
Workload Adaptive I/O Fairness Scheme for Modern Cloud Storage

KiSung Jin, SangMin Lee, HongYeon Kim, YoungKyun Kim
Department of High Performance Computing Research, SW contents Laboratory

Electronics and Telecommunications Research Institute
Daejeon, Korea

e-mail: {ksjin, sanglee, kimhy, kimyoung}@etri.re.kr

Abstract—Although many cloud services have introduced
several algorithms for providing Quality of Service (QoS)
satisfaction to users, the performance interference problem
among services has not yet been solved. Because multiple
heterogeneous services produce non-deterministic workloads
in the real world, service providers often experience
contradictory results in their quality prediction. To solve this
phenomenon, we specifically focus on the storage layer among
the entire cloud stack. In this paper, we propose a workload
adaptive Input/Output (I/O) fairness scheme to guarantee
balanced data access regardless of various service workloads.
Furthermore, we validate our idea through performance
evaluations and show that our algorithm can satisfy QoS
requirements in the cloud service.

Keywords-Cloud; Cloud Storage; I/O Fairness; QoS

I. INTRODUCTION

The cloud platform provides large pools of computations
and storage resources to heterogeneous services on demand.
An increasing number of services are already moving their
workloads to cloud platforms. Many of commercial or open
platforms, such as Azure [1], Amazon [2], Hadoop [3],
Openstack [4] and Cloudstack [5] represent the beginning of
a much larger trend. For example, Amazon's Elastic
Compute Cloud (EC2) provides practically infinite resources
to anyone willing to pay. Following this trend, Gartner
estimated that the annual growth rate of cloud services will
reach about 16% by 2018 [6].

However, most existing systems still provide weak
performance isolation or simple fairness control techniques
among multiple services. High-demand or misbehaving
services can overload shared resources as well as can disrupt
other well planned services. In particular, if one of services
gives rise to massive I/O workloads unexpectedly, the
remaining services will suffer from poor service quality due
to bottlenecks. Such a performance violation implies that
paying for quantity of resources does not necessarily mean
the user will receive the desired QoS level. This is a key
problem, which prevents more services to move to the cloud
platform.

By carefully observing this performance violation
problem in the cloud platform, we find that the key reason
for the poor service quality is mainly due to the I/O
interference on the shared storage. Many researches have
been still trying to find their solutions in upper layers, such
as the application, the server, and the network. However, this

approach is regarded as an easy and simple way, but other
serious problems still remain. For example, lots of
developers can easily add some QoS optimizations to the
application layer. In the start-up phase, these approaches may
give service providers an illusion that they can control.
However, as an increasing number of services are gradually
producing data explosions and storage bottlenecks, they
would realize that the cloud platform finally reaches a limit
that they cannot control. Even if the server and the network
layer provide us resource isolation methods with
virtualization, they cannot avoid I/O interference problems
on the storage.

In this paper, we propose a workload adaptive I/O
fairness scheme that controls access fairness among all
heterogeneous services sharing the cloud storage. Our
algorithm continuously collects workload status from all
services, and automatically controls each access ratio to
guarantee the I/O fairness. It always guarantees balanced I/O
performance regardless of various service workloads. Our
model is meaningful in that the quality of service is
guaranteed on storage level rather than upper layers, such as
the application, the server, and the network. While traditional
approaches on upper layers continuously require resource
reconfiguration or service optimizations, our model can
always assure the QoS among all services based on real I/O
workloads.

This paper starts with an overview of QoS problems on
the traditional cloud platform in Section 2. Then, we present
our proposed model and algorithms to guarantee the quality
of service for multiple heterogeneous services in Section 3.
In Section 4, we show the superiority of our algorithms
through performance evaluation and continue with
conclusions in Section 5.

II. RELATED WORKS

Recently, there are lots of heterogeneous applications
simultaneously working in the cloud platform. Under this
environment, because all services try to use the system
resources in the best-effort manner, inevitable performance
violations can severely degrade the service quality. If one of
services overuses the system resources, the remaining
services may suffer from the relatively poor performance.
Although many researches try to solve this problem, it is
very hard to find complete solutions yet. To find the
fundamental reason of this problem, we review current
activities followed by commonly used cloud architecture.

26Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

TABLE I. COMPARISONS OF CURRENT QOS APPROACHES IN CLOUD LAYERS

Application Server Network Storage
Isolation Object Service level Bandwidth Computing Resource Communication Resource Physical Storage Device
Isolation Method Service Optimization Server Virtualization Network Virtualization Partitioning Storage Device

Avoiding I/O Interference Difficult Difficult Difficult Easy
Continuous Optimization High High Middle Middle

Technical Maturity High High High Low

In the SNIA [7], the cloud environment consists of 4
layers: the application, the server, the network, and the
storage. We analyzed the role of each layer, as well as the
techniques for ensuring QoS at each layer.

Application Layer provides a service logic to end users.
Under the scalability feature of the cloud platform, a service
provider can add a new service to the application layer at any
time. Traditionally, many major cloud computing vendors,
such as Amazon [2], Windows Azure [1], Google App
Engine [8] provide "pay-per-use fixed pricing" or "pay for
resources" model. While they guarantee the minimum rates
of the user contract, they do not provide system wide fairness
because they assume uniform load distributions across tenant
partitions. Hadoop [3] supports resource management
scheme for MapReduce framework running on Hadoop
Distributed File System (HDFS). It is designed to run
Hadoop applications as a shared, multi-tenant cluster in an
operator-friendly manner while maximizing the throughput
and the utilization of the cluster. Choosy [9] provides
Constraint Max-Min Fairness (CMMF) by generalizing
previous max-min fairness scheme to handle hard task
placement constraints. However, an unpredicted workload
pattern caused by multiple heterogeneous applications often
confuses the service provider. Even if the service provider
can estimate the individual service workload, the interference
among multiple services can degrade the overall service
qualities.

Server Layer provides computing platforms to
applications. In this layer, a recent trend is to use a server
virtualization technique, which encapsulates workloads in
virtual machines (VMs) and consolidates them on multicore
servers. In order to maximize the resource utilization of
shared resources, hardware extensions such as caches have
been considered extensively in previous work. For example,
hardware based control schemes have been proposed
dynamically partition cache resources based upon utility
metrics [10] or integrate novel data control policies to
pseudo-partition caches [11]. Even though resources are
sliced and allocated to different VMs, they are still shared
and interfere with each other without constraints. The
isolation across VMs provided by hypervisors rather
amplifies the performance issues demonstrated by several
works [12] [13] [14].

Network Layer provides communications between each
layer. Recently, as the cloud service is emerging, the virtual
private network (VPN) is becoming an important factor for
service providers. VPN provides customers with predictable
and secure network connections over a shared network.
Because the network is essential to organize distributed

computing, many optimization techniques have been
introduced for a long time. Hose model [15] allows for
greater flexibility since it permits traffic to and from an
endpoint to be arbitrarily distributed to other endpoints.
VMware provides the vNetwork Distributed Switch that
combines all virtual switches into one logical centrally
managed unit. As an open software cloud platform,
OpenStack [4] and CloudStack [5] add the virtual network
functionality into their software stack. However, the network
virtualization still cannot solve the storage interference
problem caused by multiple applications. Even if we
configure the well planned network topology, it cannot avoid
the storage bottleneck.

Storage Layer manages storing data produced by
applications. The storage layer faces different challenges
than sharing resources at upper layers. Rather than managing
individual storage partitions, the storage layer wants to treat
the entire storage system as a single black box. All of the
applications share their data on the virtualized storage. While
many studies provide differentiated service to workloads
accessing a single storage array, their techniques are not
suitable for cloud storage but rather a centralized one [16].
Pisces [17] provides per-tenant performance isolation and
fairness in shared key-value storage. A server-side I/O
coordination scheme is introduced in [18]. However,
although some algorithms and models are trying to satisfy
storage level QoS for a quite long time, it is relatively hard to
find practical solutions comparing to other layer in the cloud.

In Table 1, we summarize the status of current
approaches from the perspective of the global QoS control in
the cloud service. According to our observations, even if
most of cloud layers do their best to control the QoS in their
own way, they still cannot avoid I/O interferences caused by
multiple simultaneous workloads. Furthermore, they still
have an unavoidable side effect, which requires continuous
optimizations whenever the service scale or the I/O workload
is changed.

