
SOFTENG 2020

The Sixth International Conference on Advances and Trends in Software

Engineering

ISBN: 978-1-61208-776-4

February 23 - 27, 2020

Lisbon, Portugal

SOFTENG 2020 Editors

Bernard Stepien, University of Ottawa, Canada

 1 / 35

SOFTENG 2020

Forward

The Sixth International Conference on Advances and Trends in Software Engineering (SOFTENG
2020), held between February 23-27, 2020 in Lisbon, Portugal, continued a series of events focusing on
the challenging aspects for software development and deployment, across the whole life-cycle.

Software engineering exhibits challenging dimensions in the light of new applications, devices and
services. Mobility, user-centric development, smart-devices, e-services, ambient environments, e-health
and wearable/implantable devices pose specific challenges for specifying software requirements and
developing reliable and safe software. Specific software interfaces, agile organization and software
dependability require particular approaches for software security, maintainability, and sustainability.

We welcomed academic, research and industry contributions. The conference had the following
tracks:

 Challenges for dedicated software, platforms, and tools

 Software testing and validation

 Software requirements

 Maintenance and life-cycle management
We take here the opportunity to warmly thank all the members of the SOFTENG 2020 technical

program committee, as well as all the reviewers. The creation of such a high quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to SOFTENG 2020. We truly believe that, thanks to
all these efforts, the final conference program consisted of top quality contributions.

We also thank the members of the SOFTENG 2020 organizing committee for their help in handling
the logistics and for their work that made this professional meeting a success.

We hope that SOFTENG 2020 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the field of software
engineering. We also hope that Lisbon, Portugal provided a pleasant environment during the conference
and everyone saved some time to enjoy the historic charm of the city.

SOFTENG 2020 Chairs

SOFTENG Steering Committee
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Yoshihisa Udagawa, Tokyo Polytechnic University, Japan
Ulrike Hammerschall, University of Applied Sciences Munich, Germany

SOFTENG Industry/Research Advisory Committee
Philipp Helle, Airbus Group Innovations - Hamburg, Germany
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Michael Perscheid, Innovation Center Network, SAP, Germany
Janne Järvinen, F-Secure Corporation, Finland
Paolo Maresca, VERISIGN, Switzerland
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea

 2 / 35

SOFTENG 2019 Special Tracks Chair
Raquel Lacuesta, University of Zaragoza, Spain

 3 / 35

SOFTENG 2020

Committee

SOFTENG Steering Committee

Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Yoshihisa Udagawa, Tokyo Polytechnic University, Japan
Ulrike Hammerschall, University of Applied Sciences Munich, Germany

SOFTENG Industry/Research Advisory Committee

Philipp Helle, Airbus Group Innovations - Hamburg, Germany
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Michael Perscheid, Innovation Center Network, SAP, Germany
Janne Järvinen, F-Secure Corporation, Finland
Paolo Maresca, VERISIGN, Switzerland
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea

SOFTENG 2020 Technical Program Committee

Khelil Abdelmajid, Landshut University of Applied Sciences, Germany
Issam Al-Azzoni, Al Ain University of Science and Technology, UAE
Washington H. C. Almeida, University of Brasilia - UNB, Brazil
Vu Nguyen Huynh Anh, Université Catholique de Louvain, Belgium
Darlan Arruda, University of Western Ontario, Canada
Jocelyn Aubert, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Lerina Aversano, University of Sannio, Italy
Ali Babar, University of Adelaide, Australia
Doo-Hwan Bae, Software Process Improvement Center - KAIST, South Korea
Musard Balliu, KTH Royal Institute of Technology, Sweden
Imen Ben Mansour, University of Manouba, Tunisia
Marcello M. Bersani, Politecnico di Milano, Italy
Anna Bobkowska, Gdansk University of Technology, Poland
Luigi Buglione, Engineering Ingegneria Informatica SpA, Italy
Azahara Camacho, University of Cádiz, Spain
Pablo Cerro Cañizares, Universidad Complutense de Madrid, Spain
Sang Kil Cha, KAIST, Korea
Luciano de Aguiar Monteiro, Institute of Higher Education iCEV – Teresina-Piauí, Brazil
Amleto Di Salle, University of L'Aquila, Italy
Fernando Escobar, PMI-DF Brasilia, Brazil
Faten Fakhfakh, National School of Engineering of Sfax, Tunisia
Rob Fuller, University of British Columbia, Vancouver, Canada
Barbara Gallina, Mälardalen University, Sweden
Atef Gharbi, National Institute of Applied. Sciences and Technology, Tunisia
Jiaping Gui, NEC Laboratories America Inc., USA

 4 / 35

Adriana Guran, Babes-Bolyai University, Cluj-Napoca, Romania
Ulrike Hammerschall, University of Applied Sciences Munich, Germany
Noriko Hanakawa, Hannan University, Japan
Qiang He, Swinburne University of Technology, Australia
Philipp Helle, Airbus Group Innovations - Hamburg, Germany
Samedi Heng, Université de Liège, Belgium
Jang Eui Hong, Chungbuk National University, South Korea
Fu-Hau Hsu, National Central University, Taiwan
LiGuo Huang, Southern Methodist University, USA
Shinji Inoue, Kansai University, Osaka, Japan
Anca Daniela Ionita, University Politehnica of Bucharest, Romania
Janne Järvinen, F-Secure Corporation, Finland
Mira Kajko-Mattsson, Royal Institute of Technology, Sweden
Atsushi Kanai, Hosei University, Japan
Carlos Kavka, ESTECO SpA, Trieste, Italy
Afrina Khatun, BRAC University, Bangladesh
Wiem Khlif, Mir@cl Laboratory | University of Sfax, Tunisia
Alexander Knapp, Universität Augsburg, Germany
Johann Krautlager, Airbus Defence and Space GmbH, Germany
Herbert Kuchen, University of Münster, Germany
Dieter Landes, University of Applied Sciences Coburg, Germany
Bruno Lima, INESC TEC | FEUP, Porto, Portugal
Damian M. Lyons, Fordham University, USA
Qinghua Lu, CSIRO, Australia
Yingjun Lyu, University of Southern California, USA
Eda Marchetti, ISTI-CNR, Pisa, Italy
Paolo Maresca, VERISIGN, Switzerland
Imen Marsit,University of Sousse, Tunisia
Mohammad Reza Nami, Islamic Azad University-Qazvin, Iran
Krishna Narasimhan, Itemis AG, Stuttgart, Germany
Risto Nevalainen, FiSMA (Finnish software measurement association), Finland
Rafael Oliveira, UTFPR - The Federal University of Technology - Paraná, Brazil
Luca Pascarella, Delft University ofTechnology, Netherlands
João Pascoal Faria, University of Porto, Portugal
Antonio Pecchia, Università degli Studi di Napoli Federico II, Italy
Fabiano Pecorelli, University of Salerno, Italy
Michael Perscheid, SAP Technology & Innovation, Germany
Dessislava Petrova-Antonova, Sofia University, Bulgaria
Fumin Qi, National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center), China
Zhengrui Qin, Northwest Missouri State University, USA
Aamir Raihan, University of British Columbia, Canada
Oliviero Riganelli, University of Milan-Bicocca, Italy
Michele Risi, University of Salerno, Italy
Gunter Saake, Otto-von-Guericke-Universitaet, Magdeburg, Germany
Hiroyuki Sato, University of Tokyo, Japan
Daniel Schnetzer Fava, University of Oslo, Norway
Tomas Schweigert, SQS Software Quality Systems AG, Germany
Alberto Sillitti, Innopolis University, Russia

 5 / 35

Rocky Slavin, University of Texas at San Antonio, USA
Bernard Stepien, University of Ottawa, Canada
Ahmed Tamrawi, EnSoft Corp., USA
Yoshihisa Udagawa, Tokyo University of Information Sciences, Japan
Miroslav Velev, Aries Design Automation, USA
Colin Venters, University of Huddersfield, UK
Roberto Verdecchia, Gran Sasso Science Institute (GSSI), Italy /Vrije Universiteit Amsterdam (VU),
Netherlands
Flavien Vernier, Université Savoie Mont Blanc, France
László Vidács, University of Szeged, Hungary
Ralf Wimmer, Concept Engineering GmbH / Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau,
Germany
Cemal Yilmaz, Sabanci University, Istanbul, Turkey
Peter Zimmerer, Siemens AG, Germany
Alejandro Zunino, ISISTAN, UNICEN & CONICET, Argentina

 6 / 35

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 35

Table of Contents

Mapping on the Use of Games for Programming Teaching with an Emphasis on Software Reuse
Diego Cardoso and Claudia Werner

1

An Overview of SAP Core Data Services
Add Belati and Firas Alomari

6

A Development Framework to Standardize Software Engineering Practices
Jishu Guin, Michele Macri, and Andrus Kuus

11

Broadening the Lens: Toward the Collective Empathic Understanding of Product Requirements
Robert C. Fuller

16

Test Coordination and Dynamic Test Oracles for Testing Concurrent Systems
Bernard Stepien and Liam Peyton

22

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 35

Mapping on the Use of Games for Programming Teaching with an Emphasis on

Software Reuse

Diego Castro, Cláudia Werner

COPPE/Computer Systems Engineering Program
Federal University of Rio de Janeiro

Rio de Janeiro, Brazil
{diegocbcastro, werner}@cos.ufrj.br

Abstract—Many works have already approached the use of games
as a teaching method due to several advantages that this strategy
can bring to the current teaching method. Therefore, a study
was previously performed to identify games created for teaching
software reuse fundamentals. However, no work addressing this
problem was identified. Software reuse is an essential area of
software engineering and is commonly associated with program-
ming. Based on this, this article sought to identify works that
had already been done on the use of games for programming
teaching but could be used to teach reuse fundamentals.

Keywords–game; game-based-learning; software reuse; pro-
gramming; systematic mapping.

I. INTRODUCTION

Software Reuse (SR) is the discipline responsible for
creating software systems from pre-existing software [1]. This
concept is not just limited to code reuse; software in this
context can refer to other products, such as modeling, spec-
ifications, test plans, and any other product in the life cycle
of a project. With the correct use of this discipline, it can
provide several positive impacts in a variety of contexts, such
as quality, cost, productivity, code-making performance, rapid
prototyping, reduced code writing, reliability, and interoper-
ability of software [2].

Despite the advantages mentioned, SR is still far from
being used on a large scale; many people reuse software, but
not in a systematic manner. One of the main factors for reuse
not being implemented is the difficulty of education in the area
[3]. Based on this, a study was previously performed to iden-
tify games created for teaching software reuse fundamentals.
However, it was not possible to identify a game specifically
designed for this purpose.

In this initial research, it was observed that software reuse
might be contained in different areas, such as programming
and Software Engineering. Thus, this initial research was
divided into two parts: the first to search for games to teach
software engineering and the other to search for games for
programming teaching with an emphasis on software reuse.
Based on the information provided, this study aims to identify
games that have the purpose of teaching programming with
emphasis/potential for reuse, that is, to find games that were
developed for teaching programming, but could be used to
teach some of the fundamentals of software reuse, such as
logical reasoning development, function development, object
orientation, among others.

The remainder of this paper is presented as follows: Section
II describes the research method used in the systematic map-
ping, Section III shows some results that were found, Section
IV demonstrates an example of how one of the games found
could be used to teach SR, Section ?? shows the threats to
validity, and Section V concludes with the final remarks.

II. RESEARCH METHOD

Systematic mapping is a secondary study method based on
a structured and repeatable process or protocol that explores
studies and provides a result in the form of an overview of
a particular subject [4]. The mapping presented follows the
protocol proposed by Kitchenham [5].

The research process presented in this study covers articles
published by the end of 2018 and aims to conduct a systematic
mapping to identify work that has already been done on games
for programming teaching but could be used to teach software
reuse fundamentals, such as logical reasoning development,
function development, object orientation, among others.
A. Research Questions
• Q1: What is the main advantage / motivation of the use

of games to teaching programming language?
• Q2: What is the disadvantage of the use of games to

teaching programming language?
• Q3: What is the main characteristic of the game used?
• Q4: What was the evaluation method used?

The mapping presented followed well-defined steps so that
it was possible to reach a set of articles that were of interest
to the search [5]. The search string was executed in Scopus as
recommended by other studies [6] [7], and then the inclusion
and exclusion criteria were applied to the set of articles that
were found based on the title, abstract, and full text.

The inclusion criteria chosen were: (1) The article must
be in the context of using games for teaching a programming
language; (2) The article must provide data to answer at least
one of the research questions; (3) The article should be written
in English. The exclusion criteria chosen were: (1) Book
chapters, conference call; (2) Studies that can not be fully
accessed.
B. Search string and Analysis

The definition of the search string was based on the
Population, Intervention, Comparison, Outcome (PICO) struc-
ture [8], using three of the four levels. The search string was
defined by grouping the keywords of the same domain with

1Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 9 / 35

the logical operator “OR” and grouping the two fields with
the logical operator “AND”. However, we chose to use a date
filter, searching only for articles that were published within
five years, aiming to find more recent works in the area [9].
Table I demonstrates the PICO structure used in conjunction
with the search string.

Initially, the search string returned a total of 507 papers.
When analyzed according to the inclusion and exclusion filters,
this number dropped to 17 papers. To minimize the lack
of other search bases, considering that the study was only
performed on Scopus, it was opted to use the snowballing
procedure to minimize article loss, according to Motta et
al. [6] and Matalonga et al. [7]. The approach was applied,
searching for new papers through the references and through
the papers that referenced these works. Thus, 9 more papers
were included, totaling 26 analyzed papers. Table II shows
how these 26 articles were obtained, and Table III shows each
of these articles.

TABLE I. SEARCH STRING

PICO SYNONYMS

Population
Programming language, algorithm experience, algorithm skills,
algorithm alternative, algorithm method, coding experience,
coding skills, coding method, coding alternative

Intervention Tutoring, teach*,instruction, discipline, schooling, education*,
mentoring, course, learn*,train*, syllabus

Comparison Not applicable

Outcome Game*, gami*, play*, “serious games”, edutainment,
“game based learning”, simulation

SEARCH STRING
TITLE-ABS-KEY ((”programming language” OR ”algorithm experience”
OR ”algorithm skills” OR ”algorithm alternative” OR ”algorithm method”

OR ”coding experience” OR ”coding skills” OR ”coding method” OR
”coding alternative”) AND (tutoring OR teach* OR instruction OR

discipline OR schooling OR educat* OR mentoring OR course OR learn*
OR train* OR syllabus) AND (game* OR play* OR ”serious

games” OR gami* OR edutainment) AND (LIMIT-TO (PUBYEAR , 2018)
OR LIMIT-TO (PUBYEAR , 2017) OR LIMIT-TO (PUBYEAR , 2016)

OR LIMIT-TO (PUBYEAR , 2015) OR LIMIT-TO (PUBYEAR , 2014)))

III. RESULTS

Section A demonstrates a discussion of the main results
found in this work, and Section B presents the threats to the
validity of this information exposed.

