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Abstract— Noise, deviations, and outliers with varying 
distribution characteristics exist in measured data for outdoor 
location estimation, propagation characteristics that make 
source location estimation difficult. The estimation error of 
conventional methods (typically a least-squares method) is 
increased by such outliers. To solve this problem, this study 
proposes a novel location estimation method, specifically a 
modified trilateration technique based on Apollonian circles 
that does not require knowing the exact transmission power of 
the source or carrying out a calibration procedure. The 
proposed method results in improved location estimates 
compared to existing methods, which is confirmed with robust 
filtering in verification experiments. 

Keywords- Robust location estimation; received signal 
strength indication; random sample consensus; Apollonian circle 

I.  INTRODUCTION  
Wireless geolocation refers to the problem of finding the 

location of mobile subscribers in different radio systems, 
such as cellular networks, wireless local area networks, and 
wireless sensor networks [1]. Researchers have proposed 
several methodologies for estimating the location of 
unknown radio frequency (RF) sources based on different 
physical characteristics, including received signal strength 
indication (RSSI), time-of-arrival (TOA), time-difference-of-
arrival (TDOA), and angle-of-arrival (AOA). Of these, RSSI-
based location estimation methods can be implemented easily 
with no additional hardware; thus, this method is frequently 
used. The main drawback to algorithms that use RSSI as a 
range measurement is that they are highly dependent on the 
propagation conditions that exist between the transmission 
point (TP) and each measurement point (MP).   

The most widely used positioning mechanism is the Global 
Positioning System (GPS). GPS requires four or more 
satellite signals to function properly. These signals can be 
impossible to obtain indoors, in downtown city centers with 
tall buildings, under poor atmospheric conditions, or in 
geographically obstructed outdoor areas, such as deep valleys. 
Satellite-based localization services may also be disabled at 
any time by intentional jammers [2]. Therefore, new 

positioning techniques are needed in environments that 
cannot use GPS but require highly accurate, reliable results.  

Moreover, a reliable location estimation algorithm must 
adapt to unknown channel conditions. For this reason, the 
least-squares (LS) method [3] is generally used to determine 
source location. However, this method generates significant 
error when using attenuated data based on the characteristics 
of the radio channel. Data exhibiting distinct distribution 
characteristics are referred to as outliers. Outlier data are a 
major factor that interferes with accurate location estimation. 
The random sample consensus (RANSAC) algorithm was 
proposed by Fischler and Bolles [4]; it performs local 
parameter estimation to search the inliers group after removal 
from a target estimated by identifying outliers. The method is 
effectively used for the estimation of various models [5][6]. 
Even when the ratio of outliers is very high compared to the 
inliers, this algorithm can be used for robust location 
estimation.  

Exiting localization studies can be classified as either 
range-based or range-free. In range-based methods, the TP at 
an unknown location determines the distances to MPs based 
on signal strength; they then use trilateration [7]. These 
methods achieve high localization accuracy, but require the 
availability of line-of-sight (LOS) propagation conditions 
between any three MPs and the TP. Range-free methods rely 
only on the locations of MPs; they do not use the distances to 
these nodes. To determine the TP location, the centroid 
algorithm [8] uses information from neighboring MPs instead 
of distance information. 

This paper presents a novel probability-based approach to 
estimating location based on Apollonian circles [9] that does 
not use any map information or calibration stage. The 
proposed algorithm modifies existing trilateration techniques 
for a field environment dealing with extensively physical 
phenomena. Outlier data are removed to improve performance 
by applying the RANSAC algorithm. We provide simulation 
results that compare the estimation performance of the 
original and improved algorithms.  

The paper is organized into four sections. Section 2 
provides the methodology for and Section 3 describes the 
results of a performance analysis. The main conclusions are 
listed in Section 4. 
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II. PROPOSED LOCATION ESTIMATION 
ALGORITHM 

A. Training Phase 
In this stage, the MP locations and RSS values are recorded 

from each environment to serve as the training data set. 
Assume that the number of MPs is N, there is one unknown 
TP, the locations of the MPs are denoted by {m1, ... , mN}, and 
the location of the unknown TP is denoted by x. For 
simplicity, it is assumed that each MP is equipped with a non-
directional antenna. We consider a log-distance path-loss 
model [10], which is widely used for the analysis of outdoor 
wireless channels. The measured RSS value at each MP, Pi, 
may be formulated as the following expression: 
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where P0 is  the power measured at a reference distance d0 
from the TP, γ is a path loss index. ni is a zero-mean Gaussian 
and unit variance. The values of γ can be set depending on the 
propagation environment. Consequently, this phase is 
generally accomplished with the direct inversion of (1), i.e.: 
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which is a maximum likelihood estimator of ݀ప  [11], 
asymptotically unbiased (and normal) but biased for a finite 
sample. 

