
An Efficient Reachability Queries Approach for Large Graph
based on Cluster Structure

Yale Chai, Yao Ge
Chunyao Song and Peng Nie

College of Computer and Control Engineering, Nankai University
38 Tongyan Road, Tianjin 300350, P.R.China

Email: {chaiyl, geyao}@dbis.nankai.edu.cn, {chunyao.song, niepeng}@nankai.edu.cn

Abstract—Reachability query is a fundamental operation on
graphs that finds the connection between vertices. Although
plenty of techniques have been proposed for reachability queries,
most of them are designed for directed graphs. Existing tech-
niques for undirected graphs cannot handle large volumes of
data. In this paper, we propose an undirected graph reachability
(UGR) query algorithm by integrating graph clustering algorithm
with traditional search methods. We first find core vertices by
partitioning them into clusters, and then cluster non-core vertices
according to their adjacent core vertices. After clustering, we
take each cluster as a new vertex and compute transitive closure.
Experimental results demonstrate the effectiveness and scalability
of the proposed methods for the reachability query problem.

Keywords–Reachability queries; Graph cluster; Search method.

I. INTRODUCTION

Many real-world networks can be modeled as a graph G
= (V, E), where vertices in V represent entities and edges in
E represent relationships between entities. Given two vertices
u and v, a reachability query asks whether there exists a path
between u and v in G. Nowadays, there are lots of techniques
for reachability queries on a directed graph. Specifically, for
any two vertices u and v in directed graph G, if u → v then
there exists an order o and o(u) < o(v) [1]. This order will
become a vital part to construct the reachability index. As a
result, these methods cannot be applied to undirected graphs,
due to the non-ordering of undirected vertices. However, many
networks can be modeled as undirected graphs. Take the social
network for an example, we can treat each user as a vertex and
consider the communicating between users as an edge. In this
paper, we present a novel study on reachability queries for
undirected graphs.

As explained in [2], to answer reachability queries in O(1)
time, an extreme practice is to pre-compute and store the full
transitive closure of edges, which requires a quadratic space
complexity, making it infeasible to handle very large graphs.
Our target is to improve the ability to scale to large graphs,
as well as reduce the processing time. At present, a trend
in dealing with big data is parallel processing: dividing the
original data into small pieces, then, separately processing each
piece and merging at the end. By clustering graph, we can
divide the original graph into ”pieces”. Among all the graph
clustering techniques, the structural graph clustering method
can not only cluster graph rather quickly, but also ensure that
vertices are reachable to each other within the same cluster. As
far as we know, pSCAN [3] is a state-of-art graph clustering

approach. Therefore, we propose a method which combing
pSCAN with traditional search methods.

The rest of the paper is organized as following: in Section
II, we introduce the undirected graph reachability (UGR) query
algorithm. In Section III, we conduct complexity analysis, and
present the evaluation results. We show the conclusion of our
work in Section IV.

II. OUR APPROACH

Based on structural graph clustering, we present UGR
approach for reachability querying. Our goal is to scale down
the graph before using traditional, full search method. The
pseudocode of UGR is shown in Algorithm 1.

Algorithm 1 UGR

Input: A graph G = (V, E)), and parameters add 0 < ε < 1
and µ ≥ 2

Output: A new graph G̃ = (Ṽ , Ẽ)
1: Initialize a disjoint-set data structure with vertices in V;
2: for each vertex u ∈ V do
3: core(u) ← false;
4: sd(u) ← 0 and ed(u) ← d[u];
5: end for
6: for each vertex u ∈ V in no-increasing order do
7: Check if u is a core vertex;
8: if sd(u)≥ µ then
9: core(u) ← true;

10: for each core vertex v ∈ N [u] do
11: union(u,v); /* Make u,v in the same cluster */
12: end for
13: end if
14: end for
15: Cc ← set of subsets of core vertices;
16: C ← ClusterNoncore(); /* Cluster non-core vertices */
17: for each cluster C ∈ C do
18: Add a vertex to Ṽ ;
19: Add an edge to Ẽ for each neighbor of C;
20: end for
21: Depth-First-Search(G̃);
22: return G̃;

Our algorithm mainly contains three steps. Firstly, we
divide the graph G into clusters. Secondly, we generate a new
graph G̃ in which each vertex was a cluster in G. Finally,
we compute the transitive closures of all vertices in G̃. As

51Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

shown in Algorithm 1, we use a disjoint-set data structure
which maintains disjoint dynamic subsets. Initially, each vertex
forms a singleton subset (Line 1); and the subsets union when
vertices in the same cluster. For each vertex u ∈ V , we set u as
non-core vertex, at the meantime, we incrementally maintain
an effective-degree ed(u) and a similar-degree sd(u) for u
(Line 2-5).