A. Discussion

The articles found in this study sought to demonstrate
games that could be used in teaching some concepts related
to programming. However, the analysis of the documents was
performed in search of works that could be used to explain
some of the concepts of reuse. From this, works that were not
developed with this context but could be used for this purpose
were also found. Figure 1 groups the articles by location and
year of publication. It is possible to see an increase in the
number of publications over the years and that many countries
are looking for improvements in this area.

The bottom of the image also shows the number of articles
found grouped by game type. However, some papers used more
than one approach. From Figure 1, it is possible to observe that
the most used way to teach programming is through the use
of ”blocks of code”. By abstracting this idea it is possible
to consider the concept of software components that is an
important research area of SR and aims to build software from
pre-produced components [10].

Figure 1. General analysis of the articles found.

Q1: What is the main advantage / motivation of the use
of games to teaching programming language?

Using games as a reinforcement tool to teach skills can be
a very beneficial strategy for students. They have proven to be
a useful tool to complement conventional learning methods.
Games allow visualizing concepts that may be too abstract.
They also help you get acquainted with the knowledge and
methods that may be tedious to study, offering a cycle of
challenges and rewards that drives the learning experience [11].

Many authors claim that games have several characteristics
that can benefit teaching [12] [13]. They have already been
used as successful educational tools in many different fields
and topics, such as engineering, learning languages, theater
and even health [14]. The advantages include: increased stu-
dent motivation and engagement, enhancement of pre-existing
knowledge, increased performance in practical activities, im-
mediate feedback, fun and satisfaction, among others [11] [15–
19].

Q2: What is the disadvantage of the use of games to
teaching programming language?

Despite the advantages offered by games as a teaching
method, there are also some issues involving this approach.
The first problem found was the comparison of the level of
learning provided by a game as a teaching method and a class
with textual programming. Despite the advantages offered by
games, textual programming can still convey better content
[20].

Another problem identified was the complexity of the game
created. If the teaching tool used is too complicated, students
can reduce the time spent solving problems to focus more on
the tool. This is an unwanted distraction, and any game used
should be easy to use, allowing the student to focus on solving
the problem rather than how to use the game [21].

Finally, the last problem identified was that although games
provide several advantages, they are not seen as self-sufficient.

2Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 10 / 35

TABLE II. ANALYSIS OF THE PAPERS

Main Study Snowballing backward Snowballing Forward
Activity Result Number of paper Result Number of paper Result Number of paper
First Execution 507 added 507 389 added 389 123 added 123
Repeated Papers 501 withdraw 501 294 withdraw 95 16 withdraw 107
Papers in another language 0 withdraw 501 14 withdraw 81 13 withdraw 94
Remove conference / workshops 16 withdraw 485 0 withdraw 81 0 withdraw 94
Remove books 0 withdraw 485 0 withdraw 81 0 withdraw 94
Remove by title 368 withdraw 117 46 withdraw 35 58 withdraw 36
Remove by abstract 83 withdraw 34 17 withdraw 18 18 withdraw 18
Papers not found 0 withdraw 34 0 withdraw 18 0 withdraw 18
Remove by full paper 17 withdraw 17 12 withdraw 6 13 withdraw 3
Total papers included 17 papers 6 papers 3 papers
Extracted Papers 26 papers

TABLE III. TRACEABILITY MATRIX.

Title Year Q1 Q2 Q3 Q4
Perceptions of Scratch programming among secondary school students in KwaZulu-Natal, South Africa 2018 X X X
Robo3: A Puzzle Game to Learn Coding 2018 X X X X
Improving programming skills in engineering education through problem-based game projects with Scratch 2018 X X X
Introducing novice programmers to functions and recursion using computer games 2018 X X X
Introducing programming using “scratch” and “greenfoot” 2018 X X X
Developing Educational 3D Games With StarLogo: The Role of Backwards Fading in the Transfer of
Programming Experience 2018 X X X X

Learning to think and practice computationally via a 3D simulation game 2018 X X X
Design and implementation of Robo3 : an applied game for teaching introductory programming 2017 X X X
A cross-cultural review of lightbot for introducing functions and code reuse 2017 X X
Using Digital Game as Compiler to Motivate C Programming Language Learning in Higher Education 2017 X X X
Cubely: Virtual reality block-based programming environment 2017 X X X
Analysis of the learning effects between text-based and visual-based beginner programming environments 2017 X X X
Visual programming language for model checkers based on google blockly 2017 X X X
Educational resource based on games for the reinforcement of engineering learning programming
in mobile devices 2016 X X X

Teaching abstraction, function and reuse in the first class of CS1 - A lightbot experience 2016 X X X
From Alice to Python Introducing text-based programming in middle schools 2016 X X X
Visual programming languages integrated across the curriculum in elementary school: A two year case
study using Scratch” in five schools 2016 X X X

Building a Scalable Game Engine to Teach Computer Science Languages 2015 X X X
A mobile-device based serious gaming approach for teaching and learning Java programming 2015 X X
Coding with Scratch: The design of an educational setting for Elementary pre-service teachers 2015 X X X
Droplet, a Blocks-based Editor for Text Code 2015 X X X
Integrating Droplet into Applab – Improving the usability of a blocks-based text edit 2015 X X X
The development of a virtual learning platform for teaching concurrent programming languages in
secondary education: The use of open Sim and Scratch4OS 2014 X X X X

Effects of using Alice and Scratch in an introductory programming course for corrective instruction 2014 X X X
A structured approach to teaching recursion using cargo-bot 2014 X X X
The Effects of Teaching Programming via Scratch on Problem Solving Skills: A Discussion from
Learners, Perspective, Informatics in Education 2014 X X X

Professional follow-up and feedback on the course are required
to solve any problem that may arise throughout the learning
process [21].

Q3: What is the main characteristic of the game used?
This study identified several games that sought to teach

programming through increased motivation and engagement
through fun. Most of these games were designed to be used by
users with minimal or no knowledge of programming language
[22].

The first game found was LightBot, which is a game to
teach programming logic and has features such as multi-level,
difficulty progression, feedback, challenges, use of similar

tasks, concepts of functions, abstraction, flow control, recur-
sion and code reuse [15] [16] [19]. Another game very similar
to the one described above is Cargo-Bot, which has the same
characteristics, but with other gameplay that revolves around
a crane that moves and stacks a set of colored boxes. Players
write small programs to move boxes from one initial setup to
another [23]. Another game called Robo3 was found that had
characteristics very similar to those described [11].

Another game very similar to the ones listed above was a
game designed to teach Java programming that, to advance the
levels, the player needs to overcome different levels. As the
player surpasses these levels, he or she can progress through
the story, unlocking new elements and gaining experience

3Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 11 / 35

points to unlock new content [22].
Another game found was Lost in Space, which includes,

among other components, a game rules system, a physics
engine, and a rendering engine. The game screen is divided
into two parts. The left side containing the code interpreter
text area and a help window and on the other side, the game
phase. Through this game, some features were highlighted,
such as obstacles, code interpreter (pseudocode of the game),
collisions, movement, enemy and attack system [14].

In this research, we also identified some visual program-
ming languages that are not considered as games directly, but
that uses ”block” approach to building programs. The first
two to be identified were Alice [24] and Scratch [17], which
are block-based visual programming languages designed to
promote media manipulation for new programmers. From these
languages, it is possible to upload media projects and scripts,
animated stories, games, book reports, greeting cards, music
videos, tutorials, simulations, and art and music projects. Two
other languages very similar to those described are StarLogo
TNG [20] and Droplet [25] [26], which are also drag-and-drop
visual languages.

Greenfoot is an integrated tool that aims to teach object-
oriented programming. Also, the tool allows teachers to intro-
duce the most essential and fundamental concepts of object
orientation in an easily understandable way [27]. Finally, the
last visual language found is called Google Blockly [28],
which is a library for building visual programming editors.

Finally, another feature that was used to create these games
was the use of virtual and augmented reality. The Cubely game
made use of these technologies to develop an idea that blended
block programming concepts and the Minecraft game [29].

Q4: What was the evaluation method used?
Several evaluation methods were identified in this research.

However, in general, all evaluations have a questionnaire
applied to a specific population after using the tool to validate
it [20] [24] [28].

Another possible means of the evaluation was the use of
control groups where one group used the tool, and the other
did not, and the same questionnaire was applied to both groups
[14]. Through this assessment, it is possible to find out if
there was a gain of experience through the tool use since it is
possible to compare the results of the two groups.

The last evaluation method found was about the use of the
tool as part of the discipline — the tool as a complement to
the teaching of programming [30].

To conclude, games can be a new method to complement
the current teaching method due to its main advantages, such
as increased practice and engagement through challenges,
rewards, fun, and feedback. However, it is still something new
that needs attention due to problems such as the complexity
of the game that can affect learning, and the level of learning
provided by games is still lower than current teaching methods.

B. Threats to Validity
Through a critical analysis of the mapping, it is possible

to perceive some threats that may have affected the final result
of the work. The first to be highlighted is about the period

in which the mapping was performed, collecting information
from just five years. The second threat is the problem of
interpreting the information found, which is up to the author
to understand the game found and think of a way that could
be applied in the teaching of SR.

IV. REUSING GAMES TO TEACH SR

This mapping found several games; however, none of them
was produced to teach SR. Nevertheless, these games, with
only a few or no modifications, could be used to explain certain
concepts of software reuse, such as the importance of reusing,
software components or code reuse.

Thinking about this idea of teaching SR, the platforms
of Scratch, Alice, Droplet, and Google Blockly could, for
example, be used to teach code reuse. All code that is generated
with these platform is made from pre-produced blocks that
resemble the idea of pre-produced components.

Robo3 and Lightbot are of puzzle type and are very similar,
the general idea of these games is to create sequences of
activities (which are described as functions) that perform a
task, such as taking the avatar from point A to point B.
Thinking about this type of games, these functions can be used
in the game several times, teaching the student the concept of
code reuse. Cubely is a Minecraft-based game; however, its
mechanics are very similar to the two games described earlier
and could also be used to teach code reuse.

V. CONCLUSION AND FUTURE WORK

For many people who are not directly linked to the software
reuse area, they refer to it as just code. Due to this fact,
this mapping sought to find programming teaching games that
could be used to teach reuse concepts that are often abstract to
many students. From this, it was possible to identify six games
and six block-based programming languages. The game, and
the visual programming language that were identified in more
articles were LightBot [15] and Scratch [17], respectively.
The main characteristics found were the use of rules, phases,
difficult progression, feedback, challenges, and the use of
similar tasks in sequence.

As mentioned before, software reuse is inserted in several
contexts, and the most common are propagation and engineer-
ing. This work sought to identify games that were created to
teach programming but could be used to explain some of the
fundamentals of software reuse, thus looking at works from the
first context. To better understand how these games are used as
teaching methods, it is intended to perform another mapping
to identify games that aim to teach software engineering, since
as software reuse is inserted in the engineering and possibly
similar features can be used to the teaching of the two subjects.

Although this work has found some games that could be
used to teach some reuse fundamentals such as components,
functions, and object orientation, none of these games were
specificaly designed to teach software reuse. Therefore, based
on the characteristics that were found (multi-level, difficult
progression, feedback, challenges, among others), it is intended
to create a game with the specific purpose of software reuse
teaching.

4Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 12 / 35

REFERENCES

[1] C. W. Krueger, “Software reuse,” ACM Computing Surveys (CSUR),
vol. 24, no. 2, 1992, pp. 131–183.

[2] J. Sametinger, Software engineering with reusable components.
Springer Science & Business Media, 1997.

[3] N. Niu, D. Reese, K. Xie, and C. Smith, “Reuse a” software reuse”
course,” in American Society for Engineering Education. American
Society for Engineering Education, 2011.

[4] I. Steinmacher, A. P. Chaves, and M. A. Gerosa, “Awareness support in
distributed software development: A systematic review and mapping of
the literature,” Computer Supported Cooperative Work (CSCW), vol. 22,
no. 2-3, 2013, pp. 113–158.

[5] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,
UK, Keele University, vol. 33, no. 2004, 2004, pp. 1–26.

[6] R. C. Motta, K. M. de Oliveira, and G. H. Travassos, “Characterizing
interoperability in context-aware software systems,” in 2016 VI Brazilian
Symposium on Computing Systems Engineering (SBESC). IEEE, 2016,
pp. 203–208.

[7] S. Matalonga, F. Rodrigues, and G. H. Travassos, “Characterizing testing
methods for context-aware software systems: Results from a quasi-
systematic literature review,” Journal of Systems and Software, vol. 131,
2017, pp. 1–21.

[8] M. Petticrew and H. Roberts, Systematic reviews in the social sciences:
A practical guide. John Wiley & Sons, 2008.

[9] S. Jiang, H. Zhang, C. Gao, D. Shao, and G. Rong, “Process simulation
for software engineering education,” in Proceedings of the 2015 Inter-
national Conference on Software and System Process. ACM, 2015, pp.
147–156.

[10] G. Sindre, E.-A. Karlsson, and T. Stålhane, “Software reuse in an
educational perspective,” in SEI Conference on Software Engineering
Education. Springer, 1992, pp. 99–114.

[11] F. Agalbato, “Design and implementation of robo3: an applied game for
teaching introductory programming,” Scuola di Ingegneria Industriale e
dell’Informazione, 2017.

[12] T. Jordine, Y. Liang, and E. Ihler, “A mobile-device based serious gaming
approach for teaching and learning java programming,” in 2014 IEEE
Frontiers in Education Conference (FIE) Proceedings. IEEE, 2014, pp.
1–5.

[13] R. Atal and A. Sureka, “Anukarna: A software engineering simulation
game for teaching practical decision making in peer code review.” in
QuASoQ/WAWSE/CMCE@ APSEC, 2015, pp. 63–70.

[14] Á. Serrano-Laguna, J. Torrente, B. M. Iglesias, and B. Fernández-
Manjón, “Building a scalable game engine to teach computer science lan-
guages,” IEEE Revista Iberoamericana de Tecnologias del Aprendizaje,
vol. 10, no. 4, 2015, pp. 253–261.

[15] E. V. Duarte and J. L. Pearce, “A cross-cultural review of lightbot for
introducing functions and code reuse,” Journal of Computing Sciences
in Colleges, vol. 33, no. 2, 2017, pp. 100–105.

[16] R. Law, “Introducing novice programmers to functions and recursion
using computer games,” in European Conference on Games Based
Learning. Academic Conferences International Limited, 2018, pp. 325–
334.

