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Abstract—High Level Synthesis (HLS) allows an automatic trans-
lation from high level C/C++ descriptions into Register Transfer
Level (RTL) hardware designs. HLS enables to design at a high
level of abstraction that offers one to focus on high level concepts
within less amount of design time. Once a specific data intensive
application is considered to be accelerated in hardware, its
memory access pattern must be exploited for higher performance.
Most of the time, an application suffers from a high amount of
memory access latencies. To reduce the memory access latencies,
we use widely known prefetching technique to mask the latencies.
In this paper, we enabled a data prefetching scheme specified at
the C/C++ descriptions level via VivadoTMHLS, which overlaps
double-buffered prefetching and computation.

Keywords–Prefetching; High level synthesis; Memory access
time; Off-chip memory latency; Application-specific memory hier-
archy.

I. INTRODUCTION

Modern VLSI technology allows Integrated Circuit (IC)
manufacturers to build a single IC chip consisting of billions of
transistors [1]. This advancement in VLSI technology requires
complex Computer-Aided Design (CAD) tools to place and
route billions of transistors. Advanced CAD tools must deal
with this complexity and offer an acceptable design time.
High Level Synthesis (HLS) tools allow hardware and software
designers to create Register Transfer Level (RTL) hardware ar-
chitectures from C/C++ high level descriptions [2]–[4]. In turn,
current RTL synthesizers convert RTL specifications into Field-
Programmable Gate Array (FPGA) bitstreams or IC chips.
When performance is critical for the applications, designing
application-specific hardware accelerators becomes inevitable.
FPGAs offer reconfigurability for implementing arbitrary digi-
tal circuits: one can exploit all the parallelism in the algorithm
to get more performance. FPGAs are used in many different
fields from networking to data centers. Currently, they can also
be accessed in the cloud. One can run customizable Xilinx
FPGAs in the Amazon Elastic Compute Cloud (Amazon EC2)
F1 instances [5].

When we consider a specific application that needs to be
accelerated in hardware, it is of utmost importance to consider
how the application is accessing the memory, since memory
access time limits the peak performance of many data intensive
applications. To reduce the memory access time, the mem-
ory access pattern of the application is utilized by designing

application-specific memory hierarchies. Attaching caches in
between memory and the processor, or hardware and software
prefetching helps to reduce the memory access penalties. Since
HLS generates an application-specific hardware accelerator
from a high level description, it is very important to exploit
the static memory references pattern inherent in the algorithm
to be accelerated by the HLS. For this purpose, we questioned
whether today’s HLS tools generate prefetching hardware from
C/C++ high level description. The key idea of our methodology
is to take advantage of the fixed static memory pattern which
is inherent in the algorithms, by requesting the data, which will
be referenced soon, beforehand.

The rest of the article is organized as follows: Section II
overviews the related work on caches and prefetching. Our
motivating example for prefetching via VivadoTM is given in
Section III. Design philosophy is described in Section IV. We
discuss our implementation results on a Xilinx FPGA device
in Section V and conclude in Section VI.

II. RELATED WORK

Microarchitectural optimizations have been utilized to im-
prove the on-chip cache bandwidth and hit rate for a given set of
applications in state of the art methods on FPGA memory hier-
archies. Caches exploit temporal and spatial locality by keeping
recently used data in the cache and also bringing the nearby
data into the cache, respectively. General memory hierarchies
use the locality in the memory references of the algorithms
via caches. In fact, caches eliminate several memory accesses,
however, they will not eliminate the memory latency [6]. When
a referenced data at a given address is not in the cache, a
cache requests the data from the main memory and causes the
processor to wait until the requested data arrives at the cache.
Caches are efficient ways of connecting a general purpose
processor to a memory.

In [7], the authors automatically construct a multi-cache
architecture by automating the cache sizing to achieve higher
cache bandwidth and hit rate. In contrast to [7], the method
here presented focuses on fetching data before they are used
in the execution in order to hide the memory access latency.

