
NAN Tools: An Open-Source Tool Suite
for Interoperable Neutral Access Networks

Roberto Del Bianco Andrea Seraghiti Alessandro Bogliolo
Information Science and Technology Division of DiSBeF

University of Urbino
Urbino, Italy 61029

Email: alessandro.bogliolo@uniurb.it

Abstract—Although IP traffic has been growing exponen-
tially for years and it is expected to keep following the same
rate in the near future, current business models do not allow
operators to benefit from traffic growth and they fail in
motivating investments in next generation networks. In the
absence of sufficient investments, operators are induced to
avoid congestion by means of traffic management strategies
which raise neutrality issues. In spite of the heated debate
on net neutrality, all the players involved in the Internet value
chain agree in saying that new models are required to overcome
broadband stagnation and support innovation. Neutral access
networks (NANs) have been recently proposed as means for
enabling the development of the Internet without threatening
network neutrality. Although the NAN model has been im-
plemented and tested for several years in the Urbino Wireless
Campus test-bed, its actual applicability requires the availability
of a tool suite flexible enough to adapt to different situations
and to enable inter-operation among networks managed by
different entities. This paper presents the NAN tools, an open-
source tool suite which enables the employment of scalable and
inter-operable NANs on top of Linux. The NAN tools have been
successfully ported on embedded systems based on OpenWrt
and tested on low-cost MikroTik RouterBOARD.

Keywords-Neutral access network; Tunneling; Policy routing;
Scalability; Interoperability

I. INTRODUCTION

It is a fact that the vertically integrated business models
adopted by network operators, combined with flat-fee access
rates, have become inadequate to sustain the development of
network infrastructures. Although such a model has played
a fundamental role in the diffusion of the Internet, it has
created a short-circuit between end-users and over-the-top
(OTT) service providers which has determined an exponen-
tial growth of IP traffic with limited benefits for network
operators [1]. The misalignment between costs and revenues,
together with the imbalance of capitalization in the Internet
market [2], is bringing access networks to congestion, in-
ducing operators to adopt counter-measures which threaten
neutrality either by applying traffic management policies, or
by signing discriminatory agreements with OTT operators.
The public consultations on network neutrality launched
worldwide by the regulation authorities provide evidence of
the awareness of the urgency of a transformation [3]. It has

been recently shown that a service-oriented network model,
as opposed to an access-based model, could help overcome
the stagnation without threatening network neutrality [4].
Neutral access networks (NANs), originally proposed as a
mean for bridging digital divide in market-failure regions
[5], provide a viable support to the implementation of the
changes required to sustain the development of the Internet.

This paper presents the NAN tools, an open-source tool
suite which enables the implementation of a NAN on top
of a Linux-based OS, according to the model described
by Seraghiti et al. in 2009 [6]. In particular, the paper
is focused on scalability and interoperability issues and
solutions. Section II provides an overview of the NAN model
and architecture, pointing out scalability and interoperability
issues, Section III outlines the solutions provided by the
1.1 release of the NAN tools, Section IV describes the
embedded version of the NAN tools and reports the results of
preliminary experiments conducted on a low-cost MikroTik
RB133 running OpenWrt, Section V concludes the work.

II. NAN MODEL AND ARCHITECTURE

A NAN is an open access network which provides a
shared access infrastructure with three main features: i) it
allows end-users to associate with the network even if they
are not registered with an operator; ii) it allows service
providers to expose their service to unauthenticated users
directly within the access infrastructure; iii) it allows end-
users to dynamically select the gateway (i.e., the Internet
service provider) to be used to connect to the Internet.
Although the NAN model is access-technology agnostic,
its most natural embodiment is provided by open Wi-Fi
networks exposing a common SSID, because of the ease
of association of any kind of mobile and portable devices.

Figure 1 shows the reference architecture of a NAN, as
proposed by Seraghiti et al. [6]. The network is open to
any unauthenticated user, who associates with an it access
island and is assigned (either statically or dynamically) with
a unique IP address. In general, IP addresses can be taken
either from public or from private pools. For the sake of
explanation, private IPs are used in Figure 1 to annotate
network nodes.

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

Services

ON backbone

Users

Access routers
Access islands

Edge routers

Policy router

172.16.1.0/24

Portal
172.20.2.2

172.20.2.10 172.20.2.11

172.20.1.1

172.16.2.134172.16.1.23

172.20.2.1

172.16.2.0/24

172.20.1.0/24

172.20.2.0/24

Internet

A B

Figure 1. Reference architecture of a NAN.