[17] D. Topalli and N. E. Cagiltay, “Improving programming skills in engi-
neering education through problem-based game projects with scratch,”
Computers & Education, vol. 120, 2018, pp. 64–74.

[18] N. Pellas and S. Vosinakis, “Learning to think and practice computation-
ally via a 3d simulation game,” in Interactive Mobile Communication,
Technologies and Learning. Springer, 2017, pp. 550–562.

[19] M. Aedo Lopez, E. Vidal Duarte, E. Castro Gutierrez, and A. Paz Valder-
rama, “Teaching abstraction, function and reuse in the first class of cs1:
A lightbot experience,” in Proceedings of the 2016 ACM Conference
on Innovation and Technology in Computer Science Education. ACM,
2016, pp. 256–257.

[20] N. Boldbaatar and E. Şendurur, “Developing educational 3d games with
starlogo: The role of backwards fading in the transfer of program-
ming experience¡? aq1?¿,” Journal of Educational Computing Research,
vol. 57, no. 6, 2019, pp. 1468–1494.

[21] N. Pellas, “The development of a virtual learning platform for teaching
concurrent programming languages in the secondary education: The use
of open sim and scratch4os,” Journal of e-Learning and Knowledge
Society, vol. 10, no. 1, 2014, pp. 129–143.

[22] A. Sierra, T. Ariza, F. Fernández-Jiménez, J. Muñoz-Calle, A. Molina,
and Á. Martı́n-Rodrı́guez, “Educational resource based on games for the
reinforcement of engineering learning programming in mobile devices,”
in 2016 Technologies Applied to Electronics Teaching (TAEE). IEEE,

2016, pp. 1–6.
[23] E. Lee, V. Shan, B. Beth, and C. Lin, “A structured approach to teaching

recursion using cargo-bot,” in Proceedings of the tenth annual conference
on International computing education research. ACM, 2014, pp. 59–66.

[24] C.-K. Chang, “Effects of using alice and scratch in an introductory
programming course for corrective instruction,” Journal of Educational
Computing Research, vol. 51, no. 2, 2014, pp. 185–204.

[25] D. Bau, “Droplet, a blocks-based editor for text code,” Journal of
Computing Sciences in Colleges, vol. 30, no. 6, 2015, pp. 138–144.

[26] D. A. Bau, “Integrating droplet into applab—improving the usability of
a blocks-based text editor,” in 2015 IEEE Blocks and Beyond Workshop
(Blocks and Beyond). IEEE, 2015, pp. 55–57.

[27] H. Chandrashekar, A. G. Kiran, B. Uma, and P. Sunita, “Introducing
programming using “scratch” and “greenfoot”,” Journal of Engineering
Education Transformations, 2018.

[28] S. Yamashita, M. Tsunoda, and T. Yokogawa, “Visual programming
language for model checkers based on google blockly,” in Interna-
tional Conference on Product-Focused Software Process Improvement.
Springer, 2017, pp. 597–601.

[29] J. Vincur, M. Konopka, J. Tvarozek, M. Hoang, and P. Navrat,
“Cubely: Virtual reality block-based programming environment,” in
Proceedings of the 23rd ACM Symposium on Virtual Reality Software
and Technology, ser. VRST ’17. New York, NY, USA: ACM, 2017,
pp. 84:1–84:2. [Online]. Available: http://doi.acm.org/10.1145/3139131.
3141785

[30] L. A. Vaca-Cárdenas, F. Bertacchini, A. Tavernise, L. Gabriele,
A. Valenti, D. E. Olmedo, P. Pantano, and E. Bilotta, “Coding with
scratch: The design of an educational setting for elementary pre-service
teachers,” in 2015 International Conference on Interactive Collaborative
Learning (ICL). IEEE, 2015, pp. 1171–1177.

5Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 13 / 35

An Overview of SAP Core Data Services
Add Belati

Corporate Application Department
Saudi Aramco

Dhahran, Saudi Arabia
email: add.belati@aramco.com

Firas Alomari
Corporate Application Department

Saudi Aramco
Dhahran, Saudi Arabia

email: firas.alomari@aramco.com

Abstract—Increasing amount of data and the diversity of
available data structures enable applications that can make timely
decisions based on live data that, in most cases, can be evaluated
without traditional application layer processing. SAP introduced
the Core Data Service (CDS) framework as a data modeling
approach in which Virtual Data Models (VDM) are defined at
the database layer. CDS improve applications performance by
pushing data processing from the application to the database
layer to reduce data movements. In this paper, we present some
technical insights into SAP’s CDS, including new application
patterns supported by CDS and the motivations behind it. We
also discuss some practical considerations and challenges that
may arise with CDS adoption and implementation.

Index Terms—ERP; Programming; Database; Code Pushdown

I. INTRODUCTION

Enterprise Resource Planning (ERP) and Business Intelli-
gence (BI) systems are a fundamental part of today’s enterprise
IT applications portfolio. They provide a set of standardized
software packages that capture interdisciplinary business pro-
cesses across the entire value chain of an enterprise in a
streamlined fashion [1]. ERP and BI systems integrate business
functions with a centralized data repository shared by all
business processes in the enterprise. The information provided
by these systems drive daily business operations and provides
for the development of new business ideas.

ERP systems were designed to capture daily operational and
transactional business data. This kind of data processing typ-
ically referred to as Online Transactional Processing (OLTP)
[2], uses row-based operations to efficiently process trans-
actions, instantly recording business events (e.g., payments)
and reflecting changes as they occur. However, they are not
efficient at performing set-wide operations on entire tables. BI
or Data Warehouse systems, on the other hand, were designed
as Online Analytical Processing (OLAP) systems, to provide
analytical and trend reporting from the growing data in the
ERP systems. They leverage column-oriented tables to speed
up operations over a huge volume of data at the expense of
efficiency in executing OLTP workload.

OLTP and OLAP systems evolved separately to prevent
the long-running and resource-intensive OLAP workload from
decreasing the transactional throughput of the OLTP system
[3]. Specifically, OLAP solutions were running analytical
queries on a copy of the transactional data (i.e., views) from
OLTP data stores [4]. This enabled companies to efficiently

address a growing number of conflicting business needs, albeit,
at the expense of increased complexity to link, orchestrate
and synchronize multiple systems in the IT infrastructure.
Therefore, unified Analytical Transaction Processing (ATP)
systems were proposed to perform fast analytical processing
coupled with transactional data management [4], preferably,
by merging operational and analytical systems into one single
system. ATP systems run the analytical queries directly on top
of the transactional data to enable real-time data operations,
reduce IT complexity and lower the total cost of ownership.

Systems, Applications and Products (SAP) introduced the
High-Performance Analytic Appliance (HANA) [5] to provide
a unified ATP system that fulfils the aforementioned require-
ments of business applications. It provides a data management
platform to support efficient processing of both transactional
and analytical workloads on the same physical database. It
supports a code pushdown approach to execute data-intensive
processing in the database close to the raw data (i.e., code-
to-data) to reduce expensive data movement and improve
applications performance. To take advantage of this code
pushdown concept, SAP introduced CDS framework as a data
modeling infrastructure to enable data reusability, extensions,
and integration in HANA. Later, CDS were also introduced to
the SAP ABAP application stack to enable developers to take
advantage of the code pushdown with other databases.

In this paper, we introduce CDS and the motivation behind
it. We also discuss some of CDS implications on application
development strategy. The paper is organized as follows: CDS
are described in Section II. In Section III we discuss CDS
advantages and present some practical considerations related to
code-push-down with CDS. We conclude the paper and present
future research directions in Section IV.

II. SAP CORE DATA SERVICES (CDS)

In this section we present a brief background of code
pushdown and introduce the data services layer provided by
CDS. Additionally, we describe CDS technical features and
enhancements.

A. Background

The availability of multi-model databases that support com-
plex data structures such as spatial, text, graph, and time series
data enables built-in advanced analytics capabilities, such as

6Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 14 / 35

Code to DataData to Code

Application Layer

Data Layer

Code

Application Layer

Data Layer

CodeData	StoreData	Store

Raw
Data

Results

UI Logic

Presentation Layer
UI

Fig. 1. Code Pushdown Model.

text mining, spatial analysis and predictive analytics.These
capabilities support diverse application patterns ranging from
transactional systems to decision and analytic support systems
in real-time and on live data [6]. However, as the size of data
grows, moving data becomes the bottleneck and the cost of
moving data around becomes prohibitive. Yet, in many cases,
the data can be evaluated and processed on the data storage
without the need for traditional application layer processing.

Let us consider the example of one million values, rep-
resenting different currencies, that need to be calculated.
Typically, the individual values are transferred to the appli-
cation server from the database to only be discarded after
the conversion and calculation has been done. Therefore, it’s
advantageous to move the data less by running workloads in
the data storage or as close to it as possible [7]. This concept
of code pushdown or code-to-data (see Figure 1) improves the
applications performance by executing application logic inside
the database, thus, decreasing the amount of data transfer and
round-trips between the database and application layers.

B. Data Services Layer

Technically, applications communicate with databases
through a number of various interfaces such as Standard Query
Languages (SQL), Stored Procedures, SQL Scripts, or specific
APIs. In the code pushdown concept, data services such as
search or predictive analytics use these interfaces to push the
computation to the database layer and only move results to
application layer. Therefore, a common abstraction layer for
integrating database interfaces and data services together is
necessary. To this end, SAP introduced a data service layer
(i.e., CDS) as a common abstraction layer for integrating these
interfaces and data services together. This layer provides data
models for defining and formatting data sources consistently
across multiple systems, enabling different applications to
share the same data, thus reducing development costs and
time as well as improving the quality and performance of the
applications.

Data Store

UI Rendering

Da
ta

La
ye

r
Ap

pli
ca

tio
n L

ay
er

Pr
es

en
tat

ion
 La

ye
r

Core Data Services
Search Business LogicAnalytics OData

ABAPHANA XS Others

Data Centric Logic

Service Logic

Presentation Logic

Fig. 2. Core Data Services Model.

The CDS data modeling infrastructure uses specific domain
language to define different data services in a unified data
definition and query language [8]. These data models are
defined and consumed on the database server rather than
on the application layer. They can be further enriched with
semantics to allow developers to define entity types (e.g.,
orders or products) and the semantic relationships between
them, which correspond to key relationships in traditional
entity relationship (ER) models.

In particular, CDS offer central definitions that can be used
in many different application context, such as transactional and
analytical applications, to interact with data in the database
in a unified way. They provide a cross platform unified data
abstraction layer that sits between the database and client
applications (see Figure 2). They function as proxy that drives
data intensive computation to the database and exposes only
relevant results to be consumed by different applications.
Similar to Open Data Protocol (OData) for User Interface
(UI) abstraction where UI rendering is pushed up to the client,
CDS push down data-intensive calculations to the data layer to
get the benefits of the underlying databases high-performance
capabilities such as fast in-memory column operations, query
optimization, and parallel execution.

C. CDS Description

CDS models are expressed in a Data Definition Language
(DDL). DLL is based on standard SQL with some enhance-
ments, such as associations, extensions, and annotations. The
CDS Query Language (QL) is an extension to SQL used to
consume CDS data. The QL includes enhancements such as
defining views within the CDS data model. It also introduces
the use of associations defined by the DDL. Instance-based
authorization to CDS entities are defined using the Data
Control Language (DCL). DCL can leverage literal conditions
that compare elements of a CDS entity with literal values
such as organization code, thus, pushing granular authorization
filters and restrictions to the database for better performance.

7Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 15 / 35

They can also integrate with traditional authorization concept
in SAP to check against existing authorization objects.

There are two variants of CDS: ABAP and HANA. HANA
CDS are HANA database dependent entities residing on the
database itself. They enable the creation of database tables,
views and data types using the native HANA DB SQL state-
ments, enriching them with semantical properties, and using
HANA native functions to perform data intensive computa-
tions. The HANA CDS does not require a specific application
stack and therefore can support a variety of technologies and
programming languages.

On the other hand, ABAP CDS provide a framework for
defining and consuming semantic data models on the central
database of the ABAP application stack. One can use SQL
like statements to create and deploy the corresponding CDS
entity on the target database automatically. Simillar to HANA
CDS the models are based on the DDL and DCL, which are
managed by ABAP Dictionary. However, unlike HANA CDS,
ABAP CDS are database independent.

Virtually, design principles for both ABAP and HANA
CDS are the same but due to differences in the respective
environments, some technical differences between these fla-
vors evolved. One clear distinction is that ABAP CDS access
control and authorization can support traditional ABAP-based
authorizations or defined in the DCL of the CDS entities.
Both methods can be used independently or together, however
the traditional authorization concept allows for the reuse of
existing authorizations in the ABAP system.

Technically, CDS are an enhancement of the standard SQL
that provides a data modeling framework for developers to
define CDS entities, such as tables, views, and user defined
data structures in the database. The CDS entities capture the
semantics of the data to join the data needed for the application
into one single model. There are two types of CDS entities:
views and table functions.

The CDS views are defined for existing tables or views
in the database. They can be used to rearrange table fields
based on the application needs. The views can have additional
input parameters to filter the data during selection process at
database level itself. So there is no need for a where condition
in the application layer code.

Alternatively, CDS table function views include computa-
tions for database tables that are used by other CDS views,
such as date and time calculation and conversion functions.
Similar to CDS views, table functions can have additional
parameters. Both type of views provide a number of major
capabilities and enhancements over standard SQL, such as:

• Joins: are used to group fields from one or more different
tables or views. Joins such as INNER JOIN, LEFT
OUTER JOIN, RIGHT OUTER JOIN, or UNION are
supported.

• Associations: are joins on demand that get executed when
specifically used in a query. They are reusable, and allow
a CDS view to be linked with other data sources, such as

classical tables and views or another CDS entity, with a
varying degree of cardinality. Cardinality and simple path
expression in queries are the most important benefits of
associations views.

• Annotations: define properties and behavior at run time.
For example, one can save views or link another column
during run time using the “@” character in the CDS view
definitions. It further allows parameters to be used or meta
data to be added to the CDS view data.

• Expressions: are used for calculations such as aggregation
and mathematical computation in the data model queries.

• Extensions: are views with additional information that is
not in the original table. They reduce data movement by
adding expressions, associations and additional columns
to an existing view.

D. Example

We show two examples of using CDS in Figure 3. The
CDS are used to build a data model and service definitions
on a conceptual level. Specifically, CDS models are translated
into native database artifacts (e.g., schema) and interpreted to
services to be exposed to applications. Specifically, at line 4
the OData annotation generates OData service automatically.
The OData is then consumed by the application to enable the
fuzzy search shown in the example. Further, at line 11 the
example shows additional annotations that are used to enable
other visual elements such as default values and enabled UI
controls. In lines 23, the example also shows the currency
conversion scenario mentioned in Section II-A using CDS
table function. Besides the performance enhancement with this
approach, the data abstraction layer makes it easier to define
semantically rich data models. These models can be used for
easy data access and allow for reuse in different types of
application.

