
GPU Based Burning Process Simulation

Ran Jiao, Liu Yonggan, Hao Aimin

State Key Laboratory of Virtual Reality Technology and Systems, Beihang University

Beijing, China

E-mail: ranjiao@gmail.com

Abstract—We present a method of simulating the process of

burning phenomena on generic polyhedral objects. By

mapping the object’s surface to a 2D space, the fire front

expansion can be calculated efficiently on GPU (Graphics

Processing Unit). The state of decomposition is updated

according to the fire front and the consumption of solid fuel.

During the simulation loop, both the fire front and the solid

fuel consumption are updated respectively. In order to achieve

a better performance, most routines of the simulation are

processed on GPU. The entire simulation could run at an

interactive rate on a normal PC.

Keywords-burning; fire spreading model; deformation.

I. INTRODUCTION

Combustion is an important natural phenomenon which
is widely used in virtual environment, such as video games,
industrial simulations, etc. Although lots of researches are
focused on fluid simulation, such as water, fire and smoke,
most of these works are dedicated to fluid simulation itself.
Little attention was paid to fire propagation and the objects
being burnt. In today’s game development, there’s still no
usable technique that can simulate solid combustion.
However, real-time simulation of object's combustion
process is increasingly attracting more attention, since it can
dramatically improve the quality of fire simulation. Although
physics based approach can produce convincing result [1],
it’s still too expensive for real-time application. Most of
modern game engines like CryEngine 3 (game engine
released by Crytek) and Unreal Engine 3 (a widely used
computer game engine developed by Epic Games) are still
using simple deformation animation [2] and particle system
approach [3], which end up with coarse results and requiring
artists to tune every burning solid.

While trying to simulate the process of burning, many
physical concepts are involved. Firstly, the material and the
geometrical structure of the object being burnt can affect the
speed of fire propagation, which will affect the burning
process significantly. Secondly, along with the combustion,
the object will lose combustible stuff and decompose, which
will change the shape of the object and have an influence on
the fire propagation as well.

We demonstrate a real-time simulation method of
burning phenomena on generic polyhedral objects. The main
contributions of this paper are as follows:

 A GPU based algorithm to model the expansion of
fire on polygon surface.

 Introduce a modified mass-string model to describe
the physical deformation of a decomposing and
burning mesh.

 Raise a method which can detect polygon self-
intersection so as to avoid incorrect rendering results
after topological structure changes.

Most routines of this method could be done on GPU. The
burning state is stored as textures and additional vertex
information in video card's memory. Since all data structure
is stored in textures, nearly all the calculation is able to be
done on GPU. The simulation quality of fire expansion could
be adjusted by simply modifying the resolution of the
burning state texture. The topological structure changes of
the object during the combustion are updated correctly.
Meanwhile, the accuracy of the simulation is not affected at
all. This method can be applied easily to most polygon
meshes.

The next section presents some related work about
deformation, fire simulation and combustion simulation.
Section III introduces a model simulation algorithm,
describing how fire spreads on a mesh. There we will
describe our method and how to process the whole algorithm
on GPU. Section IV describes the physics model calculating
the deformation of a burning mesh. The overall performance
is excellent since the algorithms of both fire propagation and
mesh deformation are calculated efficiently on GPU. Final
results are presented in Section V.

II. RELATED WORK

A. Deformation

Free-form deformation (FFD) is widely used in both
commercial software such as 3D Studio Max and real-time
simulation as an important tool for computer-assisted
geometric design and animation. FFD is firstly developed
by Barr [1] and later improved by Sederberg and Parry [4].
A generic approach is proposed by Milliron et al [5].

Recently, some Laplacian coordinates-based deformation
methods like VGL [6] are developed to achieve better results
for large scale deformation.

B. Fire Simulation

The early models of fire simulation are mostly based on
particle system firstly developed by Reeves [7]. Although
article system is widely used in real-time rendering such as
video games, the result it produces is still not convincing.

