most contributors are taken from
both techniques for processing of Developer Collaboration
Extraction step.

The compatibility of TAEN is evaluated using the follow-
ing metrics - recall, effectiveness and workload distribution.
Recall@N refers to whether the top N allocated developers
contain the actual developers who fixed the report. The higher
number of actual developers included in the top N places, the
more correct the allocation is. The recall is calculated using
(2) similar to [6] -

Recall@N =
|{dev1, dev2, ..., devN} ∩ {GroundTruth}|

|GroundTruth|
(2)

Here, {dev1,dev2,...,devN} is the set of N allocated developers,
and {GroundTruth} refers to the set of actual fixers containing

100Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 109 / 128

the reporter, fixer and commenters. Table IV illustrates the
average Recall@10 achieved by TAEN and KSAP. TAEN had
a higher average recall (68.51) than KSAP. Consideration of
both recent and previous activities enabled TAEN to improve
the recall from 52.88 to 68.51.

TABLE IV. COMPARISON OF AVERAGE TEAM ALLOCATION RECALL@10

Approaches Average Recall@10
KSAP 52.88

TAEN 68.51

Effectiveness refers to the position of the first GroundTruth
developer in the allocated list. Not all the members of a team
generally play similar roles in an assigned task. Therefore, the
ranking in the suggested team plays a vital role in determining
task division. Approaches that allocate relevant developers at
the top of the list are considered more effective. A lower value
of this metric indicates higher effectiveness of the allocated
list. The values in Table V shows allocation effectiveness of
TAEN and KSAP. They also show the percentage of suggesting
the first relevant developer at Position 1 to 3. In 66.36% cases
TAEN shows the first revelant developer at Position 1 whereas
KSAP shows that in only 2.73% cases. The consideration of
recent activities enables TAEN to prioritize active developers
at top of the list. The percentage of Position 2 and 3 for TAEN
is less than KSAP because, TAEN covers most of the cases at
Position 1. The last column shows TAEN shows the relevant
developers on average near position 1.98 which is lower than
KSAP (3.1).

TABLE V. COMPARISON OF AVERAGE EFFECTIVENESS

Approaches Average No. of Cases (%) Average
EffectivenessPosition 1 Position 2 Position 3

KSAP 66.36 7.27 10.91 1.98
TAEN 2.73 57.27 11.82 3.1

In order to validate the task assignment to new developers,
current workload among the developers are counted from open
bug reports of 2016. The developers who do not have any past
history, i.e. they are not grouped under any of the bug types
are considered as new developers in the experimentation. The
bug solving preference of these new developers is determined
by the type of bugs they are currently assigned to. Based on
this preference, these developers are initially grouped with one
of the bug types. The 30 above mentioned open bug reports
are analyzed on both KSAP and TAEN. A partial view of
workload distribution among developers preferring bug Type-
15 is shown in Figure 3. The bars of Figure 3 clearly show that
KSAP assigns no tasks to the 6 new developers plotted at the
right end of the graph. However, TAEN successfully allocates
the new developers based on their preference.

For better understanding the variability of task assignment,
standard deviation of the workloads is calculated. Standard
deviation of a dataset depicts the variability of the data from
their mean point. A lower value of this metric represents less
variability i.e. equal workload distribution among developers.
The average standard deviation of workloads assigned by
the two techniques are enlisted in Table VI. TAEN has a

Figure 3: Workload Distribution of KSAP and TAEN

lower standard deviation of 30.05 than KSAP (46.33). The
preference based inclusion of new developers in the assignment
process, enabled TAEN to achieve lower standard deviation.
This significant decrease in the value of standard deviation
represents higher consistency of resource utilization by TAEN.

TABLE VI. COMPARISON OF VARIABILITY IN WORKLOAD DISTRIBUTION

Approaches Average Standard Deviation
KSAP 46.33

TAEN 30.05

V. CONCLUSION

Team allocation is generally done from previous fixed
reports. Due to ignoring recent activities, these approaches
may allocate inactive fixers. Both previous reports and recent
commits do not contain any information regarding the newly
joined developers. Not considering new developers in the
final allocation leads to improper workload distribution. To
overcome these limitations, TAEN is proposed, which assigns
bugs to both existing and new developers combining the
expertise and recency information.

The Bug Solving Preference Elicitation step first deter-
mines new developer’s choice of fixing certain types of bugs,
and adds them to the group of developers of the chosen type.
The New Bug Report Processing step identifies the type of
the incoming reports to extract the corresponding grouped
developers. Next, the Developer Collaboration Extraction step
generates a heterogeneous network from the previous reports
to find the collaboration of the extracted developers over
the network. The Expertise and Recency Combination step
then assigns a TAEN score to each developer based on their
collaboration expertise and recency. After checking the severity
of incoming reports, the Team Allocation step allocates a fixer
team by using TAEN score and current workloads.

For performing a case study on Eclipse JDT, 2500 fixed and
676 open bug reports were collected. A test set of 250 fixed and
30 open bug reports were used for comparison with an existing
technique, KSAP. The result shows that TAEN improves recall
from 52.88 to 68.51, and achieves increased effectiveness by
identifying the correct bug fixer near position 1.98. The results
also depict a significant decrease of standard deviation from

101Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 110 / 128

46.33 to 30.05 which indicates equal workload distribution. In
future, bug reports which are not previously handled by any
developers should be observed to check TAEN’s performance.

ACKNOWLEDGMENT

This work is supported by the fellowship from ICT Divi-
sion, Bangladesh. No - 56.00.0000.028.33.065.16 (Part-1)-772
Date 21-06-2016.

REFERENCES

[1] S. Banitaan and M. Alenezi, “Tram: An approach for assigning bug
reports using their metadata,” in Proceedings of the 3rd International
Conference on Communications and Information Technology (ICCIT),
June 19–21, 2013, Beirut, Lebanon. IEEE, 2013, pp. 215–219,
URL: http://info.psu.edu.sa/psu/cis/malenezi/pdfs/TRAM.pdf [accessed:
2016-10-30].

[2] V. Dedík and B. Rossi, “Automated bug triaging in an industrial
context,” in Proceedings of the 42th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), August
31–September 2, 2016, Limassol, Cyprus. IEEE, 2016, pp. 363–367,
URL: https://www.researchgate.net/profile/Bruno_Rossi2/publication/
308417176_Automated_Bug_Triaging_in_an_Industrial_Context/links/
57e3e3df08ae8d5908c1617b.pdf [accessed: 2016-12-01].

[3] H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effective bug triage based on
historical bug-fix information,” in Proceedings of the 25th International
Symposium on Software Reliability Engineering (ISSRE), October 23–
26, 2014, Toulouse, France. IEEE, 2014, pp. 122–132, URL: https:
//hal.inria.fr/hal-01087444/document [accessed: 2016-05-20].

[4] O. Baysal, M. W. Godfrey, and R. Cohen, “A bug you like: A
framework for automated assignment of bugs,” in Proceedings of the
17th International Conference on Program Comprehension (ICPC),
May 17–19, 2009, British Columbia, Canada. IEEE, 2009, pp.
297–298, URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.143.7283&rep=rep1&type=pdf [accessed: 2016-10-29].

[5] A. Khatun and K. Sakib, “A bug assignment technique based on bug
fixing expertise and source commit recency of developers,” in Proceed-
ings of the 19th International Conference on Computer and Informa-
tion Technology (ICCIT), December 18–20, 2016, Dhaka, Bangladesh.
IEEE, 2016, pp. 592–597, URL: http://sci-hub.cc/10.1109/iccitechn.
2016.7860265 [accessed: 2017-03-05].

[6] W. Zhang, S. Wang, and Q. Wang, “Ksap: An approach to bug report
assignment using knn search and heterogeneous proximity,” Information
and Software Technology, vol. 70, pp. 68–84, 2016, ISSN: 0950-5849.

[7] “Afrina/TREN,” Jan. 2017, URL: https://github.com/Afrina/TREN/
blob/master/TeamAssignMSTestProject/Data/TeamData/bug_data_
2009_2015.xml [accessed: 2017-01-10].

[8] V. B. Sawant and N. V. Alone, “A survey on various techniques for bug
triage,” International Research Journal of Engineering and Technology,
vol. 2, pp. 917–920, 2015, ISSN: 2395-0056.

[9] R. V. Sangle and R. D. Gawali, “Auto bug triage a need of software
industry,” International Journal of Engineering Science, vol. 6, pp.
8668–8670, 2016, ISSN: 2321-3361.

[10] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?” in Proceedings of the 28th International
Conference on Software Maintenance (ICSM), September 23–30, 2012,
Trento, Italy. IEEE, 2012, pp. 451–460, URL: http://www.cs.wm.
edu/~mlinarev/pubs/ICSM’12-DevRecAuthorship.pdf [accessed: 2016-
10-20].

[11] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using a
vocabulary-based expertise model of developers,” in Proceedings of the
6th International Working Conference on Mining Software Repositories
(MSR), May 16-17, 2009, Vancouver, Canada. IEEE, 2009, pp. 131–
140, URL: http://flosshub.org/system/files/131AssigningBugReports.pdf
[accessed: 2016-02-26].

[12] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning and
multi-feature tossing graphs to improve bug triaging,” in Proceedings
of the 26th International Conference on Software Maintenance (ICSM),
September 12–18, 2010, Timisoara, Romania. IEEE, 2010, pp. 1–
10, URL: http://www.cs.ucr.edu/~pamelab/icsm10bhattacharya.pdf [ac-
cessed: 2016-02-26].

[13] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug
tossing graphs,” in Proceedings of the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering (ESEC/FSE), August 24–28,
2009, Amsterdam, Netherlands. ACM, 2009, pp. 111–120, URL: http://
143.89.40.4/~hunkim/images/6/65/Papers_jeong2009fse.pdf [accessed:
2016-05-30].

