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UBICOMM 2022

Forward

The Sixteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and
Technologies (UBICOMM 2022), held November 13 and November 17, 2022, continued a series of evens
meant to bring together researchers from the academia and practitioners from the industry in order to
address fundamentals of ubiquitous systems and the new applications related to them.

The rapid advances in ubiquitous technologies make fruition of more than 35 years of research in
distributed computing systems, and more than two decades of mobile computing. The ubiquity vision is
becoming a reality. Hardware and software components evolved to deliver functionality under failure-
prone environments with limited resources. The advent of web services and the progress on wearable
devices, ambient components, user-generated content, mobile communications, and new business
models generated new applications and services. The conference makes a bridge between issues with
software and hardware challenges through mobile communications.

Advances in web services technologies along with their integration into mobility, online and new
business models provide a technical infrastructure that enables the progress of mobile services and
applications. These include dynamic and on-demand service, context-aware services, and mobile web
services. While driving new business models and new online services, particular techniques must be
developed for web service composition, web service-driven system design methodology, creation of
web services, and on-demand web services.

As mobile and ubiquitous computing becomes a reality, more formal and informal learning will
take pace out of the confines of the traditional classroom. Two trends converge to make this possible;
increasingly powerful cell phones and PDAs, and improved access to wireless broadband. At the same
time, due to the increasing complexity, modern learners will need tools that operate in an intuitive
manner and are flexibly integrated in the surrounding learning environment.

Educational services will become more customized and personalized, and more frequently
subjected to changes. Learning and teaching are now becoming less tied to physical locations, co-
located members of a group, and co-presence in time. Learning and teaching increasingly take place in
fluid combinations of virtual and "real" contexts, and fluid combinations of presence in time, space and
participation in community. To the learner full access and abundance in communicative opportunities
and information retrieval represents new challenges and affordances. Consequently, the educational
challenges are numerous in the intersection of technology development, curriculum development,
content development and educational infrastructure.

We take here the opportunity to warmly thank all the members of the UBICOMM 2022 technical
program committee, as well as all the reviewers. The creation of such a high quality conference program
would not have been possible without their involvement. We also kindly thank all the authors that
dedicated much of their time and effort to contribute to UBICOMM 2022. We truly believe that, thanks
to all these efforts, the final conference program consisted of top quality contributions.

We also gratefully thank the members of the UBICOMM 2022 organizing committee for their help in
handling the logistics and for their work that made this professional meeting a success.

We hope that UBICOMM 2022 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the field of mobile
ubiquitous computing, systems, services and technologies. We hope that Valencia provided a pleasant
environment during the conference and everyone saved some time to enjoy the charm of the city
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A Programming Model for Heterogeneous CPS from the Physical Point of View

Martin Richter, Theresa Werner, Matthias Werner
Operating Systems Group

Chemnitz University of Technology
09111 Chemnitz, Germany
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Abstract—The emergence of Cyber-Physical Systems leads to
an integration of the digital and physical world through sensors
and actuators. Programming such systems is error-prone and
complex as a plethora of changing heterogeneous devices is
involved. In existing approaches, the developer views the world
from the digital point of view. He or she has to implicitly interpret
digital values as sensor measurements of the environment or
as control values, which influence the environment through
actuators. This leads to an increase of complexity as the number
of sensors and actuators in Cyber-Physical Systems is ever-
increasing and different types of devices may become available
during the runtime of the system. Additionally, the interactions
between different types of distributed sensors and actuators have
to be coordinated, which increases the likelihood of errors in
the programmer’s implicit interpretations of the digital values.
Current approaches mainly focus on providing abstractions from
the distribution and heterogeneity of the system, but fail to
explicitly address the impact of digital calculations on the physical
world. We present a programming model, which reverses the view
of the developer on the system. It allows him or her, to take the
perspective of the physical system of interest and to explicitly
describe its desired behavior.

Keywords—cyber-physical systems; programming model; context
awareness, heterogeneity.

I. INTRODUCTION

Because of emerging trends like the Internet of Things
[1], Smart Grid [2], automated warehouse logistics [3], and
Industry 4.0 [4] an increasing number of devices are inter-
connected and have access to a multitude of different sensors
and actuators in their environment. The emergence of such
Cyber-Physical Systems (CPS) leads to an integration of digi-
tal computations and the physical world. This entanglement
raises multiple challenges, which do not exist in classical
distributed systems [5]. Apart from being distributed over
space, each of the devices may be connected to a multitude
of sensors and actuators. They possess varying capabilities,
regarding what they measure and how they influence their
environment. As the main goal of the developer is to monitor
and control a physical system, he or she has to consider
these capabilities when designing his or her application. In
classic programming models for CPS, the developer implicitly
converts sensor measurements to a digital representation of the
physical phenomenon of interest (e.g., reading a value from
a register of a sensor). Based on this digital representation,
the programmer’s application performs calculations of which
the results are implicitly converted to impacts on the physical
world (e.g., writing a value into a register of an actuator). This
procedure increases the difficulty of designing applications.

The semantics of controlling actuators and interpreting sensor
readings are not always clear with respect to their influence
on the physical and digital world, respectively. Our goal is
to relieve the programmer from having to convert distributed
measurements of physical phenomena to a digital representa-
tion and subsequently having to translate digital computations
to a variety of actuator influences on the physical environment.

This paper presents a programming model for reducing the
complexity of designing applications for heterogeneous CPS.
To achieve this, we provide the developer a new view on the
system. We reverse the programmer’s perspective, such that he
or she no longer directly controls the devices through digital
computations. Instead, he or she describes the properties of the
physical system of interest and how these properties should
evolve over time to reach a target state. The developer is
concerned with the CPS’ effect on the environment (i.e., the
desired state change) rather than the cause (i.e., the con-
trolled actuators). As the programmer designs the application
from the view of the physical system, he or she does not
have to implicitly translate physical phenomena to digital
representations and vice versa anymore. Rather, the Runtime-
Environment (RTE) handles this conversion transparently by
utilizing sensor and actuator specifications in addition to the
programmer’s physical system and target state descriptions.
The RTE maintains a digital representation of the physical
system by interpreting sensor measurements. Additionally, it
takes advantage of a constraint solver to compute sufficient
actuator inputs to reach a target state. These computations
are based on the programmer’s specification and the digital
representation of the system. The RTE chooses a sufficient
set of actuators and sensors at each point in time, based
on the required physical inputs and outputs to control and
observe the system. Hence, our programming model abstracts
from complex conversions between digital computations and
physical phenomena. Moreover, it provides transparency to the
developer with respect to changing device configurations. It is
intended to be used in applications utilizing a variable set of
arbitrary sensors and actuators to measure and influence phys-
ical systems with well-understood properties and dynamics.

As a running example we use a set of robots interacting
with a soccer ball. This example offers all the system traits that
are of interest to us. There are different sensors and actuators
attached to each robot and the system consists of multiple
physical objects of interest (i.e., the robots and the ball).

This paper is structured as follows. Section II reviews
the related work. Section III describes the concept of our
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approach. It depicts the programmer’s view on the system and
the functionality of the RTE. Section IV supplies a conclusion
and an outlook for future work.

II. RELATED WORK

A CPS incorporates the digital and the physical world. The
configuration of such heterogeneous distributed systems may
change at any point in time due to device failures and the
emergence of new types of sensors or actuators. Under such
circumstances, programming errors are easily introduced as
current solutions rely on the developer to handle the interpre-
tation of physical phenomena through digital computations.

Approaches like Aggregate Computing [6] focus on con-
vergence. They enable the developer to write an application
for a set of computational nodes situated in a given region.
The computations of each node take place on the basis of its
local state and its neighbors states. Therefore, the behaviors
of the nodes in a region converge over time. Such approaches
abstract from the distribution of the system. Nevertheless, they
are only suited for homogeneous CPS since a converging node
behavior implies that the devices possess similar capabilities.

Other propositions like Spatial Views [7] or Spatial Pro-
gramming [8] allow the programmer to control specifically,
which part of the code is executed in which region. Addition-
ally, the developer statically specifies, which sensors and actu-
ators are required for the execution of the corresponding parts
of the program. Thus, it is not possible for the programmer to
take changing types of sensors and actuators into account.

Physical modeling languages like Modelica [9] or Simulink
[10] enable the developer to describe the properties and the
behavior of a physical system. These approaches are designed
for the simulation of physical systems and for code generation
purposes for non-distributed systems. Here, the developer
explicitly handles the heterogeneity of the system. The main
goal of physical modeling languages is to draw conclusions on
the design of a system rather than controlling and observing
it directly in a distributed fashion.

Approaches like Regiment [11], Hovering Data Clouds [12]
or Egocentric Programming [13] provide mechanisms for the
rule-based aggregation and dissemination of environmental
data in a distributed CPS. The goal of these propositions is
to monitor the environment, rather than to influence it. The
programmer therefore has to utilize additional frameworks to
describe the desired changes of the physical system state.

The presented solutions tackle challenges like providing
distribution transparency or managing heterogeneity. The pro-
grammer’s main concern still is the management of digital
data, which obstructs him or her from focusing the main
goal: influencing the physical environment. Our programming
model reverses the developer’s view on the system. He or
she describes the properties and the desired behavior of the
physical system from which the RTE deduces the required
digital computations while managing a possibly changing set
of heterogeneous devices.

III. CONCEPT

Our programming model provides means for the developer
to define the properties of a physical system of interest,
such that the RTE is able to transparently create a digital
representation of it. Apart from that, the programmer is able
to specify desired target states for the physical system. This
allows the RTE to deduce required actuator actions to cause
an appropriate state change. The following sections present
a system model to introduce our definition of a physical
system. Subsequently, we introduce the developer’s view on
the system, and an execution model for the RTE.