B. Location Estimation Phase 
Next, we apply the proposed algorithm with the calculated 

distance to estimate the location of the TP. In existing 
methods, the location of an unknown TP is estimated by 
means of the least squares criterion. The proposed location 
estimation method obtains the TP by a calculation based on 
an Apollonian circle. Figure 1 shows the Apollonian circle 
based on the ratio of the distance between MPs; Figure 2 
shows the proposed location estimation method based upon 
these circles. The relationship between two MPs ((x1, y1), (x2, 
y2)), for which the distance ratio a:b can be obtained based 
on the distance estimated using (2), and the estimated TP 
location (x, y) are represented in (5).  
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Rearranging the above equations, we have: 
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where, a:b is the ratio of distance MP1 to MP2. The internal 
division point P(∙) and external division point Q(∙) of the 
circle are as follows: 
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Through (9) and (10), the radius of the circle R and the 
center of the circle C can be determined as follows: 
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Through (11), finally, the equation of a circle can be 
determined as follows: 
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The circumference of a circle determined using (12) can be 
estimated to be the TP located between the two MPs. As seen 
in Figure 2, the TP (x, y) can be estimated by intersecting the 
circle between three or more MPs and a non-iterative solution 
can be found by linearizing the system. The results from (12) 
can be written in matrix form: 
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Figure 1. Apollonian Circle according to a certain ratio between the 

measurement points 
 

 
Figure 2. Proposed location estimation based on Apollonian circles 
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where the set of A and b can be expressed in Cxy and Rsh, 
respectively, the solution equation is given by [12] : 
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Next, the outliers in z are filtered by applying the RANSAC 

algorithm. First, k samples are selected from the random 
measurement data. The point in the parameter space is 
defined by repeatedly selecting random subsets of the data 
and generating model hypotheses for each subset. The 
number of data points below a pre-determined threshold 
value is calculated.  After S repetitions of this process, the 
best score model B is returned as the solution. The RANSAC 
algorithm must determine two main parameters, the sampling 
number of iterations S and threshold T, of inliers and outliers. 
The number of repetitions needed to guarantee a success 
probability η0 is calculated as follows [7]: 

                  0log(1 )
log(1 )mS 







                               (16) 

where the probability η0 that at least one sample is selected 
from within the Sth inlier is typically set to 0.95 or 0.99; ρ is 
the percentage of inliers in the data; and m is the number of 
samples used to generate a hypothesis. The threshold value T 
can be selected empirically. If the residual variance of the 
inliers is σ2, T is set to 2σ or 3σ. First, experimental data 
composed of inliers are applied to the RANSAC algorithm 
and the best approximation model is obtained. After 
obtaining the residual between the best approximation model 
and inliers, T is determined in proportion to this variance (or 
standard deviation). If the residual of the inliers is assumed 
to follow a normal distribution, when T = 2σ, 97.7% of inliers 
are included, and when T = 3σ, 99.9% of inliers are included. 
Finally, it is possible to obtain a refined solution equation 
from the inliers obtained by filtering the outliers in z. 
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III. PERFORMANCE EVALUATION 
In this section, estimation accuracy is tested in a field 

environment. The TPs were stationary and the RSSI dataset 
was acquired in practical experiments by car on the Korea 
Advanced Institute of Science and Technology (KAIST) 
campus in Daejeon, South Korea. The antenna was non-
directional and fixed on the roof of the car, which moved at 
an average of 60 km/h. The resolution bandwidth was 12.5 
KHz. Measurement data were stored every second. To reduce 
statistical variability, the saved data were averaged over 30 
repetitions. The center frequencies of the RF signal used in 
our experiments was 421.5 MHz, the band used in amateur, 
industrial/business, public safety, and radio-location radio 
services. We used an arbitrary frequency from the amateur 
stations for the localization test. We set the TP, which 

transmitted a single tone signal, in the center of a building 
covering an area of 0.9 km × 0.95 km. Figure 3 shows the 
measurement environment, where the red dot is the actual TP 
and yellow line is the measurement path.  