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

 In order to achieve realistic and physics correct
rendering result, physics based fire simulation is developed
by using the algorithm of Computational Fluid Dynamics,
CFD [8]. Jos Stam introduced SPH into computer graphics
in [9], and later he proposed an unconditionally stable model
to solve the Navier-Strokes equation in Stable Fluids [1],
making physics based fluid simulation less expensive.
Although physics based fluids simulation has been studied
for over 20 years, its calculation is still too expensive for
real-time rendering on current PC.

C. Combustion Simulation

Konrad Polthier and Markus Schmies [10] modified
geodesic flow method to make it able to work on polyhedral
surface. Reference [10] computes the evolution of distance
circle on polyhedral surface and develops a method to
visualize the geodesic circle. This method is used in [11] to
simulate the fire front.

Hauyoung Lee and Laehyun Kim [11] used geodesic
flow method to simulate the combustion process on
polyhedral surfaces. In [11], fire fronts are evolved directly
on the surface of arbitrarily complex objects by using
modified geodesic flow method. Wind field model is also
used to achieve animator control and motion complexity.
Combustion process is treated as the propagation of fire front
only, which is suitable to simulate fire spread on terrain, but
cannot achieve complex results. Besides, this method did not
take the decomposition of burning objects into consideration,
which is necessary for most combustible materials.

Zeki Melek and John Keyser presented a burning objects
simulation framework [12]. They simulated flame and solid
separately, and used a heat transfer mechanism to transport
energy between two systems. In flame simulation phase, a
modified version of Stable Fluids [8] approach is used. The
fluid solution is applied to fuel gas, exhaust gas and heat. In
solid simulation phase the burning boundary is firstly
computed by using level set method [13]. Then, a regular 3D
grid is used to represent the decomposition of the solid and
how much fuel left in the solid. If any part of the solid
reaches the ignition temperature, it will start burning and
release fuel to flame system.

Singguang Liu et al. proposed a unified framework [14]
for simulation burning phenomena of thin-shell objects such
as paper, cloth, etc. Fire spreading is modeled as burning
state propagation on NxN cells of a 2-dimension space. They
also proposed a method used to calculate the deformation of
the thin-shell object based on the state of combustion, and
then apply deformation by using FFD. Since the simulation
is processed by CPU, this method can only achieve 10
frames per second.

III. FIRE SPREADING MODEL

A. Mapping

The burning state is composed of two stages. Firstly,
every vertex has its own vertex state which records the
burning state, deformation state, etc. Secondly, for points
inside a triangle, the point state is updated and stored in a
texture, recording how much this point is burnt.

The burning state space is treated as a float texture in our
implementation. In order to use a texture to describe the fire

spreading, a mapping from
3R to

2R is involved.
Every single triangle of the burning mesh should have its

unique state, which requires the texture mapping should not
be overlapped. In order to meet this requirement, a little
more care should be taken while creating texture mapping.

Since the mapping from
3R to

2R will create
discontinuous area, artists should also be careful about the
part of discontinuous mapping, because burning state
updating requires the neighboring vertices are also connected
in burning state map.

B. Burning State

For a mapped point on burning state surface, it should be
at one of the three states: normal, burning, and burnt. We

define the burning state of point),(yx at time step n as

n

xyS . The value of
n

xyS shows how much it has burnt. State

value 0 means state normal, and state 1 means burnt. At the
start of the simulation, at least one point on this surface is in
burning state, and these burning points will ignite nearby
points and spread the fire. If one point has been burnt for a
certain time, it goes to state burnt. Burnt points will change
its appearance and no longer get updated in fire front
spreading and mesh deformation.

After mapping the mesh surface to a 2D surface, the fire
propagation could be implemented as state changing on a
texture.

For a burning state
1n

xyS of point),(yx at time step

n+1, its state could be approximately evaluated by using the

state
n

uvS of nearby points at time step n . The combustion

state is updated each step by using a convolution in a region

 around the point),(yx :

1

(,)

(,)

(,) (,)

(,) (,)

n n

xy uv

u v

n

uv

u v

S W u v D u v S

W u v D u v S

 (1)

),(vuW is the weight function, which should be in

inverse proportion to the distance between (x, y) and (u, v).