A. System Model

The programmer desires to influence a physical system
through digital computations, such that a certain goal is
reached. A physical system Σ is part of the environment and
consists of a set of physical objects 𝑂. Each object 𝑜 ∈ 𝑂

features a state ®𝑠𝑜, which comprises of multiple properties 𝑠𝑖:

®𝑠𝑜 (𝑡) =
[
𝑠1 (𝑡) 𝑠2 (𝑡) . . . 𝑠𝑛 (𝑡)

]𝑇 (1)

Each property 𝑠𝑖 is an interpretation 𝑔𝑖 of one or more sensor
measurements ®𝑚 of the environment at each point in time 𝑡:

𝑠𝑖 (𝑡) = 𝑔𝑖 ( ®𝑚, 𝑡) (2)

A measurement comprises of a value in a unit, which can
be represented by a combination of possibly multiple SI base
units. The set of all sensors makes up the input interface of
the CPS. They allow the CPS to recognize physical objects
through measurements of the environment. Subsequently, the
RTE interprets these measurements to derive the objects’
properties. For example, one property of a physical object may
be its shape. One way to measure the shape of an object is to
interpret the measurements of a digital camera. It transforms
the reflected light of the environment (i.e., its wavelength or
frequency) into a pixel array, which then can be interpreted to
identify the shape of the object.

Properties of physical objects may change over time, which
leads to a change of their state ®𝑠′. This change of state can be
caused by internal dynamics (e.g., a rolling ball) or external
influences ®𝑢(𝑡) (e.g., a ball being kicked). External influences
are the impact of actuator actions on the properties of a
physical object (e.g., a force acting on the ball during the kick).
The change of state at each point in time is a function 𝑓 of
the object’s state and the corresponding external influences.

®𝑠′ (𝑡) = 𝑓 (®𝑠, ®𝑢, 𝑡) (3)

An actuator takes a digital signal as input and transforms it
into one or more actions that affect their environment. These
actions have measurable impacts on the properties of physical
objects. For example, a gripper arm performs the action of
grabbing an object. This action can be measured as a force
(in Newton) acting on the object from two directions. The set
of all actuators makes up the output interface of the CPS. The
external influences ®𝑢Σ on the physical system of interest are
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the concatenation of the external influences on the different
physical objects:

®𝑢Σ =
[
®𝑢𝑜1 (𝑡) ®𝑢𝑜2 (𝑡) . . . ®𝑢𝑜𝑚 (𝑡)

]𝑇 (4)

The state ®𝑠Σ of the system is a concatenation of the different
physical object states ®𝑠𝑜𝑖 :

®𝑠Σ (𝑡) =
[
®𝑠𝑜1 (𝑡) ®𝑠𝑜2 (𝑡) . . . ®𝑠𝑜𝑚 (𝑡)

]𝑇 (5)

The change of the state of the physical system ®𝑠′
Σ

depends on
the internal dynamics of the physical objects that populate the
system and their external influences. The function 𝑓Σ describes
the system’s state change:

®𝑠′Σ (𝑡) = 𝑓Σ (®𝑠Σ, ®𝑢Σ, 𝑡) (6)

We limit our approach to viewing actuator actions as exter-
nal influences on physical objects. This stands in contrast to
regarding any interactions between arbitrary physical objects
as external influences. Considering all possible interactions
between any physical objects would lead to an explosion in
complexity, as there may be an arbitrary number of specified
and unspecified physical objects. Instead, we treat interactions
between objects as disturbances, which may or may not require
counter measures by the CPS.

B. The Programmer’s View

In our programming model, the developer views the system
from a standpoint of physics. He or she provides specifications
for the objects that populate the physical system. These
specifications encompass information on the properties of the
physical objects (i.e., their state) and a definition of their
behavior, based on internal dynamics and external influences.
The RTE requires these descriptions to determine, which
sensors are necessary for observing the physical objects and
how they react to given actuator inputs.

For the RTE to decide, which actions have to be taken by
the actuators to reach a target state, a target state description is
necessary. This description refers to the whole physical system
rather than a single physical object, as relative relationships
between physical objects may be of interest to the programmer.
The target state description spans a state space, because
different states may satisfy the goal of the developer. Table I
summarizes the described requirements for the programming
interface and for which of the RTE actions they are necessary.

1) Physical Object Specification: Since the physical system
consists of possibly multiple physical objects of interest, each
of which possess a designated state and behavior, the object-
oriented programming paradigm fits the described require-
ments and system model. A class enables the developer to
specify attributes (state) and methods (change of state) of a
physical object. From such a class, the RTE creates a digital
representation of a physical object whenever it recognizes the
corresponding properties of the described object in the envi-
ronment. If the RTE recognizes multiple objects of the same
class, multiple instances are created. As a physical system may

TABLE I. REQUIREMENTS FOR RTE ACTIONS.

ID Specification Requirement RTE Actions

Req.1 Physical objects’ properties Recognizing objects and com-
paring the current system state
with the target state space.

Req.2 Physical objects’ internal dy-
namics

Estimate when objects reach
the target state through inter-
nal dynamics.

Req.3 Physical objects’ reactions to
external influences

Estimate when objects reach
the target state through exter-
nal influences.

Req.4 Target state description Calculate actuator actions to
reach a target system state.

encompass a variety of physical objects, the programmer may
have to provide multiple different class specifications.

Through inheritance, a class may extend the state and
behavioral descriptions of other classes. This simplifies the
description of different types of objects, which partly have
a similar state and behavior. For example, a car and a ball
both possess the properties of moving objects (i.e., position,
velocity, and acceleration) and they also have similar internal
dynamics in the sense that their position changes with their
velocity and their velocity changes with their acceleration. The
specific differences in the behavior and properties of balls and
cars are then described in their specific classes respectively,
e.g., how external influences affect their positions, velocities
and accelerations. Figure 1 shows an example of a ball, which
extends the class of a moving object.

The state of an object of a given class is the vector of its
attribute values. The value of an attribute is a digital repre-
sentation of a physical object property, i.e., an interpretation

C l a s s MovingObject e x t e n d s P h y s i c a l O b j e c t {
MovingObject ( ) {

t h i s . p = P o s i t i o n ( ? [m] , ? [m] , ? [m] ) ;
t h i s . v = V e l o c i t y ( ? [m] , ? [m] , ? [m] ) ;
t h i s . a = A c c e l e r a t i o n ( ? [m] , ? [m] , ? [m] ) ;

}
mot ion ( ElapsedTime d e l t a ) {

t h i s . v = t h i s . a + d e l t a * t h i s . a ;
t h i s . p = t h i s . p + d e l t a * t h i s . v ;

}
}

C l a s s B a l l e x t e n d s MovingObject {
C o n s t r u c t o r B a l l ( ) {

t h i s . s = Sphere ( r a d i u s ==30[cm ] ) ;
t h i s .m = Mass ( mass = 0 . 3 [ kg ] ) ;

}
Requ i remen t ( Act ( v ) == Act (m) AND

Act ( v ) . p o s i t i o n == t h i s . p )
k i c k ( V e l o c i t y v , Mass m) {

t h i s . v = 1 / ( t h i s .m + m) * ( t h i s .m * t h i s . v +
m * v + m * 0 . 8 ( v − t h i s . v ) ) ;

}
}

Figure 1. Example for physical object specifications.
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of sensor measurements (see Section III-A). The type of an
attribute describes which property it is (e.g., a shape). For a
programmer to declare such attributes comfortably, a library
provides commonly used classes. Further, the developer spec-
ifies the characteristics of the property for the given physical
object in the constructor (e.g., the radius of a sphere). Such
characteristics allow to distinguish multiple similar physical
objects, if necessary. This allows the RTE to identify physical
objects reliably and continuously through the available sensor
measurements. In Figure 1, a ball is defined as a spherical
object with a radius of exactly 30 centimeters. Its position,
velocity, and acceleration are unknown and therefore have to
be measured by sensors or computed by the RTE, which is
syntactically indicated by the corresponding question marks.

The methods of a class describe the state change induced
by the physical object’s internal dynamics and its reactions
to external influences. Each method has access to the object’s
state and describes a change of its state. A method’s calcula-
tions may depend on parameters, which represent inputs from
actuators. They affect the digital object’s state and correspond
to external influences on the physical object. For example, in
Figure 1, the method kick takes the actuator’s velocity and
its mass as parameters, which influence the velocity of the ball
after the impact.

Multiple actuators may provide the inputs to an object’s
method. This enables the RTE to coordinate a variety of
actuator actions for better efficiency or to supply inputs, which
a single actuator may not be able to provide. For example,
if a building component has to be clamped, two forces on
opposite sides of the component have to be at work towards
its center. From a result perspective, it does not matter whether
this is accomplished by one single actuator or two independent
actuators.

Depending on the properties of the physical object and
the method parameters, the programmer may have to specify
requirements for the inputs from actuators. For example, an
actuator has to be close to a component to exert a force on
it. The actuator requirements may incorporate the following
information:

• the origin of the inputs to the method (e.g., they have to
be provided by the same actuator),

• the actuators’ states (e.g., their positions), and
• the object’s state (e.g., its position).

This allows the RTE to choose actuators capable of influencing
the given object and of achieving the desired results.

Figure 1 depicts two methods for the classes
MovingObject and Ball. Method motion describes
the change of position and velocity, based on the object’s
velocity and acceleration, respectively. The delta parameter
stands for the elapsed time between two evaluations of the
method. Method kick takes two parameters v and m, which
correspond to an actuators velocity and mass, respectively.
For this method, requirements for the actuator inputs are
given. They specify that both mass and velocity have to be
provided by the same actuator and that the actuator has to
be situated at the position of the ball. The method calculates

the approximate velocity of a ball after being kicked by an
actuator with a coefficient of restitution of 0.8.

2) Target State Description: We chose the concept of
constraint programming [14] for describing the target state.
It allows the developer to specify the properties of a solution
to a problem rather than how to reach the solution. This fits
our requirements, as the developer describes a desired physical
system state and the RTE deduces the sufficient actuator
inputs to the physical system. This approach abstracts from
the individual actuators. Therefore, the developer is able to
focus on the impact of the actuators’ actions on the individual
physical objects.