III. DISCUSSION

Code pushdown or code-to-data concept is not a new one. In
fact, some would argue that database stored procedures offer
a similar performance advantage to CDS entities. However,
stored procedure languages offer abstractions close to the
database layer and they often lack concepts to express the
application semantics. Moreover, with stored procedures one
would lose the advantages of the CDS unified development
environment by introducing code into the system that is more
difficult to maintain, challenging to test, often frustrating to
debug and needs to be integrated and managed through diverse
database interfaces [9]. With CDS, one can make use of SAP’s
available tools to assist developers during CDS development,
testing, and in their deployment to the production systems.
Practically, CDS objects are integrated in the repository of
SAP applications artifacts for complete life cycle management.
They are like any other SAP development objects, subject
to the transport system within SAP so that they can be
easily deployed or transported from development via test to
a production system consistently.

8Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 16 / 35

Fig. 3. Core Data Services Examples.

Applications based on CDS framework implies a major
shift in development practices. Specifically, CDS shift the
development paradigm from a process-centric activity to a
data-centric activity [4]. For example, applications need to be
designed to take advantage of CDS features and define new
data hierarchies that can be readily used by applications. Since
development is driven by the need to eliminate or reduce data
movement from the database into application servers, which,
in fact, is the main bottleneck for data-intensive applications in
traditional three-tier architecture. Developers have to identify
data-intensive parts of their application [10]. These parts can
then be redesigned -leveraging CDS views- to push down the
computation into the data layer. However, identifying data-
intensive parts is not necessarily a trivial exercise. Therefore,
Intuitive techniques for describing and modeling data are
necessary [3]. One can guide this by best practices, design
patterns, code analysis, performance profiling, etc.

Furthermore, a data-centric approach reduces the applica-
tions code footprint. Specifically, with consistent data models
across systems, different applications can reuse the same
models [7], [3]. Models can also be extended or built on
top of other models (i.e., stacked) to meet the application
needs. Service definitions such as OData and REST APIs can
then be designed and exposed using the necessary models.
Subsequently, user interfaces can be developed independently
of the data and service definitions. In fact, with this approach
application development becomes more of a service orches-
tration activity rather than a programming activity.

Concisely, the development practices should be guided by

the following three principles: First, UI Rendering with pre-
sentation logic should be pushed up to the Client (i.e., browser,
mobile apps). Second, data-intensive computation is done in
the database and only the results are moved to the application
server. Specifically, application server should handle control-
flow and procedural logic only. Third, development artifacts
from all layers are managed in a central repository so they can
be easily created, tested, integrated and deployed.

This will also introduce a number of challenges that should
be considered in our development methodology [7], [11].
For example, requirements should not only capture how the
process works but they should also describe the data acqui-
sition process. Similarly, analysis activities need to carefully
consider data sources, transformation and context as well as
the traditional analysis of business processes. Finally, data-
centric development requires additional effort to ensure that
effective data quality controls are in place. Therefore, testing
should expand from verifying application functionality to
ensuring application data quality are validated, and validation
rules are carried over to operations and maintenance of the
application. These are only some of the challenges that must
be considered in the development life cycle.

IV. CONCLUDING REMARKS

CDS offer easy-to-understand, reusable tools to help realize
code push-down (i.e., Code-to-Data) model. With CDS, it is
possible to build applications that integrate application control
logic in the database layer to achieve real-time performance.
It may require additional effort to move logic down to the

9Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 17 / 35

database level. However, it reduces complexity and leads
to simplification in data models and applications, redefining
application development practices. Developers of business
applications must therefore make careful choices about what
data operations to include and what to omit. Certainly, it’s
not feasible or economically viable to model all existing
applications data operations in CDS. Alternatively, if too
little is included, the models may not support application
needs adequately, which pushes more development effort and
cost onto the application developers. This shift in application
development practice presents new challenges, however, it
provides opportunities to support new kinds of interactive
applications, which were not possible before.

In future research, we plan to investigate processes that
are appropriate for the CDS concept in our ERP system.
Furthermore, we plan to evaluate costs and benefits of trans-
forming existing business application to make use of the CDS
concept. Specifically, we plan to develop criteria to guide the
developers in identifying which applications or parts of an
application are more appropriate for CDS. One idea we have is
to utilize performance-profiling tools to prioritize applications
for further evaluation. Furthermore, we plan to evaluate our
development methodology and identify how it needs to be
adapted to meet the expectations of this transformation.

REFERENCES

[1] Z. P. Matolcsy, P. Booth, and B. Wieder, “Economic benefits of enter-
prise resource planning systems: some empirical evidence,” Accounting
& Finance, vol. 45, no. 3, pp. 439–456, 2005.

[2] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd,
“Efficient transaction processing in sap hana database: the end of a
column store myth,” in Proceedings of the 2012 ACM SIGMOD Int.
Conf. on Management of Data. ACM, 2012, pp. 731–742.

[3] J.-H. Boese, C. Tosun, C. Mathis, and F. Faerber, “Data management
with saps in-memory computing engine,” in Proceedings of the 15th Int.
Conf. on Extending Database Technology. ACM, 2012, pp. 542–544.

[4] H. Plattner, “A common database approach for oltp and olap using an in-
memory column database,” in Proceedings of the 2009 ACM SIGMOD
Int. Conf. on Management of data. ACM, 2009, pp. 1–2.

[5] N. May, A. Bohm, and W. Lehner, “Sap hana– the evolution of an in-
memory dbms from pure olap processing towards mixed workloads,”
Datenbanksysteme für Business, Technologie und Web, 2017.

[6] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner,
“Sap hana database: data management for modern business applica-
tions,” ACM Sigmod Record, vol. 40, no. 4, pp. 45–51, 2012.

[7] H. Plattner, “The impact of columnar in-memory databases on enterprise
systems: implications of eliminating transaction-maintained aggregates,”
Proc. of the VLDB Endowment, vol. 7, no. 13, pp. 1722–1729, 2014.

[8] J. Hrastnik, R. Dentzer, and R. Colle, Core Data Services for ABAP.
SAP PRESS, 2019.

[9] N. May, A. Böhm, M. Block, and W. Lehner, “Managed query pro-
cessing within the sap hana database platform,” Datenbank-Spektrum,
vol. 15, no. 2, pp. 141–152, 2015.

[10] F. B. Alomari and D. A. Menascé, “Self-protecting and self-optimizing
database systems: Implementation and experimental evaluation,” in Proc.
of the 2013 ACM Cloud and Autonomic Comp. Conf., 2013, pp. 1–10.

[11] A. Boehm, “In-memory for the masses: enabling cost-efficient deploy-
ments of in-memory data management platforms for business applica-
tions,” Proc. of the VLDB Endowment, vol. 12, no. 12, pp. 2273–75,
2019.

10Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 18 / 35

A Development Framework to Standardize Software Engineering Practices

Jishu Guin, Michele Macrı̀ and Andrus Kuus

Software Engineering Research Group
Proekspert AS

Tallinn, Estonia

Abstract—The success of an engineering organization evidently
depends on the growth of its engineers and the advancement of
engineering. In order to realize these two broad factors, there
must be inherent support for them at the organizational level. A
well suited organization structure can, by virtue of its design,
guide the engineering process to attain continuous growth of
engineers and advancement of the field. This work explores
the potential of matrix organizational structure combined with
elements of Rational Unified Process (RUP) as a candidate to
drive the success factors towards a desirable direction. The
functional units of the matrix are mapped to the major phases
of conventional software development process from requirement
engineering to testing. The units or groups operate in compliance
with the principles of RUP. The work at its current stage is a
proposal of the framework and does not attempt to build a theory
that can be verified empirically. However, empirical research
methods have been considered as a way forward for future work.
This paper, based on a preliminary analysis, attempts to show
that the proposed structure not only can provide a platform for
sustainable growth of engineers and advancement of engineering
by incorporating standard engineering practices and methods in
software development but also build a synergy to support more
significant and challenging endeavors in future.

Keywords–Matrix; RUP; Empirical; Software; Engineering;
Practice.

I. INTRODUCTION

Professional education of engineers demands the acquisi-
tion of specialized knowledge as one of the key domains in
addition to problem-solving skills and good judgment for the
service of society. The nature of this knowledge has a broad
spectrum, from fundamental to contextual [1]. Engineering
profession provides a platform to apply and evolve this body
of knowledge. In the decades of software engineering, various
methods and practices have made their way into academia as
part of the software engineering curriculum. These methods
have proven their effectiveness and importance in industry. Ap-
plication of these methods over the years built a synergy with
the discipline of software quality leading to the development
of various practices and tools to improve software engineering
e.g., Rational DOORS. In addition to quality, the application
of methods to various particular problems evolves the method
to encompass larger and more complex scenarios. The goal of
incorporating engineering practices in the development process
is different from merely creating better software in terms of
quality. Means to introduce standard methods and practices
can level up the software quality by enriching the overall
engineering discipline in the organization.

The work stems from a vision of improvement in the
current organization of the authors. The software development

Engineering
practice

Culture Quality

Advancement

Figure 1. Vision of improvement

workflow in the company is mainly directed towards product
delivery. A typical project uses agile methods to ensure
business demands are met. The focus of the development
process is more on the delivery of features than the engineering
methods. The assessment of quality delivered is usually based
on information such as defects reported and customer
feedback. The drawback of this approach is the suboptimal
usage of the merits of engineering which comprises of
its standard methods and metrics. The incorporation of
industry-proven practices not only adds value to software
development, but also towards the engineering culture and
advancement. The primary aim of the work is to design a
strategy to incorporate practices and methods as an integral
part of the software development process to ameliorate the
spheres of culture, quality and advancement as shown in
Figure 1 to attain the following improvement.

Culture - Familiarity of standard engineering concepts
among developers and software engineers in order to improve
technical communication and cooperation.
Quality - Enhance the quality of development by applying
industry-proven methods with measurable outcomes.
Advancement - Assist automation of activities and produce
reusable artifacts e.g., binary file, models, source code.

The words method and practice are both used in the work
as means to improve the engineering process. Specifically,
method refers to the standard technical solution applied in
a systematic way to the development process. A solution is
standard if it is used in the industry and more likely has a
scientific foundation e.g., modeling of requirements. Practice
refers to certain well recognized activities that can improve
software development e.g., use of artifacts as prerequisite for
each phase of the process. Further, the words method and

11Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 19 / 35

practice will be used interchangeably for brevity on account
of their common goal.

The practices that are subject of this work are specifically
tied to the software. They cater mainly to the engineering needs
of the software and its development. The purpose of the work
is not to enforce the use of a set of practices across all projects
but to propose a foundational framework that can provide
an environment to nurture application of standard practices
leading to reuse of practices across projects. The re-usability
aspect of the expected result can pave the way for a desired
level of standardization.

The initial part of the work draws an overview of software
engineering in an organization. This bird’s eye view assists
to identify certain areas that are associated with software
engineering - Standard Practices being one of them. The study
is significant to understand the co-relation of these areas with
the idea of standardizing practices and the way certain factors
are impeding the aim of this work. The following part of the
work presents a framework to incorporate methods into the
software development process. Two solutions are analyzed as
part of this work and, based on the results, an attempt is made
to reach a candidate solution. The work concludes by providing
a guideline for selection of standard practices. The next section
discusses the related work in the area of software engineering
practices followed by an account of the software engineering
domain from the organization’s perspective. Section IV derives
a strategy to incorporate standard practices and tabulates
the guidelines for selection of practices. Finally, Section V
presents the conclusion and directions for future work.

II. RELATED WORK

The specific nature of the work that embarks on an
attempt to create a framework to incorporate engineering
practices has limited the number of available related works.
The idea of incorporating best engineering practices, however
has been proposed by several Software Process Improvement
(SPI) models. In Software Process Capability Maturity Model
(CMM), the concept of benchmarking is used to accentuate the
importance of methods and practices in software process [2].
The SPICE model of SPI distinguishes engineering activities
as one of the key process categories [3]. The adoption of
these standards remain a challenge for small organizations
[4]. Generally, small companies are extremely responsive and
flexible, because that is their advertised competitive advantage.
Small companies don’t have enough staff to develop functional
specialties that would enable them to perform complex tasks
secondary to their products. The business demand and lack of
resource leads to the perception that SPI methods are expensive
and time consuming [5]. This gives way to impediments
in the optimal usage of standard engineering methods and
practices. A number of works discussed in [4][5] propose
to improve the software process in small companies. These
models of improvement aim to attain certain level of maturity
through a process of assessment. Despite their suitability to
small companies the methods assume additional tasks that
are secondary to the product. These tasks are not specifically
focused to incorporate standard practices in the development
process. The Technical Debt (TD) literature [6] identifies the
lack of best practices as one of the ways to incur debt. Usage
of good technical practices is a recommended way to prevent
TD [7]. In reuse-oriented software engineering [8][9], the

emphasis is on storing reusable knowledge in a repository to
improve new developments in future. The model is focused
on the storage and accessibility of the knowledge in the form
of standard artifacts produced by development activities. Al-
though both, TD and reuse oriented methods, rely on practices,
they do not provide sustainable means to incorporate standard
methods into development process. Application of standard
practices is valuable for attaining aforementioned vision of
improvement that this work aims to accomplish. The related
works, despite their inclination towards standard practices, fall
short in providing a directed strategy to incorporate practices.
A targeted strategy to introduce practices is essential to retain
the importance of standard methods in the face of business
demands. The framework proposed in this work specifically
aims to provide an ecosystem to apply and nurture practices.
Instead of enforcing a secondary process, the framework makes
standard practices an integral part of software development,
thus, attaining a balance between business demands and engi-
neering needs.

III. SOFTWARE ENGINEERING DOMAIN

The model as shown in Figure 2 identifies Standard prac-
tices as an area associated with Software Engineering. The
work aims to strengthen this area. Introduction of standard
practices in the software development process necessarily
causes a change in the current engineering domain in the
organization. A study of the domain in the company provides
insight into this correlation from two perspectives - The factors
that impede the use of industry proven methods and the impact
of standard practices on the domain. Certain key associations
are identified to draw a picture of the engineering domain.
The associated areas are elicited by considering the most
fundamental connections in a software undertaking based on
the conventional knowledge of the field. These associations
embody complex relationship with each other. The study
doesn’t aim to provide a comprehensive exploration of these
relations but attempts to draw certain key points that assists
in stipulating the guidelines to model a solution. The areas
depicted in the model, despite the complex relationship among
each other, yields some useful information to model and assess
the framework as discussed in the remaining part of the section.