Prefetching is a known technique that accesses and stores
data into a temporary buffer before it is needed; it aims to
hide memory latencies. Applications having regular memory

30Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-658-3

ACCSE 2018 : The Third International Conference on Advances in Computation, Communications and Services



accesses, which are deterministically known prior to the execu-
tion, can take advantage of prefetching whereas the other appli-
cations with random memory accesses cannot utilize prefetch-
ing optimizations. Hardware-based data prefetching reduces the
processor stall time by fetching data into the local memory
before its use in the processor [6].

Recent work has used two data preloading techniques
as prefetching and access/execute decoupling for accelerator-
based systems [8]. The framework adds tags to accelerator
memory accesses so that hardware prefetching can effectively
preload data for accesses with regular patterns. On the other
hand, our work does not include any tag inclusion for memory
requests. Our technique employs the double-buffered prefetch-
ing and computation.

A software prefetch mechanism, which exploits the access
pattern of multimedia and image processing applications, by
using the DMA mode is proposed in [9] to improve the
performance and reduce the overall power consumption. In
contrast to [9], the present study focuses on high level synthesis
of an application-specific hardware architecture with a data
prefetch unit.

Automatic insertion of application-specific prefetching units
is valuable in terms of hiding memory access latencies [10].
As stated in [10], automated synthesis of prefetching units can
be enabled if the information is provided about when data is
available for prefetching and when it is used by the application.
Automatic synthesis of application-specific prefetching units,
which fetch data from off-chip memory and store it in the
on-chip caches in advance, is also proposed as a future work
in [11]. LEAP scratchpads [12] are extended to automate the
construction of application-specific memory hierarchies [11].
As emphasized by Winterstein et al. [11], “Knowledge about
access patterns will also be used to implement application-
specific prefetching and request merging”. With exploiting
access patterns that is inherent in the algorithm, application-
specific prefetching is a key to improve the performance of
memory intensive applications.

The key element of our approach is to take advantage of the
static memory access pattern at high level, which is inherent
in the algorithm, by requesting the data in advance. The
prefetching technique, which is shown by the PMM algorithm
(Algorithm 2), uses a manual fusing of two inner loops and
double-buffered prefetching, so that a few memory latencies
are eliminated.

III. MOTIVATING EXAMPLE

Our motivation relies on the fact that data that will be
referenced in the future can be prefetched into a buffer on the
chip before they are used in a computation, which is widely
known in the area as a hardware prefetching technique. We
investigate whether such a hardware prefetching technique can
be enabled at a high level of abstraction and whether the
corresponding RTL design can be generated using an HLS tool.
For our experiments, we use the VivadoTM HLS tool version
2017.4.

Let us consider matrix multiplication, since it is employed
in many different fields of study from control theory to machine

learning algorithms. Matrix multiplication involves several load
operations that can be prefetched before they are used in
the multiply and add execution unit. Matrix multiplication is
defined as

C = A× B

where A ∈ ZM×K , B ∈ ZK×N and C ∈ ZM×N . In order to
compute C, Equation 1 is used.

cij =

K∑
k=1

aikbkj (1)

where 1 ≤ i ≤M and 1 ≤ j ≤ N .

Once it is infeasible to store the entire input and output ma-
trices within on-chip memories, one should store the matrices
in main memory (which usually is outside the chip), fetch the
data into the chip, do the computation and store back the result
into the off-chip main memory.

While designing application-specific hardware, prefetching
data from memory instead of caching provides more perfor-
mance since a prefetching design avoids cache misses. Cache
misses occur once referenced data is not in the cache memory,
but, in a prefetching technique, the data is usually brought to
be near the computation so that the computation never waits
for the data.