[14] L. Chen, X. Wang, and C. Liu, “An approach to improving bug
assignment with bug tossing graphs and bug similarities,” Journal of
Software, vol. 6, pp. 421–427, 2011, ISSN: 1796-217X.

[15] J.-W. Park, M.-W. Lee, J. Kim, S.-W. Hwang, and S. Kim, “Cost-aware
triage ranking algorithms for bug reporting systems,” Knowledge and
Information Systems, vol. 48, pp. 679âĂŞ–705, 2015, ISSN: 0219-3116.

[16] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “A time-based
approach to automatic bug report assignment,” Journal of Systems and
Software, vol. 102, pp. 109–122, 2015, ISSN: 0164-1212.

[17] “JDT Core Component - Eclipse,” Jan. 2017, URL: https://eclipse.org/
jdt/core/ [accessed: 2017-01-10].

102Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 111 / 128

Self-Governance Developer Framework

Mira Kajko-Mattsson

School of ICT

KTH Royal Institute of Technology

Stockholm, Sweden

email: mekm2@kth.se

Gudrun Jeppesen

Department of Computer and Systems Sciences

Stockholm University

Stockholm, Sweden

email: gudrunjep@telia.com

Abstract—Success of software developers should be

attributed to developers’ knowledge of what to do and their
discipline and trust to their self-organization. To achieve this,
the software community should provide appropriate process
frameworks recommending developers what needs to be done,
still however, allowing maximal freedom, flexibility and self-
discipline. The Self-Governance Software Developer (SGD)
Framework is the solution to this. In this paper, we suggest and
motivate the SGD Framework. We also benchamark it against
Personal Software Process (PSP). Our results show that SGD
has a higher coverage of the developer activities. Still, however,
it needs to be evaluated within the industrial context.

Keywords-personal software process; self-discipline; self-

organization; software development; software methods, process

models, coding, unit testing.

I. INTRODUCTION

Discipline and know-how takes many forms and
permeates almost every aspect of software development.
Disciplined and knowledgeable developers and/or teams
know what is expected from them in specific development
contexts. They know best what activities to choose and how
to organize their work for the success of their projects.
Undisciplined and/or less experienced developers/teams, on
the other hand, may not always know what to do and are not
always able to deliver quality code on time and within
budget.

Many sources tell software developers what to do. The
most common ones are various software development
methods [1]-[3][7]-[9][12][16], or guidance from managers
[4], or organizational in-house methods [2]. Irrespective of
whether they are waterfall, iterative or of any other nature,
most methods impose sets of development activities that are
not always applicable in all kinds of development contexts.
Also, managers and/or organizations impose specific
methods to developers which are not always explicitly stated
and/or well motivated. This may limit the freedom of
developers and make them into passive workers who conduct
tasks to which they are not always convinced [5]-[7][13][18].

There is a big difference between developers deciding
what to do and being told what to do. Making decisions on
your own implies freedom. Developers become more self-
driven, enthusiastic and motivated about their work
[3][6][12][14]. By learning on their own mistakes, they
become more experienced, and hopefully, more mature
software developers. The modern methods have recognized

this, and therefore, they have given more freedom to
developers by eliminating the rigidity of development
methods and by decreasing the authority of the managers.
The modern methods give more trust and freedom to
developers by allowing them to self-govern their own work,
learn from their own experience and mistakes, and take their
consequences [4][5][7][8][10][11].

Currently, the idea of self-governance is becoming more
and more omnipresent within software development.
Individual developers and/or teams are expected to exercise
most of their necessary functions without intervention from
others. This may work well, as long as developers and teams
know what to do in order to achieve the best possible results.
Unfortunately, there are not many process models providing
them with this type of knowledge.

Today, there are no standard process models specifying
complete lists of activities as required of software
developers. Regarding the current software engineering
literature, the lists of activities to be conducted by developers
are scattered across various books or articles. The most
relevant and all-inclusive sources are (1) Personal Software
Process (PSP) as written by Watts Humphrey [7] and (2) our
works on developer tests [8][9]. Usually, complete lists may
be found only in the industry.

Most of the companies provide some kind of support
telling developers what to do. This support is realized in
form of process models or methods. The level of formality
and rigidness of these models may vary from company to
company. Some provide developers with strict sequences of
activities which must be conducted step by step. Some others
give free hands to developers in deciding what to do. Here,
the choice of activities strongly depends on the developers,
their knowledge of software development process, maturity,
experience, and most importantly, their ability to self-govern
themselves.

Even if it is highly desired, self-governance does not
always function in many development contexts. There are
many reasons to this. Some of them are that developers may
not always be aware of what to do and when, or they may
not be disciplined enough, or due to various external forces,
they may be forced to choose the shortest, however, not
always the most optimal way of organizing and conducting
their own work.

Success of today’s developers should be attributed to
their knowledge, discipline and trust. To achieve it, the
software community should provide process frameworks

103Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 112 / 128

Figure 1. Structure of the Self-Governance Developer Framework

telling developers what needs to be done, still however,
giving them maximal freedom to organize their own work
[15][17][18]. The SGD Framework is the solution to this.

In this paper, we suggest and motivate the SGD
Framework. SGD is an extension of PSP [7]. To illustrate the
enhancements, we benchmark SGD against PSP [9]. The
remainder of this paper is as follows. Section II presents the
SGD Framework. Section III benchmarks the framework
against PSP. Finally, Section IV makes concluding remarks.

II. THE SGD FRAMEWORK

The SGD Framework provides generic activities that can
be selectively chosen by software developers or teams while
implementing software code and unit (developer) testing it.
The goal of SGD is to support developers in their daily work
by assisting them in self-managing, monitoring and
controlling their own assignments. The framework’s target
groups are software developers and teams whose main task is
to code, compile, unit test and integrate their own code units
before delivering them for integration and system testing. It
is an extension of Watts Humphrey’s PSP and of our former
work [7]-[9].

The SGD Framework is structured into two parts. As
shown in on the left-hand side of Fig. 1, these are (1) SGD
Process Model and (2) My SGD Process. The SGD Process
Model consists of (1) SGD Process Activity Categories, (2)
SGD Process Activities, and (3) SGD Process Guidelines.
This paper only focuses on (1) SGD Process Categories and
(2) SGD Process Activities. It excludes SGD Process
Guidelines.

A. SGD Process Model

The SGD Process Model consists of three main process

parts. These are (1) Pre-Work (2) Work, and (3) Post-Work.

The model’s activities cover a wide and all-inclusive

spectrum of activities that are relevant for conducting

implementation and unit (developer) testing. In actual

development endeavors, however, not all of the activities

need be conducted. In some contexts and/or programming

environments, only their subsets may be relevant. For this

reason, the SGD Process Model includes the SGD Process

Guidelines providing suggestions for what activities to

conduct, when and why.

As illustrated on the right-hand side of Fig. 1, the SGD

activities are grouped into nine categories that are

distributed across the three above-listed SGD process parts.

In the model, they are put in the part and category in which

they are contextually relevant. They are also listed in the

order that may correspond to a logical workflow. This may

make the model be understood as traditional and

heavyweight. However, the SGD Framework does not

impose any specific order of activities. The activities may

be conducted in any order and they may be included in any

process phase that suits the developers and their

environments. For simplicity reasons, however, they are

mentioned in the SGD Process Model part only once.

Developers are free to use them in the order that best suits

their requirements, needs, formality levels, development

approaches, contexts and specific working and/or

technological environments as long as their choice

contributes to product and process quality.

1) Pre-Work Activities: The SGD Process Model’s first

part, the Pre-work part, includes activities that need to be

conducted before starting the implementation work. The

Pre-Work activities are listed in Table I. They deal with

104Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 113 / 128

TABLE I. PRE-WORK ACTIVITIES (+ IMPLIES PRESENCE, –
 IMPLIES ABSENCE, P STANDS FOR PARTIALLLY)

identifying goals to be achieved, formulating strategies for

achieving the goals, arranging or creating ways for reaching

them, and with monitoring and controlling the

implementation and unit (developer) testing steps. They aid

developers in achieving an optimal balance between the

development requirements and the available resources.

The Pre-work part consists of Preliminary and Planning

Activities. They support developers in initiating their work

and in creating their own implementation and unit testing

personal plans. Although they are listed in the Pre-Work

category, they may very well be conducted both before and

during the actual implementation and testing work. This, of

course, depends on the development context at hand and the

needs that have arisen in that context.

a) Preliminary Activities: The Preliminary Activities

are to be conducted before starting the implementation and

unit (developer) testing work. They should be carried out

before the actual implementation work begins. They prepare

developers for performing high quality work. Here, the

concerns are making sure that methodologies, technologies,

standards, ways of working, commitments are understood

and are in place. The SGD Framework strongly

recommends that developers consider them before

launching their individual development endeavors. Their

non-performance may imply various risks that may

jeopardize development work and results.

To carry out their work in the best possible way,

developers should frequently learn or relearn the

organizational ways of working, revise and ensure

technologies and revise and understand standards that they

are going to use (see Activities PR-2 – PR-4 in Table I).

They must also pay attention to their past experiences in

order to be able to improve and determine their ways of

working (see Activity PR-5 in Table I). This is pivotal for

sustaining quality and technologically up-to-date and

standard-adhering work. If developers do not spend enough

time on these activities, they may run the risk of repeating

pitfalls of previous projects.

To find out about available resources and timescales for

their work, developers should review and agree on the

overall project plan in case of small projects or on parts of

the project plan in case of large projects (see Activity PR-1

in Table I). This will enable them to plan their own work so

that they can meet the stated requirements and customer

expectations. Finally, the SGD Framework recommends that

all developers sign their personal Service Level Agreements

(SLAs) – contracts in which they commit themselves to

conduct their work according to the agreed upon standards

and expectations (see Activity PR-6 in Table I).

b) Planning Activities: The Planning Activities aid in

formulating the initial and continuous development plans.