Engineering

Project
Management

SDLC
(Process)

Quality
metrics

Training

Engineers
(People)

Advancement
goals

Standard
practices

Business
adaptability

Figure 2. Software engineering domain model

12Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 20 / 35

A. Challenges from business
The current state of the development process uses agile

methods, e.g., Scrum, that emphasizes on the value it produces
for the product and customer. It is imperative to consider
this value addition to business for successful operation of
this industry. The areas of Project Management and Business
adaptability ensure that the engineering process conforms
to those needs. The former enriches business by producing
deliverable that generate more value for resources invested
and the later ensures that the process adapts to the expected
standard of quality and constraints imposed by business. Some
industries may not require the high standards of quality as
demanded by safety-critical systems. Safety-critical projects
bear the cost to ensure the quality demanded by the domain
[10]. An implementation of industry-proven practices and
methods contribute to the engineering needs of the project and
it comes at the cost of time, expertise and budget for tools. The
balance between customer and engineering needs of a project
decides the balance between business and quality. A shift of
focus on the business needs may lead to a counter-intuitive
result of degradation in quality. The lack of a mechanism
to secure this balance impedes the introduction of standard
engineering practices in development.

B. Challenges from engineering
Software development life cycle lies at the core of soft-

ware engineering process. Software Development Life Cycle
(SDLC) incorporates main phases of development, from re-
quirement analysis to testing. Standard practices aim to accom-
plish specific activities of these phases. In order to motivate the
use of standard practice, the SDLC must encourage granularity
of the activities that standard practices aim to accomplish. The
blurred boundary between different engineering tasks com-
promises the granularity, leading to failure in accommodating
standard practices. In contrast, an artifact based development
as shown in Figure 3 can lead to a clear prerequisite and output
for tasks. Despite the practical challenges of achieving clear
boundaries between activities, an effort in that direction can
lead to increased usage of standard practices.

ActivityArtifact

Standard
Practice

ActivityArtifact

Standard
Practice

Artifact

Figure 3. Artifact based workflow

C. Correlation with other areas
The areas of Quality metrics, Training, Engineers and

Advancement do not directly resist the goal of this work but are
influential to Standard practice. Quality metrics measures the
attributes of process and product. The discipline of software
quality being a driver for continuous improvement is an area
where the organization has major scope for improvement.
Standard engineering practices provide measurements that
assist in acquiring data to measure quality. As more metrics
are instilled in the process, it motivates increased usage of
standard practices. The Training area in its current state in the

company is mostly guided by choices of employees and not
according to the demand posed by the development process.
A set of standard practices can guide training and thus help to
standardize the practices by imparting required knowledge to
employees. The area of Engineers comprises the people aspect
of engineering from hiring specialists to their growth in the
company. Criteria for recruiting engineers greatly benefits from
a set of practices required for the position. Training of these
industry-proven methods expands the skill set of engineers
with respect to overall software engineering discipline thus
contributing to their growth. Advancement goals is a crucial di-
mension that drives engineering to embark on more significant
endeavors e.g., Domain Engineering, Safety-critical systems. A
successful realization of this vision necessitates a foundation
that comprises standard practices as a key constituent. The next
section explores two solutions and attempts to evaluate them
based on this canonical domain model.

IV. INCORPORATION OF STANDARD PRACTICES

The challenge against standardizing practices is the
resistance from aforementioned areas primarily from business
and engineering. The aforesaid discussion on the challenges
connotes the following two key points that a strategy to
incorporate methods must take into account.

Motivation - Structure of the engineering unit must motivate
focus on the engineering needs of the project to attain a
balance with business aspects.
Sustainability - The process needs to provide a sustainable
platform that demands standard industry practices e.g., use of
artifacts as integral part of the development process.

The rest of this section describes a primary and alternate
solution to the challenge of introducing standard practices
followed by an analysis of the benefits and challenges of
each solution. Based on the analysis a candidate strategy is
drawn that reasonably attempts to address the challenges while
retaining the benefits. The section concludes with a set of
guidelines to assist the selection of practices.

A. Matrix structure
The balance between business and engineering is a key

factor and demands to be maintained. Each of these two
dimensions is necessary and significant part of the software
engineering model. Empowerment of only one poses the risk
of subverting the other. Standard practices contribute to the en-
gineering dimension. This work proposes a framework inspired

Requirement
Engineering Architecture Design Testing

Project A

Project B

Stories

Stories

Figure 4. Framework based on matrix structure

by the Matrix organization structure [11] as a solution to attain
a balance. The vertical dimension of this matrix represents
engineering and the horizontal business. As shown in Figure
4 the functional units of the matrix are based on the phases
of software engineering. The task of the design unit subsumes

13Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 21 / 35

the coding activities. There are standard design artifacts that
can be used by tools to partially generate source code. Fur-
ther improvement in design practices can maximize the code
generated by tools. In this structure, instead of the project,
functional units serve as the home base of engineers in it. The
units focus on the application of engineering solutions. The
member of a unit may work on tasks from multiple projects in
context of the unit’s engineering function. Implementation of
stories is realized by the contribution of units in their relevant
area.

The two dimensional structure brings forth the significance
of engineering aspect by giving it the position of a body in the
development process. This empowerment, although necessary
to motivate the culture of engineering practices, is not sufficient
to provide a steadfast platform for standard practices to operate
and mature. This firm foundation can be established by using
elements of Rational Unified Process (RUP) where artifacts
are essential outcomes of activities. In RUP, artifacts are the
tangible products of the project, the things the project produces
or uses while working towards the final product [12]. In the
matrix structure, the artifact produced by a standard method
is a prerequisite for another as shown in Figure 3. This in
effect makes artifacts form the operational interface between
the functional units. The inclination towards an artifact based
approach creates a sustainable demand for the use of standard
practices. The possibility to incorporate standard practices into
the development process, withstanding the opposing factors, by
virtue of the design of the framework is the main contribution
of this work.

The framework, by design, aims to meliorate the area
of Standard practices but due to the presence of focused
functional units the practices are also cultured and mature over
time. In a matrix structure, when teams of functional specialists
work together, a synergistic effect occurs, resulting in increased
innovation and productive output, even though individually
they may be working on different projects [11]. In addition
to incorporating methods there are other notable benefits in
the area of Advancement goals and Engineers. Re-usability is
an attribute that is desired for the advancement of engineering
and since the units serve multiple projects in context of a
specific functional area there is a drive towards unifying the
knowledge and attaining re-usability in the process. Growth
of engineers comprises learning and a desired mobility in the
organization. A functional unit being specific to a discipline
in software engineering, i.e., design, architecture, requirement
provides the opportunity to attain both learning and mobility
to desired units for engineers.

The abstract framework proposed in this work pose cer-
tain potential risks that, although not established a priori or
empirically, demand attention. The project domains in the
organization have a wide spectrum from embedded application
to mobile and web applications. The complexity of carrying
out the activities of these diverse domains by one unit poses
a challenge in the development and so does the overhead of
making a change in the development model across all projects.
The Business adaptability factor suggest that project may have
different constraints and demands for the rigor of practices.
Not all projects demand the rigor of formal methods because
the cost of error may not be as high as it is for safety-critical
system thus posing a challenge in standardizing the practice
in a unit across all domains. The next subsection provides a

brief account of a simple alternative.

B. Alternate solution
Addressing the challenges in matrix structure there can

be alternative solutions based on incentives. In this model
instead of the structure empowering the engineering aspect by
design, engineers are motivated to use standard practices by
incentivisation. The incentives can be in a form that contributes
to their performance and growth. The application of a practice
by the engineer can be evaluated by an independent body based
on certain guidelines. The benefit of this structure is the lack of
overhead to the current process and this can be applied across
all domains. However, a major pitfall is that the key point
of balance between business and engineering is not addressed
and is left as a choice that the incentive may fail to influence
in favor of engineering. In contrast to the matrix structure,
the incentive solution does not directly provide the benefits of
maturity of practices and re-usability due to lack of focused
functional units.

C. Candidate solution

Requirement
Engineering Architecture Design Testing

Project A

Project B

Stories

Stories

Web
Application

Requirement
Engineering Architecture Design Testing

Project A

Project B

Stories

Stories

Mobile
Application

Requirement
Engineering Architecture Design Testing

Project A

Project B

Stories

Stories

Embedded
System

Figure 5. Domain based matrix structure

The directed and firm nature of the matrix structure to-
wards addressing the Motivation and Sustainability aspects
augmented by its contributions to Advancement and Engineers
makes it a desirable solution. The aforementioned risks arising
from Project Management and Business adaptability can be
alleviated by applying the structure to individual domains
instead of pursuing it across all projects. The domain based
matrix structure retains the canonical form of the matrix
but operates under the umbrella of a particular domain e.g.,
embedded systems, web applications. The simple modification
as shown in Figure 5, apart from reducing the risk posed by the
scale of change and multifariousness of domains, provides an
additional advantage of domain specific re-usability that can
lead to advancements like Domain Engineering.

D. Guidelines for selection of practices
The candidate solution aims to provide an environment to

nurture standard practices. However, its effectuation demands
a set of selected practices. The vast number of variables and
choices available in different domains makes the selection of
practices a challenging task. The engineering domain model
presented in this work allows eliciting some guidelines that
can help in the selection process. A comprehensive and system-
atic selection process would require consideration of various
factors including quantitative valuation of the criteria, their
precedence order and the procedural aspects of the process
of selection. Such a study is not in the scope of this work.

14Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 22 / 35

TABLE I. PRACTICE SELECTION GUIDELINES

Association Criteria
Quality metrics Availability of desired quality

metrics. The metric may
correspond to a recognized
software quality standard
e.g., ISO/IEC 9126

SDLC Produces artifacts that can
be used by other practices.
This can produce an artifact
based workflow.
Available tool support.

Training Affordability and availability
of resources for training

Engineers Recruitment - Availability of
experienced professionals with
the competence required for the
practice.
Growth - Practice is recognized
industry wide contributing to
the growth of employees.

Business adaptability Applicable directly or
indirectly to wide range of
business domains.

Project Management Cost and turnaround time
of the practice

Advancement goals Assists the realization and
maturity of concepts like
automation and reuse that
helps to lay the foundation
for advancement of engineering

However, the points described in Table I can reasonably guide
the selection process.

V. CONCLUSION AND FUTURE WORK

The current software engineering model in the organization
successfully caters to the business needs in the software
development process. However in order to sustain high level of
quality irrespective of the size and complexity of the project,
the model must heed the engineering aspect. Introduction of
a set of standard engineering practices is an important step in
that direction. This work attempts to lay a foundation to build
the set of practices and proposes a framework to incorporate
them in the software development process.

The premise of the work is a software engineering domain
model that provides a landscape to elicit the set of guidelines
for selection of standard practices and derive two solutions.
Based on the benefits and drawbacks of each, one of the
solutions is modified to reach a candidate for further empir-
ical evaluation. The analysis and elimination process used to
derive the solution strengthens the logical soundness of the
approach. The solution proposed is a framework based on the
matrix organization structure applied to specific domain. The
framework notably empowers the engineering aspect of the
development process thus providing a platform to apply and
standardize engineering practices. The framework in its current
state is a proposal and lacks the rigor of a theory. Thus, it does
not produce a comprehensive set of testable hypothesis at this
stage.

The work gives rise to two distinct lines of research to
pursue in future. Firstly, the theory building process must
be applied to the proposed framework, which includes the
delineation of the term standard practice [13]. The formulated
theory will provide the foundation for practical evaluation. Sec-
ondly, an empirical research strategy needs to be designed and
conducted to test the hypothesis drawn from the formulated
theory [14]. A test can provide the necessary experimental data

required to establish the validity of the proposed framework.
The scope of the preliminary empirical evaluation shall be
confined to a single domain e.g., embedded system.

REFERENCES
[1] S. Sheppard, A. Colby, K. Macatangay, and W. Sullivan, “What is

engineering practice?” International Journal of Engineering Education,
vol. 22, no. 3, 01 2006, pp. 429–438.

[2] W. Humphrey, “Introduction to software process improvement,”
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep. CMU/SEI-92-TR-007, 1992. [Online]. Available:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11611 [re-
trieved: 01,2020]

[3] Tr, “Information technology — software process assessment — part 2
: A reference model for processes and process capability.” ISO, 1998.

[4] G. Valdés, M. Visconti, and H. Astudillo, “The tutelkan reference
process: A reusable process model for enabling spi in small settings,” in
Systems, Software and Service Process Improvement, R. V. O‘Connor,
J. Pries-Heje, and R. Messnarz, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 179–190.

[5] I. Richardson and C. G. Von Wangenheim, “Guest editors’ introduc-
tion: Why are small software organizations different?” IEEE Software,
vol. 24, no. 1, Jan 2007, pp. 18–22.

[6] E. Allman, “Managing technical debt,” Queue, vol. 10, no. 3, Mar. 2012,
p. 10–17. [Online]. Available: https://doi.org/10.1145/2168796.2168798
[retrieved: 01,2020]

[7] K. S. Rubin, Essential Scrum: A Practical Guide to the Most Popular
Agile Process, 1st ed. Addison-Wesley Professional, 2012.

[8] E. Ras, J. Rech, and B. Decker, “Workplace learning in software
engineering reuse,” in Proc. Int. Conf. Knowledge Management, Special
Track: Integrating Working and Learning, 2006, pp. 437–445.

[9] M. T. Baldassarre, A. Bianchi, D. Caivano, and G. Visaggio, “An
industrial case study on reuse oriented development,” in 21st IEEE
International Conference on Software Maintenance (ICSM’05). IEEE,
2005, pp. 283–292.

[10] D. Turk, R. France, and B. Rumpe, “Limitations of agile software
processes,” In Proceedings of the Third International Conference on
Extreme Programming and Flexible Processes in Software Engineering
(XP2002), 05 2002, pp. 43–46.

[11] L. C. Stuckenbruck, “The matrix organization.” Project Management
Quarterly, vol. 10, no. 3, 1979, pp. 21–23.

[12] R. U. Process, “Best practices for software development teams,” A
Rational Software Corporation White Paper. TP026B, Rev, vol. 11,
no. 01, 2001.

[13] D. I. Sjøberg, T. Dybå, B. C. Anda, and J. E. Hannay, “Building theories
in software engineering,” in Guide to advanced empirical software
engineering. Springer, 2008, pp. 312–336.

[14] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
advanced empirical software engineering. Springer, 2008, pp. 285–
311.

15Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 23 / 35

Broadening the Lens:

Toward the Collective Empathic Understanding of Product Requirements

Robert C. Fuller

Electrical and Computer Engineering

The University of British Columbia

Vancouver, Canada

e-mail: rfuller@ece.ubc.ca

Abstract— Many software product companies have embraced

the agile paradigm and gone on to create cross-functional

product development teams that fully own their product. The

expectations of these teams are very different than of

development teams in a disciplined software development

environment. The study underway examines how these

empowered cross-functional product teams, as a collective,

create and nurture a shared mental model that accurately

represents the external product domain and its realities and

that provides the context for understanding the requirements.

We also examine external factors that allow for these teams to

develop these capabilities while less-empowered teams cannot.

Using Constructivist Grounded Theory, we study individuals

and teams in several companies and varied product domains.

We find that certain organisational factors play a significant

role and we also examine an essential dynamic of broadening

the lens and blurring boundaries that cross-functional product

teams employ in order to not only fully embrace product

planning but also to grok the domain for their products.

Keywords - empathy-driven development; collective

sensemaking; design science; requirements validation; product

team organisation.

I. INTRODUCTION

Product development is a social process; thus, the

dimension of the organisational model and dynamics is the

elephant in the room, a critical factor for success or failure

of software products.

This study builds our earlier work [1] that studied

software product teams that displayed varying degrees of

collective grokking. In that study, we found that the

organisational model surrounding the teams had a profound

influence on whether the teams could grok the product

requirements at all. Building upon that work, we use the

Constructivist Grounded Theory method (described further

in Section V) to examine characteristics of collective team

grokking of the product domain and we also examine how

the extra-team organisational model affects the team’s

ability to own increasingly comprehensive product planning.

We use the concept of broadening the lens as an

explanatory mechanism that Cross-functional Product

Teams (CFPTs) use to explore further and innovate more

and we also look at some of the prerequisite conditions in

order for teams to do this.

Grokking is cognitive empathy, coupled with skilled

perspective-taking. We use a definition of cognitive

empathy to be “the ability to imaginatively step into another

domain, understand the perspectives of those in that

domain, and use that understanding to guide decisions”

[2,x]. Increasingly, the success of software product

development teams depends on the degree to which the team

collectively groks not only the product requirements

themselves but also, and importantly, the context for those

requirements.

The remainder of this paper is structured as follows:

Section II – Background and Problem provides an overview

of the historical background and description of the research

problem. Section III – Research Motivation and Focus

describes what we’re aiming to achieve and a brief

description of the research scope. Section IV – Related

Work positions this study with respect to three related areas

of research. Section V – Method and Status of the Research

overview the research methodology chosen and current

status respectively. Section VI – Emerging Observations

and Discussion describes the findings to-date followed by

Section VII – Conclusion and Future Work, offering

thoughts about contribution thus far and what work remains

to be done.

II. BACKGROUND AND PROBLEM

By the late 1990s, three forces had taken hold which

dramatically changed the nature and challenge of software

development. One was the emergence of the Internet which

introduced new uses of information technology as well as

business models. This, combined with much lower hardware

costs, computing capability rapidly appeared on almost

every desk and in almost every home. Third, the

introduction of graphical user interfaces dramatically

enriched user interaction with technology and also

complicated software design and development. These three

forces together resulted in more software being developed

as products for a market instead of predominantly bespoke

system development that was the norm prior. This shift

towards product development introduced substantially more

uncertainty into much of the software development

activities.

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 24 / 35

In response to this, a Kuhnian “model revolution” [3]

emerged that took a new view on change, risk, and

uncertainty in software development. This ‘agile’ approach

accepted that requirements could change or that further

understanding would emerge throughout the development

effort in contrast to more disciplined Software Development

LifeCycles that strived to lock down requirements in the

specification and planning stages.

The agile model placed greater focus on the development

team, recognizing that prescriptive processes were

insufficient to ensure project success in these complex and

emergent conditions and that the dynamics of the

development team, which was now usually cross-functional

and empowered to truly own the software product, was

considered a critical success factor in delivering software.

While the agile approaches improve many of the issues

that were breaking down during the crisis period, many still

cling to the notion that there is a customer (or, an internal

surrogate), an authoritative voice that the development team

can iteratively interact with to clarify requirements and

validate results. However, as software solutions address

more complex and subtle needs and as development is often

more product-oriented, intended for a market rather than a

single customer, a new and critical challenge emerges for

software teams and that is how to gain a deep understanding

of the world for which the product is intended, an

understanding that cannot be passed on to the team by an

internal market surrogate. Certainly, techniques to ‘hear’

from the market are helpful but, as Polyani [4] noted,

market participants have tacit knowledge -- people can

know more than they can tell and they know more than can

be easily observed.

In early times when requirements were less complex,

could be more precisely expressed, and quite often coming

from an identifiable customer, techniques such as having at

least one domain expert on (or available to) the team were

often sufficient. Today, however, with much more technical

and problem complexity, heterogenous customer targets,

and competitive uncertainties, it is insufficient to simply

have one person with this deep understanding, typically

creating the requirements specification. Yet, many software

development organisations operate this way, often resulting

in requirements fixation [5].

Rather it is important that everyone on the team have a

deep domain understanding. It is also critical that the entire

team understands it in a compatible and consistent way

because team members (individually, in sub-teams, and

across all functional roles) make decisions almost

continually based on their individual understanding of the

context of the requirements, and much of that context

understanding is tacit. This challenged is expressed well by

Berry [6] when discussing assumptions in requirements

engineering amongst team experts:

“It seems that among experts, a common disease is the

presence of unstated assumptions. Because they are

unstated, no one seems to notice them. Worse than that, it

seems that no two people have the same set of assumptions,

often differing by subtle nuances that are even more tacit

than the tacit assumptions. It is these assumptions that

confound attempts to arrive at consensus, particularly

because none of the players is even consciously aware of his

or her own assumptions and certainly not of the differences

between the players’ assumptions” (p.180)

Thus, product development teams have to strive for a

deep collective understanding of the context of their

product, a shared mental model of the supra-domain, since

many decisions are unconsciously made within the team’s

understanding of the domain context. Some teams achieve

success in this aspect more than others and software

development leaders have no theories that help explain why.

We observed earlier [1] that the organisational model

surrounding the cross-functional teams has an impact on the

team’s ability to grok, hence the scope of this inquiry

expands from there to examine additional factors both

internal and external to the teams.

III. RESEARCH MOTIVATION AND FOCUS

This study aims to develop theory offering insights into

factors that support or impede CFPTs in collectively

achieving a deep understanding of the context of their

products.
The differences between teams that achieve a reasonable

degree of collective grokking in terms of team vision,
cohesion, and quality of work product is observable by
practitioners and researchers, yet the reasons are generally
unclear. Without explanatory models, industry leaders are
unable to proactively create and nurture the relevant factors.
This study is aimed at helping industry practitioners explain
why certain prevailing techniques and empirical approaches
for understanding software solution needs are often
inadequate, why some succeed while others do not.

The focus of this research is practicing software product

teams in action, including teams empowered to own their

product and those that are not. For contrast, we also include

organisations that are not product companies. The study

examines the empirical adaptations these teams make

toward furthering their understanding of the context in

which their users operate. We also examine important

organisational factors that either allow or inhibit a team’s

ability to collectively grok the domain.

IV. RELATED WORK

We reviewed published material in 3 areas -

requirements engineering, design science, and collective

sensemaking.

This inquiry is primarily related to requirements

engineering (attempting to obtain and understand the true

needs). Reviewing all the papers at the IEEE International

Requirements Engineering Conference over the past decade,

plus many other published papers in the area, we found

growing sentiments expressed about the shortcomings of

prevailing approaches to requirements engineering which

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 25 / 35

tend to focus on techniques and methods rather than

deepening practitioner and team understanding, e.g., (Schon

et al. [7], Ralph and Mohanani [8]). This general sentiment

led to the formation of the NaPiRE initiative (Naming the

Pain in Requirements Engineering) [9], a community

endeavour run by a multitude of researchers world-wide.

While there are certain domains where the ‘techniques and

methods’ approach is entirely adequate and appropriate, our

focus is on problem domains that do not lend themselves

well to complete and unambiguous specifications and,

therefore, where it is necessary for the CFPTs to have their

own deep understanding of the product domain beyond just

the requirements specifications.

The design science space has considerable material

regarding empathy-driven design (translating human needs

to experiences), e.g., (Koppen and Meinel [10], van Rijn et

al. [11], Postma et al. [12], Woodcock et al. [13], Dong et al.

[14], Kourprie and Visser [15], Kolko [16]). However, we

found this falls short of addressing our inquiry question in

three critical respects: 1) focus on the design activity as part

of an essentially sequential product development process

rather than design as part of an on-going continuous product

development effort, 2) it tends to focus on the design

individual or only the design team rather than the whole

development team and, 3) when even the design team is

considered, it tends not to be viewed as a unit regarding its

empathic ability. Design science models described by

Wieringa [17] acknowledge the challenge that empathy-

driven requirements understanding attempts to address but

stops short of suggesting how those challenges could be

addressed. We aim to offer insights into how this level of

understanding is achieved and how to nurture the pre-

requisite conditions.

Collective sensemaking (the process by which people

give meaning to their collective experiences) does consider

the collective (team) but only with respect to its relationship

to the organisation, not to its understanding of an external

domain. Of interest in this area is the Cynefin framework

(Kurtz and Snowden, [18]) which is a sensemaking

framework that is designed to allow shared understandings

to emerge which could be insightful with respect to how

teams ingest, socialise, and collectively store insights. As

with other collective sensemaking models, however, it has

resonance in early problem-solving stages and for formal

and finite periods of time whereas our focus is on the full

product lifecycle.

V. METHOD AND STATUS OF THE RESEARCH

We take an interpretive epistemological stance,

employing the Constructivist Grounded Theory qualitative

research methodology described by Charmaz [19].

Constructivist Grounded Theory is highly applicable in

research such as this because the method is explicitly

emergent, taking an inductive approach where no adequate

prior theory exists. This method is particularly appropriate

for a “What is going on here?” type of qualitative inquiry as

this study is. The use of Grounded Theory in computer

science research has risen significantly since 2005 and

specifically used successfully to study Agile software

development teams, e.g. Adolph et al., [20], Dagenais et al.,

[21], Coleman and O’Connor, [22], Martin, [23], Hoda,

[24], Stol et al, [25].

Using theoretical sampling where the analysis of the data

collected prior informs the selection of and inquiry with the

next participants, individual participants and corporate sites

selected are ones involved with software product

development (teams developing software for market) and

that claim to have cross-functional product development

teams. The primary data collection methods are

observations of team meetings and team interactions,

enriched by semi-structured interviews (recorded and

transcribed) with open-ended questions that can allow real

issues to emerge. Thus, the method is grounded in the

participants’ world and the emerging and evolving theory is

constructed by the researcher and the participants.

We employ various strategies (Maxwell, [26]) to mitigate

threats to validity (credibility, dependability, reliability).

Intensive, on-going involvement, e.g., extended

participation and the ability to live in the participants’

workplace, provides richer data and data types, less

dependence on inference, and opportunity for repeated

observations and interviews, all which will help rule out

spurious associations and premature theories. Participant

checks (obtaining participant and peer feedback on the data

collected and conclusions drawn) help rule out possibilities

of misinterpretation. Select codes and concepts from the

analysis are highlighted below as bold italics.

To date, we are working with six software firms. Four of

these firms produce commercial enterprise-class software

products, one creates sophisticated virtualisation solutions,

while another develops large-scale aerospace systems as

bespoke system development. Three of these firms have

adopted agile as a paradigm, two as a methodological

approach, while the other employs a highly prescriptive

methodology due to the dictates of its market. The firms

range in size from ten to several hundred employees and the

firms range in age from 2 to 50 years old. To-date, 18

product development teams across these companies have

participated, resulting in 26 individual semi-structured

interviews and 19 team observation sessions. The

individuals interviewed have been 2 senior managers, 8

senior engineer / team leads, 5 product managers, 1 quality

assurance specialist, and 10 intermediate-level software

engineers. Participant sampling and data gathering is on-

going.

VI. EMERGING OBSERVATIONS AND DISCUSSION

We have identified three contexts that contribute to a

CFPT’s ability to collectively grok the product

requirements. The first is the organisational context which

we identified in isolation in our earlier work [1]. The second

is the product planning context (the ability of CFPTs to own

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 26 / 35

a broader responsibility for product planning), influenced by

the organisational context but having its own independent

dynamics. The final context is the product domain context

itself (the ability for the CFPT to grok the product domain),

heavily dependent on the previous two contexts.

A. The Organisational Context and Its Impact on CFPTs

Fuller [1] described the impact the broader

organisational model has on the CFPT team. Impacts of note

were intra-team deference, the team’s concern and

ownership horizon, and the team robustness. Certain aspects

of individual participation on the team (e.g. primary

affiliation, individual agenda) were also highlighted. In this

sub-section, we summarise those findings.

When a functional organisational structure exists in the

software product enterprise, e.g., separate engineering,

design, product management departments, each contributing

individuals to form CFPTs, team members are more likely

to limit their contributions to topics directly relating to their

area of functional expertise and tend to show marked

deference to team members of other functions on topics

outside their area of primary functional expertise. The

individual sense of primary affiliation was stronger toward

their functional department than it was with the software

product team. Simply put, an individual in this

organisational environment is located via function more

than via team membership. This results in team members

being much more concerned about how a product is to be

built and defer to others regarding the what and why.

Illustrative comments from team members were “I just do

what I’m asked to do” when referring to involvement with

requirements specifications or “They’re the experts, I trust

them” when referring to team members in other functional

roles.

Team members in this model tended to show less

investment in the overall success or failure of the product

and the teams themselves much less likely to take collective

responsibility for success or failure of the product. They are

more likely to shift responsibility to management decisions

or to other teams/functions rather than attempt to reconcile

differing mandates of the participating functional

departments.

In contrast, organisations without a functional structure

surrounding the CFPTs seem more likely to have teams with

richer intra-team interactions with softer (sometimes an

absence of) functional interfaces amongst individual team

members, placing the interests of the product foremost and

above any functional tensions. In short, the sense of team

and commitment to the product tended to be much stronger.

In one of our participant companies with multiple products,

it is common for product team members’ LinkedIn profiles

showing the product name as the company they work for

with no reference to the overall firm, making it very clear

where they belong and what they are committed to.

Studies by Gladstein [27] and Anacona [28] noted that

contextual factors have a greater influence on team

effectiveness than do internal team processes. Our emerging

results to-date support this and suggest further that the two

are not unrelated – that the operating context of the team has

a significant impact on internal team factors, which include

internal team processes.

In summary, a CFPT’s progression along a spectrum

from an assembly of experts to a true empowered cohesive

team is heavily influenced by whether a broader functional

department organisational structure exists around the team

and how strong those departmental distinctions are.

