
Lucene Based Block Indexing Technology
on Large Email Data

Chunyao Song, Yao Ge, Peng Nie and Xiaojie Yuan

College of Computer and
Control Engineering
Nankai University

Tianjin, China 300071
Email: {chunyao.song, geyao, niepeng, yuanxj}@nankai.edu.cn

Abstract—As a warehouse for storing and managing data, a
relational database supports the index mechanism, to meet users’
needs of managing data resources. However, when the amount
of data is too large or the users’ queries are complicated, its
simple index structure is not able to return an accurate query
result within a short time. Thus, we need to establish a highly
efficient index scheme for large amounts of data. Given that the
users’ primary requirement is searching keywords on a specified
batch interval on large email data, where each email is associated
with a batch attribute, this work builds an email retrieval system
by using a full-text searching toolkit called Lucene. This work
presents a scheme to build the index according to each email’s
batch attribute and achieves the coexistence of the block index
and the integrated index. The evaluation shows that our scheme
has significantly improved the searching efficiency of the email
retrieval system compared to the basic system which does not
allow a hybrid index structure.

Keywords–Lucene; index; email data; big data.

I. INTRODUCTION

This is an information and Internet Plus era. The Internet
is flooded with plenty of information. How to retrieve the
most useful information from the massive data was a main
challenge from the very beginning of the development of
the Internet. The appearance of searching engine gives us a
solution. Searching, as a mainstream method to get useful
information, becomes part of people’s daily life.

The index structure has determined the response time and
query accuracy of a searching engine to a large extent. The
index mechanism in a database system is a common scheme.
However, the index structure of traditional relational database
is very simple, and lacks the core functionality for retrieving
and analyzing the contents of the files stored in the library [1].
Although it supports normal SQL (structured query language)-
based queries well, it is hard to meet the requirements of a
search engine. First of all, a search engine needs to search large
amounts of data, and the storage format is relatively simple.
How to use a database to reasonably and effectively manage
this data is a difficult problem. Second, the demand of a search
engine is to give an accurate response within a short time
for a large number of users’ query requests. Therefore, the
time consuming work should be completed during the index
building phase. In other words, before run time. Apparently,
the index structure in the database system does not meet this

need. Therefore, it is necessary to establish an efficient index
library for massive data.

Lucene is a subproject of the Apache software foundation
[2]. It is an open source java-based full-text search engine
architecture. It provides a complete query engine, index engine
and part of the text analysis engine [3]-[4]. Thus, software
developers can easily achieve full-text search function in the
target system. As an excellent full-text search engine architec-
ture, Lucene has greatly improved the retrieval efficiency, by
using highly optimized inverted index structure [5]. A main
advantage of Lucene is that the format of the indexed file is
independent of the application platform. It defines a set of 8-
bytes-based index file formats so that compatible systems or
applications of different platforms can share the establishment
of the index file [6]-[7].

The full-text retrieval system is a software system, aiming
to provide full-text retrieval services based on full-text search
theory. There are two parts to complete full-text search. One is
to build and maintain the index library. The other is an efficient
and accurate retrieval mechanism. Lucene has provided calling
interfaces for both parts. However, in practical applications,
Lucene has a problem that should be noticed. The size of the
index file is linearly increasing as the number of files needing
to be indexed increases. When the primary requirement is to
do interval filter for a specific field first, and then do keyword
search, whether the search engine needs to search the entire
index file every time is worth studying. Based on this, we
propose a scheme to create a block index based on this field.
We split the GigaByte-level index file into multiple small index
files according to this field. Then, we only need to search on
small index files which satisfy the query range and merge the
search results during the searching phase.

When an index file reaches the GigaByte-level, for a single
server, if the filter interval given by the query is small, then
the block index may significantly improve the searching speed.
However, when the range of the filter field in the query is
large, integrated index may perform better than block index
during the searching phase. As using block index needs to
read multiple index files, there is a need for frequent I/O
(Input/Output) operations. As a conclusion, choosing different
index scheme according to different search situations may
improve the average response time of the search engine as
a whole.

45Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

The target searching dataset for this work is a large email
dataset. Each email contains an eight-digit batch attribute. The
primary user requirement is to search for a specified keyword
within some batch of messages. Therefore, it is of great
significance to improve the search efficiency by implementing
the full-text search system which realizes coexistence of the
block index and the integrated index. It is very meaningful to
improve the search efficiency for different search requests.