They deal with (1) reviewing the necessary documents,

(2) determining ways of conducting the work, and (3)

planning the work.

Developers should review the documents that provide

important input for understanding the scope of their work.

This includes reviewing of requirements and preparing

and/or reviewing of design specifications (see PL-1 –

PL-2 in Table I). In many cases, requirements and design

specifications may not be easy to understand. To free

themselves from any misunderstanding and/or confusion,

developers should resolve all kinds of unclear questions

and uncertainties (see PL-3 in Table I). In this way, they

make sure that they acquire a true picture of the user

requirements, that the design correctly reflects the

requirements, and that their plans are based on realistic

premises. Having understood the requirements and design

specifications aids developers in determining the limits and

approaches while planning their individual work.

The SGD Framework recommends that developers

determine implementation and unit (developer) testing goals

and strategies and practices that will guide them in their

planning (see PL-4 – PL-6 in Table I). Developers should

105Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 114 / 128

TABLE II. WORK ACTIVITIES (+ IMPLIES, – IMPLIES ABSENCE, I

MEANS IMPLICITLY, P STANDS FOR PARTIALLY)

then identify all kinds of standards that need be considered

during implementation, set deadlines that need be met,

estimate effort and resources and make their personal work

schedules (see PL-7 – P-10 in Table I).

After having created their individual plans, developers

evaluate them (see PL-11 in Table I), identify risks related

to the plans (see PL-12 in Table I) and plan for managing

the identified risks (see PL-13 in Table I). In this way, their

plans will achieve the right balance of scope, approaches,

resources and risks allowing developers to achieve their

goals in the best possible way.

2) The Work Activities: The SGD Process Model’s

second part, the Work Activities, includes activities required

for producing code and for assuring its quality. It consists of

five categories of activities: (1) Preparatory Activities,

(2) Coding Activities, (3) Testing Activities, (4) Evaluative

Activities, and (5) Debugging Activities. They are all listed

in Table II.

a) Preparatory Activities: The Preparatory Activities

include the activities needed for preparing the

implementation work. They help developers to become

ready for writing and unit (developer) testing code. The

activities deal with low-level designs, unit (developer) test

case designs, stubs and drivers, and unit (developer) testing

environment.

Before coding, developers should make the low-level

designs of the code they are going to write or, in cases when

someone else is responsible for making low-level designs,

they should review them. They should also make impact

analysis of the designs. The SGD Framework recommends

that developers prepare and/or review several design

solutions, analyze the impact of the solutions and select the

most appropriate solution for the work at hand (see P-1 and

P-2 in Table II). This will aid them in creating the best

possible solutions for the user requirements and the given

premises.

Developers should determine the types of unit

(developer) test cases and the order in which they should be

run. They should create or revise their own unit test case

bases and regression unit test case bases (see P-3 – P-5 in

Table II) and create or modify stubs and drivers, if

necessary (see P-6 in Table II). Finally, developers should

prepare or check their testing environments to enable

continuous and smooth testing without any technical

interruptions (see P-7 in Table II).

b) Coding Activities: The Coding Activities deal with

code production including writing or rewriting code and

compiling it. The SGD Framework recommends that code

be produced using the chosen low-level design. If code is

not based on any low-level design, then the risk is that it

may not meet the stated requirements. The coding activities

even include making personal notes on the compilation

errors and on the detected defects (see C-1 – C-4 in Table

II). This will help developers monitor their work, evaluate

the quality of their work and help them learn from their own

coding mistakes.

c) Unit Testing Activities: The Unit Testing Activities

aid in assuring that the code meets the stated quality goals.

They include (1) unit testing activities and (2) control of

unit test cases. The unit testing activities encompass

dynamic and static testing and the recording of the test

results (see T-4 – T-6 in Table II). The control of the unit

test cases, on the other hand, encompasses the review of the

unit test case bases with the purpose of checking whether

they still meet the given requirements and/or designs. Even

if developers have created or revised the unit test case bases

before starting coding, they should check them anew after

106Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 115 / 128

TABLE III. POST-WORK ACTIVITIES (+ IMPLIES PRESENCE, –
 IMPLIES ABSENCE, I MEANS IMPLICITLY, P STANDS FOR

PARTIALLY)

having implemented the code. If they find any problems in

them, then they should remedy them. It is only after coding

that developers may clearly see what changes need to be

done to the unit test case bases (see T-1 – T-3 in Table II).

d) Evaluative Activities: The Evaluative Activities deal

with the evaluation of unit (developer) testing results and

determination of the next step (see E-1 and E-2 in Table II).

They should be conducted right after the unit (developer)

testing activities and before starting the next series of

implementation and unit (developer) testing steps. In this

way, developers will make sure that they have chosen the

workflow that is appropriate for their work context at hand.

e) Debugging Activities: The Debugging Activities aid

developers in identifying the sources of the errors that have

been discovered during compilation and unit testing and in

suggesting solutions for eliminating them (see D-1 and D-2

in Table II). The errors are only symptoms of defects and

they may not always be visible. Therefore, it is important

that developers (1) debug code for the errors that are not

easy to interpret and (2) confirm their underlying defects

before deciding on how to attend to them. Otherwise, the

defects may reappear either in the same or some other

disguise.

3) The Post-Work Activities: The Process Model’s third

part, the Post-Work part, includes activities required for

finalizing the implementation and unit testing. They are

listed in Table III. Here, the SGD Framework suggests that

developers make a self-assessment of their own

development work before they deliver their code to

integration and system testing and that they sign-off their

personal SLAs. When assessing their development work,

developers should identify causes of their mistakes and

identify improvements that should help them avoid future

mistakes (see A-1 – A-3 in Table III). This will help

developers become more effective and efficient.

When signing off their personal SLAs, developers should

first check that their code fulfills the commitments that they

have agreed to before starting their work (see S-1 in Table

III). They should then deliver their code (see S-2 Table III)

and, finally, sign-off their assignments (see S-3 in Table

III). In this way, developers will make sure that they have

performed all the work stipulated in their personal SLAs.

B. My Process Part

My SGD Process corresponds to the actual developer
process as planned and conducted by individual developers
and/or teams. As shown in Fig. 1, it consists of three
essential activity spaces. Activity spaces are empty spaces
that are to be filled in by developers themselves with the
activities from the SGD Process Model.

Not all of the SDG process model activities may be
necessary to conduct in all development contexts. In some
contexts, only their subsets may be relevant. For this reason,
the SGD Framework only provides empty activity spaces
that are to be filled in by the developers with the activities
which they have selected by themselves. The selected
activities are the reflection of developer’s workflows that
have been conducted or are going to be conducted. Their
choice depends on the chosen strategies, methodologies and
individual developer or team preferences.

As shown in Fig. 1, the SGD Framework suggests three
main activity spaces. These are (1) My Pre-Work Space to
be filled in with the start-up activities, (2) My Work Space to
be filled in with the actual development and testing
activities, and (3) My Post-Work Space to be filled in with
concluding activities.

The My Pre-work activity space is to be filled in with the
activities that developers need for initiating and planning
their work. The activities to be used in this space are mainly
the activities from the SGD Pre-Work part including
Preliminary and Planning Activities (see Fig. 1).

The My Work activity space is to be filled in with the
activities that developers perform when implementing and
testing their code. The activities to be used in this space are
mainly the activities from the SGD Work part including
Preparatory Activities, Coding, Unit Testing, Evaluation
and Debugging (see Fig. 1). In addition to this, the My Work
space may include sets of activities from the SGD Pre-work
part that developers need for conducting their continuous
preparation and planning.

Finally, the My Post-Work activity space is to be filled
in with the activities that conclude the implementation and
unit testing work. The activities to be used in this space
mainly come from the SGD Post-Work part including
Self-Assessment and Delivery and Sign-Off Activities (see
Fig. 1). However, this space may also include the activities
from the Pre-Work and Work parts in cases when developers
have not fulfilled their SLA commitments and, thereby,
have to finalize their work before submitting their code for
system integration.

III. BENCHMARKING THE SGD FRAMEWORK

The SGD Framework was benchmarked against PSP [7].
While benchmarking, we simply checked whether PSP
included the SGD activities. The presence of the activities is
marked with a plus (+), the absence is marked with a minus

107Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 116 / 128

(–). Unclear cases, such as implicit or partial presence of the
activities, are marked with I standing for implicit and P
standing for partial implementation.

The benchmarking results are presented in Tables I-III.
As can be seen there, PSP does not fully cover any of the
SGD Framework categories. Below, we briefly comment on
the benchmarking results for each of the categories.

Regarding the Pre-Work activities, PSP has performed
poorly. It does not encourage developers to revise and
ensure that the technology to be used is tested and
understood (Activity PR-2 in Table I). Neither does it
suggest that developers learn or relearn the organizations’
implementation way of working (PR-4 in Table I). We
believe that these activities are pivotal for succeeding with
the implementation work. Both technology and ways of
working continuously evolve. Lack of knowledge about
them may lead to substantial productivity loss. Finally, PSP
is not clear about whether developers should review and
revise their own implementation ways of working (Activity
PR-6 in Table I). In our opinion, this is a severe omission
considering the fact that this activity is driving the whole
personal software process.

Regarding the Planning activities, PSP fails to suggest
that developers review the requirements for the units to be
developed (Activity PL-1 in Table I). This may lead to the
fact that developers may misunderstand the requirements
and develop things that have not been expected from them.
PSP also fails to suggest that developers identify risks
related to their own personal plans (Activity PL-12). Again,
this activity is one of the driving wheels of a disciplined
personal developer process.

PSP is not explicit enough about activities related to
determining implementation and testing strategies and
practices (Activity PL-5 and PL-6 in Table I) and in
reviewing the developer plan for assuring that the work is
realistic and achievable (PL-11 in Table I). We believe that
this activity is very important. Not considering it may lead
to failure of delivering code in time or it may result in never
delivering it due to the unrealistic personal plans.