B. The Product Planning Context and CFPTs

 We observed that CFPTs that have strong internal

connections and softer functional role deference showed

more interest in the broader product planning context. These

teams ask broader questions, are more curious, and attempt

to explore more - essential ingredients for innovation.

 However, our observations also included teams in some

companies that did not have the organisational structure

and/or culture that allowed their CFPTs to own as much of

the product planning process that the teams often wished

they could own. This was often the case where strategic

planning for product occurred in another functional area and

communicated to the product development group to execute

upon. Some companies will take this even further and have

a separate product management function that define product

evolution details that are then handed off to software

engineering for development. We observed that CFPTs with

strong internal cohesion have a propensity to own something

and will, therefore, narrow or broaden their lens on the

product development work to match what they are permitted

to own. This action of Broadening the Lens allows the team

to identify control boundaries and also to see patterns and

relationships so that they may more purposefully and

knowledgeably re-focus.

 This lens adjustment also aligns their definition of

success with what the company expects. Individuals and

teams will colour within the lines they are given or

allowed. This is reflected in what completed work the

development teams celebrate, e.g. a successful iteration,

meeting a release deadline, or being part of a successful

product in the market.

 The spectrum of this context ranges from full strategic

and execution ownership of the product on one end to the

team being spoon-fed tasks on the other.

 As with the Organisational Context, the focus of a

team’s product planning lens also shows in the verbal

language used by the teams. The broader the team’s

planning scope is, the more the conversations will indicate a

deep understanding of (or, at least references to) product

needs from the domain perspective, product/market

opportunities, etc. Teams low on this spectrum reference

those considerations less and make more reference to

internal entities and artefacts such as other functions/teams,

processes, specifications, etc.

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 27 / 35

C. The Product Domain Context and CFPTs

 As Fuller [1] observed, empowered and cohesive CFPTs

play a longer game. With less internal deference in the team

and less individual tentativeness with respect to their

membership on the team, conditions exists that encourage

full participation and commitment (both individual and

collective) to the long-term product roadmap.

 In our analysis to-date, we find that CFPTs that exhibit

little to no functional deference across functions within the

team and who are not being spoon-fed their development

tasks almost always exhibit some degree of collective

grokking of the context of their product domain and, hence,

the product requirements.

 This is significant because all software is developed in

context and it is context that guides decisions. If the team is

cohesive, their context will be more collective than if it is

not (Organisational Context). If the team owns more of the

product planning, that context will be more comprehensive

than if they own less (Product Planning Context). And if

they collectively grok the product domain to a reasonable

degree, their context will more accurately reflect the world

for which their product is intended (Product Domain

Context).

 The spectrum of collective domain understanding ranges

from just do what the story says to intellectual domain

understanding (deep knowledge of vocabulary, workflows,

objectives, etc.) to true felt (lived) understanding of the

domain. The further a team moves along this spectrum, the

more the team groks - blurs the boundaries between itself

and the domain in order to achieve some degree of empathic

understanding.

 In this context of requirements engineering, we suggest

that empathy, specifically collective cognitive empathy, is a

fundamentally important ability in order to deeply

understand a domain which the team is otherwise unfamiliar

with. Exercising that ability, stepping into that other

domain, involves a certain temporary softening of the

distinction between the collective and the domain, a

blurring of the boundaries, in order to truly understand

perspectives in that domain. Broadening the lens is

necessary for the team to be able to see the other domain

and its context, the blurring of the boundaries is an effort

to understand. Smith et al. [29] suggest that empathy can

become collective and that it can be an attribute of the group

that is more than just the aggregation of individuals’

attributes.

 We observed some teams that did not even attempt to

grok the product domain, a reflection of the culture of the

team and its organisational environment. Certain other

teams that did try had modest success due to influences

from the organisational and/or product planning contexts.

For a CFPT to be able to collectively step into another

domain, it is necessary for it to see itself as a cohesive unit.

This can only be achieved when there is a high level of

transparency across all functions on the team, little to no

deference shown within the team, and a strong sense of

collective ownership for the product. In other words, a true

team with a strong product mandate – blurred boundaries

with strong connections. It requires team members to feel

psychologically safe, have open minds, and a strong sense

of curiosity. If any of these are weak or missing,

discoveries, innovation, and collective grokking are

inhibited [30].

As we examined the teams that made some progress at

collective grokking of the product domain, we observed a

special form of the broadening the lens behaviour that

teams performed when refining their product planning

context. In these cases, the teams were purposefully

blurring boundaries in order to achieve a deeper collective

empathic understanding of the product domain.

VII. CONCLUSION AND FUTURE WORK

Many of these observations sit in opposition to common

organisational practices that emphasise specialisation (for

management and control convenience) and focus (to meet

deadlines). Further work is needed to bring more clarity

about whether there are other, more subtle, factors at play.

Our data strongly indicates that blurred boundaries

within CFPTs are a reflection of blurred boundaries outside

of the teams and, similarly, there may well be even further

team environmental factors to explore.

There appears to be a certain blurring of functional and

domain boundaries necessary for a team to become a true

product team rather than a collection of functional experts

assembled around a product. Further, this appears to be a

pre-condition for the team to be able to behave as a

collective and achieve some degree of collective grokking

of the context of the product requirements.

While we observed teams using the broadening the lens

mechanism to blur the boundaries between the team and

the domain, we allow that this mechanism and the pre-

requisite or enabling conditions may paint only a partial

picture. Thus, we believe there remains much to explore

with respect to why some teams, even in the same

organisational context, observably achieve more grokking of

the product domain than do other teams.

ACKNOWLEDGMENT

This work is supported in part by the Institute for
Computing, Information and Cognitive Systems (ICICS) at
UBC.

REFERENCES

[1] R. Fuller, “What T-shirt Are You Wearing? Towards the Collective
Team Grokking of Product Requirements,” in SOFTENG 2019, The

Fifth International Conference on Advances and Trends in Software
Engineering, pp. 37–40, 2019.

[2] R. Krznaric, Empathy: why it matters, and how to get it. New York:
Penguin Random House, 2014.

[3] T. S. Kuhn, The Structure of Scientific Revolutions. 4th ed. University
of Chicago Press, 2012.

[4] M. Polanyi, The tacit dimension. Chicago: University of Chicago
Press, 2009.

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 28 / 35

[5] R. Mohanani, P. Ralph, and B. Shreeve, “Requirements Fixation,” in
Proceedings of the 36th International Conference on Software
Engineering, pp. 895–906, 2014.

[6] D. M. Berry, “The importance of ignorance in requirements

engineering,” Journal of System Software, vol. 28, no. 2, pp. 179–
184, 1995.

[7] E. M. Schön, D. Winter, M. J. Escalona, and J. Thomaschewski, “Key
challenges in agile requirements engineering,” in Lecture Notes in
Business Information Processing, 2017.

[8] P. Ralph and R. Mohanani, “Is Requirements Engineering Inherently
Counterproductive?,” in Proceedings - 5th International Workshop on
the Twin Peaks of Requirements and Architecture, TwinPeaks 2015,
2015.

[9] D. Mendez, S. Wagner, M. Kalinowski, M. Felderer et al.. NaPiRE:
Naming the Pain in Requirements Engineering, http://napire.org.

[10] E. Koppen and C. Meinel, “Knowing People: The Empathetic
Designer,” Design Philosophy Papers, vol. 10, no. 1, pp. 35-51, 2012.

[11] H. Van Rijn, F. S. Visser, P. J. Stappers, and A. D. Özakar,

“Achieving empathy with users: the effects of different sources of
information,” CoDesign, vol. 7, pp. 65–77, 2011.

[12] C. Postma, E. Zwartkruis-Pelgrim, E. Daemen, and J. Du,
“Challenges of Doing Empathic Design: Experiences from Industry,”
Int. J. Des. Vol 6, No 1, pp. 59-70, 2012.

[13] A. Woodcock, D. McDonagh, J. Osmond, and W. Scott, “Empathy,
Design and Human Factors,” Advances in Usability and User
Experience, pp. 569-579, 2018.

[14] Y. Dong, H. Dong, and S. Yuan, “Empathy in Design: A Historical

and Cross-Disciplinary Perspective,” Advances in Neuroergonomics
and Cognitive Engineering, pp. 295-304, 2018.

[15] M. Kouprie and F. S. Visser, “A framework for empathy in design:

stepping into and out of the user’s life,” J. Eng. Des., vol. 20, no. 5,
pp. 437–448, 2009.

[16] J. Kolko, Well-Designed: How to create empathy to create products
people love. Harvard Business Review Press, 2014.

[17] R. Wieringa, Design Science Methodology for Information Systems
and Software Engineering. Springer, Berlin, 2014.

[18] C. F. Kurtz and D. Snowden, “The New Dynamics of Strategy:
Sense-making in a Complex-Complicated World,” IBM Syst. J., vol.
42, no. 3, pp. 462–483, 2003.

[19] K. Charmaz, Constructing grounded theory (2nd ed.). London: Sage,
2014.

[20] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to
study the experience of software development,” Empirical Software
Engineering., vol. 16, no. 4, pp. 487–513, 2011.

[21] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard, and J. P.

De Vries, “Moving into a New Software Project Landscape,” in ICSE

’10 Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, pp. 275–284, 2010.

[22] G. Coleman and R. O’Connor, “Using grounded theory to understand

software process improvement: A study of Irish software product
companies,” Information Software Technology, vol. 49, no. 6, pp.
654–667, 2007.

[23] A. M. Martin, “The Role of Customers in Extreme Programming

Projects,” PhD thesis. Victoria University of Wellington, New
Zealand, 2009.

[24] R. Hoda, “Self-Organizing Agile Teams : A Grounded Theory,” PhD
thesis. Victoria University of Wellington, New Zealand, 2011.

[25] K. J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software

engineering research: A critical review and guidelines,” in

Proceedings – International Conference on Software Engineering,
vol 14-22. pp. 120-131, 2016.

[26] J. A. Maxwell, Qualitative research design: An interactive approach.
Thousand Oaks, Calif.: SAGE Publications, 2012.

[27] D. L. Gladstein, “Groups in Context: A Model of Task Group
Effectiveness,” Adm. Sci. Q., vol. 29, no. 4, p. 499, Apr. 2006.

[28] D. G. Ancona and D. F. Caldwell, “Demography and Design:

Predictors of New Product Team Performance,” Organ. Sci., vol. 3,
no. 3, pp. 321–341, Oct. 2008.

[29] E. R. Smith, C. R. Seger, and D. M. Mackie, “Can Emotions Be Truly
Group Level? Evidence Regarding Four Conceptual Criteria,”. J.
Pers. Soc. Psychol., 2007.

[30] M. Harms and R. Reiter-Palmon. Team Creativity and Innovation,
Oxford: Oxford University Press, 2018.

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 29 / 35

Test Coordination and Dynamic Test Oracles for Testing Concurrent Systems

Bernard Stepien, Liam Peyton
School of Engineering and Computer Science

University of Ottawa
Ottawa, Canada

Email: {bstepien | lpeyton}@uottawa.ca

Abstract—Testing concurrent systems is complex. In
traditional software unit testing, a test sequence is always
composed of a stimulus and its corresponding fully
predictable response. With concurrent systems, this simple
model no longer holds as the state of the System Under Test
(SUT) changes while several users place their requests. Race
conditions are a particularly challenging problem for testing,
since they will occur and must be identified, but are very
disruptive to the test environment. In this paper, a case
study, using the formal test specification language TTCN-3,
illustrates the challenges for test coordination, especially
race conditions, and propose techniques to address them.
We also introduce shared variables and the use of
semaphores in the TTCN-3 parallel test component model as
a mechanism to implement dynamic test oracles.

Keywords- software testing-concurrent systems; TTCN; test
oracles; race conditions.

I. INTRODUCTION

Testing concurrent systems is complex. In traditional
software unit testing, a test sequence is always composed
of a stimulus and its corresponding fully predictable
response [4]. With concurrent systems, this simple model
no longer holds as the state of the system under test
(SUT) changes while several users place their requests.
Race conditions are a particularly challenging problem for
testing, since they will occur and must be identified, but
are very disruptive to the test environment.

Some definitions and implementations of parallel
testing can be found in [6][7][8][9]. Obviously there are
different kinds of parallel testing. In the previous
reference, the main concern is to run sequential tests in
parallel in order to save time. Instead, we focus on
concurrent testing of states in a system under test (SUT)
states as the test purpose. There are two main categories
of concurrent test systems:

 Response time testing when a large number of
requests are sent to a server as shown in Figure
1. This is addressed using TTCN-3 in [10].

 Testing the actual processing logic of the SUT
when confronted by several requests from
parallel users where the state of the SUT is
changing as a result of requests of the users and
thus affecting each user’s behavior.

Figure 1. Parallel system configuration

In this paper, a case study, using the formal test
specification language TTCN-3, illustrates the challenges
for test coordination, especially race conditions, and
proposes techniques to address them. We also propose
shared variables and semaphores in the TTCN-3 parallel
test component model as a mechanism to implement
dynamic test oracles. Overall, the motivation to use a
formal method such as TTCN-3 and its related available
execution tools is to take full advantage of its logging
information in order to rapidly detect faults due to race
conditions. We also propose enhancements to the TTCN-
3 language to make our testing concurrency problem
statement usable.

II. A CASE STUDY

In sub-section A we define the dynamic state problem to
be addressed, in sub-section B we propose thee methods
to specify concurrent systems tests.

A. Defining the problem

Although, we have studied extensively testing
concurrency problem in industrial applications [11], the
following simplified case study is about testing the
transition of the state of a system and the kind of
responses it should reply with. Here we have parallel
users that send a request to a book ordering system and
get two kinds of replies depending on the two possible
states of the SUT: has stock; or out of stock. The problem
is that it is impossible to predict the test oracle (predicted
response) since each user is independent from each other
and thus does not know the state of the SUT. This is
similar in e-commerce applications like on-line ordering
of merchandise and hotel booking and train or airline
reservations systems. A typical warning message for a
hotel reservation system is to warn the customer that there

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 30 / 35

is only one room left at a given rate. Thus from a tester
point of view, it is hard to predict if a response
corresponds to a success or a failure. However, if the
users are coordinated, the response to a given user can be
predictable.

The interesting aspect of this simple example is that
we have tried various approaches of coordination and
some resulted in race conditions problems, thus disturbing
the test process altogether. Table I shows the values of
test oracles depending of the state of the SUT, in our case:
has stock; or out of stock. In short a test passes if an
invoice and shipping confirmation is received when there
is inventory left or when out-of-stock is received and the
server is out of stock. All other cases are failures.

Unit testing would consists in putting the SUT in the
appropriate state and check the individual responses.