),(vuW and area being summed up will affect the

propagation speed. Each time we retrieve a value of
n

uvS a

texture sampling will be invoke, since the burning state is
stored in a texture. A much too big sigma area will
significantly slow down this process. In our implementation
we will sample 16 pixels around point (x, y). D(x, y) is the
propagation speed of fire front:

 (,) (1)uv D G uvD u v C C C N G t (2)

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

(a) (b)

Figure 1. The burning process on the burning state map. Burning state texture is showed in (a), the color of the texture represents how much it’s burnt:

black is not ignited yet, white is burnt. The burning speed and quality could be adjusted by using parameters. After mapping the burning state texture to the
mesh, it could be used to calculate the color and vertex position, demonstrated in (b).

G is the direction vector of gravity, and
uvN is the

normal direction of point (u, v). DC is a constant parameter

which controls the overall burning speed, and GC is a

constant parameter about how much the burning speed is
affected by burning direction. We introduce gravity direction

G here for the reason that the flame is always burning

against the direction of gravity, and the burning speed is also
affected by the angles between surface normal and gravity

direction. uvC stands for the material multiplier for point

(,)u v , which is stored in a texture to describe the burning

speed for every point on the mesh surface.

As all calculation above is manipulating texture, it is easy

to have this whole process implemented with GPU
acceleration. This makes our implementation far more
efficient than Liu’s in [14].

IV. DEFORMATION

A. Modeling Deformation

 The burning mesh is deformed by two forces: the string
force FS caused by nearby solid surface's deformation and
the decomposition force FD caused by the consumption of
inner solid fuel:

 S DF F F (3)

 and are parameters of object material, which

demonstrate how much these two forces should affect the

object. In our final result, we employ = 0.5 and = 3.0,

making a wood like burning deformation.

SF is composed of structure force, shear force and

flexible force [15]:

 structure shear flexionSF F F F (4)

The consumption of solid fuel is calculated and stored
while updating the burning state. Using this information of
fuel consumption, we can calculate the force applied to the
mesh caused by the decomposition.

Consider a small part of a burning mesh demonstrated in
Figure 2. we can resolve the movement of vertex A caused
by decomposition by calculating how much its volume
changes:

'

'

'

()

A A A

C ABCDE A BCDE

C A A BCDE

B B B

D V V

D P P S

 (5)

The AB represents how much the fuel is left, AP and

'AP are the vertex's original and transformed position

respectively. ABCDEV and BCDEAV ' are the volume of the

origin and transformed area. CD is the density of the fuel,

and BCDES is the size of polygon BCDE. The consumption

of the solid fuel is approximately evaluated by measuring the
distance the vertex has moved.

According to (5), 'AAPP could be resolved:

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

'| | A

A A

C BCDE

B
P P

D S

 (6)

By using the normal vector AN , we can approximately

get the offset vector:

Figure 2. The deformation is calculated by evaluating how much solid

fuel lost after vertex A moved to A' caused by decomposition.

According to the classic physical theory, we can get this

equation:

 1

2

D

A

F m a

dP a dt

 (7)

Where m is the mass of mesh in Figure 2, a is the

acceleration, and dt is the time step in our simulation. Then

we can get DF :

 2

D

A

F m a

dP
m

dt

 (8)

In our implementation, the burning state is stored in a
texture so that we can use GPU to calculate the fire front’s
expansion. So we need to sample the burning texture
according to adjacent triangles’ size.

Before each frame’s deformation, we downsample the
burning state map into n stages by halving the texture
resolution. For each of these textures, the size a pixel

represents is 2nS

w h

, and we can find a 'n satisfying this

equation:

' ' 1' ' 12 2n nn n

A

S S
S k

w h w h

 (9)

Where k is the how many pixel need to be sampled. k

is the number of pixels we sampled in equation (1), in our

implementation k = 16. w and h stand for the width and

height of the burning state texture. By sampling the 'n th

burning state texture we can know how much fuel is used

and get AB for (6).