Considering the Preparatory activities in the Work part,
PSP does not consider the fact that developers should make
an impact analysis of their low-level designs (Activity P-2
in Table II). Neither does it consider the fact that developers
should revise the existing regression test base (P-5 in Table
II) and that they should prepare and check whether the
testing environment is appropriate (P-7 in Table II).

PSP covers all the SGD coding activities with one
exception. It does not encourage developers to make notes
on their defects (Activity C-4 in Table II). We believe that
this activity is important from the perspective of individual
professional development. By remembering defects and
analysing their root causes, that is, mainly mistakes,
developers will improve their professional skills and
become better at developing software.

In addition to traditional testing activities, SGD includes
checks whether unit test bases and regression test bases
meet the given requirements and designs (T-1 – T-2 in
Table II). PSP does not consider these activities at all.
Neither does it assume that there may be requirement

problems in the regression test bases (T-3 in Table II).
Requirements may change with time and this should be
reflected in the regression test base. Lack of the activities T-
1 – T-3 may lead to the omission of testing important
requirements and late discovery of defects, either during
integration and system testing or even during operation.

Regarding the remaining Work activities, such as
Evaluative and Debugging activities, PSP has implemented
them all. PSP also implements all but one Post-Work
activity. The activity that it does not implement concerns
signing off SLAs (see Activity S-3 in Table III).

IV. FINAL REMARKS

Self-governance should bring value in form of improved
developer productivity and job satisfaction. Developers
should be able to decide upon what activities to choose based
on the value the activities bring. This has been recognized in
PSP as suggested by Watts Humphrey [7].

In this paper, we have suggested Self-Governance
Developer Framework outlining the activities aiding
developers and/or teams in designing their own personal
processes. SGD only provides a basic conceptual structure of
the activities and provides guidelines for performing them. It
does not provide any suggestion for any order among the
activities. Neither does it define inputs and outputs of the
activities. As a framework, it constitutes a platform for
creating developer process models, which in turn, are free to
define their own order, inputs and outputs, and provide
guidance in decision making.

The SGD Framework is a continuation and extension of
PSP [7] and of our earlier work on developer testing process
[8][9]. So far, it has only been evaluated against PSP. It has
not yet been evaluated against other standards and industrial
or academic models. Evaluation, however, is on its way.
Right now, we are conducting active research by studying
activities as conducted by software engineering students at
KTH Royal Institute of Technology [19][20]. We are also in
the process of evaluating the SGD with the industrial
software engineering professionals.

REFERENCES

[1] P. Abrahamssom and K. Kautz, “The Personal Software
Process: Experiences from Denmark,” Proc. Euromicro
Conference, IEEE, Sept. 2002, pp. 367-374, doi:
10.1109/EURMIC.2002.1046223.

[2] F. Abdolazimian and S. Mansouri, “Business Process
Reengineering by Rational Unified Process (RUP)
Methodology,”. World Applied Sciencies Journal 4, (Supple
2), IDOSI Publications, pp. 33-42, 2008.

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W.
Cunningham, F. Fowler, J. Grenning, J. Highsmith, A. Hunt,
R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, and
K. Schwaber, “Manifesto for Agile Software Development,”.
[Online]. Available from: http://agilemanifesto.org/,
2017.03.15.

[4] K. Culver-Lozo, “The Software Process from the Developer's
Perspective: A Case Study on Improving Process Usability,”
Proc. Ninth International Software Process Workshop, IEEE,
Oct. 1995, pp. 67-69, doi: 10.1109/ISPW.1994.512766.

108Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 117 / 128

[5] W. Hayes, “Using a Personal Software ProcessSM to improve
performance,” Proc. Fifth International Software Metrics
Symposium. Metrics, IEEE, pp. 61-71, 1998.

[6] A. Heravi, V. Coffey, and B. Trigunarsyah, “Evaluating the
level of stakeholder involvement during the project planning
processesss of building projects,” International Journal of
Project Management, ELSEVIER, vol. 33, pp. 985-997, 2015.

[7] W. S. Humphrey, Introduction to the Personal Software
Process, Addison-Wesley, 1997.

[8] G. Jeppesen, M. Kajko-Mattsson and J. Murphy, “Peeking
into Developers' Testing Process,” Proc. International
Conference on Computational Intelligence and Software
Engineering, IEEE, pp. 1-8, 2009. doi:
10.1109/CISE.2009.5366347.

 [9] M. Kajko-Mattsson and T. Bjornsson, ”Outlining Developers'
Testing ProcessModel,” Proc. 33rd EUROMICRO
Conference on Software Engineering and Advanced
Applications, IEEE, pp, 263-270, 2007, doi:
10.1109/EUROMICRO.2007.45.

[10] Z. Lasio, “Project portfolio management: An integrated
method for resource planning and scheduling to minimize
planning/scheduling-dependent expenses,” International
Journal of Project Management, ELSEVIER, vol. 28, pp. 609-
618, 2010.

[11] M. Lavallé and P. N. Robillard, ”The Impacts of Software
Process Improvement on Developers: A Systematic Review,”
Proc. 34th International Conference on Software Engineering,
pp. 113-122, 2012, doi: 10.1109/ICSE.2012.6227201.

[12] M. Maccoby, “Self-developers: why the new engineers
work,” IEEE Spectrum, IEEE, vol. 25, no. 2, pp. 50-53, 1996,
doi: 10.1109/6.4511.

[13] N. H. Madhavji, X. Zhong, and E.E. Emam, “Critical Factors
Affecting Personal Software Processes,” IEEE Software,
IEEE, vol. 17, no. 6, pp. 76-83, 2000, doi:
10.1109/52.895172.

[14] C. d. O. Melo, C. Santana, and F. Kon, “Developers
Motivation in Agile Teams,” Proc. 38th Euromicro
Conference on Software Engineering and Advanced
Applications, IEEE, pp. 376-383, 2012, doi:
10.1109/SEAA.2012.45.

[15] S. Priestley, Scientific Management in the 21th Century.
[Online]. Available from:
http://www.articlecity.com/articles/business_and_finance/arti
cle_4161.shtml, 2017.03.15.

[16] K. Schwaber and J. Sutherland, The Scrum Guide TM.
[Online]. Available from:
ttp://www.scrumguides.org/docs/scrumguide/v2016/2016-
Scrum-Guide-US.pdf#zoom=100, 2017.03.15.

[17] C. M. Thomas, “An Overview of the Current State of the
Test-First vs.Test-Last Debate,” Scholarly Horizons:
University of MinnesotaMorris Undergraduate Jounal, vol. 1,
iss. 2. [Online]. Available from:
http://digitalcommons.morris.umn.edu/cgi/viewcontent.cgi?ar
ticle=1015&context=horizons, 2017.03.15.

[18] S. Wambler, Choose the Right Software Method for the Job.
[Online]. Available from:
http://www.agiledata.org/essays/differentStrategies.html,
2017.03.15.

[19] University Degree Programme in Information and
Communication Technology (CINTE), KTH Royal Institute
of Technology in Sweden. [Online]. Available from:
https://www.kth.se/student/kurser/program/CINTE/HT13/kurs
lista?l=en, 2017.03.15.

[20] University Degree Program in Information and
Communication Technology (TCOMK), KTH Royal Institute
of Technology in Sweden. [Online]. Available from:
https://www.kth.se/student/kurser/program/TCOMK/HT14/ge
nomforande?l=en, 2017.03.15.

109Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 118 / 128

Security and Software Engineering: Analyzing Effort and Cost

Callum Brill, Aspen Olmsted

Department of Computer Science

College of Charleston, Charleston, SC 29401

Email: brillch@g.cofc.edu, olmsteda@cofc.edu

Abstract— There are many systems developed to model and

estimate the software development lifecycle of a product, such as

Constructive Cost Model (CoCoMo) II and SEER for Software

(SEER-SEM). As the demand for security in software engineering

rises, engineers are proposing changes to the development lifecycle

to better integrate security. These changes in the Software

Development Lifecycle (SDLC) come with the need for changes in

how we model the associated costs. Specifically, this paper analyzes

the costs of a Web Content Management System with regards to

security and proposes adjustments, based on lifecycle changes, to

the CoCoMo II cost model that would allow for security to be

better factored into project management.

Keywords- Software Engineering; Cyber Security.

I. INTRODUCTION

The cost of software development projects can be quite
difficult. The Software Development Lifecycle (SDLC), the
lifecycle software engineering project undergoes, consists of the
following stages [1]:

• Analysis–Developing the goals to be achieved by
the software and defining the scope of the software
with regards to those problems to ensure that the
project does not fall victim to scope creep.

• Requirements–Translating project goals into
concrete operations of the software.

• Design–Formulating detailed descriptions of the
previously defined operations, including but not
limited to the design of user interfaces, internal
logic decisions and modeling system interactions.

• Implementation–Encoding the agreed upon design
choices into a working software application.

• Testing–Evaluating the correctness of the
implementation to remove potential defects.

• Deployment–Deploying the tested implementation
into a production environment so that the software
may be consumed by end users.

• Maintenance–Resolving issues that arise during use
by consumers, ensuring that the software can
continue to be used and keeping the software from
becoming obsolete. This is typically the longest
stage and is an ongoing effort.

However, this lifecycle is becoming less appropriate for

representing software development, as security is becoming

more important. Many of the existing models to estimate cost

are based on this lifecycle, which means the need to update those

cost models rises along with the need to replace the SDLC with

a more secure process.