We structural cluster graph through a Two-Step Paradigm
[3]: cluster core vertices (Line 6-15) and then cluster non-core
vertices (line 16). For each vertex v adjacent to u, we compute
the structural similarity σ(u, v) between u and v as equation
1. If σ(u, v) ≥ ε, then we decide vertex u and v are structural
similarity, and increase sd(u) by one. Otherwise, we decrease
ed(u) by one. Once sd(u) ≥ µ, we determine u as a core
vertex. On the contrary, once ed(u) < µ, we determine u as a
non-core vertex. In this way, the algorithm can terminate early
without visiting all the neighbor of u. Furthermore, if v is a
core vertex then we assign u and v to be in the same cluster
(line 11).

σ(u, v) =
|N [u]

⋂
N [v]|√

d[u] · d[v]
(1)

where N [u] is the structural neighborhood of a vertex u, and
d[u] is the degree of u.

Algorithm 2 ClusterNoncore

1: visited(u) ← false for every vertex;
2: C ← ∅
3: for each cluster C̃ ∈ Cc do
4: for each vertex u ∈ C̃ do
5: visited(u) ← true;
6: for each vertex v ∈ N [u] do
7: if sd(u)< µ and v /∈ C̃ then
8: C̃ ← C̃∪ {v} /* Add non-core to its neighbor*/
9: visited(v) ← true;

10: end if
11: end for
12: end for
13: end for
14: /* Handle vertices that belong to no cluster */
15: for each vertex u ∈ G do
16: if !visited(u) then
17: Depth-First-Search(u);
18: end if
19: end for

Then, we cluster the rest of the vertices as shown in
Algorithm 2. Initially, for each vertex u, we set visited(u)
to be false. Given the core cluster C̃ in Cc, for every vertex
u ∈ C̃, we include all neighbor of u into the same cluster
as C̃, and mark u,v visited (line 3-13). Obviously, visited(u)
equals true means vertex u has been assigned to cluster and no
need to be visited in depth-first search (DFS). Afterwards, we
iterate through every vertex in G that has not been included to
any cluster, and execute DFS to merge it with its neighbor (line
15-19). So far, graph G has been divided into self-connectivity
clusters.

Theorem 1: (Internal Connectivity) Let C be any of clusters
of graph G, for any two vertices v1, v2 ∈ C, v1, v2 can reach
to each other.

Proof: As proved in [3], for any two vertices v1, v2 ∈ C,
there is a vertex u ∈ C such that both v1 and v2 are structure-
reachable from u. In other words, v1 and v2 can reach each
other within C.

In order to compute the transitive closures between clusters,
we consider each cluster as a vertex for convenience. The
pseudocode to generate a new graph G̃ is (Algorithm 1 line 17-
20): given an empty graph G̃, we add every cluster C into G̃ as
a vertex. Given two clusters C1, C2 (new vertex V 1, V 2 ∈ G̃),
if there exist an edge between vertex u ∈ C1 and v ∈ C2, then
add an new edge between V 1 and V 2.

Finally, we use DFS on new graph G̃ to compute the
transitive closures. After that, for any vertex V ∈ G̃, we can
be aware of the set of vertices that V can reach. At query
time, given two vertex v1, v2 ∈ G, we first trace back to
their clusters and check the connectivity. The whole query time
complexity is O(1).

III. RESULT DISCUSSION

Theorem 2: (Complexity Analysis) Given graph G, let
Es ⊆ E be the set of adjacent vertex-pairs whose structural
similarities have been computed, let Nc be the number of
clusters in G. And n, m respectively are the number of vertices
and edges in G. The time complexity of our UGR approach
is O(a(n) ·m +

∑
(u,v)∈Esmin(d[u], d[v]) +N2

c), the space
complexity is the O(m+ n).

Proof: The first part of the time complexity is re-
lated to disjoint-set data structure operations, where a(n) is
the extremely slowly growing inverse of the single-valued
Ackermann function and is less than 5 for practical val-
ues of n. The second part of the time complexity is re-
lated to structural similarity computations. As proved in [4],
O(

∑
(u,v)∈E min(d[u], d[v])) ≤ m1.5. So, the worst case time

complexity of this part is O(m1.5). Moreover, we execute DFS
on new graph G̃ who has Nc vertices and at most Nc edges,
the second part of the time complexity is O(N2

c). Normally,
the time of this part is so little that can be ignored. Thus,
the time complexity of our approach is approximately equal
to O(a(n) · m + O(m1.5). Besides, the space complexity of
UGR is the same as pSCAN [3].