III. WORKLOAD ADAPTIVE I/O FAIRNESS SCHEME

To overcome the problems described in Section 1 and
Section 2, we propose a purely storage oriented QoS model
called the Global QoS algorithm. It always guarantees
balanced I/O performance regardless of service workloads.
For example, let us suppose there are different types of
services running on the storage. If one of the services
instantaneously produces unpredicted bursty workloads, it
will require to consume more storage bandwidth. Because
resources are limited on given hardware configuration, the
rest of the services will suffer from the lack of resources.
This can degrade overall service qualities and can lead to the

27Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

unfairness problem among services. Our scheme
automatically controls each access ratio to guarantee the I/O
fairness.

A. System Architecture

In this section, we suppose a cloud storage architecture
composed of three types of nodes; a storage node, a
controller node, and a client node, as shown in Figure 1. The
storage node is responsible for storing and retrieving the data
produced by all applications. In the cloud storage, lots of
storage nodes are connected by a network and provide a
single virtualized space to applications. The controller node
manages all of nodes participating in the cloud storage as
well as monitors overall resource status, such as the storage
usage, the network bandwidth, and the resource health. The
client node helps applications to access their data over the
cloud storage communicating with the controller node and
storage nodes. Based on this traditional storage architecture,
we add new modules to it to guarantee a balanced QoS level
to all heterogeneous services.

Figure 1. System Architecture

Local QoS Collector collects the local I/O history of all
services in each node and forwards them to the controller
node. The local I/O history can be collected by the I/O
handler, which has a role of storing and retrieving an
application data in the local storage media. Whenever the
client node requests the data, the I/O handler notifies an
access to information to the Local QoS Collector. There are
two types of information in the local I/O history. One is the
amount of access usage identified by each service and the
other is each usage ratio of reading and writing within a
service. All collected local I/O history is refreshed after
notifying to the controller node in a specific period. One
consideration point in notifying phase is how to decide the
time interval to notify the local I/O history to the controller
node. If the time interval is too short, it can give a burden to
the system. On the contrary, if the time interval is too long, it
becomes insensitive to workload changes so that a delayed
QoS control is inevitable. However, because the time period
does not undermine the basic functionality of our algorithm,
we leave it to the tunable parameter.

Global QoS Collector manages a global I/O history
collected from all storage nodes. That is, the global I/O

history is the systemwide workload information which is
merged with local I/O histories collected from storage nodes.
After receiving the local I/O history from the local QoS
collector, the global QoS collector classifies it by each
service.

Global QoS Controller plays an important role to decide
a policy for QoS control by using our algorithm. The global
QoS controller analyzes system-wide workload information
based on the global I/O history and decides a proper policy
by using our Global QoS algorithm. For this, the Global QoS
algorithm compares I/O workloads of each service to
estimate the current I/O fairness level, such as the I/O
skewness or the I/O starvation. After that, the Global QoS
algorithm decides a policy for all services. If one of services
is producing relatively bursty workload, a negative QoS
policy is applied to that service. The negative QoS policy
means that it tries to throttle overloaded workloads to an
average access rate. Finally, determined policies are
delivered to the client node to control the access behavior of
the application.

QoS Filter is running on the client node and manages
application access pattern based on policies decided by the
global QoS controller. If one of the applications gets the
negative policy, the QoS filter throttles the access speed of
that application so as to keep all services to experience fair
access quality.

B. Global QoS Algorithm

In this section, we explain the Global QoS algorithm to
solve the I/O interference problem among multiple
heterogeneous services in the cloud storage. The main
principle of our algorithm is to control applications to use
resources evenly within the uppermost system performance,
which is dynamically renewed over time. We describe the
algorithm in detail, as follows:

����� = ���������(�������), ��������(�)

���

���

� (1)

We define the ����� as the uppermost system
performance in current hardware configuration. The service
provider does not need to calculate the allowable
performance value in their system, because our algorithm
automatically updates the up-to-date ����� by using real
application workloads in (1). Under this equation, even if a
new node is added to the cloud storage, our algorithm can
update the ����� for a new system configuration. For this,
we use the ������� , which is the average access workload of
each service for a period of T. The sum of all service's
������� implies the total average usage of the cloud storage.
Then, we compare the �������(�) with the current �����. If
the current ����� is less than the �������(�), we change the
new ����� with the calculated �������(�).

�� = �
�����

������ �� ��������
� (2)

The ��(Allocation for a Service) means an allocated I/O
quota for each service. The �� can be calculated by dividing

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

the ����� to the number of services, as in (2). In our
algorithm, every QoS policy is affected by the �� value.