Another cost that models do not account for is Information

Technology (IT) and technical debt. IT debt is the idea that

systems can accrue liability over time, usually by having

maintenance operations postponed or added to an ever-growing

backlog; and if that liability is not recognized and dealt with, it

can grow exponentially [2]. Similarly, technical debt is the

liability that one assumes when producing software products and

deciding to produce code that may not necessarily be the most

optimal solution in the hopes that it will ease schedule pressure

[3]. In both cases, this liability may be reduced by devoting man-

hours to either, in the case of IT debt, performing maintenance

tasks from a back log or, in the case of technical debt,

refactoring, i.e. changing code without changing the external

functionality. With the potential to become wildly expensive, it

is important to incorporate the potential of these debts into cost

models.

Our paper examines the position of IT and technical debt in

the current software development lifecycle and cost models, as

well as changes to the SDLC, and proposes factors to better

estimate the amount of effort necessary to resolve these issues.

The organization of this paper is as follows. Section 2

describes related work and the limitations of current methods. In

Section 3, we give a motivating example from which we draw

our information. Section 4 describes our proposed changes to

current models and methodologies. Section 5 contains the

conclusion and possible future work using our models and the

field of secure software engineering.

II. RELATED WORK

A. Constructive Cost Model

There are multiple models used to estimate the cost of

developing software: The Constructive Cost Model (CoCoMo)

[4] and its offshoots, such as SEER for Software [5] (SEER-

SEM) and the numerous in-house models used by software

development firms. CoCoMo II, the model proposed by Boehm

et al. [4], is designed to consider a shift in development

paradigms away from waterfall development and towards

iterative patterns, such as agile and extreme programming.

CoCoMo II has various factors that determine cost, including a

reliability factor, however it has no factor indicative of security

development costs. Prior versions of CoCoMo had a factor

related to security; however, it was an effort modifier that dealt

with the development of classified software. The shift to cover

software built on off the shelf platforms [4] has resulted in the

removal of such security factors. The driving motivation in the

shift is the belief that the platform will be secure; therefore, any

110Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 119 / 128

software built upon it will be secure. Our paper suggests factors

to estimate the cost of developing software using a secure

process. Madachy has developed a Web application to using

CoCoMo II to be used to estimate costs [6].

B. Effort Cost And Reduction

Using the platform as a service (PaaS) model is a common

method of saving on costs as it removes the need for end-users

to develop from scratch. Olmsted et al. estimate the total cost of

an platform to be approximately 13 million dollars by using a

metric consisting of a measure of source lines of code (SLOC)

and a trace of code execution [7]. We use methodologies from

this analysis to estimate cost factors related to the security of

these platforms and the hypothetical cost to have been

developed using an alternate lifecycle.

C. Secure Sofware Development Lifecycle

There are many proposed enhancements for the Software

Development Lifecycle from many different sources. Microsoft

advocates a secure development lifecycle to complement the

security of their operating system. Microsoft’s proposed

Development lifecycle add several stages to the development

lifecycle, including [8]:

• Security Education and Awareness – Ensuring that
developers are educated on the ideals surrounding
security.

• Determining Project Security Needs – Analyzing if
the project has a crucial need to follow the Secure
Development Lifecycle

• Designing Best Practices – Fitting common best
practices to your project and determining new best
practices as necessary.

• Product Risk Assessment – Estimating the
appropriate amount of effort to create an
appropriate level of security.

• Risk Analysis – Analyzing possible threat vectors.

• Security and Best Practice Documentation and
Tooling – Creating tools and best practices which
can be easily followed by an end user to help
ensure the security of their environment.

• Secure Coding Policies – Following prescribed
methodologies in order to prevent poor
implementations of design e.g. avoiding certain
functions, leveraging compiler features, and using
the latest version of tools.

• Secure Testing Policies – Applying secure testing
policies in order to verify the security of you
application. This does not make the product secure,
only verifies that it is.

• Security Push – Pushing to ensure that any legacy
code that is used is secure.

• Security Audit – Determining if the product is
appropriately secure to ship to consumers.

• Security Response and Execution – The creation,
and execution if necessary, of plans with which to
respond to security breaches.

Some of these steps are relegated to technical debt and often
not handled at the appropriate points in development and cut

due to cost, especially in agile development and commercial off
the shelf products. With these steps in mind, our paper our
paper provides a factor to add to CoCoMo to estimate the cost
of integrating these procedures into a development lifecycle.

III. MOTIVATING EXAMPLE

 WordPress [9], Drupal [10], and Joomla! [11] are three of
the most widely used COTS Web platforms. These platforms
allow end-users to create Websites with significantly less effort
than creating their own Website; however, Websites running
these platforms are among some of the most exploited on the
internet due to the low barrier of entry. Our paper examines one
of these platforms, Drupal, in order to determine factors that
should be added to CoCoMo II in order to adequately cover the
costs of secure development.

According to work by Meike, Sametinger and Wiesaur,
Joomla and Drupal both have serious design flaws that place the
platforms at definite risk. Currently identified flaws include the
allowance of file uploads with unchecked contents, the
existence of HTTP headers that contained data capable of being
manipulated and escalations of privilege. These flaws in the
code exist because of flaws in the design process [12].

IV. CONTRIBUTION

We determined the factors to add to CoCoMo II through an

analysis of an unsecure, obsolete version of Drupal. This

analysis is an examination of the number of lines of source code

involved in flaws in the platform. We determine that that is the

cost of the flaw, valued in source lines of code (SLoC). We then

run a similar analysis on the latest version of Drupal. We then

compare those costs with the cost of the newest version and

compare vulnerabilities to determine if the design flaws still

exist. Here all costs are equivalent to the number of lines of

source code, so our calculation can give us a comparable

measure.

In Table 1, we have an explanation of several pain points and

security vulnerabilities in two common Web content

management systems Drupal and Joomla! in versions 5.2 and

1.0.13, respectively. In this table ✓indicates and issue that is not

present in the software, indicates an issue that is present in

the software and an ! indicates that the issue has been partially

resolved in the software. Using these unresolved and partial

resolved issues, we measured the number of lines of code per

function call, using a PHP module called xDebug.

Table 2 contains a list of flaws, the status of that flaw in

Drupal 5.2, the number of lines of source code necessary to

achieve the functionality present in Drupal 5.2, the status of the

flaw in Drupal 8.2.3, the number of lines necessary to achieve

the functionality in Drupal 8.2.3, and the technical debt balance.

In this table the technical debt balance is a value based on

whether or not the flaw had been resolved. Should the flaw have

been resolved, the SLoC from the obsolete version of Drupal is

subtracted from the SLoC of the later version of Drupal. Should

the flaw not have been resolved, the amount of technical debt is

represented by the SLoC of the current version of Drupal.

Examining the measurements, based on a measurement of

flaws present in Drupal version 5.2 and 8.2.3, in Table 2 we can

see that some of the more serious flaws that were present in 5.2

111Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 120 / 128

were resolved. These flaws allow authors or users who had

escalated their privileges to that of an administrator to post code

directly into Webpages. In our Drupal 5.2 test environment, we

executed code that showed the server information, but it would

be fully possible for a malicious user to deploy a Web shell

through these vulnerabilities. There is also a clear difference in

the overhead code between the two versions. For example,

during the installation the obsolete code required 638 lines of

code, while the modern version required 4616 to execute that

same function. It is clear, however, that even though some

issues are resolved there are several issues that remain and

would need to be resolved through the effort of the end user.
TABLE II ANALYSIS OF COST PER FLAW

Using the data gathered from our Drupal test environment,

we have developed two factors which increase the accuracy of

the CoCoMo cost Models to reflect the true costs of developing

secure software. The first factor, a multiplier of 3.47, is applied

to greenfield engineering projects to estimate the effort of

designing a project using a Secure Software Development

Lifecycle (SSDLC) rather than using the standard SDLC. This

value was calculated by comparing the SLoC of flaws which

had been resolved between versions of Drupal (8135 lines /

2343 lines).

The second factor, a multiplier of 1.607, should be used to

calculate the effort that will be needed to handle technical debt

when a software product has already been developed and the

development team did not use a SSDLC. This multiplier was

determined by comparing the technical debt balances of the

unresolved flaws with the technical debt balances of the

resolved flaws (9310 lines / 5792 lines).

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed an additional factor to
CoCoMo II. This was done by calculating and comparing the
cost of code in flawed portions of a Web platform and a less
secure, obsolete version of the same platform. We believe that
the use of these factors would accurately describe the amount
of additional effort necessary to integrate a SDLC as well as the
possible pitfalls that arise as technical debt.

Future works may include the analysis of several other off
the shelf Web content management systems, using the same
analytical method, to increase the size of the data set and
consequently the accuracy of the secure development factor or
the development of such a factor for other costing models.

REFERENCES

[1] I. Sommerville, Software Engineering, Harlow:

Addison-Wesley, 2001.

Security
Feature

Drupal
5.2 Status

Drupal
5.2

SLoC

Drupal
8.2.3

Status

Drupal
8.2.3

SLoC

Technical
Debt

Balance

Security

Hints
during

Installation

None 638 Hints

present

4616 3978

Installation
Security

Settings

None 638 None 4616 4616

Secure

Passwords

Not

Enforced

860 Not

Enforced

4694 4694

File

Content
Scan

Does not

scan file
contents.

798 Incorrect

file types
are

detected

1566 768

Administrat

ors

Can

Execute
PHP at

will

907 PHP not

Executed

1953 1046

TABLE I WCMS VULNERABILITIES [8]

112Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 121 / 128

[2] D. Britton, "Why IT Debt is Mounting," Micro Focus, 22

09 2014. [Online]. Available:

http://www.networkworld.com/article/2686761/it-

skills-training/why-it-debt-is-mounting.html. [Accessed

27 9 2016].

[3] P. Kruchten, R. L. Nord and O. Ipek, "Technical Debt:

From Metaphor to Theory and Practice.," IEEE

Software, vol. 29, no. 6, pp. 18-21, 2012.