Given the email dataset stored in MySQL - a commercial
relational database management system [8], the idea of this
work is to create a block index and an integrated index for
each attribute of each record/email. The search function is
completed based on the establishement of the index file. Thus,
the user could query the system. After the basic structure of
the email retrieval system is completed, the optimization by
using block index is introduced. Evaluation is performed to
help choose the appropriate indexing strategy based on users’
searching needs. Finally, the strategy is used to improve the
searching efficiency of the email retrieval system.

In the remainder of this paper, we first give a brief
introduction about Lucene [2] in Section II. We will introduce
the index engine and search engine of Lucene. Next, we will
show our system design method and implementation details
in Section III. We will explain in details how to accomplish
the index building for our email retrieval system, and how
to perform the searching process based on the established
index. Evaluation results is shown in Section IV. We perform
comprehensive experiments to select the best index strategy for
different searching requirement. Section V gives the conclusion
of the paper.

II. PRELIMINARIES— A REVIEW OF LUCENE THEORY

Lucene consists of eight packages, each of which is invoked
with other packets. They have specific functions, such as
text analysis, index creating, index read-write, index structure
management, and search requests parsing, etc. [9]. Lucene
works by converting other data formats into text, extracting the
index entries and related information from the word breaker,
and then writing the information to the index file, and saving
it to disk or memory. We will introduce Lucene theory from
both the index engine and the search engine.

Figure 1. Lucene Index Conceptual Relationship

A. Lucene’s Index Engine
There are five basic concepts in Lucene, including Index,

Document, Field, Term and Segment. The relationships are
shown in Figure 1.

• An index consists of multiple documents.
• A document consists of multiple files. It is similar

to a record in relational database, which is mainly
responsible for domain management [10].

• A field consists of several terms. Each field usually has
four attributes: name of the field, value of the field,
whether it is necessary to be stored in index file and
whether it is indexed.

• A term is a string that is obtained by lexical analysis
and language processing of the text, which is the
searching unit. It has two attributes: the name of the
term and the value of the term.

• A segment can be considered as a tiny index. It
includes all documents needed by the index. When
adding new documents to the index being searched,
Lucene usually creates a new segment to avoid the
cost of rebuilding the index.

When creating an index, it is not that every record is
immediately added to the same index file. They are first written
to a different small file, and then merged into a large index
file [11]. The source provided by the user is a record in the
database table. A record is indexed and then stored in the index
file.

Lucene holds only one buffer when building index. Howev-
er, it provides three parameters to adjust the size of the buffer
and the frequency to write the index file to disk [2]. These
three parameters are:

• Merge factor: this parameter controls the timing of
merging index files on a disk into large index files and
the number of documents that can be stored in each
index block.

• Minimum number of merged documents: this pa-
rameter is the minimum value that the number of
documents in memory want to write to disk. If there
is enough memory, increasing this parameter could
significantly improve the index efficiency.

• Maximum number of merged documents: this pa-
rameter is the maximum number of documents an
index block can store. Appropriate increase in this
parameter value can speed up the index building
process and shorten the response time.

B. Lucene’s Search Engine
Lucene supports a variety of query methods. Combining

them allows developers to customize the queriers needed. We
need three kinds of queries in this work.

• TermQuery: it allows to search for keywords for
specified field.

• BooleanQuery: it supports query combination. By
adding a variety of query objects and designating their
logical relationship as ”and”, ”or”, ”non”, it can link
the queries together.

• RangeQuery: it supports range search on a specific
field. It can also be used together with BooleanQuery.

Based on this search engine, the searching process includes
five steps. The first step is to read the index file. Lucene
provides an IndexReader. After its open() method has been

46Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

invoked, it will find the latest segment from the index file.
It will load the meta data of this segment into memory, and
further open each segment and the documents within each
segment.

The second step is to build the search tree. Given the
structure of the query object, Lucene will parse it into a query
tree based on the logic of the query. When multiple search
conditions are used, Boolean queries are usually used as logical
join queries. In this case, a Boolean query can be used to
represent the entire query tree.

The third step is to evaluate the weight. Weight is the
factor used to calculate the score. When the query tree is
obtained, the first operation is to rewrite the query tree. The
purpose is to change the query tree according to the need of
searching keywords change. Then, use the recursive creation
of the weight tree based on the newly obtained query tree, and
calculate the value of the public part of each document in the
scoring formula.