After getting both DF and SF , we can compute how

much this vertex should move along its normal direction.

Since the area size is used in (7), we need to precompute the
area size of the mesh before rendering, and pass it to the
video card as vertex attributes. The normal vector of the
vertex should also be updated as the faces are all deformed.

B. Topological Changes

Along with the combustion process, the topological
structure might change. We use a simple method based on
video cards' graphical pipeline function to avoid incorrect
rendering results.

Assume an object with two points 1P and 2P , which face

the opposite direction. At the beginning, they do not cross
each other, but after being burnt, the vertices will be pushed
backwards according to their normal vector and burning state.

On certain condition, 1P and 2P may get crossed as

demonstrated in Figure 4. This will certainly ends up with
incorrect rendering results. However, this could be fixed by
adding a special pass to the rendering loop.

(a) normal (b) burnt

Figure 3. Combustion caused topological structure changes. Considering

eyes looking from right to left, P2 in (a) should be the front face, and P1 on

back face. After burnt P2 might goes to the back of P1 in (b). Red area in

(b) will cause incorrect rendering with normal rendering routine.

A special Z-Pass and a depth test are introduced to

eliminate incorrect rendering results caused by topological
changes. In render loop, Z-Pass is used just after updating the
burning state. Both front and back faces are rendered and
have their depth written to a render target with depth test
turned on. If a front face gets blocked by a back face just like
what happens in Figure 4(b), the render target will have the
back face's depth (it’s also the nearer face) saved.

During the rendering pass the back face cull is turned on,
and each vertex's depth value is compared to value stored in
render target. Pixel in red area of Figure 4(b) will have
further depth value than that we stored in Z-Pass, which
means it has already crossed the face of another size, and this
pixel will be discarded.

In our approach to cull incorrect pixels, self-collision
detection is changed into a screen space problem. Since our
technique used to detect topological changes can be
implemented as a simple post-process, it won’t be affected
by mesh’s vertices count and will run very fast on GPU.

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. Combustion simulation of a bunny. The bunny mesh is composing of 4000 vertices and a 1024x1024 burning state texture.

V. RESULTS

Using the method we have introduced, we are able to
simulate various kinds of burning meshes. The simulations
are ran on Nvidia Geforce GT 425m, Intel Core i5 (2.53G

Hz), 4G RAM and 1024x768 screen resolution. A 256 256
burning state texture and a mesh of 4000 vertices are used in
scene and we got more than 100 fps. The result is simulated

with = 0.2, =1.0, DC =0.3, GC =0.1.

The whole process is shown in Figure 3. We initialize the
burning state with a small area already burning on bunny’s
back, and the fire spreads all over the mesh. Together with
the burning process the mesh also shrink and deformed. You
can see the fire combustion process is like the one in [14],
but utilized on a normal solid mesh with much better
performance.

TABLE I. PERFORMANCE

Burning State
Texture Resolution

Mesh
Vertices
Count

Time Consumption(ms)

Fire
Front

Self-
Collision

Deformation

128x128
4000 2.4 4.9 1.4

31000 2.4 4.9 1.6

256x256
4000 2.5 4.8 1.4

31000 2.5 4.9 1.6

512x512
4000 2.5 4.8 1.4

31000 2.5 5.0 1.6

1024x1024
4000 2.7 4.8 1.4

31000 2.7 5.0 1.6

The performance with different state texture resolution

and different mesh for algorithm described in this paper is
listed in TABLE I. The performance of fire front and self-

collision calculation is almost not affected by mesh vertices
count, because both of them are screen space algorithm. The
overall performance benefits a lot from GPU’s parallel
computing capability, it’s easy to render more than 100
frames per second.