[4] B. Boehm, B. Clark, E. Horowitz, C. Westland, R.

Madachy and R. Selby, "Cost Models for Future

Software Life Cycle Processes: COCOMO 2.0," Annals

of Software Engineering, vol. 1, no. 1, pp. 57-94, 1995.

[5] D. Galorath, Galorath, [Online]. Available:

http://galorath.com/products/software/SEER-Software-

Cost-Estimation. [Accessed 15 April 2017].

[6] R. Madachy, "CoCoMo II - Constructive Cost Model,"

[Online]. Available:

http://csse.usc.edu/tools/COCOMOII.php. [Accessed 27

9 2016].

[7] A. Olmsted and K. Fulford, "Platform As A Service

Effort Reduction," in Proceedings of The Eighth

International Conference on Cloud Computing, GRIDs,

and Virtualization (Cloud Computing 2017), Athens,

2017.

[8] M. Howard and S. Lipner, The security development

lifecycle, Redmond: Microsoft Press, 2006.

[9] Wordpress.org, [Online]. Available:

https://wordpress.org/. [Accessed 16 April 2017].

[10] Drupal, [Online]. Available: https://www.drupal.org/.

[Accessed 2017 16 April].

[11] "Joomla!," Open Source Matters, Inc., [Online].

Available: https://www.joomla.org/. [Accessed 2017 16

April].

[12] M. Meike, J. Sametinger and A. Wiesaur, "Security in

Open Source Web Content Management Systems,"

IEEE Security and Privacy, vol. 7, no. 4, pp. 44-51,

2009.

[13] A. Olmsted and K. Fulford, "Platform As A Service

Effort Reduction".

113Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 122 / 128

Improving a Travel Management Procedure: an
Italian Experience

Antonello Calabró∗, Eda Marchetti∗, Giorgio Oronzo Spagnolo∗

Pierangela Cempini†, Luca Mancini†, Serena Paoletti†

∗Software Engineering Area
†Administrative Staff

Institute of Information Science and Technologies“A. Faedo”
Italian National Research Council (CNR)

via G. Moruzzi, 1 - Pisa, Italy
Email: firstnames.lastname@isti.cnr.it

Abstract—Recently, a lot of attention has been dedicated by the
Public Administrations to reduce/optimize the costs of travel
management. Indeed, automatic support may increase the quality
of the proposed services, drastically decreasing the time required
for document production and validation, and promoting the
integration with different PA (Public Administration) systems
and services. However, due to the critical nature of the exchanged
data, the interaction with the customers (personnel and citizens),
the complexity of the considered procedures, the quality aspect
becomes a crucial point to be considered during the development
of automatic supports. In this paper, we focus on the quality
aspects of the PA travel management automation, and we present
the evaluation of a prototype implementation of a framework for
automating the travel management process adopted inside an
Italian PA. The experience highlighted important challenges in
the application of automatic facilities for the travel management
and nd allowed the detection of inconsistencies and improvements
of the process itself.

Keywords–usiness process; Monitoring; Adequacy Criteria;
Learning assessmentusiness process; Monitoring; Adequacy Cri-
teria; Learning assessmentB

I. INTRODUCTION

Automatic support is currently consolidated practices for
increasing the quality of services provided by administrations
and drastically decreasing the time required for documents
production and validation. In line with this policy, the Italian
Public Administrations (PAs) are currently moving towards
the “digital maturity”, i.e., massive adoption of Information
and Communication Technologies) facilities to increase the
quality and efficiency of their internal procedures, integrating
the different PA services and speeding up the overall PA
management [1]. However, due to the critical nature of the
exchanged data, the interaction with the customers (personnel
and citizens), the complexity of the considered procedures,
the quality aspect becomes a crucial point to be considered
during the development of automatic supports. In this paper
we focus on the PA travel management automation, which
has been recognized as one of the PA hot topics for cost
reduction, according to a recent research of the School of
Management in collaboration with AirPlus [2]. In particular,
this analysis evidenced that only one third of the considered
PAs has an accurate, organized, quality satisfactory travel man-
agement system. Most of the times, only a partial automation
is provided and the single employees are forced to organize
their travels with the help of on-line travel services.

The main issues of the existing facilities have been iden-
tified into the persistency of: an hard copy collection of
travel documentations; an inaccurate, incomplete or erroneous
collection of travel data; a manual checking and validation of
the produced travel documentation by the administrative per-
sonnel. A more satisfactory travel management system could,
on one hand drastically reduce the time and effort necessary
for the procedure completion, and from the hand, provide
optimized travel schedule, conventions with public transports
accommodations and digitalization of travel documentation. A
preliminary analysis of the impact of the adoption of proper
automatic support for the travel management on the PAs overall
costs can be summarized as:

• n evident increase of the quality of the filled modules
due to the reduction in the number of errors and
inconsistencies inside them;

• an accurate collection and cataloguing of data, avoid-
ing loss of documentations;

• a reduction of the time required for checking and
validating the different costs and expenses;

• automatic and periodic statistical travel reports use-
ful for the stipulation of conventions with travel or
accommodation companies;

• an accurate and more organized annual budget analysis
useful for a faithful schedule and planning of PA costs;

• an integration with the different PA systems and
services, with an important decrease in the cost and
effort necessary by the administrative staff to process
the documentation, record travel data information and
complete the overall travel refund.

On the basis of the above considerations, and continuing
a preliminary work presented in [3], this paper presents the
procedural steps followed from requirements elicitation to
the definition of a specific quality model and the relative
customized software measurement plans for its internal travel
management system of an Italian PA: the Institute of Informa-
tion Science and Technologies “A. Faedo” (ISTI) of the Italian
National Research Council (CNR) in Pisa 1. In collaboration
with the administrative staff of such institute, we analyzed
the possible quality improvements starting from three points

1http://www.isti.cnr.it/

114Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 123 / 128

of view: the technical position, related to the quality of the
systems itself; the view of the user, which is more related
to the usability experienced and the quality level obtained in
the fulfilment of his/her tasks; and finally, the view of the
PA personnel, which is interested in the maximization of the
revenues in management.

Thanks to our previous experience in different context
domains, [3], [4], [5], [6], [7], we followed a storytelling ap-
proach [8] [9] to collect through interviews the most important
requirements, quality attributes, interesting behaviors and crit-
ical activities of the travel management process. Then, using
the basic guidelines of the Business Process Management [10],
we developed a Business Process Model (BPM) representing
the steps that have to be performed by the different participants
(people, teams distributed organizations or systems) during the
execution of the travel management process. This approach
allowed us to focus on important quality aspects and an easy
model for the travel refund process. Concise definitions have
been used both during discussions with the ISTI administration
and for the preliminary validation of the executable framework,
called COSO (COmpilazione miSsiOni) [11], implementing
the process itself. n particular, to simplify the quality attributes
measurement, track activities evolution and the information
exchange, monitoring capabilities have also been included in
the developed framework.

Recently BPM modeling has been adopted in many sectors,
such as financial services, business services and construc-
tion, manufacturing, public sector and healthcare, retail and
wholesale, and telecommunications. Especially in the public
administration, many governments are taking advantage of the
multiple benefit that BPM software solutions offer [12]. There
are various examples of successful BPM adoption in public ad-
ministrations like for instance those experienced in Germany,
Switzerland, Austria [13] and Sweden [14]. In particular, the
authors in [15] describe the BPM System for benchmarking,
monitoring, simulation and redesigning processes, that will
be deployed into the Greek government agencies. However,
despite the importance of the topic, there is very little attention
paid on the definition of precise quality aspects useful both for
guiding the development and subsequent assessment of such
system.

The experience of this paper highlighted that the identifi-
cation of the proper quality attributes, as well as the BPM ele-
ments can be a key factor for the final results. It also revealed
important challenges in the application of automatic facilities
for the travel management in a specific PA context and and
revealed the detection of inconsistencies and improvements of
the process itself.

Summarizing, the contribution of this paper is: the BPM
modeling of the natural language rules of the CNR manual for
travel management process, the definition of a quality model
focused on productivity, efficient time management, usability
and performance aspects, and the feedbacks and results of the
preliminary assessment of the COSO framework.

In the rest of the paper, some background concepts are
presented in Section II, while in Section III, the procedure
followed for deriving BPM is presented. The set of quality
attributes used for the COSO assessment is schematized in
Section IV, while the main COSO components are introduced
in Section V. Preliminary assessment results are collected in

Section VI and discussion and conclusions follow in Section
VII.

II. BACKGROUND

In this section, we briefly provide some details about the
CNR travel management procedure. The formalism chosen to
represent this procedure is the Business Process Model and
Notation (BPMN) [16], which is the de facto standard for
process modeling. It is indeed a rich and expressive but also
complex language to be used for the tasks associated with
process modeling [17]. Usually, the BPMN refers to any struc-
tured collection of related activities or tasks that are carried
out to accomplish the intended objectives of an organization.
Tasks within a business process may represent steps that can
be performed manually by a human or automatically by an IT
system [18].

As any other PA, ISTI and more in general the CNR, has
a well-defined collection of travel policies and procedures.
According to CNR rules, the travel expenses have to be
previously authorized using a specific authorization module.
Once travel has been completed, the expenses have to be
reported into a specific refund module, supported by appropri-
ate documentation and legitimated by the administrative staff.
Variations from the established policies represent exceptional
cases and have to be approved by the authorized department
approver (Director). One of the main traveler’s responsibility
is to be familiar with, and strictly follow, the policies and
procedures specified in the manual. It is out of the scope of
this paper to provide a detailed rules list; in the following we
only mention the most important ones. Additional information
regarding travel authorization, reimbursement process as well
as accounting practices and procedures is available in [19].

Authorization: The travel should be authorized by the
Director, and an authorization module should be produced
at least five working days before departure. Travelers should
provide their personal details, the motivation of the travel, the
location, and an estimated amount of the total travel cost.