Technological diversity and evolution are guaranteed by
the coexistence of multiple access islands possibly managed
by different operators. All of them are connected to the
operator-neutral (ON) backbone by means of access routers.
In the simplest scenario, access routers are network termina-
tion points, which can be Wi-Fi hot spots, Hiperlan/WiMax
base stations, or digital subscriber line access multiplexers
(DSLAMs). The ON backbone is the networked infrastruc-
ture which provides connectivity between access routers and
services.

The main architectural element is the router placed be-
tween the backbone and the service network, called policy
router. The name denotes its ability to implement advanced
routing policies possibly based not only on destination IP
addresses, but also on other parameters, such as the source IP
address used for the so-called source-based policy routing.
For the sake of simplicity here we assume that the ON
backbone is organized as a unique sub network and that
there is only one policy router, which is the default gateway
of the ON backbone. Generalization and scalability will be
discussed in Section II-A.

Online services available within the access network are
published in a service subnet, which includes a captive portal
(denoted by Portal in Figure 1) used to redirect end-users
to a predefined landing page as they attempt to access an
external URL which is not included in any white-list. The
landing page belongs to the internal web portal which grants
direct access to all internal services and allows end-users to
make a choice among many different edge routers (managed
by different SPs/ISPs) to gain access to the external services
and to the Internet.

As the user makes his/her choice, a source-based policy
rule is dynamically created on the policy router in order
to forward across the selected edge router all the external
packets originated from the IP address of the user.

A. Scalability and interoperability

There are three main issues which limit the scalability
of the NAN architecture depicted in Figure 1: i) the ON
backbone is implemented as a single broadcast domain, ii)
all the services are published within the same subnetwork,
and iii) the policy router is a bottleneck for the traffic
generated by the end users. Figure 2 shows a generalized
architecture which has been proposed to address such issues
by allowing network segmentation, load balancing, and inter-
operation [6].

Network segmentation can be used both to split the
backbone into several broadcasting domains and to organize
services and edge routers in several subnetworks. Subnet-
works containing edge routers need to be connected to the
backbone by means of policy routers, while standard routers
can be used to grant access to those subnetworks which
publish only internal services (this is the case of service Sy
in Figure 2).

Load balancing and path optimization strategies can be
implemented in the ON backbone by using more than one
policy router. Each policy router can be either statically
defined as default gateway for specific access islands, or
dynamically chosen by the routing protocol, such as boarder
gateway protocol (BGP) and open shortest path first (OSPF).
In Figure 2, two policy routers (namely, 1 and 2) can be used
to gain access to service Sx and to edge routers

�
and ���

in the left-hand side NAN.
Interoperability among different NANs can be achieved by

creating a tunnel between their backbones and by allowing
end-users to traverse the tunnel as any other edge router.
Figure 2 shows two inter-operating NANs, denoted by L
(i.e., left) and R (i.e., right), the ON backbones of which
are connected by means of a tunnel.

III. NAN TOOLS

The NAN tools exploit the support for advanced routing
provided by the Linux kernel [7] in order to implement the
key elements of the NAN architecture of Figure 2, namely,
the policy router and the portal.

In the simple example of Figure 2 we have two NANs
(L and R), three policy routers (1, 2, and 3), two portals
(Portal � and Portal �), 4 edge routers (A, B � , B � , and C),
and a tunnel. Each policy router contains specific routing
tables for all the edge routers which can be selected by
the end-users. All the tables are statically created and listed
in the rt_tables file with the corresponding priorities.
Whenever an end-user makes his/her choice, his/her source
IP is dynamically added to the corresponding table in the
policy router in order to set the preferred edge router as
default gateway for that user by means of source-based
policy routing [7]. It is worth noticing that tunnels leading
to other NANs are treated as edge routers at this level. For
instance, policy routers 1 and 2 in NAN L contain three

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

Services

Users

Policy routers

Access islands
Access routers

ON backbone

Edge routers

Portal Sx Sy SzPortalDNS DNS

Internet

A B CB

3

L R

L

L

21

RL

R

c dba

R

Figure 2. Generalized architecture of two inter-operating NANs.

routing tables for A, for B � , and for the tunnel leading to
NAN R.

