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Abstract— This paper describes the data streaming approaches 
to performance optimization of the Sum of Absolute Differences 
(SAD) algorithm on an NVIDIA Graphics Processing Unit 
(GPU) using the OpenCL programming paradigm. The SAD 
algorithm forms one of several steps required to implement 
stereo vision. It creates pixel-based disparity maps from two 
concurrent images captured by a pair of cameras positioned 
with a distance in between. The disparity maps can be used to 
derive depths of objects in the scenes of interest. The massively 
parallel architecture of a GPU can take advantage of the highly 
parallelizable SAD algorithm. OpenCL programming 
framework was chosen to develop the parallel algorithm on the 
GPU. Performance gains are realized by explicitly mapping 
data from the slower global memory to the faster shared local 
memory of the GPU. Local memory is loaded by either a 
centralized or distributed approach from the OpenCL-defined 
work-items operating in a workgroup. The resulting 
performance improvements were discussed based on the 
architectural features of the GPU and the data streaming 
approaches used in this research work.  
 

Keywords - data streaming; Sum of Absolute Differences 
algorihtm; massive parallel architecture. 

 
I.  INTRODUCTION 

Computer vision is a field of study concerned with 
extracting information from visual data through computers in 
a variety of applications, such as robotics, augmented reality, 
and face detection [1]. Computer vision algorithms typically 
step through the stages of a vision pipeline. A vision pipeline 
generally starts from image processing methods to improve 
results from feature extraction and image analysis. Global and 
local feature metric extraction form the next stages. Different 
operations are used on rows or blocks of pixels. In this paper, 
the SAD algorithm takes place in the local feature metric 
stage, performing an area operation on the GPU’s Single 
Instruction Multiple Thread (SIMT) architecture.  

Advanced Driver Assistance Systems (ADAS) leverage 
computer vision to increase road safety. One ADAS 
application is stereo vision, which constructs a three-
dimensional image by finding corresponding pixels in image 
frames from two adjacent cameras [2]. The SAD algorithm is 
one method to generate the matching costs functions that finds 
point correspondence in stereo vision. This paper focuses on 
the use of OpenCL, a generic parallel programming paradigm, 
to develop the SAD algorithm while utilizing the locality of 
data reference in the memory hierarchy of a GPU. This 
research supports the efficient use of restricted memory space 
in an embedded system for data streaming applications. 

Prior research has studied the implementation of the SAD 
algorithm on different hardware platforms. One study 
evaluated performance on the FPGA platform with respect to 
embedded systems [2]. More emphasis was placed on the 
validity of the algorithm itself, and finding the optimal 
window size and accuracy over different test image pairs. One 
of the image pairs was the Venus image sequence, an 
established stereo vision benchmark that was chosen in this 
research as well [3]. Another study experimented on the SAD 
algorithm using an SoPC (System-on-Programmable-Chip) 
heterogeneous architecture [4]. Their work is similar to ours 
in that they optimize performance by leveraging on-chip 
memory and selectively transfer data to off-chip memory. By 
drawing from the parameters and benchmarks of these 
previous works, we would like to survey performance speedup 
of the SAD algorithm on the GPU architecture through 
optimal data mapping. The rest of this paper is organized as 
follows. Section II describes the SAD algorithm in relation to 
computer vision-based ADAS applications.  Section III 
introduces the NVIDIA GPU platform. Section IV describes 
the OpenCL parallel programming paradigm. Section V 
described the design and the implementation of the data 
streaming methodology behind the SAD algorithm 
implementation and optimization. Section VI described the 
data streaming approaches. Section VII presents and analyzes 
the observed results. Section VIII concludes this paper.  

 
II. SAD ALGORITHM IN ADVANCED DRIVER 

ASSISTANCE SYSTEMS (ADAS) 
An ADAS increases driver situational awareness and 

safety by providing important information to warn the driver 
of any dangerous events. However, humans are not infallible, 
and ADAS must eventually advance to take control tasks such 
as braking or steering, mitigating the errors human drivers 
make. Eventually, as ADAS applications grow more robust, 
we can expect fully autonomous vehicles to enter the 
consumer market. 