�� = � �
�� − ��
��

� × � � × ℳ (3)

In (3), the ��(Used value of a Service) means the amount
used by the service in time T. The ��(Control value for a
Service) is used for controlling the service, which uses the
storage resource excessively. Comparing the �� with ��, we
decide a policy to perform the QoS control. If the �� is less
than the ��, we provide a best-effort policy to allow full data
access to that service. On the other hand, if the service usage
exceeds the ��, we consider that the QoS control is required
to that service. In that case, we provide a negative policy to
that service so that the global service fairness is guaranteed.
For example, let us suppose that our algorithm allows
services to use the cloud storage at a speed of 100MBps. If a
service uses storage resources at a speed of 120MBps, we
control the service to access data 20MBps slower. In
addition, the ℳ is used as a moderator to avoid fluctuation of
the I/O performance caused by too sensitive access control.
Using the ℳ, a smoother quality control is possible.

Procedure I : Calculating QoS Parameters from Real Workloads

1: Variables: current �����, �������(�) for each service

2: Location: the Controller Node

3:

4: Procedure WORKLOAD_CALCULATOR

5: /* get sum of each service workloads */

6: for each service 1 ~ N

7: add �������(�) ← "average I/O usage for each service"

8: end loop

9:

10: /* get average workload value for all services */

11: �������(�) ← (�������(�) / N)

12:

13: /* get ����� from real workloads */

14: ����� ←���(�����(�������), �������(�))

15:

16: /* get �� which is an allocated quota for a service */

17: �� ← ����� / N

18: End Procedure

Figure 2. Caculate QoS Prameters

Procedure II : Determine QoS Policy

1: Variables: ��, ��, T

2: Location: the Controller Node

3:

4: Procedure POLICY_GENERATOR

5: /* get �� to determine the policy for this service */

6: �� ← ((�� - ��) / ��) x T

7:

8: /* adjust �� by using Moderator Constant */

9: �� ← �� x M

10:

11: /* get I/O Policy for this service */

12: if �� < �� then

13: SET "best-effort" policy

14: else if �� < �� then

15: SET "negative" policy

16: end if

17: End Procedure

Figure 3. Determine the QoS Policy

Procedure III : Throttling Each Service's I/O Activities

1: Variables: I/O Policy, ��
2: Location: the Client Node

3:

4: Procedure WORKLOAD_CONTROLLER

5: /* throttle each I/O by using the determined policy */

6: if Policy = "best-effort" then

7: return

8: else if Policy = "negative" then

9: delay I/O request by using �� value

10: end if

11: End Procedure

12:

13: Procedure every read() and write()

14: /* control I/O action for this service */

15: call WORKLOAD_CONTROLLER

16:

17: /* do actual I/O process */

18: call 'read()' or 'write()' to access the data

19: End Procedure

Figure 4. Control the Each Service's QoS

Because our algorithm is designed to be suitable to a
general cloud storage architecture, it can be easily adapted to
most current storage platforms without disturbing their own
functionality. For this, we represent our algorithms by using
pseudo codes in Figures 2 to 4.

C. Global Weighted-QoS Algorithm

The Global QoS algorithm considers that all services
have equal right to access the storage resource. It can
successfully distribute the overall storage bandwidth to all
services evenly. However, in the real cloud world, there are
various service requirements depending on different
conditions, such as the service scale, the number of users or
the data access pattern. While one may require a small
amount of storage bandwidth, the other may want unlimited
data access. To reflect this factor to the cloud storage, we
provide another scheme called the Global Weighted-QoS
algorithm.

��� = (����� × �) (4)

We define ���(Weighted Allocation for a Service) as an
allocated I/O quota derived from applying the weight
parameter to the �����. Although the weight parameter can
be the storage usage ratio, the hard limited value of the I/O
usage or any values influencing the storage performance, we
regard the weight parameter as a storage usage ratio(%) to
simplify the description. Under the weight parameter
concept, each service can use the storage resource within the
���. The ��� for a service can be calculated by (4).

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

��� = � �
�� − ���

���

� × � � × ℳ (5)

In (5), the ��� is used for controlling the service, which
excessively uses the storage resource compared to ���. The
algorithm flow is very similar to the global QoS algorithm. If
the ��� is greater than the ��� in time T, we control the
access speed of that service.