The fourth step is to calculate the document score. The
matching is performed by calculating the similarity between
the query and the document. Each search result will be
given a score. The higher the score, the higher the degree of
matching. The scoring function is the score method in class
Scorer. It traverses all the resulting documents to calculate
the score. The scoring mechanism it used is the TF/IDF (Term
Frequency/Inverse Document Frequency) [12] algorithm. The
tf-idf weight is a weight often used in information retrieval
and text mining. This weight is a statistical measure used to
evaluate how important a word is to a document in a collection
or corpus. We have discussed in index engine that the docu-
ments are divided into words when creating an index. Word
segmentation is also performed in the searching phase. TF/IDF
algorithm considers how many times the word appears and
how many words appear in the document. The TF frequency
of the keyword is calculated as follows: tfi,j =

ni,j∑
k
nk,j

[12], where ni,j is the number of occurrences of the keyword
in the document dj , and

∑
k nk,j is the summation of the

number of occurrences of all keywords in document dj . For
a specific document, the greater the proportion of the number
of occurrences of a keyword to the number of occurrences
of all keywords, the stronger the ability of this keyword to
distinguish between the attributes of the document, and the
greater the value of the calculated TF value [13]. The IDF
value is computed as idfi = |D|

|{d:d∈ti}| [12], where |D| is
the total number of documents, and |{d : d ∈ ti}| is the
number of documents which contains the keyword ti. The
greater the number of documents that contain a keyword in
the document set, the weaker the ability of the keyword to
distinguish the attributes of the document category, resulting
in a smaller corresponding IDF weight. Finally, the TF-IDF
is computed as (tf − idf)i,j = tfi,j ∗ idfi [12]. The resulting
score reflects the ability of a keyword to reflect the document
subject. The larger the final score, the better the effect of
the keyword that reflects the subject of the document. The
document score is computed as the summation of the score
of each word segmentation term. A priority queue is used to
store the resulting documents, which has a sorting function at
the same time.

The last step is to return the query result. After computing
the score of each searched document, Lucene will return the

query results in decreasing order.

III. SYSTEM DESIGN AND IMPLEMENTATION

The email retrieval system of this work is implemented
based on JavaWeb [14] and Lucene. We have introduced the
theory of index building and query processing in previous
sections. We will discuss how to build the index of a dataset
based on the interfaces Lucene provides, and how to accept
users’ searching queries and return the searching results based
on JavaWeb in this section.

users
Parse the
request,

searching

Chooose the
index method

for the request

Administrator

Parse the request;
Build the whole index
and the block index

Index files

Email dataset
in MySQL

Send the
searching request

Return the searching
results

Pass the searching
keywords

Send the index
building request Build the index

Provide the
data source

Return the searching results

Load the index
files and start

searching

Figure 2. System Design Flow Chart

The system design flow chart is shown in Figure 2. As we
are trying to develop an email retrieval system, the datset we
use is an email dataset. The emails have already been parsed
based on receiver, sender, copy recipients, email contents, etc.,
and stored in MySQL. Each email has an eight digits batch
label, so that users could search on specified batches. Since
users have a great need to search keywords on emails with
specified batches, we build two kinds of indexes for the input
dataset:

• Integrated index: this kind of index builds index for
each attribute of the email, and finally there is only
one index files folder, which includes all index files
needed for query processing.

• Block index: the blocks are divided according to the
batch label of each email. We build an index files
folder for each batch of the emails. The name of the
index files folder is the batch name and the number
of the index files folders equals the number of email
batches.

After finishing the index building, the user could launch
the searching request according to personal needs. The system
server then decides which index method to use according to
the specific request. Based on this, the server then loads the
index files for searching and returns the search results.

A. Index Building
Index building is an important part of system implemen-

tation. Before we build the index, we need to confirm how
to do the word segmentation for the documents awaited to
be analyzed, which information should be stored for future
use, and which fields will be used for future queries. We will
introduce how to build integrated index and block index based
on relevant kernel classes and the call graph. Figure 3 shows
the kernel classes needed for index building and the call graph.

47Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

GetParams
->doPost()

IndexThread
->run()

DBHelper
->new

DBHelper()

DataAccess
->index_log()

MailIndex
->InitializedIndex()

Distributed
Index

Integrated
Index

Start the index
building thread

Connect and query
the database

Record the index
bulding log

Get the email
attributes from

database

Get the
distributed

index

Get the
integrated

index

Build the index

Figure 3. Kernel Classes Needed for Index Building and the Call Graph

• Class GetParams: this class is inherited from
HttpServlet. After the doPost() function of this class
receives the request for index building, it will create
an object of class IndexThread. It will then call the
start() method of IndexThread to start the thread, and
start the index building.