The NAN tools prevent the IP address of a given user
to appear in two or more tables simultaneously. Synchro-
nization between the web-based front-end, which allows the
end-user to make his/her choice, and the back-end, which
implements the corresponding rule, is based on a data base:
the front-end adds a pending rule in the DB upon user’s
request, while the back-end periodically checks the DB,
applies all pending rules, and changes their status to active.

When the edge router of choice is a tunnel towards a
different NAN (say, NAN R in our example), the end-user
is redirected to the captive portal of the target NAN (i.e.,
Portal �) where he/she can eventually make a further choice
among the edge routers available in that network (i.e., B �
and C).

This simple mechanism, which has been implemented in
the release 1.0 of the NAN tools and applied on the Urbino
Wireless Campus test-bed since 2009 [8], [6], assumes that
each policy router has its own DB and works independently
of all other policy routers. These assumptions, however, limit
the flexibility of the architecture depicted in Figure 2 and
make it difficult to maintain consistency in case of multiple
inter-operating NANs. The solutions adopted in release 1.1
of the NAN tools are outlined in the rest of this section.

A. Dynamic load balancing and redundancy

If more than one policy router is made available on a
NAN, the trivial solution for load balancing consists on
statically assigning different access islands to each of them.
In this case, each access island has one of the policy routers
specified as default gateway and it works exactly as if it was
the only policy router in the NAN. In particular, each policy
router contains only the rules of the end-users assigned with
it. For instance, in our example routers 1 and 2 could be
used by access islands a and b, respectively.

This situation, however, is incompatible with the op-
timizations possibly performed at run time by dynamic
routing protocols which route packets towards the least
loaded nodes. In fact, the traffic generated from access island

b cannot be routed across policy router 1 if this latter doesn’t
contain the rules set by end-users originally assigned to
policy router 2.

To provide support to dynamic load balancing, policy
routers 1 and 2 should be allowed to share the same DB
of policy routes. This can be done by connecting the back-
end of both policy routers to the same DB, and by replacing
the status flag associated with each rule with a status table
which specifies the status associated with each (rule,
router) pair. In this way, the back-end daemons of the
policy routers are allowed to independently access the DB
and change the status flags of their rules without interfering
with each other.

The same mechanisms can be exploited to enhance reli-
ability by allowing each user to specify a secondary router
to be used in case of failure of the default gateway without
losing the settings.

B. Loop avoidance

According to the basic inter-operation mechanism de-
scribed so far, any user of a NAN can reach one of the edge
routers available on another NAN provided that a path exists
between his/her own default gateway and the policy router
leading to the target edge router. Consider, for instance, a
user associated with access island a who wants to reach edge
router C. First, he/she has to set a rule on policy routers 1
and 2 in order to forward his/her traffic towards the tunnel
leading to router 3. Then he/she has to set a new rule on
3 in order to be forwarded to edge router C. The captive
portal of NAN R, however, allows end-users not only to
choose between edge routers B � and C, but also to be
forwarded to NAN L across the tunnel (which is always
treated as an additional edge router). If, by any chance, the
end-user coming from L decides to make this last choice,
a loop occurs which causes the packets originated by that
end-user to keep bouncing between the policy routers of the
two NANs until the time to live expires and the packets are
dropped.

In order to avoid this situation, each policy router should
prevent end-users from choosing the network they come

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

from. This can be done by making policy routers aware of
the pools of source IP addresses belonging to each NAN.
In the NAN tools, this mapping is stored in a specific table
of the DB the records of which associate the identifier of
each NAN with one or more IP ranges. It is worth noticing
that network address translation (NAT) can be performed
at the termination points of the tunnel established between
two NANs, by changing the addresses of the IP packets
traveling across the tunnel, in order to relax the constraints
on the address ranges used in each NAN.

C. Go back mechanism

The loop avoidance solution described in the previous
subsection has an annoying side effect: it doesn’t provide
to end-users any intuitive mechanism to go back to their
original networks. To this purpose, in fact, they should
explicitly go to the landing page of their original captive
portal (the reachability of which could be guaranteed by top-
priority routing tables local to the original policy routers)
and select a different edge router to avoid their traffic to be
redirected towards the tunnel.