The programmer defines target states based on the overall
system state, since relations between the different states of
physical objects may be of interest. The RTE evaluates the
set of constraints periodically in order to analyze whether a
target state is reached and whether the system state develops
correctly.

Figure 2 shows an example of a defending constraint for a
game of robot soccer. The target state refers to the positions of
the players of the own team with respect to the ball, goal, and
enemy player positions. All players of the own team should be
close to an enemy player (i.e., closer than one meter); there
should always be one player between the ball and the own
goal; there should always be one player between any enemy
player and the ball. This positioning allows to intercept the
ball, prevents undisturbed passes and enemy attempts to score.
To reach this objective, the RTE has to coordinate the available
actuators, such that the physical properties of the robots (i.e.,
their positions and velocities) are changed accordingly.

C. Runtime-Environment

The RTE maintains a set of physical object descriptions,
which specify the digital representation of the physical system.
It continuously evaluates sensor measurements of the CPS
environment to determine the state of the physical objects pop-
ulating the physical system. Moreover, the RTE continuously
evaluates the constraint system for the target state, based on
the current state of the physical system. In its evaluations the
RTE takes into account the actuator requirements in addition
to the available actuators, since they narrow down the available
physical inputs.

Defense {
do ub l e k , l ;

∀𝑝𝑙𝑎𝑦𝑒𝑟 , 𝑒𝑛𝑒𝑚𝑦 ∈ 𝑀𝑦𝑃𝑙𝑎𝑦𝑒𝑟 × 𝐸𝑛𝑒𝑚𝑦𝑃𝑙𝑎𝑦𝑒𝑟 :
d i s t a n c e ( p l a y e r . p , enemy . p ) <= 1 . 0 [m] ;

∃𝑝𝑙𝑎𝑦𝑒𝑟 ∈ 𝑀𝑦𝑃𝑙𝑎𝑦𝑒𝑟 , ∀𝑔𝑜𝑎𝑙 ∈ 𝑀𝑦𝐺𝑜𝑎𝑙, ∀𝑏𝑎𝑙𝑙 ∈ 𝐵𝑎𝑙𝑙 :
g o a l . p + k * ( g o a l . p − b a l l . p ) == p l a y e r . p ;

∀𝑏𝑎𝑙𝑙 ∈ 𝐵𝑎𝑙𝑙, ∀𝑒𝑛𝑒𝑚𝑦 ∈ 𝐸𝑛𝑒𝑚𝑦𝑃𝑙𝑎𝑦𝑒𝑟 , ∃𝑝𝑙𝑎𝑦𝑒𝑟 ∈ 𝑀𝑦𝑃𝑙𝑎𝑦𝑒𝑟 :
b a l l . p + l * ( b a l l . p − enemy . p ) == p l a y e r . p ;

}

Figure 2. Examples of defensive positioning in robot soccer.
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Figure 3 depicts the architecture of the RTE. It consists
of four modules, which are executed in a distributed fashion:
the interpreter, the observer, the controller, and the constraint
solver. Furthermore, it facilitates drivers for sensors and ac-
tuators. They provide an interface for utilizing the devices
and supply information on them to the other modules. The
following paragraphs describe the functionalities of the RTE.

1) Interpreter: The interpreter offers an interface to the
programmer for registering physical object specifications. It
extracts three basic types of information from them:

(i) The state description of the physical object, i.e., what the
properties of the object are and how it differs from other
objects.

(ii) The behavioral description, i.e., how the object’s state
changes, based on internal dynamics and external influ-
ences.

(iii) The actuator requirements for providing input signals,
i.e., what conditions have to be met for an actuator to
be able to supply an input to the physical system.

The interpreter creates a vector of state variables ®𝑥𝑐 from
the state description of a given class 𝑐. The constraint solver
is later able to assign values to these variables. Each state
variable stands for a physical object’s property, i.e., a set of
interpreted sensor measurements. The state variables are uti-
lized in the state equation of the physical object. This equation
is created from the set of methods 𝑀 of the given class. Each
method 𝑚 ∈ 𝑀 describes a change of state ®𝑥′𝑐,𝑚 for an object
of the given class. A method may take parameters (external
influences caused by actuators). The interpreter converts them
to input variables ®𝑢𝑚. Each method describes a change of state,
which depends on the state of the object, the specified internal
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Constraint
Solver

State Equations,
Constraints,
Actuator Requirements

Observer

Property
Descriptions

State
Variable
Values

Controller

Actuator
Input Space

Actuator
Information

Environment

Sensor
Drivers

Actuator
Drivers

Sensor
Measurements

Actuator
Inputs

Sensors Actuators

Figure 3. Architecture of the Runtime-Environment.

dynamics and reactions to external influences. The function 𝑓𝑚
describes this change of state:

®𝑥′𝑐,𝑚 (𝑡) = 𝑓𝑚 (®𝑥𝑐, ®𝑢𝑚, 𝑡) (7)

If the function 𝑓𝑚 is linear or linearized, the equation can be
rewritten as a system of first order differential equations:

®𝑥′𝑐,𝑚(𝑡) = 𝐴𝑚®𝑥𝑐 (𝑡) + 𝐵𝑚 ®𝑢𝑚 (𝑡) (8)

If the class’ overall behavior is linear or linearized, its state
change can be described by the sum of all the methods state
changes, as the principle of superposition holds:

®𝑥′𝑐 (𝑡) =
∑︁
𝑚∈𝑀

®𝑥′𝑐,𝑚 (𝑡) =
∑︁
𝑚∈𝑀

(𝐴𝑚®𝑥𝑐 (𝑡) + 𝐵𝑚 ®𝑢𝑚 (𝑡)) (9)

Since the constraint solver evaluates the constraints periodi-
cally in discrete steps, the interpreter converts the described
equation into a time discrete variant:

®𝑥𝑐 (𝑘 + 1) =
∑︁
𝑚∈𝑀

(𝐴𝑚®𝑥𝑐 (𝑘) + 𝐵𝑚 ®𝑢𝑚 (𝑘)) (10)

For each new class the interpreter appends the new classes
state to the existing system state ®x

Σ
. Therefore, a new system

state ®𝑥Σ is created (see Section III-A):

®𝑥Σ (𝑘) =
[
®x
Σ
(𝑘) ®𝑥𝑐 (𝑘)

]𝑇 (11)

Hence, a similar approach is used for the state change equa-
tions. The new system state change equation is a concatenation
of the old system state change equation and the new classes
state change equation:

®𝑥Σ (𝑘 + 1) =
[
®x
Σ
(𝑘 + 1) ®𝑥𝑐 (𝑘 + 1)

]𝑇 (12)

Moreover, the interpreter creates constraints from the ac-
tuator requirements for each method of a class. These con-
straints allow allocating the available actuator inputs to the
corresponding input variables. The target state description is
added to the constraint system and restricts the possible system
states and system state changes. From the given system of
equations, requirements, and constraints, the constraint solver
is able to compute a set of actuator inputs, which lead to a
target state.

2) Observer: The observer module creates and maintains
a digital representation of the state of the physical system.
It gathers measurements from the available sensors of the
system, similarly to the data aggregation and dissemination
process described in [12]. This allows to gather and distribute
data of the system, based on given rules (i.e., according to the
object specification).

The programmer provides classes, which are specifications
of the physical objects encompassing the physical system. The
observer recognizes an object of a class, if the sensor mea-
surements relate to the class attributes and the corresponding
attribute description in the class’ constructor.

The observer interprets the sensor measurements (see Sec-
tion III-A) based on given rules. These rules describe the rela-
tion between physical object properties and the corresponding
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measurements. The observer maintains all the created object
instances by updating their states. These updates are applied
whenever new sensor values are available, which relate to
the objects’ properties. Moreover, the module populates the
state variables of the constraint system with the corresponding
attribute values (i.e., object states).

3) Constraint Solver: The constraint solver computes a set
of sufficient actuator inputs to reach a state of the target
state space. As inputs, it takes the system’s state equation,
the measured current state, the actuator requirements, and
information about the currently available actuators. The solver
evaluates the constraints periodically to check whether a target
state is reached and to update the set of actuator inputs.

Mathematically, the constraint solver’s task is to find a point
in time 𝑡1, which lies before a given deadline 𝑑, and a state
trajectory for the system state. The trajectory depends on a set
of actuator inputs between the current point in time 𝑡0 and the
chosen point in time 𝑡1, such that all constraints hold for the
state at time 𝑡1:

®𝑥Σ (𝑡1) = ®𝑥Σ (𝑡0) +
∫ 𝑡1

𝑡0

®𝑥′Σ (𝑡)𝑑𝑡, 𝑡1 ≤ 𝑑 (13)

4) Controller: The controller module manages the set of
available actuators. For each actuator, the controller module
maintains information about the actuator’s state and which
inputs it is able to provide. It offers this information to
the constraint solver whenever an evaluation round starts.
This enables the constraint solver to evaluate the actuator
constraints for determining, which actuators are able to provide
the required inputs.

The controller module uses the constraint solver’s results
(i.e., a set of sufficient inputs to reach a target state) and
distributes it to the corresponding available actuators. As the
module is executed in a distributed fashion, a consistent view
on the available actuators and their information has to be
maintained and a consensus for distributing the required inputs
has to be found.

IV. CONCLUSION AND FUTURE WORK

The presented programming model allows the developer to
focus on the description of a physical system and its target
state. It allows him or her to specify explicitly what a desired
state for a physical system is and how this state changes, based
on given inputs and internal dynamics. This abstracts from
the need to manage a changing set of actuators and sensors
directly, as the required information by the programmer is
reduced to defining the influences of actuators on the system
and specifying properties of physical objects.