• Class IndexThread: because the data are stored in
MySQL, after the thread is started, the run() method of
this class will first load all batch information from the
database. It will then create index file folder according
to the information and name each index file using the
corresponding batch name. After that, it will pass the
file folder path and the current batch information to
the InitializeIndex() method of the MailIndex class.
If we are building integrated index, then the passed
batch information is a null string. So, we could build
the two kinds of indexes at the same time.

• Class MailIndex: since our email retrieval system
needs to do full-text search, the InitializeIndex()
method of this class will create an object of the
DBHelper class, to connect to the MySQL database,
read all attributes of the dataset, and build the index
based on the interfaces Lucene provides. This method
accepts two parameters, which are index building path
and the email batch information.

• Class DBHelper: the simplest nonparametric con-
structor function of this class is able to connect to
the database. The one-parametric constructor adds a
function to get ready to execute the statement.

Since we need to build the block index at the same time
when we build the integrated index, we use one parameter
of the InitializeIndex() method to accept the email batch.
After receiving the email batch needed for index building, we
use JDBC (Java Database Connectivity) [15] to connect to
MySQL, and select all emails which have this specified batch,
and then create an IndexWriter object of Lucene to build the
index.

B. Searching Process

The searching process includes parsing the search request,
opening the index files for searching, and returning the search-
ing results to users. We will show the call graph according to
these three steps and explain the details. Figure 4 shows the
call graph.

GetParams
->doPost()

GetJason
->parseJson()

GetJson
->queryMails
Distributed()

GetJson
->queryMails
Integrated()

MailQuery
->MultiplePaging

Query()

MailQuery
->BooleanQuery()

GetJson
->returnData()

Pass the json
seraching request

Return the
searching struct

Searching on
distributed

index

Searching on
integrated index

Searching
according to

keywords
and batch

Return the
searching

results

Do the “or”
operation on two

query objects

Return the
resulting query

object

Figure 4. Kernel Classes Needed for Searching Process and the Call Graph

• Class GetParams: users send the post request to
JavaWeb server using browser. The searching request
is passed by json. In the meanwhile, http request is
acquired and encapsulated by Servlet container to the
HttpServlet object. The doPost() method of this class
is responsible for receiving the searching request, and
passing the json string to the GetJson object created.
It will call the GetJson methods for future parsing,
querying, and results returning.

• Class GetJson: the parseJson() method of this class
is responsible for parsing the json string, and generate
the searching structure. It has two parameters. The first
is the json string for the searching request. The second
is whether should use the block index to parse the
searching request. The generated searching structure
is returned to GetParams. After receive the search-
ing structure, GetParams would call different GetJson
methods for integrated index and block index. The
block index will call queryMailsDistributed() method,
which needs to do searching on every index file within
this batch, while integrated index will call query-
MailsIntegrated() method, which only does searching
on the single index file. These two methods will both
call MultiplePagingQuery() method of MailQuery.
When accepting the request, the relevant information
is received. Thus, after getting the searching results,
the returnData() method of this class will call the
relevant methods, to generate the response data and
pass the response to the user.

• Class MailQuery: this class will do searching ac-
cording to the received request. The MultiplePaging-
Query() method and the BooleanQuery() methods are
two kernel methods.

After receiving the searching keywords and the batch
information, the system will use QueryParser in MultiplePag-
ingQuery() to construct the searching object according to the
keywords. It will use BooleanQuery to do the ”or” operation
on the two searching objects: one is the QueryParser of the
keywords, while the other is the RangeQuery of the batch.
Further, it will use IndexReader and IndexSearcher to open
the index, and perform the searching process.

IV. EVALUATION

We have discussed how to build the two kinds of indexes,
how to perform the searching process and how to return the
results. However, we are still not sure when to use which
kind of index under what scenario. Thus, we need to do
the searching evaluation. We will discuss the design of the

48Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

Figure 5. Partial index files Figure 6. Searching time comparison Figure 7. Searching time comparison Figure 8. Searching time comparison for
searching time comparison for batch interval in 1-20 for batch interval in 179-200 exchangeable search and batch interval

in 179-200

searching evaluation, searching results analysis and searching
strategy development based on experimental results in this
section.

A. Evaluation Design and Implementation
The batch interval decides how many block index files

needed to be loaded into the disk. The size of a block index
depends on the amount of data needed to be loaded into the
memory. Different keywords will result in different sizes of
result sets. They will all affect the searching efficiency. Thus,
we perform the experiments by varing parameters from these
three aspects.