A variety of sensors enable ADAS applications by 
providing timely and relevant feedback of the environment. 
We can roughly categorize these sensors into two categories: 
time-of-flight and camera [1] (see Figure 1). For front-facing 
imaging sensors, there are applications available such as lane 
detection, traffic sign and pedestrian recognition, forward 
collision warning, and adaptive front-lighting. Imaging 
sensors that face the rear or side of the vehicle can support 
ADAS applications, such as parking assistance, rear collision 
warning, and blind spot detection. Imaging sensors inside the 
vehicle can even detect occupancy and the alertness of the 
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driver [1]. Detection of vehicles, pedestrians, and traffic signs 
require substantial computing power. Adding an additional 
imaging sensor can allow for more accurate and robust 
detection system by the addition of depth information. The 
means for extracting depth information from a stereo camera 
setup, also known as stereo vision. Stereo vision allows 3D 
information to be extracted from a pair of 2D images taken 
from adjacent cameras and is an important application of 
ADAS for vehicles. The fundamental problem with stereo 
vision analysis is finding the corresponding elements within 
the image pair. For correct correlation of image pair elements, 
rectification is required [5]. It ensures that the images are 
horizontally aligned, allowing for the epipolar curve between 
each image to be a linear. This means that any algorithm that 
matches pixels from one image to the next will only need to 
search horizontally across a row of pixels. 

 

 
Figure 1. Key applications for ADAS [1]. 

 

 
 

Figure 2. SAD value calculation example; h x k = 5 x 5, and disp=64. 

 
After rectification, each pixel in one image is matched with 

a pixel in the other image. Then, a disparity map can be 
generated, indicating the disparity level of each pixel, to be 
referenced for acquing depth information. The Sum of 
Differences (SAD) algorithm is the method chosen to 
calculate a disparity map in this paper. The benefit of this 
algorithm is computation efficiency, since the calculations 
involve primarily addition and subtraction operations. The 
operational form of the SAD addresses window size and the 
disparity range because area operations are less 
computationally costly and depth range is physical limited to 
the distance between the cameras. For instance, if the disparity 
range is 64 pixels and the window 5x5, a SAD value may be 
defined as follows: 

,ሺ݅ܦܣܵ ݆, ሻݏ݅݀ ൌ   | ோܲሺ݅  ݄, ݆  ݇ሻ െ ܲሺ݅  ݄, ݆  ݇  |ሻݏ݅݀
ଶ

ୀିଶ

ଶ

ୀିଶ

 

Where i and j are the indices of the reference pixel in the 
right and left images, PR and PL respectively, disp (the 

disparity range) is the number of candidate windows that are 
evaluated in the left image, and h and k define the size of the 
window. Note that the matching pixel is only searched 
horizontally after image rectification. Thus, the disp is only 
applied in the second dimension of the left image in the SAD 
calculation. Figure 2 illustrates the SAD value calculations for 
matching the tip of a red cone between the right and left 
images. After the 64 SAD values have been calculated for 
every pixel from coordinate (i, j) to (i, j+dist), the disparity 
level selected is based on the minimum cost function: 

 
,ሺ݅ݏ݅ܦ ݆ሻ ൌ ArgMinሺܵܦܣሺ݅, ݆, ,ሻሻݏ݅݀ 0  ݏ݅݀  63 
 

Using the Argument Minimum (ArgMin) function, the index 
of the candidate window with the smallest computed SAD 
value will be treated as the disparity level for the pixel 
coordinate (i, j). The disparity range and window size should 
be scaled based on the parameters of the application where the 
SAD algorithm is used.  The disparity range will depend on 
the distance between the two cameras, as well as the distance 
from the camera to the object of interest.  
  

III.  NVIDIA GPU PLATFORM 
The NVIDIA GeForce 940M graphics card is the primary 

hardware architecture used to run the SAD algorithm. The 
GM 108 has three Maxwell Streaming Multiprocessors 
(SMMs). Figure 3 shows the architecture of an SMM. 

 

 
 

Figure 3. Maxwell Streaming Multiprocessor (SMM) block diagram. 
(excerpted from [6]). 

 
There are 128 cores in each SMM. Each SMM is 

partitioned into four separate processing blocks, each with its 
own instruction buffer, scheduler, and 32 cores, as well as a 
16,384 x 32-bit register file [6]. There are two L1/texture 
caches per SMM that act as coalescing buffers for memory 
accesses. There is also 64 KB of shared memory that can be 
programmed and allocated by the programmer. Since it is 
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located on-chip like cache memory, the shared memory can 
be accessed very quickly. Thus, the explicit streaming of data 
to shared memory is the focal point of the SAD algorithm 
optimization for this paper. 