We present a RTE, which encompasses an interpreter, an
observer module, a controller module, and a constraint solver.
The observer module maintains a digital representation of
the physical system’s state, based on the physical object de-
scriptions. The interpreter translates the programmer’s system
specification to a set of constraints and equations such that
the constraint solver is able to utilize them. The constraint
solver derives target states and required actuator inputs for the

physical system from the programmer’s specification and the
current state of the system. The constraint solver’s results are
passed to the controller module. It utilizes this data to control
the corresponding actuators in order to reach a target state.

The presented programming model abstracts from implicit
conversions between digital computations and physical phe-
nomena. Therefore, the physical semantics of a program are
made explicit. They are easier to understand and errors in
the translation between digital and physical quantities are
prevented. Additionally, the RTE transparently handles a set
of changing devices as the programmer is concerned with the
influences on the physical system of interest, rather than their
cause.

For future work, we intend to provide a formal description
of sensor and actuator specifications, which allows deducing
their properties with regard to how they observe and influence
their environment. Further research will be focused on describ-
ing the interactions between arbitrary physical objects, which
are currently viewed as disturbances. To test the described
approach, we will create a prototypical implementation of the
RTE. In this regard, we intend to provide verifications of the
real-time capabilities of the RTE. Additional research will
concentrate on implementing consensus and consistency al-
gorithms for the RTE, as a consistent view of the environment
and an optimal utilization of the devices have to be ensured.
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Abstract—Message Queuing Telemetry Transport (MQTT) 

and Constrained Application Protocol (CoAP) protocols are 

widely used allowing communication between Internet of 

Things (IoT) devices and platforms as well as device-to-device 

communication. However, when they are used in real 

applications based on Cloud Computing, different problems 

are observed, such as data loss, lack of security or long 

communication times between sensors. In this sense, Fog 

Computing can improve the performance of these applications. 

The objective of this work is to propose an application based 

on Fog Computing using knowledge-based devices for two real 

scenarios: a) control of a solar tracker and b) noise annoyance 

monitoring. Several experiments have been carried out in 

order to verify if the application and MQTT and CoAP 

protocols are appropriate in the system communications of 

both use cases. The results show that, in the case of noise 

annoyance monitoring application, this architecture allows 

reducing the errors in a satisfactory way. However, in control 

applications, where a communication time between sensors of 

less than 10 ms is required, the use of these protocols may not 

be adequate. For this case, an additional client-server software 

to the Fog Computing system has been developed to be 

executed in the IoT devices. Although it has lower performance 

than the widely used protocols, it allows the transmission time 

to be reduced, and can be satisfactorily applied to the control 

of systems, such as the control of a sun tracker. 

Keywords; Knowledge-based sensors; fog computing. 

I.  INTRODUCTION  

The Internet of Things (IoT) [1] [2] concept was 
introduced by Kevin Ashton in 1999 as a system where the 
physical world is connected to the Internet through 
ubiquitous sensors.  Nowadays, IoT refers to obtaining data 
and acting in the real world by means of devices with 
information processing capacity, communications that allow 
the storage of data on servers located in the cloud and 
subsequent analysis of stored data.  

IoT typical devices have constrained-resources, sensor 
and actuator capacity, local information process, and are able 
to communicate data with servers on the Internet cloud. A 
first classification divides them into devices without an 
operating system (e.g., Arduino, WaspMote) or with it (e.g., 
Raspberry).  

Regarding IoT communications, data networks (e.g., 
IEEE 802.15.4, ZigBee, Sigfox, Wireless Sensor Networks 
(WSN) [3]), network protocols (e.g., LoRa, LoRaWAN [4]), 
and application protocols (e.g., Message Queuing Telemetry 
Transport (MQTT) [5], Constrained Application Protocol 
(CoAP) [6]) have been specifically designed. Although 
MQTT is classified as a Machine-to-Machine (M2M) 
protocol, it uses an intermediate server (broker), which 
introduces a delay that could not be tolerable in distributed 
control applications. 

Currently, the development of IoT is causing that a large 
number of devices provides huge amounts of data, which has 
to be stored in servers located in the cloud. Cloud Computing 
[7] [8] is a technology that allows large-scale computing 
with the following advantages: virtualized resources, parallel 
processing, service integration and data storage. In this 
context, cloud computing systems such as OpenStack [9] and 
server virtualization environments such as Proxmox Virtual 
Environment [10] have been proposed. These cloud servers 
(also called platforms) provide developers Application 
Programming Interfaces (APIs) and Software Development 
Kits (SDKs) so that it is possible to establish communication 
between the IoT devices and the cloud platform. The 
protocols most commonly used by the platforms are MQTT 
and HTTP. 

Fog Computing [11][12] is a new paradigm, which is 
based on the transfer of computer and network services from 
the cloud to the Internet periphery. In this way, IoT devices 
will use fog servers located very close to them. After that, 
data are transmitted to cloud servers by fog servers. Some 
benefits of fog computing are the following: 

• Distributed data storage on fog servers. 
• Hierarchical data processing in fog servers. 
• Quality of Service (QoS) in the data, in order to 

prioritize the sending of data from delay sensitive 
applications. 

• Performing complex tasks on servers in the fog. 
• Uninterrupted services, intermittent access to the 

cloud would not affect the application. 
• Latency reduction since, on the one hand, 

communications between devices in the fog are 
faster and, on the other, the volume of data to be 
sent to the cloud is smaller. 
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The use of IoT smart devices is widely referenced in the 
European Commission documents relating to IoT [13] [14] 
[15]. These documents present devices (smart things) in 
which algorithms can be executed for intelligent decision 
based on real-time measurements. 

Fuzzy Rule-Based Systems (FRBS) [16] are based on the 
use of Fuzzy Logic (FL) [17] and express the knowledge 
through a set of linguistic rules, which are grouped into a 
Knowledge Base (KB). These systems are correctly adapted 
to problems in which there is a high degree of uncertainty 
and imprecision and can be applied to control problems 
(Fuzzy Logic Controller (FLC)) in which the control 
algorithm is expressed as rules of action. 

   A collaborative approach based on FRBS for 
constrained resource devices is shown in [18][19]. In this 
approach, each device is able to share its data (e.g., the value 
of a local variable) with another sensor, with a group of 
sensors or with all the elements of the system. Therefore, it is 
conceivable that a device may have local and remote data: 
local data obtained directly by the device and remote data 
obtained by other devices and subsequently transmitted to 
the given device. 

The objective of this work is to propose a fog computing 
collaborative application for the control of a system (sun 
tracker) and for the noise annoyance monitoring, as well as 
verify that MQTT and CoAP protocols can be used in the 
collaborative system communications. 

The rest of this paper is organized as follows. Section II 
describes the fog computing application. Experimental 
results are provided in Section III. Some conclusions and 
future work are presented in Section IV. The 
acknowledgement closes the article. 

II. FOG  COMPUTING APPLICATION 

Fig. 1 shows the proposed system, which is composed of 
the following components: FRBS collaborative sensors or 
actuators, direct communication between sensors, 
communication between sensors and fog computing server, 
fog computing server, communication between fog and 
cloud servers and a cloud server. 

 

 
 

Figure 1. System proposed. 
 

The sensors and actuators used (Fig. 2) are based on a 
FRBS system and a communications module. The FRBS 

system allows the sensor to infer the output using a 
knowledge base. 

 

 
Figure 2. System proposed. 

 
The knowledge-based sensor is based on the structure of 

the Mandani [20] FRBS, which consists of the following 
components:  a fuzzification interface, a KB, an inference 
engine and a defuzzification interface. 

The fuzzification interface transfers the value of the 
inputs variable to the fuzzy system. The KB contains the 
definition of the controller input and output variables, the 
fuzzy sets defined in the variables, and a set of IF-THEN 
rules that relate these variables. The inferences engine is 
responsible for inferring the fuzzy output of the system from 
the input variables and the knowledge base. Finally, the 
defuzzification interface adapts the value of the fuzzy output 
to a real output value. 

On the other hand, the communications module allows 
the sensor to use remote variables obtained by other sensors. 
Two types of communications are used in this application: 
direct communication between sensors (Fig. 3) and 
communication through the fog computing server. Direct 
communication between sensors allows the sensors to 
request and obtain the value of a variable obtained by a 
remote sensor in the fastest way. In this sense, each sensor 
has a small server that allows the collaborative approach. 

 

 
Figure 3. Sensor direct communication. 

 
The main functions of the fog server are: a) local storage 

of data obtained by all the sensors, b) data communication to 
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sensors, c) data communication to the cloud platform, and d) 
increased security of the sensor network. In this way, the 
measurements and inferences made by the sensors are sent to 
the fog server and stored in a database. Sensors that need 
these values can request them from the fog server, although 
the procedure is slower. Finally, a cloud platform is used for 
data storage and for Internet users to view and analyze the 
data obtained. 

Note that although the fog computing platform could 
perform preliminary data analysis processes, in this work, it 
has not been developed. 

III. RESULTS  

Several experiments have been carried out in order to 
verify that the application can be used in both use cases.  In 
the case of the control of the solar tracker, which have the 
following requirements: a) controllers reaction time must be 
less than 10 ms; b) five sensors (of which two must be 
collaborative FRBS controllers) are necessary; c) knowledge 
bases of up to five variables and d) 15 rules of action per KB. 

Fig. 4 shows the test bed installed for the experiments. It 
consists of a set of Arduino DUE devices with Ethernet 
shield, an IEEE 802.3 local area network based on a QoS 
switch, a fog server based on a Raspberry Pi 3B, MySQL 
database and a cloud platform with HTTP protocol. The 
software of the Collaborative FRBS sensors, TCP server in 
sensors, fog server and communications have been 
developed in C language. 

First, the computation time of the tracker control based 
on a FRBS has been calculated. Using a test KB composed 
of 5 variables and 15 rules, the microcontroller computes 
more than 500 inferences per second, which is equivalent to 
a reaction time of 2 ms. The KB has been modeled through 
expert knowledge. One of our previous works [21] provides 
more details about the FRBS system and some inference 
examples can be observed. 