In order to demonstrate our analysis, we implemented
our UGR method, and compared it with traditional search
methods: DFS [5] and Warshall [6]. We ran all experiments
on a computer with an Intel 3.4 GHz CPU, 16GB RAM,
and Windows10 OS. We evaluated the algorithms on five real
datasets from the Stanford Network Analysis Platform1, Table
1 lists the number of vertices and edges in the graphs. Table
2 reports the construction time of process (in ms). We only
evaluated the performance of Warshall on first three datasets
because it obviously slower than others. What’s more, when
the scale of dataset is small, DFS had better performance.
However, it ran into stack overflow on the last two large graphs.
Experiments showed that UGR is more scalable and stable than
traditional search methods, especially on sparse graph.

IV. CONCLUSION AND FUTURE WORK

This paper presents a study on reachability queries on large
undirect graphs, moreover, the thought is easy to extend to the

1http://snap.stanford.edu/

52Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

TABLE I. DATASETS

DataSet |V | |E|
CA-GrQc 5242 14496
Enron 13220 111467
Cit-HepTh 27770 352,807
Email-EuAll 265,214 420,045
DBLP 317,080 1,049,866

TABLE II. COMPARISON OF CONSTRUCTION TIME

DataSet Warshall DFS UGR
Enron(10000 mails) 4663 2 11
Enron(30000 mails) 73277 18 38
Enron(50000 mails) 651981 17 74
Enron(all) − 23 107
CA-GrQc − 28 7
Cit-HepTh − 132 380
Email-EuAll − − 388
dblp − − 1064

directed graph as long as we change the clustering method.
Based on the experiments, we show that our algorithms is
more scalable and stable than traditional search methods,
especially on sparse graph. For future work, this work can
be extended in several interesting directions. First, we will
study the evaluation of graph shortest-path search queries.
Second, we will improve the clustering method and make our
approach applied to the weighted graph. Third, we will exploit
the distributed database to achieve higher scalability in terms
of graph sizes.

ACKNOWLEDGMENT

This work was supported in part by Natural Science Foun-
dation of Tianjin, under Grant No. 17JCYBJC23800; National
863 Program of China, under Grant No. 2015AA015401; and
Research Foundation of The Ministry of Education and China
Mobile, under Grant No. MCM20150507.

REFERENCES
[1] A. D. Zhu, W. Lin, S. Wang, and X. Xiao, “Reachability Queries on

Large Dynamic Graphs: A Total Order Approach,” in Proceedings of
the 2014 ACM SIGMOD International Conference on Management of
Data June 22-27, 2014, Snowbird, Utah, USA, pp. 1323–1334, ISBN:
978-1-4503-2376-5.

[2] Y. Hilmi, V. Chaoji, and M. J. Zaki, “GRAIL: scalable reachability index
for large graphs,” Proceedings of the VLDB Endowment, vol. 3(1), pp.
276–284, 2010, ISSN: 2150-8097.

[3] L. Chang, W. Li, X. Lin, L. Qin, and W. Zhang, “pSCAN: Fast and Exact
Structural Graph Clustering,” in Proceedings of the 32th International
Conference on Data Engineering (ICDE) May 16–20, 2016, Helsinki,
Finland, pp. 387–401, ISBN: 978-1-5090-2020-1.

[4] N. Chiba and T. Nishizeki, “Arboricity and Subgraph Listing Algo-
rithms,” Society for Industrial and Applied Mathematics, vol. 14(1), pp.
210–223, 1994, ISSN: 0097-5397.

[5] S. Even, Graph Algorithms (2nd ed.). Cambridge University Press,
2011, ISBN: 978-0-521-73653-4, pp. 46–48.

[6] T. H. Cormen, C. E. Leiserson, and R. Rivest, Introduction to Algorithms
(1st ed.). MIT Press and McGraw-Hill, 1990, ISBN: 0-262-03141-8, See
in particular Section 26.2, ”The FloydWarshall algorithm”, pp. 558–565.

53Copyright (c) IARIA, 2017. ISBN: 978-1-61208-570-8

ACCSE 2017 : The Second International Conference on Advances in Computation, Communications and Services