The searching evaluation uses URL and URLConnection
classes of Java [16] to send searching requests to Class
GetParams. In order to get the statistics of the searching time
conveniently, we modify the searching code so the server only
return the searching time, instead of returning the searching
results. We then output the returning searching time directly
to an excel file, and finally get the statistics for analysis.

B. Evaluation Results and Analysis
The effect of the size of index file: since the number of

emails in different batches is different, and the size of each
block index file is different, in order to evaluate the effect of
the size of index file to searching efficiency, we need to search
on each batch. The partial average result is shown in Table I.

TABLE I. THE EFFECT OF SIZE OF INDEX FILE TO SEARCHING
EFFICIENCY

size of index file(MB) block index time(s) integrated index time
0.001 0.006 0.061
0.406 0.009 0.073
1.107 0.012 0.077
4.157 0.034 0.109

22.015 0.123 0.260
51.934 0.254 0.463
94.237 0.372 0.880
228.368 1.250 2.208

We perform the searching evaluation on 200 batches. We
show partial results according to certain interval for clarity. The
comparison of integrated index and block index is shown in
Figure 5. We can see from the experimental results that when
we search on one batch, block index is obviously better than
integrated index. The smaller the index file, the more apparent
difference between the two methods. When the size of the
index file is less than 1MB, the searching efficiency of block

index is 10 times better than integrated index. As the size of
the index file increases, the advantage of the block index is
decreases.

The effect of the batch interval: We have seen from the
previous test that when the batch interval is 1, the block index
has significant advantages. However, as the batch interval is
increasing, the I/O cost of block index is increasing as well.
So the advantage is expected to decrease. So, the assumption
is there is a cross point that before this point, the block index
is better than integrated index. While after this point, the
integrated index is better than block index. We perform the
experiments on 200 batches, and extend the batch interval from
1 to 200 gradually. The partial average searching time is shown
in Table II.

TABLE II. THE EFFECT OF SIZE OF SEARCHING BATCH INTERVAL

size of batch interval average block index average integrated index
searching time (s) searching time (s)

1 0.115 0.146
10 0.391 0.399
20 0.765 0.756
50 1.699 1.621
90 2.846 2.769

140 4.613 4.152
200 8.590 10.811

Because it is hard to present the 200 test results in a single
figure, we show the first part of the results in Figure 6. We can
see that block index is better than integrated index when batch
interval is less than 11. It means that when users’ searching
request includes less than 11 batches, we should use block
index. The integrated index performs better than block index
in the middle part.

However, the last experiments did not perform as expected.
In our expectation, since the block index needs to load multiple
index file folders to memory, the frequent I/O operation be-
comes the bottleneck. Thus, the searching efficiency should be
worse than integrated index. However, as we seen in Figure 7,
the block index performs close to or even better than integrated
index in most cases. Since we did the experiments on block
index and integrated index respectively, it is possible that the
system did not do the whole I/O operations in every searching.
Thus, we perform experiments for block index and integrated
index alternatively. The result is shown in Figure 8. We can
see that in this case the integrated index performs better than
block index. So, we should still use integrated index when the
batch interval is large.

49Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

The effect of the size of the results set: Under the single
server environment, the searching results are stored in the
Java stack. When the size of the returning results is large,
continuous searching will result in high memory usage. This
will further affect the data exchange between disk and memory,
resulting in low searching efficiency.

We perform a test on the effect of different keywords and
the results are similar to previous experiments, thus we omit
the figure here. The cross point of graph appears in the range
10 to 15. It means the search efficiency of block index and
integrated index is equal when the size of batch interval is 10
to 15. In other words, block index performs better in small
batch interval, while integrated index performs better in large
batch interval.

C. Searching Strategy Development
We can see from the experimental results, when the batch

interval is less than 10, the searching efficiency of block index
is better than the integrated index in most cases. However,
when the batch interval is large, say, approching 200, the
searching efficiency of integrated index is better than block
index. When the batch interval is in the middle, the searching
efficiency of the two methods are close. However, due to
the uncertainty of searching request, there could be great
differences among the two continuous searching requests.
Thus, to reduce the disk I/O operation, it is recommended to
use integrated index.

Moreover, considering a large batch will decrease the
searching efficiency of block index, we could record the large
batches in advance. When the searching request touches on
many those batches, we could use integrated index.