 
 

 
Figure 4. Photograph test bed. 

Secondly, the communication time of variables between 
sensors has been measured using the MQTT and CoAP 
protocols. Regarding MQTT, the “Arduino Client for 
MQTT” library and the Mosquitto broker on Raspberry PI 
have been used. Several tests have been carried out with five 
devices as QoS1 clients of the broker transmitting 
simultaneously in two topics. The shortest communication 
time between sensors has been 67ms. In case of CoAP 
protocol, the CoAP-simple-library has been used. When 
performing the experiment under similar conditions to the 
previous one, a communication time of 30 ms was obtained. 

Subsequently, various experiments have been performed 
using a small TCP server on each device to carry out direct 
communications between sensors. The server has less 
functionality than the MQTT and CoAP protocols, allowing 
exclusively the communication of variables between sensors. 
In this case, the measured communication times are 5 ms. 

Regarding the use of the fog server for the 
communication of data between sensors, the measured 
communication times have been much longer due mainly to 
access to the database. 

In the case of the noise annoyance monitoring, in a 
previous work [22] we presented the design and 
implementation of a complete low-cost system, composed of 
nine sensors nodes, for a Wireless Acoustic Sensor Network 
(WASN) deployed in the city of Linares (Jaén), Spain. The 
network topology for the proposed complete system is 
shown in Fig. 5. 

 

 
Figure 5. Network topology used for the WASN deployed in the city. 

 
In this real system, a cloud system was used and several 

problems were encountered, such as: data loss due to the lack 
of a connection to the cloud, processing of a large volume of 
data on the server, inability to collect data at certain 
locations, and inability to use complex knowledge-based 
systems. To solve these kinds of problems, we have designed 
and incorporated a fog computing platform between the 
sensor nodes and the cloud. The fog servers are only in 
charge of sensed data store and retransmission to the cloud 
server. A previous work [23] provides more details on how 
the KB and the FRBS are implemented in the sensors. The 
final network topology used is shown in Fig. 6.  

9Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-989-8

UBICOMM 2022 : The Sixteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

                            19 / 27



 
Figure 6. Network topology incorporating the fog server in the WASN 

deployed in the city. 

 
The fog server has stored the data received from the 

sensors and retransmitted it to the cloud server. Various tests 
have been performed with intermittent internet access. In this 
sense, when recovering communications over the Internet, 
the data are retransmitted without any loss. 

IV. CONCLUSIONS 

The device used has sufficient processing capacity to 
infer the output values using a typical KB to control a sun 
tracker. The use of the implementations of MQTT protocols 
and CoAP exceed the maximum reaction time (10 ms) for 
sun tracker control. Nevertheless, the reaction time is shorter 
than the maximum by means of the small TCP server and 
direct communications between sensors.  

In the case of the noise annoyance monitoring, since the 
sensor nodes calculate the sound pressure level every second, 
and every 30s they send the noise annoyance to the fog 
server, communication times are not critical in this scenario. 

With regard to future work, the following actions are 
proposed: a) implement the application for tracker control, b) 
perform complex tasks (which IoT devices cannot execute) 
on servers in the fog, which increases the capabilities of 
these applications. 
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Abstract—We consider the development problem of smart
monitoring systems for Internet of Things (IoT) environments.
Such systems form a special class of Tactile Cyber-Physical
Systems (TCPS) with the essential role of sensorics and artificial
intelligence (AI). Sensorics enables the touching sense when a
remote object is monitored in Tactile Internet (TI). IoT and
AI technologies support near real-time data processing and
feedback to perceive and control the object. The applicability of
strain gauges is discussed for the needs of emerging applications
of smart monitoring in manufacturing, building construction,
and vehicle operation. We introduce a multi-layer architecture
of TCPS that focuses on the bigdata and smart interaction
requirements of industrial monitoring systems. The architecture
takes into account the Information&Communication Technolo-
gies (ICT) that have already shown efficiency in the industrial
settings.

Index Terms—Smart Monitoring, Sensorics, Tactile Internet,
Cyber-Physical System, Bigdata Processing.

I. INTRODUCTION

We consider the development problem of smart moni-
toring systems for Internet of Things (IoT). In particular,
such systems are rapidly developed in Industrial Internet or
Industrial IoT (IIoT) for the case of machinery equipment
monitoring, e.g., see [1]. The data come from multiple sensors
that surround the equipment (and its assembly parts—nodes).
Monitoring implements functions for recognition of technical
state and utilization condition.

Smart monitoring assumes consideration of the following
requirements to the system development.

1) The bigdata requirement (RBD): Data processing is
based on Artificial Intelligence (AI) with advanced
methods of Machine Learning (ML) and recognition for
Bigdata analytics [2], [3].

2) The smart interaction requirement (RSI): System com-
ponents act as smart IoT objects that interact in IoT
environment to construct services using Ambient Intel-
ligence (AmI) [4], [5].

The progress in the IoT/IIoT technology leads to shortening
the distance between the human and monitored objects. The
results of analytics can be delivered to the user in near real-
time. As a result, a person can extend her/his sensory system
despite the physical distance (five senses: eyesight, hearing,
taste, touch, and smell). In particular, the emerging technology
of Tactile Internet (TI) introduced haptic data related to the
human perception of objects through its sensory nervous

system [6]. This human perception property is considered
in Ambient Intelligence (AmI) when human is in a digital
environment (e.g., IoT environment) and surrounding devices
construct various recognition services by monitoring the phys-
ical, informational, and social worlds [4], [7], [8].

The bigdata and smart interaction requirements can be
implemented using the concept of Cyber-Physical System
(CPS) [9]. CPS components act as data producers (sensing)
and consumers (processing) from the physical, informational,
and social worlds [4]. Integration of physical and information
processes in an AmI environment provides the ability to
perceive the environment and its participants based on analysis
of the sensed data.

We limit this study with the tactile sense, aiming at mon-
itoring systems that are based on sensing deformations and
mechanical stresses. Production machinery (under monitoring)
is equipped with various strain gauges, which we elaborated
in our previous work [10]. Our target case is Tactile Cyber-
Physical System (TCPS).

In this paper, we consider the applicability of strain sen-
sorics in development of IoT monitoring systems, such as
manufacturing, building construction, robot movement, wear-
able sensorics, and vehicle operation. TCPS implements reg-
ular measurements (in real-time) of various deformations and
mechanical stresses. Application examples and possible strain
gauges can be found in [11]–[13]. In particular, magnetic strain
sensors and their use are considered in [14].

The key contribution of this paper is the proposal of a multi-
layer TCPS architecture for sensed data processing, either in
batch mode or near real-time mode. The proposed architecture
is based on the latest technologies from IoT, TI, AmI, AI, and
Bigdata. The technologies are selected based on our review
of existing industrial solutions. Although the architecture is
oriented to the specific characteristics of data sensed from
various strain gauges, other sensors can be added to TCPS.
Easy addition is supported by the layered structure.

The rest of the paper is organized as follows. Section II
introduces the problem of applying TCPS in industry, where
strain gauges are used to implement the required tactile sense.
Section III proposes our multi-layer TCPS architecture for data
processing of sensed data, either in batch mode or real-time.
Section IV summarizes the key findings of this study.

11Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-989-8

UBICOMM 2022 : The Sixteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

                            21 / 27



II. SMART MONITORING WITH THE TACTILE SENSE

Smart monitoring is widely used in AmI environments,
where CPS components act as data producers and consumers
from the physical, informational, and social worlds [4]. In-
tegration of physical and information processes in an AmI
environment provides the ability to perceive the environment
and its participants based on analysis of the sensed data.

In the context of Industry 4.0 and IIoT, a given CPS
implements monitoring functions related to recognize equip-
ment technical state and utilization condition, diagnostics
and prognosis, making recommendations for maintenance,
and selecting optimal operating modes [15]. Such monitoring
functions supports analytics of sensed data for diagnostics,
prediction, and prescriptive maintenance. In this study, we
focus on the monitoring problem machinery equipment.

A monitoring system implements of iterations for manip-
ulating objects (sending commands and receiving feedback).
The iterations support construction of the informational and
control services. An example of the informational service is
predicting technical state of nodes in the machinery equipment
(e.g., bearing and their defects [16]). Examples of control
service are manipulating effects with feedback in real-time
to achieve the desired results [17].

For monitoring and manipulation with real objects, a system
is needed for collecting and processing the data from sensors.
We focus on tactile sensors, which enhance such a human
sense as “touch”. The monitoring CPS acts as TCPS [18].
TCPS extend a set of applications and services by combining
machine-to-machine and human-to-machine interactions. The
following properties are typical for sensorics in a TCPS [11],
[12].

• Digitalization of the primary results of measurements.
• Use of many sensors and sensor nodes for monitoring

the state of one object as well as processing of the data
obtained in parallel from many sensors.

• Correction for noninformative factors (e.g., the influence
of temperature on strain sensors).

• Recognition of failures of nodes or communication lines
and built-in fault-tolerance capability.

• The sensors used for monitoring are by themselves smart
and able to function as nodes of IIoT.

• Wireless connection of the components of the system.
• The ability of the components of the system to commu-

nicate with each other in real-time mode.
• High-level characterization of the state of the object under

monitoring (e.g., normal or dangerous).
• Recognition of abnormal behavior of the object and

making decisions on this base.
• The use of the machine learning (ML) methods for

classification of the states of the object under monitoring.
• Flexibility of the system, i.e., possibility to re-configure

when necessary.
An example of a TCPS application is remote manipulation

of real or virtual robotic industrial equipment in inaccessible
and dangerous conditions. In TCPS, an operator remotely

controls a robot (e.g., a manipulator) to perform production
operations using robotic equipment. Even though the sense of
presence can be provided through the exchange of audio/video
information, complete immersion is impossible without the
exchange of haptic information.