Instead of pretending end-users to remind the addresses of
the captive portals of their own networks, the landing page
of the captive portal of the host NAN (R in our example)
should contain a GO BACK button directly linking to their
original NAN (L). Since the actual link associated with the
GO BACK button depends on the NAN from which the user
comes, such a link is stored in the same table introduced
in previous subsection for loop avoidance reasons, which
contains the IP ranges associated with each neighboring
NAN.

When the user presses the GO BACK button, he/she is
redirected to the landing page of the captive portal of his/her
NAN, the rule is removed from the DB, and a new edge
router can be chosen.

It is worth mentioning that multiple hops can be made by
the same user across inter-operating NANs before reaching
the target edge router leading to a specific service or to the
Internet. In case of multiple source-based policy rules, the
GO BACK mechanism allows the end-user to backtrack step
by step.

D. Persistence

As explained so far, source-based policy rules are dynam-
ically applied upon user’s request. Each rule, however, can
be specified either as volatile or as persistent by setting a flag
in the DB. Persistent rules are restored upon reboot of the
policy router, while volatile rules are reset. In the NAN tools
this choice is made by the network administrator, since it has
to be consistent with network configurations. In particular,
since policy rules are based on source IP addresses, it would
be inconvenient to have persistent rules in a network which
dynamically assigns IP addresses to users’ terminals. For the

same reason, a maximum idle time can be specified which
allows the policy router to remove the rules of idle users.

IV. EMBEDDED VERSION

The tool suite described so far makes use of three main
components: the support for advanced networking provided
by Linux, a data base management system (dbms), and
a http server with PHP support. In general, the policy
router provides only networking functionalities, while it
relies on external servers for dbms and httpd functionalities.
Nevertheless, in a simple scenario of a NAN with a few
access islands serving a limited number of users (say, less
than 100 simultaneous users) it would be more practical and
less expensive (both in terms of investments and in terms of
operating costs) to have the entire tool suite running on an
all-in-one appliance. Examples of such a scenario include
common situations like small companies, hotels, and coffee
shops.

The embedded version of the NAN tools has been de-
veloped to provide a low-cost all-in-one solution to these
needs, targeting MIPS architectures running OpenWrt (a
Linux distribution for embedded systems providing packet
management and a writable file system [9]).

OpenWrt provides all the packets required to solve the
dependences of NAN tools 1.1 without any porting effort:
namely, Apache web server, MySQL dbms, PHP, openvpn,
and the advanced networking functionalities of the Linux
kernel (i.e., iptables and iproute2). In order to minimize
hardware requirements, however, the embedded distribution
of the NAN tools makes use of SQLite [10] in place of
MySQL and uHTTPd [11] in place of Apache.

While the PHP code written for Apache is fully com-
patible with uHTTPd, switching from MySQL to SQLite
required a partial redesign of some of the classes due both
to the serverless nature of SQLite and to the different syntax
it understands. The object-oriented paradigm adopted in the
development of the NAN tools enabled a suitable encapsula-
tion of the changes required. As for the firmware, an image
of OpenWrt was created containing all the packages required
to run the NAN tools. Once the image file is installed on the
target device, the unified configuration interface (UCI) can
be used for configuring the policy router before installing the
NAN tools. An example of system configuration is provided
in Figure 3.

A. Performance

Conservative performance tests of the embedded version
of the NAN tools were run on a MikroTik RouterBoard
RB133, featuring a 175MHz MIPS CPU with 32MB of
DRAM, 3 ethernet interfaces, 3 MiniPCI slots, 2 802.11g
wireless interfaces, and 128MB of NAND flash. The com-
putational power of the RB133 is lower than that of all state-
of-the-art low-cost RouterBoards featuring at least 3 network
interfaces [12].

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

uci set system.@system[0].hostname=NANTools
uci set system.@system[0].zonename=Europe/Rome
uci set system.@system[0].timezone=CET-1CEST,M3.5.0,M10.5.0/3
uci commit system
echo "$(uci get system.@system[0].hostname)" > /proc/sys/kernel/hostname
uci set network.lan.ipaddr=192.168.1.222
uci set network.lan.netmask=255.255.255.0
uci set network.lan.gateway=192.168.1.1
uci set network.lan.dns=8.8.8.8
uci commit network

Figure 3. Example of configuration of a policy router based on OpenWrt.

Tests where performed using ab, the Apache http server
benchmarking tool, and curl-loader, an open-source tool
simulating application load coming from multiple clients
with their own IP addresses.