 
IV. PROGRAMMING PARADIGM 

 OpenCL was used as the Application Program Interface 
(API) in developing the parallel SAD program on the GPU. It 
is a heterogeneous programming framework [7]. OpenCL 
kernels are modeled in a similar manner to Single Program 
Multiple Threads (SPMT), where parallel threads (i.e., work-
items) execute instances of the kernel to map effectively on 
both scalar and vector hardware. The OpenCL specification 
can be divided into four models: Platform model, Execution 
model, Programming model, and Memory model [8]. The 
Platform model specifies that there is one host processor that 
coordinates execution of kernels, and that there are one or 
more device processors that actually execute the kernels. Each 
device is modeled as a group of compute units, which are 
further divided into processing elements where each element 
can execute instances of kernels. The Execution model defines 
how the OpenCL environment is configured by the host, and 
how the host may direct the devices to perform work. The 
Programming model defines how concurrency is mapped to 
physical hardware. Each unit of concurrent execution is 
defined as a work-item, which executes the kernel function 
body. The work-items are indexed in an n-dimensional range, 
also known as NDRange. To achieve scalability, the work-
items of an NDRange can be divided into equally-sized 
workgroups. Synchronization of work-items is only possible 
within workgroups (see Figure 4). The workgroup and global 
work-item size dimensions are specified by the programmer 
and must be a power of two number. Also, the global work-
item size must be evenly divisible by the workgroup size [8]. 

 

 
Figure 4. OpenCL Programming and Memory models [5]. 

 
The Memory model defines memory object types, and the 

abstract memory hierarchy that kernels use regardless of 
actual underlying hardware architecture. Memory in OpenCL 
is divided into host memory and device memory [8]. Device 

memory is divided into global memory, local memory, private 
memory, and constant memory (see Figure 4). Global memory 
can be read from or written to by all work-items running on 
the device. Data transferred to or from the host will reside in 
global memory. Reads and writes may be implicitly cached 
depending on the capabilities of the device [7]. Local memory 
is shared by work-items in a workgroup only. It is typically 
mapped to on-chip memory that has shorter latency and higher 
bandwidth than global memory. Private memory is visible 
only within a work-item. Constant memory is a region of 
global memory that remains constant during kernel execution.  

  The memory model of OpenCL is well suited for 
NVIDIA GPUs. Each core running a thread, or OpenCL 
work-item, contains dedicated private memory. All 
workgroups can communicate through global memory located 
in off-chip GPU memory.  SMMs have dedicated shared 
memory for communication between work-items in a 
workgroup, which fits the role of OpenCL’s local memory.  
Accessing this shared memory is fast as long as there are no 
bank conflicts between threads [9]. Shared memory is divided 
into equally sized memory banks, which can all be accessed 
simultaneously. If there are multiple requests to the same 
bank, the requests become sequential, incurring memory 
access delays. Therefore, for maximum performance, bank 
conflicts should be minimized by considering how the 
memory addresses are mapped. 

  
V. DESIGN AND IMPLEMENTATION 

In the OpenCL Platform Model, the host sends commands 
to the device to transfer data between host and device 
memories, as well as to execute the parallel device code. The 
host (an Intel Core i5) executes serial code and is typically a 
CPU. The host is responsible for setting up the execution 
pathway to and from the device, and requires a lengthy setup 
process which begins by identifying the platform and device. 
Memory buffers must be created to link objects on the host to 
objects in the kernels executed on the device. For this 
research, memory buffers are needed for the left and right 
input image values, the output SAD values, the image 
dimensions, the padded image dimensions (to round up to the 
closest power of 2 number in each image dimension as 
explained below), disparity level, window dimensions, work 
item dimensions, and conditional values. 