The haptic feedback gives the operator a sense of force,
movement, vibration, etc. For example, the operator can adjust
the position and grip of the manipulator. The exchange of
tactile sense includes commands to the object and feedback
from the object. The network round-trip latency in such a
loop cannot exceed a few milliseconds to solve the problem
of delayed and asynchronous feedback [19]. Reaching the
boundary values of delay imposes additional requirements
on the development of hardware and software architecture,
algorithms, and protocols for TCPS.

Almost any TCPS is characterized by multi-source multi-
type data sensing and information exchange followed by data
fusing. Strain gauges can serve as an additional source of
information on the technical state and utilization condition
of production machineries (metalworking machines, gas tur-
bine equipment, presses, pumps, etc.). Multiple data sources
provide “redundancy” in measurements. The redundancy can
be used to improve the accuracy, reliability, objectivity and
validity of technical state assessment and operating conditions.
In this regard, measurements of elastic deformations can be
based on non-destructive testing methods [20]. This kind of
measurements of physical parameters can be used to improve
the accuracy of solving a wide class of promising production
problems, as we summarized in Table I.

III. MULTI-LAYER ARCHITECTURE

We propose the multi-layer TCPS architecture for data pro-
cessing of sensed data, either in batch mode or near real-time
mode. The model is shown in Figure 1. The proposed architec-
ture combines a number of the well-proven technologies used
in the digitalization of manufacturing industry. In particular,
the bigdata technologies aims at storing and processing huge
(in most cases, redundant) sets of continuously arriving sensor
data with the possibility of horizontal scaling [3].

A related concept for TCPS is Digital Shadow (the basic
component of Digital Twin) [21]. The architecture maintains
connections and dependencies (rules) that describe the be-
havior of a real object under normal operating conditions.
Also, any digital object is augmented with additional data
collected from the corresponding real object using the IIoT
technology [22].

The architecture is based on the data life cycle model “data-
information-knowledge-decisions” [2]. The following concept
layers are used: (1) physical layer; (2) edge layer; (3) network
layer; (4) gateway layer; (5) storage layer; (6) computation
layer; (7) analytics layer; (8) service layer.

The physical layer (together with the edge layer) imple-
ments the hardware and software enclosure for measuring con-
trol around a monitoring and manipulation object—industrial
equipment. The measuring control enclosure is created without
making any structural changes and does not require taking the
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TABLE I
TCPS APPLICATIONS IN INDUSTRY USING STRAIN GAUGES

Application Use of tactile sensors
1. Remote manipulation of real or virtual objects in inaccessible and
dangerous conditions.

Tracking movement and position of human body parts by flexible strain
sensors.

2. Monitoring the state of transport vehicles, ship hulls and airframes, wind
turbines, railway lines, dams, oil drilling platforms, structural components
of bridges and buildings.

Detection of early structural damage based on the analysis of strain measure-
ments; data source in wireless telemetry system; measurement of mechanical
resonance frequencies of structures.

3. Design and exploitation of aerospace and aircraft technologies. Comparison of deformations arising under the action of various forces with
the results of CAD (Computer Aided Design) and FEA (Finite Element
Analysis) simulations; monitoring the actual stresses in mechanical parts
during flight to ensure that it is safe.

4. The control of deformations of parts during processing to adjust the
pressing forces by robotic metalworking equipment.

Strain measuring of the part during machine processing by the pressure of
the cutter (e.g., during drilling).

5. Measurement of the torque applied by a motor, turbine, etc. to generators,
wheels, etc. for optimization of the regime of the equipment

The torque is calculated from the measured strain and the rotational speed
on a shaft.

6. Manufacturing of weight and pressure measuring devices for the creation
of robotic systems for industrial production.

Strain sensors are the basic (sensing) elements of load cells.

industrial equipment out of operation. The physical layer con-
tains many heterogeneous high intensity sensors and actuators.
Industrial automation sensor equipment is used as the main
sources of information on the technical state, operation, and
operating conditions.

Stresses and strains are the main parameters for monitoring
and manipulating the state of objects (including industrial
ones), which must withstand dynamic loads. To ensure re-
dundancy of information and coverage of most application
scenarios in TCPS, strain measurement should be performed
together with such physical parameters as vibration, current,
rpm (revolutions per minute), and temperature. For example,
using vibration and strain data in integration, one can deter-
mine the critical stretch of material and reduce vibration so
that this limit is not exceeded. There is also a relationship
between shock events and deformation values.

The edge layer ensures that a significant part of the data
processing computations is performed close to the data sources
and the object under monitoring. Preprocessing data on edge
devices increases the performance of upstream digital diag-
nostics and predictive analytics algorithms by reducing the
amount of streaming data and network latency, as well as by
distributing the load across edge compute nodes. For edge
devices, algorithms must be not only mathematically simple,
but also energy efficient to execute them on microcontrollers.

Raw data are collected and presented in a summary form for
further time-domain statistics [23]. The summary form for an
individual strain data processing stream is determined by a set
of such statistical metrics as Root Mean Square (RMS), max,
min, crest factor, and kurtosis within a given time window
for providing initial, approximate information about faults.
We follow the model of [24], where such computation is
implemented by so-called sensor computing modules (SCM—
data acquisition system instance, DAQ), which can collect data
from high-resolution sensors with high-speed measurement.
The sensor data are digitized with high precision, preprocessed
using basic mathematical transform operations (e.g., Fast
Fourier Transform—FFT). SCM uses an external ADC with

24-bit resolution operating (ADS127L01) and a maximum
sampling rate of 512 kSPS (Samples Per Second).

A single SCM can connect from 1 to 15 sensors of differ-
ent types. The sampling rates and duration of sampling are
customized along with algorithms to establish an appropriate
value for them. In the monitoring system using 10 modules,
the daily total volume for the continuous flow of raw and
preprocessing data can reach 1.236 TB. In this regard, TCPS
faces with Bigdata challenges and specialized technologies
and architecture patterns are required to organize storage,
stream synchronization, and data processing when designing
the overlying architecture layers [3].

Due to the significant requirements for computing resources
and the possibility of horizontal scaling, systems for working
with Bigdata are developed mainly as distributed systems that
implement parallel processing of large data sets [25]. The
architecture is with Massive Parallel Processing (MPP) [26].
Many independent computing nodes are connected by a high-
bandwidth LAN. A local dedicated server is deployed at the
edge. The nodes provide initial data to the local server. The
server transmits the processed data further to a data center.

The network layer connects the edge layer and the Bigdata-
oriented layers, providing an environment for communication
over wireless or wired network channels (Wi-Fi, ZigBee,
Ethernet, Bluetooth, RS-485, CAN and similar network proto-
cols). Such protocols as MQTT, CoAP, AMQP, and DDS pro-
vides standardized data transfer based on IoT solutions [27].
Nevertheless, proprietary protocols can also be developed to
provide lightweight options for polling the DAQ system, re-
questing a one-time fetch of data from a sensor, and requesting
a continuous data acquisition (subscription) [24]. For secure
access to both external data sources and a private data center,
a virtual private network is used with the creation of dedicated
secure circuits and with tunneling protocols [28].

When working with large data sets, the execution is time-
consuming for queries to implement the application functions.
Many queries cannot be executed in real-time, since they
require the execution of algorithms that work with distributed
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Fig. 1. The multi-layer TCPS architecture model for near real-time intelligent analysis of sensor data.

storages on several nodes of the data center, processing data
in parallel. The processing can take several hours, making
the results irrelevant. Specialized architectural patterns are
needed for obtaining the results in near real-time (likely, with
some loss of accuracy) and for complementing them based
on executed slow queries over a large set of retrospective
data [29].

In particular, the Lambda architecture design pattern sepa-
rates real-time and batch data processing [30]. The Lambda
pattern is applied in many practical industrial applications. Our
TCPS architecture (in Figure 1) follows the basic principles of

the Lambda pattern. Our model combines the batch processing
path (bottom) and the speed processing path (top), so providing
a unified, merged view to the service layer. Moreover, the users
are not interested to consider these two data streams. The users
simply need the analytics results. In particular, if real-time
analytics is needed then the accuracy becomes lower, since
the result comes from the speed path. Nevertheless, after the
completion of complex distributed queries on the batch path,
the results obtained by users can be enriched or updated with
more accurate information after long-term, deep analytics.

The batch processing path performs heavy-weight, time-
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consuming, and resource-intensive queries with no real-time
requirements. Free time slots can be used to perform data
processing (depending on the schedule, e.g., at night). In
this case, reports and various statistics are built only on
retrospective data (e.g., for the last day, months, etc.). The
result is completed after some time (e.g., tomorrow). However,
such results are significantly more accurate and reliable. Note
that all incoming data on the batch path is always appended
to the existing one, i.e., previous data are not overwritten (by
the “log” storage type), allowing storing the history for deeper
analytics.

The speed processing path implements near real-time pro-
cessing. The trade-off is the loss of accuracy with respect
to fast ready-made results. On this path, some small data
processing functions (e.g., average, some aggregation) operate
on individual records in a sensor data stream or in a sliding
window mode.

The gateway layer is used to receive, transform, and store
information from edge devices and external sources. Control of
edge devices is possible by sending configurations to adjust
the intensity and content of data streams (depending on the
needs of the data processing). According to the data source
and destination, the sensed data are forwarded to the batch
path (for retrospective data, at rest) or to the speed path (for
streaming data, in motion).

For processing streaming data, time synchronization is
needed as many streams from various sources. A stream can
be aggregated (by types of data sources with reference to a
specific equipment node) to provide services in real-time (e.g.,
diagnostics). Message brokers are used for distributed stream-
ing and data processing (e.g., Apache Kafka, RabbitMQ) [31].
A broker has low latency, since all data processing is executed
in-memory, with no slow disk access.