While accessing the memory via caches, there is a miss
penalty. The miss penalty decreases the peak performance. With
perfect prefetching that masks all the memory latencies within
the application, there is no miss penalty, when compared to
matrix multiplication with caches. Caches exploit the locality
information inside consecutive memory references. Instead of
such a general solution that is provided by caches, we exploit
application-specific memory patterns and generate memory
references to data before the data is needed by computation.
We propose a prefetching mechanism that is implemented via
HLS, for a matrix multiplication operation. This prefetching
mechanism can also be applied to other application-specific
hardware designs if data reuse exists and data references are
static.

IV. METHODOLOGY

Algorithm 1 shows the pseudo code which is very close
to C/C++ description for the matrix multiplication that we
choose as a reference. Translating this C/C++ description using

Algorithm 1 RMM: Ordinary Matrix Multiplication

Input: An×n and Bn×n matrices
Output: Cn×n matrix

1. for i = 0 to n− 1 do
2. for j = 0 to n− 1 do
3. S ← 0
4. for k = 0 to n− 1 do
5. S ← S +A[j][k] ∗ B[k][i];
6. end for
7. C[j][i]← S;
8. end for
9. end for

10. return C
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VivadoTM HLS, generated hardware accelerator accesses to
the main memory through three Advanced eXtensible Interface
(AXI) interfaces for its three matrices. In main memory, three
matrix addresses are not overlapped and referenced with dif-
ferent offset values. Our RMM algorithm, which we use as a
reference, loads values of the input matrices from memory, does
the computation, stores the result back to the main memory and
continues with the next iteration. There is always a memory
latency for each reference to data; this latency is the minimum
time interval between the point in time a data is requested and
the point in time the data is used in a computation.

Algorithm 2 describes our proposed prefetched matrix
multiplication method. While one of the matrix row (column)
buffers is used for the computation, the other matrix row
(column) buffer is filled up with the next row (column) of the
matrices that will be used next. This kind of double-buffered
prefetching avoids stalls. As a result of converting the imperfect
loop nest to a perfect loop nest, the HLS tool flattens the loop
nest and saves extra cycles that would otherwise be spent when
entering or exiting the loops [13]. A perfect loop nest refers
to a nested loop where only the innermost loop has a body.
Thus, in Algorithm 2, we have three nested loops and only the
innermost loop has the body.

Algorithm 2 PMM: Prefetched Matrix Multiplication

Input: An×n and Bn×n matrices, CB and C2B refers to the
column prefetch buffers, RB and R2B refers to the row
prefetch buffers. S stands for the accumulated sum.

Output: Cn×n matrix
1. for r = 0 to n− 1 do
2. CB[r]← A[r][0]
3. RB[r]← B[0][r]
4. end for
5. for i = 0 to n− 1 do
6. for j = 0 to n− 1 do
7. for k = 0 to n− 1 do
8. if k == 0 then
9. S ← 0;

10. end if
11.

S+←((j%2 == 0) ? RB[k] : R2B[k]) ∗
((i%2 == 0) ? CB[k] : C2B[k]);

12. if j%2 == 0 then
13. R2B[k]← A[(j + 1)%n][k];
14. else
15. RB[k]← A[(j + 1)%n][k];
16. end if
17. if i%2 == 0 && k == 0 then
18. C2B[j]← B[j][i+ 1];
19. else if i%2 == 1 && k == 0 then
20. CB[j]← B[j][i+ 1];
21. end if
22. if k == (n− 1) then
23. C[j][i]← S;
24. end if
25. end for
26. end for
27. end for
28. return C

V. RESULTS

We described the RMM and PMM algorithms in C language
and generated the hardware designs using VivadoTM HLS
tool version 2017.4. We also prototyped the RMM and PMM
accelerators on the Nexys 4 Double Data Rate (DDR) FPGA
board which contains an Artix-7 FPGA and measured the actual
timings on the FPGA board. We designed a system-on-chip
(SoC) architecture (see Figure 1) to verify and measure the
latencies on FPGA.