Transportation: Class depends on the category of travelers
and varies from national to international transportation.

Accommodation: Type of allowed accommodation depends
on the category of travelers.

Reimbursing Travel Related Expenses: Rules vary in case
of national or international travels an reported through specific
module.

Meal expenses: Only two meals are allowed and the total
meal expenses for day are limited by specific boundaries.

Documentation: Original receipts for all expenses must be
submitted to administrative staff and PDF copy provided.

Mileage Reimbursement Rate: Reimbursements for mileage
are made following specific mileage reimbursement rate in
effect at the time of the trip.

Reimbursable Expenses: Reimbursable travel expenses also
include: airline baggage fees, automobile rentals and meeting/-
conference fees.

However, the Italian legislation about PA travel man-
agement is continuously modifying and due to its natural
language specification, it often rises misunderstandings and
misinterpretations. Being informed and knowledgeable about
the travelers management evolution is one of the most difficult

115Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 124 / 128

points for the travelers. Therefore, the documentation provided
both for travel authorization and travel refund are often full of
errors and inconsistencies.

III. MODEL CREATION

In this section, we briefly present the method used require-
ment elicitation. The requirements have been then translated
into the Business Process Models of the ISTI travel manage-
ment process, called ISTI Travel Model (ITM). In order to
develop the ITM, we followed a storytelling methodology [8],
[9]. Therefore, through interviews with ISTI personnel and
domain experts, we collected the most interesting behaviors
and critical activities of the travel management process.

The method is summarized in Figure 1, where three main
stakeholders are: the Tellers, who are asked to describe their
activities explicitly through stories; the Facilitators, who pro-
vide support to story tellers for producing coherent stories
and to modelers for the definition of the first abstraction of
the models; Modelers, who are the process analysts defining
the graphical models on the bases of information collected
from the tellers and facilitators. Following the storytelling
methodology three specific phases, each one involving all the
roles, have been executed as briefly described in the rest of
this section.

BPM
Experts

Institute
Employees

ISTI Travel Model

Travel
Docs

Facilitators
I Phase

collect stories about Refund Travel

III Phase
build workflow rapresentation

II Phase
discuss and create abstraction

Law

Travel
Operational
Manual

Administrative
Staff

Modelers Tellers

Figure 1. Methodology to create the model

At the end of the three phases of the storytelling methodol-
ogy, we have produced one high-level model that describes the
main process of the ITM and sixteen lower level models that
describe in details the sub-processes. For simplicity, we report
in Figure 2 just the high-level model of the ITM concerning
reimbursement of travel related expense.

As in the Figure 2, the actors interact with the COSO
framework according to the following procedure: (1) The
employee authenticates himself/hersef though COSO and starts
a request of travel refund expenses; (2) Using an Identity
Provider (IdP is responsible for providing identifiers for users
looking to interact with a system) COSO identifies the users;
(3) GEKO [20], the ISTI internal Internet service managing
administrative projects funding, sends to COSO the data
related to the selected travel; (4) the employee fills/uploads
and accepts travel data and documents. The COSO framework
aids the employee in the module completion implementing the

rules and policies of the CNR travel management procedure
concerning the accomodations, transportation, meal expenses;
(5) Finally, the refund request is printed and sent to the SIGLA
framework [21], which is the official CNR system for the
management of the accounting and financial reporting.

IV. QUALITY ASPECTS

Nowadays, modern societies and administrations take more
and more in consideration quality aspects of their business
process and try to improve them by the adoption of automatic
support. The International Organization for Standardization
(ISO) in its definition for quality, namely “(the) degree to
which an inherent characteristic (a distinguishing feature)
fulfils requirements (a need or expectation that is stated,
generally implied or obligatory)” [22]. Thus, an important
aspect becomes the possibility of evaluating both the user
satisfaction and the quality of the proposed service in terms
of parameters that can be obtained by directly measuring the
business process. Considering in particular the PAs business
processes, they involve several collaborative activities shared
among different, possibly many, offices, personnel, companies.
Moreover, the introduction of laws/regulations concerning the
improvement of automatic documentations management as
well as the necessity of costs reduction provide new challenges
for the enactment and automation of PA business process such
as productivity, timeless, and usability and performance.

In this section, considering the specificity of the ISTI travel
business management, the information collected in the phase
2 of the storytelling methodology (see Section III), and the set
of attributes expressed in the ISO/IEC 25010 standard [23],
a customized set of quality attributes has been selected and
adapted for assessing the COSO framework.

In the following subsections, the quality model is briefly
presented considering the attributes divided into five target
perspectives: business, security, performance, configuration
and enhancement.

1) Business Perspective: The attributes considered accord-
ing to the business perspective are:

Suitability: Degree to which the system provides a set of
functions that meet the ISTI personnel requirements (both from
administrative and user perspective). It is measured in the
number of requirements implemented into the specifications.

Accessibility: Degree to which the system can be used by
people with the widest range of characteristics and capabilities
to achieve a specified goal in a specified context of use.
Two measures are associated to this attribute: the number
of functions a user with a physical handicap can access; the
number of different categories of ISTI personnel mapped into
the system.

Learnability: Degree to which the system can be used by
the ISTI personnel to learn the rules of the CNR travel manage-
ment procedure. It is measured in terms of the completeness
of user documentation and /or help facilities.

User error protection: Degree to which the system protects
users against making errors. It is measured in terms of the
number of rules of the CNR travel management procedure
implemented in the system.

Adaptability: Degree to which the system can effectively
and efficiently be adapted to different or evolving rules of

116Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 125 / 128

Figure 2. COSO high-level Model

CNR travel management procedure. It is measured in terms of
number of implemented rules per functionality in the system.

Modularity: Degree to which new features or customization
can be added to the system. It is measured in terms of the
average number of dependencies between system components.

2) Security Perspective: The attributes considered accord-
ing to the security perspective are related to the degree to
which the system protects travel information. Therefore, the
ISTI personnel or other interacting systems should have the
degree of data access appropriate to their types and levels of
authorization. It is evaluated in terms of:

Confidentiality: The system ensures that data are accessible
only by the ISTI authorized personnel. It is evaluated in terms
of the possibility to control system accesses.

Integrity: The system prevents unauthorized access or mod-
ifications. It is measured in terms of the possibility to avoid
data corruption.

Non-repudiation: Degree to which actions or events can
be proven to have taken place. It is measured in terms of the
possibility to use digital signature.

Accountability: Degree to which the actions of an entity
can be traced. It is measured in terms of the possibility to use
audit trail.

Authenticity: The system can prove the identity of a subject
or resource. It is measured in terms of the use of the possibility
to authenticate the identity of a subject or resource.

3) Performance Perspective: The attributes considered ac-
cording to the performance perspective are related to the
resources and the behaviour of the system. In particular, the
considered attributes are:

Time behaviour: Time necessary to compile the modules
for the travel authorization or refund. It is measured in terms
of the mean time necessary for a module completion.

Capacity: Maximum amount of simultaneous accesses to
the system. It is measured in terms of how many online
requests can be processed per unit of time.

4) Configuration Perspective: The attributes considered
according to the configuration perspective are related to the
structure of the system. In particular, the considered attributes
are:

Compatibility: Degree to which the system can exchange
its results with other available systems or components. It is
evaluated in terms of how flexible is the system in data sharing.

Interoperability: Degree to which the system can use (or
produce) information from (for) other systems. It is evaluated
in terms of supported data exchanged format.

5) Enhancement Perspective: Additional quality attributes,
not included in the considered standard, have been defined for
the framework assessment. In particular:

Traceability: Degree to which the system can keep track of
a given set or type of information to a given degree. Specif-
ically the system should log and trace activities execution
according to user defined specific rules. It is measured in terms
of number of tracking and storage facilities included into the
system.

Customizable data collection: Degree to which the system
can provide statistical analysis on the basis of travel data
collection. It is measured in terms of the number of user
defined statistical analysis the system can produce.

V. FRAMEWORK

For completeness, in this section we provide a short de-
scription of the automation of the CNR travel management
procedure, thought the COSO framework, is provided. More
details can be found in [3]. As described shown in Figure
3, the framework collaborates with the three main software
products of ISTI that are SIGLA [21], for the management
of the accounting and financial reporting, GEKO [20] for
the management of funding and Identity Provider to manage
authentication. However, during the development and vali-
dation stages, the prototype has been forced to work as a
stand-alone framework. In Figure 4, additional architecture
details of the COSO component are shown. To improve the

117Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 126 / 128

Employees

Refund
Travel Report

Existing IT System

G.E.K.O S.I.G.L.A.

t
Identity
Provider

Process Analytical
Reporting

BPM System Co.So.

Process Engine

Process Monitoring and
Exception Handling

Process
Data

Figure 3. Overview of the high level architecture

Figure 4. Overview of the architecture

adaptability, modularity and learnability of the proposal, five
main components have been identified:

• the editor: it provides facilities both for creating
and modifying the models representing the business
process.

• the front-end: it is composed of several web-forms
and help facilities. It provides both documentations
and suggestions to the user and contributes to decrease
the number of errors in module fulfilling.

• the monitoring: it keeps track of models execution
and collects specific travel data useful for statistical
analysis.

• the message broker: it deals with the communication
between different components.

• the BPM engine: it executes the BP model relative
the CNR travel management process.

VI. ASSESSMENT

According to the quality attributes defined in Section IV,
the following sections recap how and where these attributes
have been addressed. For the assessment, the specification de-
scribed in section III and its current prototype implementation
into the COSO framework [11] have been considered.

A. Business Perspective Assessment
Suitability: During the three phases of the storytelling

methodology a set of functional and non functional require-
ments has been collected. In the model creation, these require-
ments have been mapped and realized into one or more activ-
ities or tasks of the BP model. Consequently, all the identified
requirements have been implemented into the specifications.