The data-driven interaction between data producers and con-
sumers follows the publish/subscribe model using a message
broker [32]. Another equally important task is the creation
of a retrospective storage of raw data of physical measure-
ments (batch data) for the further execution of analytical
computations and training of neural networks on the results.
Software tools designed to automate the transfer of large data
batches from data sources to TCPS use the concept of “extract,
transform, load” (ETL), e.g., Apache NiFi, Sqoop [25].

The storage layer is critical for the Bigdata requirement
in TCPS. Storage and processing of accumulated data from
sensors and recognized knowledge are the most resource-
intensive operations that uses distributed computing [21], [33].
A MPP architecture is commonly applied to data lakes and
databases (or data warehouse) [26], [34]. Data processing is
performed by multiple computing nodes. Each node has its
own storage and computing resources to resolve a part of
the overall data query. Depending on the volume, structure,
variety, and variability of data, a storage location is selected.

A data lake is an object storage designed to store various
data (structured, semi-structured, or unstructured) in its origi-
nal, raw form (only the file object and the path to it) without
using schemas, types, and data models. A data lake involves

storing data in a distributed file system. Hadoop Distributed
File System (HDFS) is fault-tolerant and low-cost object
storage with low performance when working with small data
amounts (file block size from 128MB) [35]. HDFS is suitable
for storing samples of raw physical measurements, grouped in
large files, e.g., by sampling period (file size depends on the
length of the period and the sampling frequency).

A database is suitable for semi-structured and structured
data with support for data queries. Compared to a data lake, a
database uses a data model that defines how to store, organize,
and process data. There are three classes of databases [25],
[34], [36]: relational database management systems (RDBMS),
NoSQL, and NewSQL databases. RDBMS provide operation
of transactional systems using the “online transaction process-
ing” (OLTP) approach (e.g., MySQL, Oracle).

NoSQL databases emerged as an alternative to traditional re-
lational databases with a tabular data organization format (e.g.,
MongoDB, Neo4j). Depending on the problem being solved,
NoSQL databases offer the following set of fundamental data
structures: wide column, document, key-value pair, or graph.

NewSQL databases emerged as a combination of the
NoSQL and RDBMS advantages. They solve the ACID prob-
lems (atomicity, consistency, isolation, durability) with hori-
zontal scalability of OLTP databases (e.g., Clustrix, NuoDB).
Therefore, RDBMS and NewSQL databases focus on trans-
actional loads. They are rarely used in TCPS, since the key
issue is the analytics of large sets of time series from physical
parameters measurements and predicting the technical state of
machinery equipment [25].

Nevertheless, columnar NoSQL databases are traditionally
designed to support business analytics (e.g., Vertica, Click-
House) [37]. Typical use is a large data warehouse solving
analytical problems using the “online analytical processing”
(OLAP) approach. An analytical database is at a level higher
than a data lake. Data are further processed (partitioning,
compression) to make analytics easy and fast. In turn, graph-
oriented NoSQL databases [38] can be used for digital virtu-
alization of the monitoring and manipulation object (sensors,
actuators, nodes) and the surrounding context (employee pro-
files, operating conditions). Detection of composite events is
possible to understand the nature of cause-and-effect chains
and the simultaneity of a set of basic events for decision
making (a knowledge base is created).

Fusing (linking) data in a graph model is the process of
combining data sets obtained from heterogeneous sources to
form a unique consistent view and to reduce the uncertainty
of multi-source information. “Reducing uncertainty” means
moving to a new level of abstraction, with a more reliable and
accurate way to identify events occurring within TCPS [39].

The computation layer is core in the Bigdata architecture.
Data sources are heterogeneous both in structure and content.
As we considered above, the two computing modes are used:
batch processing and stream processing. In batch processing,
a large data block (batch) is received at the input processed
in certain time period. In streaming data processing is not
limited with beginning and end points. Data processing acts
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in a sliding window or as individual records. It is necessary
to process data on the fly, i.e., in near real time. Stream
processing is easily scalable by creating new handlers on a
given stream. Spark is a versatile large-scale batch and stream
computing engine suitable for industrial applications [40].
Generally, the computation layer also handles data preparation,
aggregation, fusing, and cleansing.

The analytics layer is designed to extract information and
knowledge for decision making from the collected Bigdata.
Two areas of analytics can be distinguished [39]: 1) online
analytical processing (OLAP) using analytical queries, 2) data
mining and machine learning algorithms (e.g., decision trees,
convolutional artificial neural networks, regression, support
vector machines). A toolkit is used depending on the require-
ments of the system. Spark SQL is used in analytics over
structured batch data [40]. Spark Streaming is used for stream
analytics [41]. MLlib and TensorFlow are used for machine
and deep learning [42].

OLAP databases provide their set of tools in the form of
a query language (usually SQL) for advanced analytics and
business intelligence (e.g., Greenplum, Teradata). Analyzing
streaming and retrospective data, analytical tools can recognize
knowledge for decision making in TCPS (e.g., statistical
metrics and spectral images for vibration diagnostics of rotary
equipment, events about equipment deviations from normal
operation modes, residual equipment life).

Data-driven extrapolation requires strain measurements to
be made in all states of interest over a representative time
period [43]. The collected strain data can be used to train the
extrapolation algorithm. If there are no data for training, the
missing data (beyond the range) are generated by simulation.
In particular, the correlation between deformation and applied
loads is non-linear under extreme stress conditions, so calculat-
ing and predicting deformation of equipment assemblies is dif-
ficult with traditional numerical methods. A back propagation
neural network (improved by particle swarm optimization) can
be used for determining the non-linear relationship between
strain and load [44].

The service layer is on the top of our architecture. The layer
is based on interactive multimedia human-machine interfaces.
They provide users with a set of information and analytical ser-
vices. The provision is a merged, seamless view, while hiding
advanced analytical algorithms and differences in streaming
and batch processing from the users. This view visualizes
the results of the underlying layers using dashboards, reports,
and plots. The service layer combines business and artificial
intelligence with visualization to help in interacting the users
and machines, in making decisions based on collected data,
analytics, and expert evaluation [45].

On this layer, an interactive situational center is constructed
to implement the “data–information–recommendation–
evaluation–decision” cycle. Decisions are made based on the
representation of the object’s state. In particular, a decision
is on timely equipment maintenance and the feedback is
monitored. Recommendation services provide an evaluation
of remaining life of machinery equipment components. Such

decision making reduces maintenance costs and improves
overall production reliability.

Reports are generated (according to plan and online) with
information about the residual resource, recent and predicted
state of the machinery equipment. Managing workflows for
business, data processes, and resources requires orchestration
tools that are used on all layers of the architecture, especially
along the batch processing path [46]. A data workflow is a
set of interrelated time steps that trigger specific jobs, such
as Spark job or SQL query. Apache NiFi can be used as an
orchestration tool for creating data streams and integrating data
with the interactive service layer.

IV. CONCLUSION

This paper studied the use of TCPS to smart monitoring. We
considered the two requirements of the system development:
the bigdata requirement (RBD) and the smart interaction
requirement (RSI). The role of the requirements was shown
with respect to the tactile sense. A particular application area
in demand is monitoring of various production machineries
in real-time. We analyzed the properties from practical appli-
cation problems and existing technologies for industrial data
processing. We proposed the multi-layer TCPS architecture for
effective processing of sensed data, either in batch mode or
near real-time mode. Elements of the TCPS architecture have
been already implemented in several monitoring applications.
Our plan is to continue the development of smart monitoring
IoT/IIoT systems based on the proposed generic architecture.
We expect that the role of the tactile property becomes
increasing in manufacturing, building construction, vehicle
operation, robotics, and mobile healthcare.

ACKNOWLEDGMENT

The research is implemented with financial support by Rus-
sian Science Foundation, project no. 22-11-20040 (https://rscf.
ru/en/project/22-11-20040/) jointly with Republic of Karelia
and funding from Venture Investment Fund of Republic of
Karelia (VIF RK).

REFERENCES

[1] O. Petrina, S. Marchenkov, and D. Korzun, “A semantic space-time event
representation model in production equipment monitoring of technical
state and utilization condition,” in 2022 8th International Conference
on Control, Decision and Information Technologies (CoDIT), 2022, pp.
1362–1367.

[2] M. El Arass and N. Souissi, “Data lifecycle: From Big Data to
SmartData,” in 2018 IEEE 5th International Congress on Information
Science and Technology (CiSt), 2018, pp. 80–87.

[3] H.-N. Dai, H. Wang, G. Xu, J. Wan, and M. Imran, “Big data analytics
for manufacturing internet of things: opportunities, challenges and
enabling technologies,” Enterprise Information Systems, vol. 14, no. 9-
10, 2020, pp. 1279–1303.

[4] D. Korzun, E. Balandina, A. Kashevnik, S. Balandin, and F. Viola,
Ambient Intelligence Services in IoT Environments: Emerging Research
and Opportunities. IGI Global, 2019.

[5] J. Zhang and D. Tao, “Empowering things with intelligence: A survey
of the progress, challenges, and opportunities in artificial intelligence
of things,” IEEE Internet of Things Journal, vol. 8, no. 10, 2021, pp.
7789–7817.

[6] T. Ali-Yahiya, “Introduction to Tactile Internet,” in The Tactile Internet.
Wiley-ISTE, 2021, pp. 1–11.

16Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-989-8

UBICOMM 2022 : The Sixteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

                            26 / 27



[7] V. Kostakos, J. Rogstadius, D. Ferreira, S. Hosio, and J. Goncalves,
Human Sensors. Springer International Publishing, 2017, pp. 69–92.

[8] S. E. Navarro et al. “Proximity perception in human-centered robotics:
A survey on sensing systems and applications,” IEEE Transactions on
Robotics, vol. 38, no. 3, 2022, pp. 1599–1620.

[9] S. J. Oks et al. “Cyber-physical systems in the context of industry 4.0:
A review, categorization and outlook,” Information Systems Frontiers,
2022, pp. 1–42.