Figure 1 illustrates the block design of the system-on-
chip used for our experiments on the FPGA. The MicroBlaze
processor is employed in this SoC to configure all the periph-
erals and measure the elapsed time of the RMM and PMM
accelerators. The design contains a timer peripheral to measure
the elapsed time and a Universal Asynchronous Receiver-
Transmitter (UART) peripheral to see the data and the values
taken from the timer. The Nexys4 DDR FPGA board contains
a Micron MT47H64M16HR-25:H DDR2 memory component
and can be accessed through a DDR controller provided by
VivadoTM design tool. We deployed this peripheral in our SoC
and accessed it through an AXI interconnect.

In order to verify whether the generated PMM hardware
does prefetching, we set up an experiment on the Nexys 4
DDR FPGA board and monitored the DDR2 slave port to
check the incoming read and write addresses and their order.
Figure 2 shows the waveform of the DDR2 S AXI signals
including s axi araddr (slave read address) and s axi awaddr
(slave write address). One can see that the first result (c00) of
the matrix product is available at the 2048th cycle, which we
marked on the Figure 2. The beginning address of the matrix
B, A and C is 0x80000000, 0x80100000 and 0x80200000,
respectively. Slave write address at this point is 0x0200000,
which is the address of c00, as exactly expected. The address
of the beginning element of the second row, a10, is 0x0100100.
As one can observe that the 0x0100100 address is being fetched
before the write operation of the first result c00. It means that
while execution stage is computing the c00 element, it starts
to prefetch the second row of one of the input matrices which
will be used in the next j iteration. Here, only one element of
the second column of the other input matix is prefecthed on
every j iteration.

Figure 3 shows the waveform of the same DDR2 signals as
in Figure 2. Now, the first result (c00) of the matrix product is
available at the 2047th cycle which we marked on the Figure 3
with a marker. Slave write address at this point is 0x0200000
which again indicates the address of c00. The address of the
beginning element of the second row, a10, is again 0x0100100.
In this case, 0x0100100 address is being referenced after the
first computation is finished. So, there is no prefetching in this
RMM design.

We take advantage of the intrinsic memory access pattern
of a specific application to decrease the total memory access
latencies by overlapping double-buffered prefetching with com-
putation. Thanks to this approach, we implemented prefetching
via the HLS tool and achieved a smaller amount of total main
memory access time as compared to an an algorithm without
prefetching, as listed in Tables I and II. A careful scheduling
technique in our prefetched matrix multiplication algorithm
also helps us to totally avoid memory access stalls. As a
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Figure 1. Block design view captured from VivadoTM Design Suite 2017.4 version. MicroBlaze is the processor where we configure and control all the
peripherals including DDR2 controller, Timer and UART.

Figure 2. A window of the timing diagram for the PMM captured from Chipscope tool of the VivadoTM design suite 2017.4. Slave port of the DDR2
component signals are captured in this diagram.

TABLE I. RESULTS OF PMM AND RMM DESIGNS ON ARTIX-7 FPGAS. THE VALUES ARE LATENCY ESTIMATES GATHERED FROM
VIVADOTM HLS 2017.4.

Design Size BRAM 18K DSP48E FF LUT
Latency
[cycles]

RMM
16

6 3 1908 2311 10497
PMM 10 3 3108 4359 4325
RMM

32
6 3 1924 2319 58369

PMM 10 3 3126 4384 33013
RMM

64
6 3 1940 2327 364545

PMM 10 3 3144 4398 262421
RMM

128
6 3 1956 2341 2506753

PMM 10 3 3162 4416 2097493
RMM

256
6 3 1972 2357 18415617

PMM 10 3 3180 4444 16777685
†All designs are targeted to 10 ns clock period.

consequence, the proposed prefetching method is achieving
higher performance thanks to the HLS tool.