Since the typical usage pattern of a NAN entails a set-up
phase, in which a new client choses its preferred edge router
and the corresponding rules are set in the policy router, and
a navigation phase, in which the rules are used to forward
client’s packets to the edge router of choice, two sets of
experiments were needed to test the performance. The first
set was aimed at measuring the time taken by the policy
router to serve incoming requests, while the second set was
aimed at measuring the overhead introduced by source-based
routing during normal transactions.

The average time per request was of: 16.23ms to provide
a static html page containing a single line of text, 518.35ms
to provide a dynamic PHP page with the same content,
615.48ms to access a PHP page reading a record in the DB,
922.05ms to access a PHP page inserting a record in the DB,
666.75ms to insert a rule in iptables, and 761.00ms to insert
a rule in iproute2. The most time consuming tasks were
PHP executions (around 500ms) and DB insert operations
(about 400ms). All the tests were iteratively performed
for increasing levels of concurrency (up to 250) to test
both robustness and performance scalability. All incoming
requests were properly served, while, as expected, the delay
scaled linearly with the number of concurrent requests. No
significant overhead was introduced by source-based policy
routing in terms of round-trip time and throughput.

To summarize the performance of the low-cost embedded
platform used as policy router, we can say that it can take up
to 1 second to set up a rule, while it introduces a negligible
overhead on any other network operation.

V. CONCLUSIONS

The NAN tools are an open-source tool suite for imple-
menting neutral access networks (NANs) [5]. This paper
has presented the solutions provided by the NAN tools to
the main scalability and interoperability issues which have
to be faced in order to enable the actual applicability of the
NAN model. The proposed solutions rely on source-based

policy routing, as made available by the Linux support for
advanced networking.

All the solutions outlined in this paper have been imple-
mented in release 1.1 of the NAN tools, which is now under
test within the Urbino wireless campus testbed [8], which
counts more than 20,000 registered users and serves up to
500 simultaneous users.

An all-in-one embedded version of the NAN tools has
been also implemented and tested on a MikroTik Router-
Board RB133 running OpenWrt, the performance of which
can be regarded as a lower bound of state-of-the-art low-
cost network processors. Experimental results demonstrate
the practical applicability of the proposed solution.

The source code of the NAN tools is available online at
http://www.wireless-campus.it:8000/nan-tools/.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the EU IST Seventh Framework Programme
([FP7/2007-2013]) under grant agreement n 25741, project
ULOOP (User-centric Wireless Local Loop), and from the
Italian ICT4University Programme, project U4U (University
for University).

The authors would like to thank Andrea Mazza and
Tommaso Battazzi for their valuable contribution to the
implementation of the NAN tools.

REFERENCES

[1] A. T. Kearney, “A Viable Future Model for the Internet,” A.T.
Kearney report, 2010.

[2] ——, “Internet Value Chain Economics,” The Economics of
the Internet, Vodafone Policy Paper Series, 2010.

[3] European Commission, “Report on the public consultation on
The open internet and net neutrality in Europe,” Electronic
Communications Policy, 2010.

[4] E. Pigliapoco and A. Bogliolo, “A Service-Based Model for
the Internet Value Chain,” in Proceedings of Int. Conf. on
Access Networks, 2011.

[5] A. Bogliolo, “Introducing neutral access networks,” in Pro-
ceedings of Int.l Conference on Next Generation Internet
Networks (NGI 2009), 2009.

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

[6] A. Seraghiti and A. Bogliolo, “Neutral access network imple-
mentation based on linux policy routing,” in Proceedings of
the 2009 First International Conference on Evolving Internet.
IEEE Computer Society, 2009, pp. 158–162.

[7] M. Marsh, Policy Routing Using Linux. SAMS, 2006.

[8] A. Bogliolo, “Urbino wireless campus: A wide-area university
wireless network to bridge digital divide,” in Proceedings of
AccessNets-07, 2007, pp. 1–6.

[9] F. Fainelli, “The OpenWrt embedded development frame-
work,” in Free and Open Source Software Developers’ Eu-
ropean Meeting, 2008.

[10] C. Newman, SQLite (Developer’s Library). Sams, 2004.

[11] OpenWrt Wiki, Web Server Configuration (uHTTPd), 2012.
[Online]. Available: http://wiki.openwrt.org/doc/uci/uhttpd

[12] MikroTik, RouterBoard Products, 2012. [Online]. Available:
http://routerboard.com/

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