The simulation was performed 1000 times to represent the 
range of fluctuation in the distance error after the simulation. 
Figure 4a shows the probability density function (PDF) 
performance with or without the RANSAC algorithm. When 
the RANSAC is applied, the average estimated error distance 
is 21.16m, which is about 10.28m better than 31.44m without 
the RANSAC. Figure 4b is the cumulative distribution 
function (CDF) result of the proposed method with the 
RANSAC. The simulation resulted in a distance error range 
of 5–37.4 m, a mean distance error within 21.16 m, and a 
minimum distance error of 5.05 m. Figure 5 shows the 
location estimation methods used for performance 
comparison which are the trilateration [7] and triangle 
centroid location algorithms [8]. Tab. 1 summarizes the 
means and the 50th, 75th, and 90th percentile values of the error 
distance for each method. The proposed method performs 
better than both of the other methods, e.g., 50% of the 
distance error for the proposed method is within 20.62 m, 
compared with 129.36 m and 42.81 m for the trilateration and 
centroid methods, respectively. Similarly, for the proposed 
method, 90% of the distance error is within 28.18 m, and 
157.25 m and 43.97 m for the trilateration and centroid 
methods. 

If the measurement is performed in an outdoor environment, 
interference from a variety of factors is possible. Therefore, if 
position is estimated in an outdoor environment with only the 
RSSI value, the margin of error significantly increases. For the 
centroid method to result in precise localization, it must be 
widely distributed with a large number of MPs. However, its 
estimation performance is relatively poor in outdoor 
environments in which it is difficult to be widely distributed. 
Therefore, the centroid method is inefficient for use in high-
precision localization. Trilateration is based on a simple 

 
Figure 3. Measurement location in field environment 
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mathematical calculation. Therefore, it is necessary to know 
the TP; if an error in distance estimation occurs due to 
obstacles between the TP and MP or in the surrounding 
environment, it is impossible to accurately estimate its 
position. In the proposed method, three or more TPs are 
calculated as a ratio of distances by applying the Apollonian 
circle. Therefore, it is possible to estimate position without the 
exact transmission power of the source, and precise position 
estimation compared with existing methods is made possible 
by removing outliers. In summary, in outdoor environments, 
it seems feasible to adopt our algorithm to estimate location 
based on the Apollonian circle scheme, which provides 
meaningful mapping of the topography in a large area. 

IV. CONCLUSION 
This paper presents a GPS-free scheme for outdoor 

localization. To overcome limitations caused by RSSI 
uncertainty, we describe a novel RSS-based outdoor location 
estimation method. The proposed scheme, based on 
Apollonian circles and RANSAC, improves upon both the 
accuracy and performance of conventional methods, 
particularly in complex environments. Additionally, it 
requires neither knowing the exact transmission power of the 
source nor any performing any calibration procedure. We 
verified our approach using computer simulation and practical 
experimentation, finding that the proposed algorithm has a 
considerable advantage in real-world precision and efficiency. 
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(a)                                                     (b)  

Figure 4. PDF of the error distance of the proposed method, (a) 
Comparison of results with RANSAC, (b) PDF of the error distance of the 

proposed method 

 
Figure 5. PDF of the error distance of the proposed method 

 
TABLE I. ESTIMATION ERROR OF THE PROPOSED, 

TRILATERATION, AND CENTROID METHODS 

 TRILATERATION 
[7] 

CENTROID 
[8] 

PROPOSED 
METHOD 

MIN ERROR 42.75 m 39.7 m 5.05 m 

MEAN ERROR 125.07 m 43.14 m 21.16 m 

50th 
PERCENTRILE 129.36 m 42.81 m 20.62 m 

75th 
PERCENTRILE 146.44 m 43.42 m 23.52 m 

90th 
PERCENTRILE 157.25 m 43.97 m 28.18 m 
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