Table I summarizes the utilization and performance results
taken from VivadoTM HLS 2017.4 for PMM and RMM hard-
ware designs with different matrix sizes. For instance, when we
consider 16×16 matrices for the matrix multiplication, PMM-
16 design takes 4325 cycles to complete the operation which
is better than the RMM-16 in terms of latency. Since we use
block memories (BRAM 18K) to implement four buffers in the
PMM, it requires 4 more buffers than the PMM for all sizes.
Approximately, 1.5 times more Flip-Flop (FF) and 2 times more
Lookup Table (LUT) is required in the PMM. Once application

performance is critical (which is often the case in the hardware
accelerators), prefetching provides more performance, but with
an area overhead.

Table II lists the performance estimates and the actual
hardware results in terms of cycles of PMM and RMM with
matrix size of 64. As one can see, the PMM-64 is completing
the matrix multiplication approximately 1.6 times faster than
the RMM-64. Due to the latencies in the AXI interconnect and
the DDR2 memory, actual hardware measurements are higher
than the Software (SW) estimates. The software estimates
are measured without considering the latencies caused by the
accelerator interfaces.
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Figure 3. A window of the timing diagram for the RMM captured from Chipscope tool of the VivadoTM design suite 2017.4. Slave port of the DDR2
component signals are captured in this diagram.

TABLE II. RESULTS OF PMM AND RMM DESIGNS ON ARTIX-7 FPGAS. THE VALUES ARE GATHERED FROM FPGA IMPLEMENTATION.

Design
SW Estimates HW Results

[cycles] [cycles]
RMM-64 364545 3188847
PMM-64 262421 1960804
†All designs are targeted to 10 ns clock period.

VI. CONCLUSION

HLS provides an improved design methodology because
it reduces design time and because it allows specifying an
algorithm at a high level. Design space explorations becomes
prominent and applying high level concepts without touching
the difficult low level abstraction layer is possible. Memory
bandwidth is the bottleneck that limits the performance of
many different data intensive applications. In order to decrease
the memory latencies, we enabled a prefetching mechanism
using the HLS tool and obtained results with a case study
of the matrix multiplication algorithm. The main advantage of
prefetching is that one can mask all the memory latencies if
computation is taking more time than total memory access time
and if dependences permit. If the memory access pattern of an
application is static, prefetching is an efficient way to improve
performance and can be described by VivadoTM HLS.

Note that while currently the VivadoTM HLS tool can-
not automatically add prefetching to a C algorithm as we
have accomplished in the present paper, we are not claiming
that an HLS compiler in general cannot automatically create
an application-specific hardware with prefetching from a C
algorithm. For example, a compiler technique called loop
fusion [14] applied to two loops in sequential C code at an
intermediate step of possible compiler transformations starting
from the original RMM algorithm and ending with the PMM
algorithm:

1) loop to do computation on the current row (column)
buffer

2) loop to do prefetching to fill the next row (column)
buffer

can result in a single loop where the the next row (column)
is prefetched into the next row (column) buffer while compu-
tation proceeds at the same time on the current row (column)
buffer.

However, one compiler challenge in achieving perfect
prefetching with loop fusion is to fuse loops of unequal shapes,
which is in effect used by the prefetching technique of the
present paper: consider a loop (1) to perform computations
on the current column buffer which is a doubly nested loop
(the j loop, which includes the k loop as an inner loop) and
consider a loop (2) for filling the next column buffer which
is an ordinary singly nested loop. Loops (1) and (2) must
be fused to accomplish effective prefetching. In the present
PMM algorithm a manual fusing has been done by moving an
incremental prefetching of 1/n’th of the next column of B, all
the way into the inner k loop, which is an example of fusion
of loops with unequal shapes.

Further work is needed to automatically design an
application-specific perfect prefetching mechanism through
HLS in order to fully mask memory latency time (i.e., so
that referenced data is always in the SRAM of the processor).
A worthwhile research direction is to schedule and software
pipeline a general sequential code loop nest, and to generate
parallel hardware and a memory hierarchy from the code
such that each memory operand is already in a register or
SRAM location when it is needed for computation, whenever
dependences permit [15].
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