The device is responsible for execution of the kernel as 
directed by the host. Initially, the input images, disparity 
output, and other kernel parameters defined in the previous 
section are transferred from the host memory and allocated to 
the global memory of the device. In this paper, the images 
used are the Venus pair, used in several benchmarks amongst 
stereo vision researchers. Given the 384 pixels x 434 pixels 
image size, there are 162,222 Disparity Levels to be calculated 
based on the SAD algorithm (see Section II). Each one is 
executed on a work-item. Because of the size restriction by 
OpenCL, we must round up the image dimensions to the 
nearest power of 2 in order to process every pixel of the image 
pair. Thus, the image values of L and R are padded with values 
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of 0 to reach dimensions of 512 x 512. The partitioning of 
work-items into workgroups is determined by the OpenCL 
local-item size and global-item size dimensions. In this 
NVIDIA GeForce 940M GPU architecture, each work-item 
from OpenCL is operated on a GPU core. Each workgroup is 
operated on an SMM with 128 cores. Thus, 128 work-items 
can run in parallel. Since this GPU has 3 SMMs, a total of 3 * 
128 = 384 work-items can run in parallel. If the GPU were to 
run at maximum occupancy, there would be 
 .iterations of the SAD algorithm needed 423=ۀ384⧵162222ڿ

To differentiate and track each work-item, the OpenCL 
API function get_global_id() is used to return its unique 
global ID value [8]. This is important because the instances 
of the kernel operating on SAD values of the image edges 
must be treated differently. In this paper, without losing the 
generality of the parallel algorithm, we use a common 
window size with 5 pixels x 5 pixels for the SAD algorithm 
for performance analysis. A reference window in an image 
compares to 64 iterations of candidate windows in the 
counterpart image. Note that the SAD values on the border 
cannot be computed because the 5 x 5 windows will be 
incomplete. Thus, the SAD values cannot be computed for 
kernels two pixels within each border. In the device kernel 
code, this padding is implemented through a conditional 
statement with a reference to the global ID of the kernel to 
avoid the incomplete calculations of such close-to-border 
SAD values. Upon finding the minimum SAD value for all 
64 candidate windows, the corresponding disparity level 
must be saved to the disparity map output. The output matrix 
is stored as an integer array in global memory.  

The performance of the SAD algorithm can be first 
enhanced through loop unrolling. Loop unrolling involves the 
rewriting of loops into a repeated sequence of similar 
independent statements. This helps eliminate the loop 
overhead and also hides stalls due to data dependencies [10]. 
The original implementation of the SAD algorithm in this 
paper consists of a nested for loop that increments the 
kernel’s SAD value a total of 25 times, one for each pixel in 
the 5 x 5 window. The disadvantage to this approach is much 
lengthier code, which is particularly harmful to embedded 
systems with limited instruction memory.  

The other important factor to affect performance is the 
workgroup size; i.e., the number of work-items defined in a 
workgroup. In our design, the workgroup size varies from 32 
to 512. Based on the feature of the GPU hardware, there are 
128 x 3 = 384 cores. 512 is that number’s next power of two 
value. Thus, a workgroup size greater 512 is not considered 
due to the mismatch to the hardware.  

 
VI. DATA STREAMING OPTIMIZATION 

The first SAD algorithm in this paper was implemented to 
access all data from the GPU’s global memory. Global 
memory is visible to all of the Streaming Multiprocessors in 
the GPU, but is located off-chip, so accesses to global memory 
incur heavy delays. As addressed in Section III, The OPENCL 
local memory is mapped to the SMM’s shared memory, which 

is shared by all of the cores in that single SMM, and is stored 
on-chip (see Figure 3). By taking advantage of this local 
memory and the mapping scheme for utilizing the spatial and 
temporal localities of data, significant speedup can be 
achieved for the SAD algorithm. 

Datatype optimizations are possible through OpenCL. As 
mentioned in Section III, memory copying incurs 
performance penalties because bandwidth and power wasted 
on data transfer. We must consider the input format of our 
algorithm, which is made up of pixel intensity values between 
0 and 255. This means that only an 8-bit unsigned integer is 
required to store the input value. Previously, we have used 
32-bit signed integers to transfer from the CPU host to the 
GPU device. OpenCL does not provide support for 8-bit 
unsigned integer types, but it does allow for an 8-bit unsigned 
char type. By typecasting the 32-bit integer pixel intensity 
input values to type unsigned char, we can reduce the 
memory copied to the GPU by 75%. This produces a 
noticeable decrease in execution time.  

 
A. Centralized Memory Access 

 The first implementation of the data streaming 
optimization requires that the first work-item in the first row 
of a work-group to process its kernel will populate local 
memory with the necessary pixel values needed by the 
workgroup row. This is considered the centralized memory 
access approach to data streaming optimization. The 
centralized approach of having one work-item load local 
memory for its workgroup is depicted in Figure 5. 