IV. PERFORMANCE EVALUATIONS

In this section, we discuss the result of performance
evaluations to verify our algorithms. Our simulation codes
are added to the MAHA-FS [19], which was developed by
ETRI in Korea. The MAHA-FS is a large scale distributed
cloud storage for supporting high scalability, high reliability
and a scaled up performance. MAHA-FS isolates each
service by allocating independent volumes to store user data.
Each volume provides the replication scheme to guarantee an
available service. Currently, the MAHA-FS has been used in
lots of real services, such as internet portals, content delivery
network (CDN) services, and broadcasting companies. As a
representative reference, we have UPlusBox [20], which is
the biggest cloud service in Korea. UplusBox have been
using 10PB of storage in single silo constructed by the
MAHA-FS. As the accumulated storage capacity for all silos
reaches about 60PB, MAHA-FS has been recognized as a
reliable as well as a practical system.

A. Experimental Setup

Our evaluation environment is shown in Figure 5. This
testbed is used for developing and testing of the MAHA-FS.
There are 7 racks, each of which has 36-38 nodes
respectively and a total of 256 nodes are connected within
the cluster. Each node consists of the same hardware
specifications: 2.5GHz X3320 CPU, 2GB of memory and
512GB hard disk. All machines run on Linux kernel 2.6.32
and are connected through a gigabit ethernet network. For a
network configuration, the Extreme X650-24T runs as a core
switch, and it is connected with 7 Extreme X350-24T edge
switches.

Figure 5. Evaluation Environment

B. Global QoS Control

To verify the Global QoS algorithm to guarantee the
fairness for multiple heterogeneous services, we simulate our

algorithm by using general Web service workloads. There
are 4 services running simultaneously, and all services
upload or download random files in the same manner. The
size of each file is determined randomly in the range from
600MB to 1.4GB. To generate an imbalance of storage
consumptions, we set each service to have different number
of users. While the smallest service A has 100 users, the
biggest service D has 400 users. Next, we observe before and
after the performance transition under applying our
algorithm.

Figure 6. Fairness Result of the Global QoS Algorithm

In Figure 6, the X-axis is a time increased by second and
the Y-axis means an occupied bandwidth for each services.
Before T+60 without any control, we can see obviously
unfair access results depending on the service scale. While
service D uses the storage at the speed of 200MB/sec,
service A only shows 30MB/sec. However, after applying
our algorithm in T+60, each service is changed to have equal
resource usage. Our algorithm analyzes a workload status,
and lets all services to use a storage resource in fair way. The
range from T+60 to T+80 is the intermediate period of
adjustment. Our algorithm throttles the bandwidth of
excessive services, such as service C and service D. And
then, we can see that a sustained fair bandwidth is
guaranteed for all services continuously.

Figure 7. Throttling on the Global QoS Algorithm

Figure 7 shows the I/O throttle transition in the same
simulation. Similar to Figure 3, we can see that access to
excessive services is controlled after T+60. Especially, the
I/O throttle value is increasing in proportion to the service
scale. In case of the biggest service D, about 70us of throttle

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

delay is assigned for every access. Another notable point is
the degree of performance fluctuation caused by too sensitive
throttling action. However, as can be seen in Figure 4, our
algorithm guarantees a sustained QoS control over the whole
period.

C. Global Weighted-QoS Control

In this section, we discuss the evaluation result of the
Global Weighed-QoS algorithm. Unlike in Section B, we set
all services to have the same workload. The whole
simulation is performed in three stages; the first is the stage
in which services are working without our algorithm, the
second is the stage in which our algorithm is applied with a
different weight value, and the third stage is the stage in
which our algorithm is applied with the same weight value.
To satisfy different workload demands, we set the weight
value of { 5%, 15%, 30%, 50% } at the second stage and {
25%, 25%, 25%, 25% } at the third stage, respectively.
Figure 8 shows the result of our Global Weighted-QoS
algorithm. In first stage, all of services share the storage
resource in fair way because all services run with the same
workload. However, after applying our global weighted-QoS
algorithm in T+60, we can see that the QoS control is
successfully working.

Figure 8. Throttling on the Global QoS Algorithm

Our algorithm analyzes the workload status of all
services and automatically controls the QoS level of each
service depending on the weight value. Finally, in T+140, all
services share the resources in a fair way after applying the
same weight value. Because the same weight value means
that all services are controlled in a fair way, the result of the
third stage is the same as the result of the first stage.