VI. CONCLUSION AND FUTURE WORK

We have proposed a method of simulating combustion
process of general polygon mesh, and it is able to be applied
to most meshes. This method can run much more efficiently
than similar methods in [11] and [13], since all calculation is
done by GPU and only the deformation algorithm is affected
by the scene’s complexity. In order to have topological
structure change processed more elaborately, the mesh self-
intersection could be calculated by using physics engines
such as Nvidia PhysX, and recalculate the topological
structure of vertices and triangles. Other deformation model
could also be used to simulate the decomposing process of
burning mesh. In our work we focused on fire expansion and
mesh deformation rather than the fire simulation along with
burning. In order to render fire during combustion process,
the burning state could also be used for fire simulation. Wind
field [16] could also be used to control the burning process
and would produce more realistic result.

REFERENCE

[1] J. Stam, "Stable fluids," in Proceedings of the 26th annual
conference on Computer graphics and interactive techniques, New
York, NY, USA, pp. 121-128, 1999.

[2] S. F. Gibson and B. Mirtich, B. "A Survey of Deformable Models in
Computer Graphics," Tech. Rep. TR-97-19, Mitsubishi Electric
Research Laboratories, Cambridge, MA, November 1997.

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

[3] N. Froster and R. Fedkiw, "Practical animation of liquids,"
Proceedings of SIGGRAPH 2001. New York, NY: ACM, pp 23-30,
2001.

[4] T. W. Sederberg and S. R. Parry, "Free-form deformation of solid
geometric models," in SIGGRAPH '86: Proceedings of the 13th
annual conference on Computer graphics and interactive techniques,
New York, NY, USA, pp. 151-160, 1986.

[5] T. Milliron, R. J. Jensen, R. Barzel, A. Finkelstein, "A framework
for geometric warps and deformations," ACM Trans. Graph., vol. 21,
no. 1, pp. 20-51, January 2002.

[6] Z. Kun, J. Huang, J. Snyder, X. Liu, H. Bao, B. Guo, et. el, "Large
mesh deformation using the volumetric graph Laplacian," ACM
Trans. Graph., pp. 496-503, 2005.

[7] W. T. Reeves, "Particle Systems a Technique for Modeling a Class
of Fuzzy Objects," ACM Trans. Graph., vol. 2, no. 2, pp. 91-108,
April 1983.

[8] T. J. Chung, Computational Fluid Dynamics. The Pitt Building,
Trumpington Street, Cambridge, United Kingdom: Press Syndicate
of Cambridge University, 2002.

[9] J. Stam and F. Eugene, "Depicting fire and other gaseous phenomena
using diffusion processes," Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques, pp.
129-136, 1995.

[10] K. Polthier and M. Schmies, "Geodesic Flow on Polyhedral
Surfacse," in Data Visualization, Springer Verlag. Proceedings, 1999.

[11] H. Lee, L. Kim, M. Meyer, and M. Desbrun, "Meshes on Fire," in In
EG Workshop on Computer Animation and Simulation, pp. 75-84,
2001.

[12] Z. Melek and J. Keyser, "Interactive Simulation of Burning
Objects," in Pacific Conference on Computer Graphics and
Applications, pp. 462-466, 2003.

[13] R Malladi, J A Sethian, and B C Vemuri, "Shape modeling with
front propagation: a level set approach," in Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 17, pp. 158-175,
Feb 1995.

[14] S. Liu, Q. Liu, T. An, J. Sun, and Q. Peng, "Physically based
simulation of thin-shell objects’ burning," THE VISUAL
COMPUTER, vol. 25(5-7), pp. 687-696, 2009.

[15] X. P. Institut and X. Provot, "Deformation Constraints in a Mass-
Spring Model to Describe Rigid Cloth Behavior," in In Graphics
Interface, pp. 147-154, 1996.

[16] K. L. Gay, L. Ling, and M. Damodaran, "A quasi-steady force model
for animating cloth motion," in Proceedings of IFIP International, pp.
357-363, 1993.

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