 

 
Figure 5. Centralized loading approach visualization. 

 

 

 
Figure 6. Round-robin local memory loading. 

 

Figure 6 shows the data streaming from the global 
memory to the local memory. The working set, WS(i, j), 
shows the amount of memory needed to determine Disp(i,j). 
In Iteration 1, 5 rows of global memory are loaded to local 
memory. In subsequent iterations (for determining Disp(i+1, 
j), Disp(i+2, j), etc.), only 1 new row needs to be loaded and 
to replace an existing row in the local memory in a round-
robin fashion to fulfill the local memory accesses to their 
corresponding working sets. This approach reduces the data 
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accesses by utilizing the spatial and temporal localities in 
local memory. 

Modifications to the host-side code are required for 
implementation of local memory optimization. The size of 
local memory allocated on the device must be specified by 
the host code. For the NVIDIA GeForce 940M GPU, the 
local memory capacity is 49,152 bytes. For this 
implementation, using a 5 x 512 local memory size, where 
each value is represented by a 4-byte integer, leads to 5 x 512 
x 4 = 10,240 bytes allocated in local memory. Both left and 
right images require their own local memory allocations, 
leading to 20,480 bytes allocated total. This local memory 
allocation is explicitly declared when setting the kernel 
argument for the device code kernel. Normally, this kernel 
argument is linked to a memory buffer previously defined in 
the host code. However, data in local memory is private to 
the workgroup in the device. Thus, data is never read from or 
written to local memory from the host directly.  

Another modification needed for the host code is the 
declaration of a Boolean array named rowDone, which keeps 
track of completed rows of work-items in each workgroup. 
The size of this array is equal to the height of the padded 
image times the number of workgroups along the width of the 
original image. The implementation of this array allows 
work-items in consequent rows to check the status of the 
work-items in the previous rows prior to completing 
execution. This array must be declared as a readable and 
writable memory buffer since it must be read from and 
written to by different work-items. 

The first implementation of this data streaming 
optimization requires that every work-item populate local 
memory with the relevant data for its workgroup. Each work-
item begins by defining boundaries for the data that must be 
loaded to local memory. The work-items in the first row of 
the workgroup will load local memory first and then perform 
the SAD algorithm. The following row will wait until this 
previous row has finished execution, and will then replace 
one row of local memory with the next row of data from 
global memory.  When the last work-item of a row has 
finished execution, it will set rowDone to “true” for its 
corresponding row and workgroup. This is possible because 
in OpenCL, work-items execute in order along rows of work-
items in a workgroup.  

 
B. Distributed Memory Access 

The Centralized Memory Access approach will introduce 
increased workload to the first work-item as the number of 
work-items in a workgroup increases. This is due to the pre-
load of a larger number of working sets. Thus, it may 
eventually cause workload imbalance among the work-items.   
In this paper, the second approach to data streaming 
optimization is distributed memory access. We attempt to 
distribute the task of loading to local memory equally among 
all of the work items. In this manner, the work is divided 
evenly within each workgroup, and no work-items are left 
idle. Figure 7 depicts this process of distributed loading for 

one row of work items. In Iteration 1, each work-item loads 
5 pixels, where the center pixel has the same image 
coordinates as the global ID of that work-item. Then, in the 
subsequent iterations, the pixels from the next rows will be 
read by the corresponding work-item and be located to the 
local memory buffer in a round-robin fashion. The mapping 
is the same as shown in Figure 6.  

  

 
Figure 7. Distributed loading approach visualization. 

 
Conceptually, this implementation is much simpler than 

the centralized approach. Previously, the centralized 
approach involved multiple if-else statements to check the 
row position and whether the previous row of work-items 
completed execution. Without these conditional statements, 
the distributed approach saves execution time  

For implementation of this distributed approach to the 
data streaming optimization, modifications are made to the 
kernel code alone. The scenario in Figure 7 where each work-
item loads exactly the same number of pixel values from to 
local memory is ideal, but not feasible. The work-items are 
executing in parallel, but the latency to load the pixels across 
the boundaries of local memory is significantly higher than it 
of the others due to the lack of spatial locality of accessing 
their local memories across the boundaries. This may result 
in some work-items attempting to calculate SAD disparity 
values before these lagging work items have completed 
loading the required values. Therefore, they must be 
synchronized with a barrier. All work-items in a workgroup 
must execute the OpenCL function 
“barrier(CLK_LOCAL_MEM_FENCE)” before they can 
proceed, and the CLK_LOCAL_MEM_FENCE flag ensures 
that local memory accesses are visible to all work-items in 
the workgroup [8]. 