V. CONCLUSIONS

In this paper, we propose a workload adaptive I/O
fairness scheme, which supports the global fairness among
multiple heterogeneous services. The Global QoS algorithm
guarantees balanced I/O performance regardless of service
workloads. Our model has two contribution factors. The first
is that the quality of service is guaranteed on storage level by
using real workloads rather than higher layers, such as the
application, the server, and the network. While traditional
approaches require continuous optimizations for the cloud
platform, our model controls the QoS in itself. The second
contributing factor is that our idea has been designed to suit a
general cloud storage architecture, and it can be easily

adapted to many current storage platforms without disturbing
their own functionality.

ACKNOWLEDGMENT

This work was supported by the ICT R&D program of
MSIP/IITP, [R7117-16-0232, Development of extreme I/O
storage technology for 32Gbps data services]

REFERENCES

[1] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S.
McKelvie, J. Haridas, "Windows Azure Storage: a highly
available cloud storage service with strong
consistency," Proceedings of the 23th ACM Symposium on
Operating Systems Principles, pp. 143-157, Oct. 2011.

[2] Amazon Elastic Compute. [Online]. Available from:
http://aws.amazon.com, Feb. 2017.

[3] K. Shvachko, H. Kuang, S. Radia, R. Chansler, R, "The
hadoop distributed file system," IEEE 26th symposium on
Mass storage systems and technologies (MSST), pp. 1-10,
May. 2010.

[4] Openstack Networking. [Online]. Available from:
http://wiki.openstack.org/Quantum. Feb. 2017.

[5] Apache Cloudstack. [Online]. Available from:
http://www.cloudstack.org. Feb. 2017.

[6] Gartner 261942, Forecast Analysis: Public Cloud Services,

[7] SNIA, The Storage Networking Industry Association,
[Online]. Available from: http://www.snia.org, Feb. 2017.

[8] Google App Engine, [Online]. Available from:
https://appengine.google.com, Feb. 2017.

[9] A. Ghodsi, M. Zaharia, S. Shenker, I. Stoica, "Choosy: Max-
min fair sharing for datacenter jobs with constraints,"
Proceedings of the 8th ACM European Conference on
Computer Systems, pp. 365-378, April. 2013.

[10] M. Qureshi and Y. Patt, "Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to
partition shared caches," Proceedings of the 39th Annual
IEEE/ACM International Symposium, pp. 423-432, Dec.
2006.

[11] Y. Xie and G. Loh, "PIPP: promotion/insertion pseudo-
partitioning of multi-core shared caches," In ACM SIGARCH
Computer Architecture News, pp. 174-183, June. 2009.

[12] R. Nathuji, A. Kansal, A. Ghaffarkhah, "Q-clouds: managing
performance interference effects for qos-aware clouds,"
In Proceedings of the 5th ACM European conference on
Computer systems, pp. 237-250, April. 2010.

[13] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu,
"Understanding performance interference of i/o workload in
virtualized cloud environments," IEEE 3rd International
Conference on Cloud Computing, pp. 51-58, July. 2010.

[14] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, C. Pu,
C, "An analysis of performance interference effects in virtual
environments,", In Performance Analysis of Systems &
Software. ISPASS 2007. IEEE International Symposium, pp.
200-209, April. 2007.

[15] A. Kumar, R. Rastogi, A. Silberschatz, B. Yener, "Algorithms
for provisioning virtual private networks in the hose model,"
IEEE/ACM Transactions on Networking, pp. 565-578, 2002.

[16] M. Wachs, M. Abd-El-Malek, E. Thereska, G. Ganger,
"Argon: Performance Insulation for Shared Storage Servers,"
in FAST, pp. 5-5, Feb. 2007.

[17] D. Shue, M. Freedman, A. Shaikh, "Performance Isolation
and Fairness for Multi-Tenant Cloud Storage," In OSDI, pp.
349-362, Oct. 2012.

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

[18] H. Song, Y. Yin, X. Sun, R. Thakur, S. Lang, "Server-side I/O
coordination for parallel file systems," In High Performance
Computing, Networking, Storage and Analysis(SC).
International Conference on IEEE, pp. 1-11, Nov. 2011.

[19] Y. Kim, D. Kim, H. Kim, Y. Kim, W. Choi, "MAHA-FS: A
distributed file system for high performance metadata
processing and random IO," KIPS Transactions on Software
and Data Engineering, pp. 91-96, 2013.

[20] UPlusBox: the Biggest Cloud Service in Korea, [Online].
Available from: http://uplusbox.co.kr, Feb. 2017.

32Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