[10] D. Korzun, S. Marchenkov, V. Ignakhin, and I. Sekirin, “Strain sensors
in smart applications of tactile cyber-physical systems: Opportunities
and recommendations,” Jul. 2022, keynote Speech on The 2022
IARIA Annual Congress on Frontiers in Science, Technology, Services,
and Applications (IARIA Congress 2022). Nice, Saint-Laurent-du-Var,
France. [Online]. Available: https://www.iaria.org/conferences2022/
ProgramIARIACongress22.html[accessed:2022-07-30]

[11] J.-H. Low, P.-S. Chee, E.-H. Lim, and V. Ganesan, “Design of a wireless
smart insole using stretchable microfluidic sensor for gait monitoring,”
Smart Materials and Structures, vol. 29, no. 6, apr 2020, p. 065003.

[12] S. L. Ullo and G. R. Sinha, “Advances in smart environment monitoring
systems using IoT and sensors,” Sensors, vol. 20, 2020, pp. 1–18.

[13] F. L. M. dos Santos, B. Peeters, J. Lau, W. Desmet, and L. C. S.
Goes, “The use of strain gauges in vibration-based damage detection,” in
Journal of Physics: Conference Series, Volume 628, 11th International
Conference on Damage Assessment of Structures (DAMAS 2015) 24-26
August 2015, Ghent, Belgium, 2015, pp. 1–8.

[14] I. Sekirin and V. Ignakhin, “Sensors of mechanical stresses and defor-
mations based on magnetic phenomena,” in 2020 27th Conference of
Open Innovations Association (FRUCT), 2020, pp. 207–213.

[15] Y. Lu, “Cyber physical system (cps)-based industry 4.0: A survey,”
Journal of Industrial Integration and Management, vol. 02, no. 03, 2017,
p. 1750014.

[16] V. Perminov, V. Ermakov, and D. Korzun, “Fault diagnosis and prognosis
for industrial rotary machinery based on edge computing and neural
networking,” in Proc. 14th Int’l Conf. on Mobile Ubiquitous Computing,
Systems, Services and Technologies (UBICOMM). IARIA XPS Press,
Oct. 2020, pp. 1–6.

[17] A. Aijaz and M. Sooriyabandara, “The tactile internet for industries: A
review,” Proceedings of the IEEE, vol. 107, no. 2, 2019, pp. 414–435.

[18] N. Promwongsa et al. “A comprehensive survey of the tactile internet:
State-of-the-art and research directions,” IEEE Communications Surveys
& Tutorials, vol. 23, no. 1, 2021, pp. 472–523.

[19] M. Maier, M. Chowdhury, B. P. Rimal, and D. P. Van, “The Tactile
Internet: vision, recent progress, and open challenges,” IEEE Commu-
nications Magazine, vol. 54, no. 5, 2016, pp. 138–145.

[20] O. Atalay, A. Atalay, J. Gafford, H. Wang, R. Wood, and C. Walsh,
“A highly stretchable capacitive-based strain sensor based on metal
deposition and laser rastering,” Advanced Materials Technologies, vol. 2,
no. 9, 2017, p. 1700081.

[21] A. Ladj, Z. Wang, O. Meski, F. Belkadi, M. Ritou, and C. Da Cunha,
“A knowledge-based digital shadow for machining industry in a Digital
Twin perspective,” Journal of Manufacturing Systems, vol. 58, 2021, pp.
168–179, digital Twin towards Smart Manufacturing and Industry 4.0.

[22] W. Khan, M. Rehman, H. Zangoti, M. Afzal, N. Armi, and K. Salah,
“Industrial internet of things: Recent advances, enabling technologies
and open challenges,” Computers & Electrical Engineering, vol. 81,
2020, p. 106522.

[23] F. Ballo, M. Gobbi, G. Mastinu, and G. Previati, “Advances in force
and moments measurements by an innovative six-axis load cell,” Exper-
imental Mechanics, vol. 54, 2014, pp. 571–592.

[24] D. A. Kirienko, P. V. Lunkov, V. V. Putrolaynen, S. I. Aryashev, and
M. A. Belyaev, “Modular hardware platform for the development of
IoT devices implemented using multi-chip packaging technology,” in
IOP Conference Series: Materials Science and Engineering, Volume 862,
Mechanical and Automation Engineering for Industry, 2020, p. 032012.

[25] Y. Cui, S. Kara, and K. C. Chan, “Manufacturing big data ecosystem: A
systematic literature review,” Robotics and Computer-Integrated Manu-
facturing, vol. 62, 2020, pp. 1–20.

[26] V. Saravanan, A. Alagan, and I. Woungang, “Big data in massive
parallel processing: A multi-core processors perspective,” in Handbook
of Research on Big Data Storage and Visualization Techniques. IGI
Global, 2018, pp. 276–302.

[27] T. M. Tukade, R. Banakar, and R. Banakar, “Data transfer protocols in
iot—an overview,” International Journal of Pure and Applied Mathemat-
ics, vol. 118, no. 16, 2018, pp. 121–138.

[28] M. Juma, A. A. Monem, and K. Shaalan, “Hybrid end-to-end VPN
security approach for smart IoT objects,” Journal of Network and
Computer Applications, vol. 158, 2020, pp. 1–14.

[29] T. Dubuc, F. Stahl, and E. B. Roesch, “Mapping the big data landscape:
Technologies, platforms and paradigms for real-time analytics of data
streams,” IEEE Access, vol. 9, 2021, pp. 15 351–15 374.

[30] F. Cerezo, C. E. Cuesta, J. C. Moreno-Herranz, and B. Vela, “Decon-
structing the lambda architecture: An experience report,” in 2019 IEEE
International Conference on Software Architecture Companion (ICSA-
C), 2019, pp. 196–201.

[31] S. Srinivas and V. R. Karna, “A survey on various message brokers
for real-time big data,” in Sustainable Communication Networks and
Application, P. Karrupusamy, J. Chen, and Y. Shi, Eds. Springer
International Publishing, 2020, pp. 164–172.

[32] D. G. Korzun, S. I. Balandin, A. M. Kashevnik, A. V. Smirnov, and A. V.
Gurtov, “Smart spaces-based application development: M3 architecture,
design principles, use cases, and evaluation,” International Journal of
Embedded and Real-Time Communication Systems (IJERTCS), vol. 8,
no. 2, 2017, pp. 66–100.

[33] N. G. Ugur and A. H. Turan, “Understanding big data,” in Research
Anthology on Big Data Analytics, Architectures, and Applications,
I. R. M. Association, Ed. IGI Global, 2022, pp. 1–21.

[34] T. R. Rao, P. Mitra, R. Bhatt, and A. Goswami, “The big data system,
components, tools, and technologies: a survey,” Knowledge and Infor-
mation Systems, vol. 60, 2019, pp. 1165–1245.

[35] M. Hajeer and D. Dasgupta, “Handling big data using a data-aware hdfs
and evolutionary clustering technique,” IEEE Transactions on Big Data,
vol. 5, no. 2, 2019, pp. 134–147.

[36] P. Raj, “Chapter one—a detailed analysis of NoSQL and NewSQL
databases for bigdata analytics and distributed computing,” in A Deep
Dive into NoSQL Databases: The Use Cases and Applications, ser.
Advances in Computers, P. Raj and G. C. Deka, Eds. Elsevier, 2018,
vol. 109, pp. 1–48.

[37] K. T. Sridhar, “Modern column stores for big data processing,” in Big
Data Analytics, ser. Lecture Notes in Computer Science, P. K. Reddy,
A. Sureka, S. Chakravarthy, and S. Bhalla, Eds., vol. 10721. Springer
International Publishing, 2017, pp. 113–125.

[38] I. Comyn-Wattiau and J. Akoka, “Model driven reverse engineering of
NoSQL property graph databases: The case of Neo4j,” in 2017 IEEE
International Conference on Big Data (Big Data), 2017, pp. 453–458.

[39] R. H. Hariri, E. M. Fredericks, and K. M. Bowers, “Uncertainty in big
data analytics: survey, opportunities, and challenges,” Journal of Big
Data, vol. 6, no. 44, 2019, pp. 1–16.

[40] M. Zaharia et al. “Apache spark: A unified engine for big data pro-
cessing,” Communications of the ACM, vol. 59, no. 11, oct 2016, pp.
56–65.

[41] B. Zhou et al. “Online internet traffic monitoring system using spark
streaming,” Big Data Mining and Analytics, vol. 1, no. 1, 2018, pp.
47–56.

[42] M. Assefi, E. Behravesh, G. Liu, and A. P. Tafti, “Big data machine
learning using apache spark mllib,” in 2017 IEEE International Confer-
ence on Big Data (Big Data), 2017, pp. 3492–3498.

[43] L. Ziegler, N. Cosack, A. Kolios, and M. Muskulus, “Structural moni-
toring for lifetime extension of offshore wind monopiles: Verification of
strain-based load extrapolation algorithm,” Marine Structures, vol. 66,
2019, pp. 154–163.

[44] X. Liu, Z. Liu, Z. Liang, S.-P. Zhu, J. A. F. O. Correia, and A. M. P. D.
Jesus, “PSO-BP neural network-based strain prediction of wind turbine
blades,” Materials (Basel), vol. 12, no. 12, 2019, pp. 1–15.

[45] Y. Lu, J. S. Adrados, S. S. Chand, and L. Wang, “Humans are not
machines—anthropocentric human-machine symbiosis for ultra-flexible
smart manufacturing,” Engineering, vol. 7, no. 6, 2021, pp. 734–737.

[46] Y. Cui, S. Kara, and K. C. Chan, “Monitoring and control of unstructured
manufacturing big data,” in 2020 IEEE International Conference on
Industrial Engineering and Engineering Management (IEEM), 2020, pp.
928–932.

17Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-989-8

UBICOMM 2022 : The Sixteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Powered by TCPDF (www.tcpdf.org)

                            27 / 27

http://www.tcpdf.org