V. CONCLUSIONS AND FUTURE WORK

Compared to the traditional SQL language, Lucene has
unbeatable searching efficiency. It provides friendly interfaces
and clear documentation. So, the software engineer could
develop a search engine in a short time. However, when the
amount of data increases sharply, the linear increase of the size
of the index files lowers the efficiency of searching within a
specific range.

Our system focuses on a specific email dataset. We need
to satisfy the requirement to searching keywords within some
specific batches. So, we need to realize the function for fast
search under multiple restrictions. We propose to divide the
index files according to batch labels, in other words, block
index. We develop the system based on JavaWeb [17] and
Lucene. We implemented both integrated index and block
index, to accpet the user requests and return the results to
users. In order to decide the index using strategy, we perform
comprehensive searching experiments, considering the prob-
lem from three aspects: the size of a index file, the searching
batch interval, and the keywords differential. We develop a
meaningful method to compute the average searching time. We
perform comprehensive experiments and the evaluation results
show our scheme has significantly improved the searching
efficiency of the email retrieval system compared to the basic
system which does not allow hybrid index structure. We
compare the searching efficiency using both tables and figures,
and show the strategy at the end. We have reduced the users’

waiting time while at the same time when satisfying users’
requirement.

Although the block index has increased the efficiency
to some extent, we could still improve in some aspects.
Currently, we only use the batch interval to select different
index methods. We could consider more factors for choosing
the index methods. When there are lots of searching results,
it will occupy a lot of memory so the searching efficiency
will decrease. We could try better results returning methods.
We use single machine in this work. However, when the data
size further increases, we could try to deploy the system
in a distributed manner. In that case, how to merge the
searching results and do the scoring is another problem worth
considering.

ACKNOWLEDGMENT

This work was supported in part by Natural Science Foun-
dation of Tianjin, under Grant No. 17JCYBJC23800; National
863 Program of China, under Grant No. 2015AA015401; and
Research Foundation of The Ministry of Education and China
Mobile, under Grant No. MCM20150507. Chunyao Song and
Yao Ge contribute equally to this work.

REFERENCES
[1] Y. Xu, Y. Zhu, C. Li, and W. Wang, “The design and implementation of

lucene based full-text retrieval on massive database,” Journal of Hunan
University of Technology, vol. 25(2), pp. 81–84, 2011.

[2] Lucene. http://lucene.apache.org/. [accessed: 2017-06-06].
[3] K. Yang, X. Shi, and E. Tang, “Reptile based software defects pre-

diction,” Journal of Nanchang College of Education, vol. 31(6), pp.
125–128, 2016.

[4] J. Zhang and J. Wang, “Discussion about the integration of lucene in
haobai searching engine,” Science & Technology Information, vol. (21),
pp. 12–12, 2012.

[5] H. Tang, Y. He, X. Xu, and C. Xu, “Lucene based distributed parallel
index,” Computer Technology and Development, vol. 21(2), pp. 123–
126, 2011.

[6] H. Wu, “Lucene based email forensics technology,” Netinfo Security,
vol. 10, pp. 181–184, 2013.

[7] L. Yuan, “Discussion about the functions and applications of lucene
based full-text index,” Science and Technology of West China, vol.
11(5), pp. 37–38, 2012.

[8] https://www.mysql.com/. [accessed: 2017-06-06].
[9] X. Shi and Z. Wang, “An optimized full-text retrieval system based on

lucene in oracle database,” Enterprise System Conference, pp. 61–65,
2014.

[10] R. Gao, D. Li, W. Li, and Y. Dong, “Application of full text search
engine based on lucene,” Advances in Internet of Things, vol. 02(4),
pp. 106–109, 2012.

[11] S. Yue, W. Li, L. Wang, and S. Guang, “Index for database retrieval
based on lucene,” Journal of Jilin University (Science Edition), vol. (5),
pp. 995–1000, 2014.

[12] A. Rajaraman and J. Ullman, “Miing of massaive datasets,” pp. 1–17,
2011.

[13] X. Wang and G. Ren, “An improved wpr algorithm based on the most
recent searching period’s referencing frequency,” Computer Science,
vol. 43(2), pp. 86–88, 2016.

[14] http://docs.oracle.com/javase/tutorial/deployment/webstart/. [accessed:
2017-06-07].

[15] https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/. [accessed:
2017-06-06].

[16] https://www.java.com. [accessed: 2017-06-07].
[17] http://www.vogella.com/tutorials/javawebterminology/article.html. [ac-

cessed: 2017-06-06].

50Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