Accessibility: The current implementation of COSO pro-
totype provided a set of facilities specifically designed for
administrative and research staff. Additional categories of ISTI
personnel, such as external or associated staff, have still to be
included in the implementation. The percentage of different
categories of ISTI personnel mapped into the system is cur-
rently around 70%. Specific facilities for users with physical
handicaps are currently under development and, therefore, this
measure was not evaluated.

Learnability: A set of user documentation and help facil-
ities has been defined in collaboration with Administrative
Staff to make easier the learning of the rules of the CNR
travel management procedure. In particular, for each of the
activities and tasks of the derived BP model the front end of
COSO framework provides a help menu reporting meaningful
example, rules description and specific constraints.

User error protection: The BP model implements all the
rules and policies defined in CNR travel management pro-
cedure [19]. Moreover, the front-end application of COSO
framework has been developed to prevent rules violation or
common users mistake.

Adaptability: During the BP model derivation, the process
has been stiletted into more sub-processes, each one associated
to a (or a restricted group of) requirement(s) so to simplify the
maintenance or upgrading of the the framework. Moreover, the
editor associated to the COSO framework allows to update the
models in case of new requirements or rules.

Modularity: The development of the COSO framework fol-
lowed the Model-View-Controller paradigm. The stand alone
components as well as the use of messages paradigm and
REST invocations guarantee the independency between system
components.

B. Security Perspective Assessment
The attributes related to the security perspective, i.e confi-

dentiality, integrity, non-repudiation, authenticity, are covered
by the ISTI authentication system, and ISTI intranet in gen-
eral, on which the users must authenticate themselves before.
In particular, ISTI implements the authentication procedures,
policies and the architecture required by the GARR consortium
(Rete italiana dell’istruzione e della ricerca - Italian network
for the research and instruction) [24], which is the top Italian
Guarantor for the research networks, in order to protect data
from any intruders. Moreover, to better focus on these quality
aspects, as depicted in Figure 2, in the BP model a specific
task has been entirely dedicated to the security aspects.

C. Performance Perspective Assessment
Time behaviour: We are currently collecting data for the

complete evaluation of this attribute. However, the introduction
of an automatic framework provided a drastic reduction in
the time required for checking and validating the different
costs and expenses. Before the introduction of the COSO
framework the process was manually completed. Preliminary
results evidenced that the time behaviour can be reduced to
one third of the mean time required for a completion of
a travel authorization and refund (currently estimated into
3 and 1.5 hours respectively). Moreover, the possibility of
simultaneous accesses of from different users reduced the
interactions and communications between the ISTI personnel
and the Administrative staff.

118Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

 127 / 128

Capacity: We do not have a statistical significant number or
data to estimate this attribute. However, considering that inside
ISTI the average number of travel authorizations and refunds
per years is around 1500 this can represent a considerable
budget and effort reduction for the overall institute.

D. Configuration Perspective Assessment

From the configuration perspective, the automatic frame-
work provides the integration with GEKO, the ISTI internal
internet service managing administrative projects funding, and
SIGLA, the official CNR system for the management of the
accounting and financial reporting. This decreases considerably
the cost and effort necessary by the administrative staff to
process the documentation, exchange personnel information
and modules, record travel data, and complete the overall travel
refund.

Finally, considering the enhancement perspective the mon-
itoring component included in the framework, allows to log,
trace and store activities execution according to specific rules
defined in collaboration with ISTI administrative staff. The
purpose is to improve costs management and predictions;
establish a better distribution of ISTI budget and possibly
establish specific (accommodation/transportation) conventions.
In addition, monitoring component includes the possibility to
defined customizable rules and store the relative data so to
improve user defined statistical analysis. This guarantees a
satisfied level of the enhancement quality attribute implemen-
tation.

VII. DISCUSSION AND CONCLUSION

This paper presented the procedure adopted for the BPM
modeling of the natural language rules of the ISTI-CNR travel
management manual and the definition of a quality model
useful for the development and assessment of its automatic
implementation. Preliminary feedbacks and results have been
collected during the evaluation of the COSO framework. The
lessons learned by this experience are: the model must be
flexible enough to accommodate modifications and situations
that are not explicitly described by the regulations; the model
must be simple and intuitive to make easier its understanding;
quality aspects are difficult to be defined and formalized by
not software engineering expert and many times a mediator
is necessary. As a future work, we will continue the COSO
implementation and the collection of assessment results.

ACKNOWLEDGMENTS

The authors would like to thank Claudio Montani, Director
of the ISTI-CNR in Pisa, for his hints, incitements and useful
discussions.

REFERENCES

[1] Italian Parlament, “Codice dell’amministrazione digitale,” http://www.
parlamento.it/parlam/leggi/deleghe/05082dl.htm, [retrieved: Feb-2017].

[2] AirPlus, “Il Travel Management nella Pubblica Amministrazione,”
https://www.airplus.com/it/it/news_153185_172508/, [retrieved: Feb-
2017].

[3] G. O. Spagnolo, E. Marchetti, A. Coco, P. Scarpellini, A. Querci,
F. Fabbrini, and S. Gnesi, “An experience on applying process mining
techniques to the tuscan port community system,” in Software Quality
Day 2016, 2016, pp. 49 – 60.

[4] A. Calabró, F. Lonetti, and E. Marchetti, “Monitoring of business
process execution based on performance indicators,” in The Euromicro
Conference series on Software Engineering and Advanced Applications
(SEAA), 2015, pp. 255–258.

[5] A. Calabrò, F. Lonetti, and E. Marchetti, “KPI Evaluation of the
Business Process Execution through Event Monitoring Activity,” in ES,
2015, pp. 169–176.

[6] S. Zribi, A. Calabrò, F. Lonetti, E. Marchetti, T. Jorquera, and J.-P.
Lorré, “Design of a simulation framework for model-based learning,” in
Proceedings of International Conference on Model-Driven Engineering
and Software Development, 2016, pp. 631–639.

[7] G. O. Spagnolo, E. Marchetti, A. Coco, and S. Gnesi,
“Modelling and validating an import/export shipping process,”
ERCIM News, vol. 2016, no. 105, 2016, [retrieved: Feb-
2017]. [Online]. Available: http://ercim-news.ercim.eu/en105/special/
modelling-and-validating-an-import-export-shipping-process

[8] F. M. Santoro, M. R. S. Borges, and J. A. Pino, “Acquiring knowledge
on business processes from stakeholders’ stories,” Advanced Engineer-
ing Informatics, vol. 24, no. 2, 2010.

[9] J. C. de A. R. Gonçalves, F. M. Santoro, and F. A. Baião, “Business
process mining from group stories,” in CSCWD, 2009, pp. 161–166.

[10] J. Jeston and J. Nelis, Business process management. Routledge, 2014.
[11] A. Calabró, E. Marchetti, G. O. Spagnolo, P. Cempini, L. Mancini,

and S. Paoletti, Towards the Automation of the Travel Management
Procedure of an Italian Public Administration. Springer International
Publishing, LNBIP 269, 2016, pp. 175–187.

[12] N. Zhang and X. Hou, “Government Process Management under
electronic government and its application,” in E-Business and E-
Government (ICEE), 2011 International Conference on, 2011, pp. 1–4.

[13] N. Ahrend, K. Walser, and H. Leopold, “Case Study of the Imple-
mentation of Business Process Management in Public Administration
in Germany, Switzerland and Austria,” in ECEG2013-13th European
Conference on eGovernment: ECEG 2013. Academic Conferences
Limited, 2013, p. 11.

[14] P. Wohed, D. Truffet, and G. Juell-Skielse, Business Process Manage-
ment for Open E-Services in Local Government Experience Report.
Springer Berlin Heidelberg, 2011, pp. 1–15.

[15] S. Gayialis, G. Papadopoulos, S. Ponis, P. Vassilakopoulou, and I. Tat-
siopoulos, “Integrating process modeling and simulation with bench-
marking using a business process management system for local gov-
ernment,” International Journal of Computer Theory and Engineering,
vol. 8, no. 6, 2016, p. 482.

[16] OMG, “Business Process Model and Notation (BPMN),” 2011, 20th
ed.: Object Management Group.

[17] J. Recker, “Opportunities and constraints: the current struggle with
BPMN,” Business Proc. Manag. Journal, vol. 16-1, 2010, pp. 181–201.

[18] C. Gerth, Business Process Models. Change Management, ser. Lecture
Notes in Computer Science. Springer, 2013, vol. 7849. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-38604-6

[19] Roberto Tatarelli and Fabiana Carinici, “Le spese di trasferta - criteri
e modalitá di corresponsione del trattamenti di missione e dei rimborsi
spese,” http://www.urp.cnr.it/documenti/c14-015-a.pdf, [retrieved: Feb-
2017].

[20] Institute of Information Science and Technologies (ISTI), “Gestione
Commesse,” http://geko.isti.cnr.it:8180/CNR/, [retrieved: Feb-2017].

[21] Italian National Research Council (CNR), “Sistema Informativo Ges-
tione Linee di Attivita,” http://contab.cnr.it/portale/, [retrieved: Feb-
2017].

[22] International Organization for Standardization, “Quality manage-
ment principles,” http://www.iso.org/iso/pub100080.pdf, [retrieved:
Feb-2017].

[23] International Organization for Standardization, “Systems and software
Quality Requirements and Evaluation (SQuaRE),” http://www.iso.org/
iso/catalogue_detail.htm?csnumber=35733, [Online; accessed 19-Feb-
2017].

[24] Gruppo per l’Armonizzazione delle Reti della Ricerca (GARR),
“Acceptable Use Policy,” http://www.garr.it/it/documenti/
2133-acceptable-use-policy-eng-version, 2016, [retrieved: Feb-2017].

119Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Powered by TCPDF (www.tcpdf.org)

 128 / 128

http://www.tcpdf.org