What is missing from a unit test is the dynamic aspect
of seeing the state change as the maximum available
inventory is reached.

TABLE I. EXPECTED TEST ORACLES DEPENDING ON THE
STATE OF THE SUT

Response to
the User/state

Has stock Out of stock

Invoice pass fail

Out of stock fail pass

B. TTCN-3 implementation

The TTCN-3 implementation of the user parallel test
component (PTC) is based on a simple request/response
behavior pattern with the response being analyzed with
the four possible configurations of two states and two
corresponding responses making use of the TTCN-3 alt
(alternative) construct. Each alternative is guarded with
the predicted state of the SUT. The receive statement
contains what the received message from the SUT should
match and the predicate between square brackets, the
predicted state of the SUT.

function ptcBehavior() runs on PTCType
{
 p.send("purchase");

 alt {
 [state == "has_stock"]
 p.receive("invoice") {

setverdict(pass);
 }
[state == "out_of_stock"]

 p.receive("invoice") {
setverdict(fail);

 }
[state == "out_of_stock"]

 p.receive("out_of_stock") {
setverdict(pass);

 }

[state == "has_stock"]
 p.receive("out_of_stock") {

setverdict(fail);
 }

 };
}

Figure 2. PTC Client test verdicts situations

Instead, unit testing would break down the problem into
two separate test cases and especially without the need for
PTCs. Here the unit is represented by a given state.

First unit test case:

function unitTestBehavior_1() runs on
 MTCType {
 p.send("purchase");

 alt {
 [] p.receive("invoice") {

setverdict(pass);
 }

 [] p.receive("invoice") {
setverdict(fail);

 }

Second unit test case:

 [] p.receive("out_of_stock") {
setverdict(pass);

 }
 [] p.receive("out_of_stock") {

setverdict(fail);
 }
 }

The predicates are empty because the state is predictable
due to the manipulation of the SUT by the tester by
emptying the data base in the first case and populating the
database in the second case. Another drawback of unit
testing is that the testing process would not be entirely
automated since it requires a manual intervention of the
tester between the two states.

Assuming that the SUT has three books on hand, the
ideal testing results would be to get an invoice response
for the first three users and an out of stock response for
the remaining users as shown on Figure 3 and an overall
pass verdict for the test.

However, the results shown in Figure 3 are only ideal
and rarely happen. Instead, we see more results of the
kind of Figure 4 that show the full effect of race
conditions because each PTC starts at different times.

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 31 / 35

Figure 3. Ideal testing responses

The failures shown in Figure 4 are the result of
mismatches between expected and received messages
when tests are executed without coordination.

Figure 4. Uncoordinated execution results

Figure 5 shows the TTCN-3 tools data inspection feature
[2][3] that provides detailed message and test oracle
contents that enable the tester to understand the reasons
for failure.

Figure 5. Expected vs received values

In this case, one may wonder where the state value
comes from. This is where the test coordination is taking
place. TTCN-3 has the concept of main test component
(MTC) that precisely looks after that.

In our case the coordination is achieved via abstract
coordination ports cp that link the master test component
and the PTCs as shown in Figure 6.

Figure 6. Test coordination with MTC

There are three ways to address test coordination.

1) Using coordination messages
The approach consists in using coordination messages
between the MTC and the PTCs that contain the predicted
state of the SUT. On the user PTC’s side we need an
additional line that receives the state from the MTC
before the user attempts to test the SUT:

cp.receive(charstring:?)->value state;

On the MTC side, we send a message containing the state
to the PTC that the tester thinks that the server is
supposed to be in. In our case this is achieved by
changing the state once three requests have been placed as
follows:

testcase coordinated_msgs_test()
 runs on MTCType system SystemType {
 …
 cp.send("has_stock") to user1;
 cp.receive("ack") from user1;

 cp.send("has_stock") to user2;
 cp.receive("ack") from user2;

 cp.send("has_stock") to user3;
 cp.receive("ack") from user3;

 // after three purchase requests,
 // the item is now out of stock

 cp.send("out_of_stock") to user4;
 cp.receive("ack") from user4;

 cp.send("out_of_stock") to user5;
 cp.receive("ack") from user5;

 …
}

Figure 7. Test coordination by MTC

24Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 32 / 35

In TTCN-3, the receive statement is blocking. Thus,
the rest of the behavior of the PTC will not execute while
the coordination message has not been received.

Note the returned ack message. The ack is used to
prevent racing. In other words, a new individual test
cannot occur before the previous test has fully completed,
otherwise more requests are being sent to the server
which may change its state before a response is sent back
to a user resulting in failure. We have observed that
removing the ack effectively produces race conditions.
We leave this verification as an exercise to the reader.

2) Coordination using PTC Threads operations
PTCs are in fact translated by the TTCN-3 compiler

that produces an executable in a general purpose language
(GPL) such as Java or C++ and many others using
threads. Thus, one typical Thread operation that is
available in TTCN-3 is to check if the thread has
terminated. This is represented in TTCN-3 with the
keyword done. Here, as shown in Figure 8, each PTC is
started using a parameter representing the function
behavior that carries the predicted state of the SUT.

There are in fact two ways to use this feature: the
first one consists in placing the done statement
immediately after the corresponding start statement. This
would result in transforming a concurrent system into a
sequential execution system with effects similar to the
coordination messages solution shown in the previous
section.

testcase thread_operations_test()
 runs on MTCType system SystemType {
 …
 user1.start(purchasingBehavior

 ("has_stock"));
 user2.start(purchasingBehavior
 ("has_stock"));
 user3.start(purchasingBehavior
 ("has_stock"));

 user1.done;
 user2.done;
 user3.done;

 user4.start(purchasingBehavior
 ("out_of_stock"));
 user5.start(purchasingBehavior
 ("out_of_stock"));
 user6.start(purchasingBehavior
 ("out_of_stock"));

 user4.done;
 user5.done;
 … }

Figure 8. MTC behavior using PTC threads operations

In this second approach, we have chosen to place all
the done statements after all the start statements for the
first three PTCs to simulate the database reaching its
maximum inventory. This has the advantage to at least
conserve some of the concurrent behavior of the system
and thus avoiding a full sequential test execution of PTCs.

3) Introducing semaphores to TTCN-3
In a way the second approach is less sequential than the
first one but still somewhat sequential. Thus, we have
explored a third solution that would eliminate some
aspects of the sequential aspect of this test behavior. The
method consists in using shared variables and semaphores
among PTCs. The shared variable keeps track of the
inventory on hand and enables a PTC to determine the
state of the SUT on its own. However, TTCN-3 does not
have the concept of shared variables, neither semaphores
and thus we recommend modifying the standard. In our
case, we need to declare the inventory variable as shared.
TTCN-3 test suites are always translated in a GPL that is
then compiled and executed. Since this feature is not
available in TTCN-3 we have used an implementation in
Java that would be typically comparable to the one
generated by the TTCN-3 compiler but somewhat
simplified to make it easier to understand.

public static void main(String args[])
 throws InterruptedException {

 PTCtype ptc1 = new PTCtype("ptc1");
 PTCtype ptc2 = new PTCtype("ptc2");
 PTCtype ptc3 = new PTCtype("ptc3");
 PTCtype ptc4 = new PTCtype("ptc4");
 PTCtype ptc5 = new PTCtype("ptc5");
 PTCtype ptc6 = new PTCtype("ptc6");

 ptc1.start();
 ptc2.start();
 ptc3.start();
 ptc4.start();
 ptc5.start();
 ptc6.start();

 ptc1.join();
 ptc2.join();
 ptc3.join();
 ptc4.join();
 ptc5.join();
 ptc6.join();

 }
Figure 9. MTC behavior using semaphores

 Note that the java main method of Figure 9
corresponds to the TTCN-3 MTC test case behavior. The
basic difference with the TTCN-3 version shown in

25Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 33 / 35

Figure 8 is the presence of the join method that needs to
be added to the TTCN-3 standard and the absence of state
indication sent to the PTCs. The join statement does not
exist in TTCN-3 and is part of our recommendation in
modifying the standard. Now, we need to show the
different modification required in the definition of the
PTCs behavior as shown in Figure 2 to implement the
semaphores. The PTC type needs first to declare a
semaphore as does the Java version. The new TTCN-3
Semaphore data type would merely be translated to the
corresponding Semaphore class in Java.

class PTCType extends Thread {
Semaphore sem;
String threadName;
String state = "";

Then the Semaphore instance needs to have an acquire
statement as in Java:

sem.acquire();

The shared variable inventory is then used to compute the
predicted state that can be used in the TTCN-3 alt receive
statement:

if(inventory > 0) {
inventory--;

 state = "has_stock";
}
else
 state = "out_of_stock";

// place the alt statements as shown on Figure 2
here.

And finally add a semaphore release statement at the end
of the PTC behavior as follows:

 sem.release();

4) Evaluation
We have observed that the semaphore version of this

problem produces a sequence of execution very similar to
the first approach using coordination messages. The only
difference being that the sequence of the executed PTCs
is not entirely in the order of the start of each PTC, i.e.
from 1 to 6. Instead the semaphore version produces
various sequences of PTC execution but in all remain
sequences thus preventing discovering concurrency
problems. Thus, we think that the second approach that
consists in running PTCs in batches of states is possibly a
better approach. However, the second method may run
into problems when complex templates are used for
depicting for example shopping baskets where the various
items may have different limits. In any case, this method
is much better than unit testing.

III. TTCN-3 AS A MODELLING LANGUAGE

Normally, testing activities can take place only once
the SUT has been fully developed and is runnable.
However, planning and developing automated test cases
can be done in parallel to the SUT development phase.
More importantly, the missing SUT can be emulated
using TTCN-3. This enables us to find any flaws in the
automated test suites before we apply them to the SUT
and thus reduce time to market.

In our case study, this means finding a way to portray
a behavior that replies with “invoice” when there is
inventory on hand and replies “out of stock” when
inventory has reached zero. At the abstract level, there is
no need to implement a full system, in our case probably a
web application and a related database. The
implementation of such an abstract system is as follows:

function SUTbehavior() runs on SUTType
{
 var integer inventory := 3;
 var PTCType ptc := null;
 var MTCType mtc_ := null;

 alt {
[] p.receive("purchase") ->

 sender ptc {
 if(inventory > 0) {

p.send("invoice") to ptc;
inventory := inventory -1;

 }
 else {

 p.send("out_of_stock") to
 ptc;

 };
 repeat

}
[] ap.receive("stop")

-> sender mtc_
 setverdict(pass)

}
 }
}

Figure 10. SUT behavior

We use a simple variable to portray the inventory that
we set at 3 units. Every time a request to purchase an item
comes in, we decrease the inventory. A simple if-then-
else statement provides the correct response of invoice or
out-of-stock state. At the abstract level, this is all we need.

Also, the test suite is developed in two different
levels of abstraction. First, we use simplified messages
like here simple strings with values. Once we simulate the
abstract system and we are happy with the results, in a
second step we merely redefine the abstract data types
and its corresponding templates (test oracles for received
messages and data content for sent messages) as follows:

26Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

 34 / 35

1st step: Data types and templates declarations:

type charstring RequestType;
type charstring ResponseType;

template RequestType myRequest_t :=
"purchase";

template ResponseType
myInvoiceResponse_t

:= "invoice";
template ResponseType

myOutOfStockResponse_t:=
 "out_of_stock";

Figure 11. simplified data types and templates

2nd step: Real data types and templates:

type record RequestType {
 charstring bookName,
 charstring ISBN
}

type record ResponseType {
 charstring bookName,
 charstring ISBN,
 charstring status,
 charstring action
}

template RequestType myRequest_t := {
 bookName := “ttcn-3 in a
nutshell”,
 ISBN := “978-2-345-678”
}

Template ResponseType myResponse_t :=
{

bookName := “war and peace”,
 ISBN := “978-2-345-678”,
 Status := “on hand”,
 Action := “invoice”
}

Figure 12. Fully realistic data types and templates

Note that both datatypes and templates are defined using
the same identifiers. Only their content is different.

IV. CONCLUSION

Despite its long history, testing concurrent systems
remains complex and does not always provide accurate
results. In this paper we have shown that using formal
methods for testing such as TTCN-3 helps to locate
problems accurately because of the wide choice of results
visualization features that the various commercial and
open source editing, and execution tools provide. We
also recommended enhancing the TTCN-3 standard by
providing shared variables and semaphore features for the
MTC and the PTCs. We also have shown a way to partly
avoid sequencing PTC test by using batches of concurrent
tests by using the current features of TTCN-3.

ACKNOWLEDGMENT

The authors would like to thank NSERC for funding
this research.

REFERENCES

[1] ETSI ES 201 873-1, The Testing and Test Control Notation
version 3 Part 1: TTCN-3 Core Language, May 2017. Accessed
March 2018 at
http://www.etsi.org/deliver/etsi_es/201800_201899/20187301/04.0
9.01_60/es_20187301v040901p.pdf

[2] TTworkbench,Spirent,
https://www.spirent.com/Products/TTworkbench

[3] Titan, https://projects.eclipse.org/proposals/titan

[4] E. Boros and T. Unluyurt, Sequential Testing of Series-Parallel
Systems of Small Depth in ISBN 978-1-4613-7062-8

[5] A. Bertolino, Software Testing Research: Achievements,
Challenges, Dreams in proceedings of FOSE ’07 pp 85-103

[6] T. Hanawa, T. Banzai, H. Koyzumi, R. Kanbayashi, T. Imada and
M. Sato, Large-Scale Software Testing Environment Using Cloud
Computing Technology for Dependable Parallel and Distributed
Systems in 2010 Third International Conference on Software
Testing, Verification and Validation Wokshops procedings

[7] A. M. Alghamdi and F. Eassa, Software Testing Techniques for
Parallel Systems: A Survey in IJCSNS International Journal of
Computer Science and Network Security, vol 19. No 4, April 2019,
pp 176-184

[8] L. Parobek, 7 Reasons to Move to Parallel Testing in white paper
on https://devops.com/7-key-reasons-make-move-sequential-
parallel-testing/

[9] B. Rao G. , K. Timmaraju, and T. Weigert, Network Element
Testing Using TTCN-3: Benefits and Comparison in SDL 2005,
LNCS 3530, pp. 265–280, 2005

[10] G. Din, S. Tolea, and I. Schieferdecker, Distributed Load Test with
TTCN-3, in Testcom 2006 proceedings, pp 177-196

[11] B. Stepien, K, Mallur, L. Peyton, Testing Business Processes
Using TTCN-3, in SDL Forum 2015 proceedings, Lecture Notes in
Computer Science, vol 9369. Springer, Cham.

27Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

Powered by TCPDF (www.tcpdf.org)

 35 / 35

http://www.tcpdf.org