 
VII. EXPERIMENTAL RESULTS 

The performance of the three implementations 1) global 
(the first implementation with global memory access) 2) 
centralized local (Section VI A), and 3) distributed local 
(Section VI B) are compared.  

There is a trend of declining execution time as the 
workgroup size increases in Figure 8. It can be explained as 
the better mapping of the parallel SAD algorithm to the GPU 
hardware. A larger workgroup will allow more work-items to 
share local memory, and hence, have better temporal and 
spatial locality in memory accesses. As expected, the SAD 
algorithm with global memory access had the worst 
performance as the workgroup size was set smaller than 256.  
At the largest workgroup size of 512, the two aforementioned 
approaches have similar execution times at 18.03 ms, and 
18.01 ms, respectively.  This is explained as the increase of 
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overhead due to the workload imbalance on the first work-
item, which is responsible for pre-loading all working sets to 
the local memory for the entire workgroup. In contrast, the 
distributed approach to the local memory data streaming 
optimization remains consistently faster than the others, 
ending up at 4.88 ms for the same workgroup size of 512. 
4.88 ms for one disparity calculation would lead to 1 / 
0.00488 ≅ 205 frames per second, without taking into 
consideration the overhead between frames. 

 
 
 
 

 
 

 
 
 
 
 

Figure 8. Comparison of SAD algorithm Performance                          
across Different Optimizations. 

 

 
 
 
 
 
 
 
 
 

 

 

Figure 9. Comparison of Rate of Decrease from Previous Smallest 
Workgroup for SAD Algorithm Across Different Optimizations. 

 
As the workgroup size gets larger, the rate of decrease in 

execution time generally decreases, as depicted in Figure 9. 
The centralized local approach consistently decreases the rate 
of decrease until it achieves a negative rate from workgroup 
size 128 to 256 and workgroup size 256 to 512. A negative 
rate of decrease means that the execution time actually 
increased. The other approaches have a consistent rate of 
decrease between 40 and 50%, until reaching a workgroup 
size of 128. For the three approaches described previously, 
the rate of decrease is diminished but still positive when 
transitioning from workgroup sizes of 128 and above. 
Performance is expected to peak at workgroup size 128 and 
drop off as the workgroup size increases, but performance 
continues to increase. These results can be partially attributed 
to the implicit use of spatial/temporal locality of memory 
accesses stored in caches by OpenCL. The continuing 
performance gain may also be explained by the number of 
kernels queued to an SMM exceeding the number of cores 
available, leading to a queuing delay. Each SMM has 4 

instruction buffers that delegate instructions to their 
respective cores, and they are loaded with kernel instances 
each time a workgroup is executing. Larger workgroup sizes 
mean fewer workgroups, and fewer times the instruction 
buffers must be loaded. 

 
VIII. CONCLUSION 

 This paper has shown that the SAD algorithm can 
be optimized on a GPU platform through OpenCL by explicit 
programming of local memory data loading and implicit data 
caching. Code optimizations and explicit caching of global 
memory have been observed to increase performance. 
Switching from a centralized approach to a distributed 
approach to local memory loading further improves 
performance.  This work can be applied to embedded systems 
running ADAS applications where immediate distance 
calculation of objects is crucial and life-saving. With a 
maximum disparity map calculation rate of roughly 205 
frames per second on a CPU-GPU heterogeneous 
environment, this algorithm optimization will surely make a 
beneficial impact when implemented on real-time embedded 
systems in automobiles. The work can scale to GPUs with 
more cores, and to higher resolution images. The code would 
be very similar in either case. In the future, we hope to 
continue the distributed memory access optimization 
approach by parallelizing the loading in a vertical fashion for 
each workgroup, which will enable us to compute multiple 
disparity values from the same kernel. We would also like to 
port this code to an embedded platform to see if the real-time 
performance gain will carry over as suspected. 
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