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Abstract—In this paper, we present a new approach to real-
time tracking and sonification of 3D object shapes and test the
ability of blindfolded participants to learn to locate and recognize
objects using our system in a controlled physical environment.
In our sonification and sensory substitution system, a depth
camera accesses the 3D structure of objects in the form of point
clouds and objects are presented to users as spatial audio in
real time. We introduce a novel object tracking scheme, which
allows the system to be used in the wild, and a method for
sonification of objects which encodes the internal 3D contour
of objects. We compare the new sonfication method with our
previous object-outline based approach. We use an ABA/BAB
experimental protocol variant to test the effect of learning during
training and testing and to control for order effects with a small
group of participants. Results show that our system allows object
recognition and localization with short learning time and similar
performance between the two sonification methods.

Keywords–sensory substitution; sensory augmentation; point
clouds; depth camera; sonification; object tracking.

I. INTRODUCTION

Sensory substitution systems convert information from one
sensory modality into another. They are potentially of great
help for sense-impaired individuals, for example allowing
individuals to locate and grasp objects [1], to navigate [2] or
to appreciate visual patterns through sound [2][3]. They can
also be used to answer questions about human perception [1].

We present a visual to auditory sensory substitution system,
and we are concerned in particular with navigation, object
recognition and object manipulation tasks. We would like users
to be able to use the system to navigate with environmental
awareness in unstructured environments, interpret novel ob-
jects from a distance, eat meals, and so forth.

The challenge in building such systems is in presenting
sensory data to end users in a comfortable, learnable and un-
derstandable way. Until now, these systems have not reached a
wide enough audience to supplant more basic but non-intrusive
systems like the white cane or guide dog. We attempt to im-
prove on these systems by using time-of-light and structured-
light sensors which shortcut the problem of getting the depth
of objects in a scene, and work by first extracting perceptual
objects and spaces and then and generating meaningful sounds
to allow their localization and recognition.

As a first step, we enabled users to localize single objects
on a table top using simple spatial audio and tones to sonify
direction and distance of objects [4]; next, we investigated
different approaches to sonification of simulated 3D shapes
[5]. An open research question is whether such sonification
methods can be used in the real world; as such, in the current
paper, instead of only sonifying simulated shapes, we test
a new version of our system that enables localization and
recognition of objects on the floor in an empty room. We allow

Figure 1. Left: Our system in use. Right: The data-flow pipeline of our
sensory substitution system. Frames from the depth sensor are received at

approximately 30Hz and are processed into sound.

users to move around freely and interact with objects actively
using our system. The system in use during testing can be seen
on the left of Figure 1.

In order to enable more sophisticated, longer lasting sounds
to allow better discrimination of object parts, we build on
previously developed object/part segmentation and background
noise reduction techniques [4], implementing a scheme for
consistently tracking object parts from frame to frame. We also
realize a proto-object concept based on segmenting, tracking
and sonifying multiple parts of objects separately so that users
can understand the shape of objects as the assembly of their
sonified parts. Finally, we improve the sonification approach
to sonify not just the external contours (outlines) of objects,
as previously done [5], but to completely sonify all internal
contours of the object using a direct encoding of the full visible
3D shape of the object as sound waves. A summary of the
flow of data for each frame in our real-time system can be
seen on the right of Figure 1. We evaluated the performance
of our system as it was being learnt and used, using a variant
of an ABA/BAB test to capture the effect of learning, order
effects, and to compare our different sonification approaches
on a small sample of ten participants.

The rest of the paper is structured as follows. In Section
II, we discuss related work. In Section III, we describe
technical details, then experiments and results for localization
and recognition problems in Sections IV and V, respectively.
Finally, future work is discussed in Section VI.

II. RELATED WORK

A variety of sensory substitution systems exist, including
tactile-tactile, visual-tactile and visual-auditory; our work is a
visual-auditory sensory substitution system. As a system that
can create non-speech sound from data, ours may also be
considered a sonification system.
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The most well-known visual-auditory sensory substitu-
tion/sonification system is the vOICe [1][3] system, which
scans gray-scale image snapshots acquired from video left
to right over time, mapping vertical location and intensity
of pixels to frequency and amplitude of sound waves. It is
possible to use this system to sonify depth images; in contrast,
our system is built around the metric 3D structure of the
scene as embodied in its point cloud, spatial audio, and the
principle of real-time responsiveness. With respect to shape-
focused systems, Yoshida et al. [6] sonify 2D shapes on a
touch screen by allowing users to explore edges in the image
with a finger, producing a sound using the same scheme as
with the vOICe, but local to the finger. When the user loses
the edges, cues help them find their way back. In See ColOr
[2], a depth camera is used, and different instruments (like
piano, flute, trumpet) with different properties and in different
combination are used to represent different hues.

In the augmented reality work of Shelley et al. [7], users
can touch simulated 3D objects and manipulate them with
a visual-haptic interface with sound generated from the 3D
contours of the object. The local curvature and cross-sections
of objects are transmitted as frequency over a carrier wave that
is either sinusoidal, a cello wavetable or modally synthesized,
and with a haptic force feedback component.

Another close work in conception is the real-time navi-
gation aid of Dunai et al. [8], which uses a stereo system
to calculate depth images. After tracking and segmentation,
objects with high importance like cars, humans, buildings,
animals, and also free space 5 to 15 meters in range, are
determined, and the closest object and free space are sonified
with a synthetic instrument. Frequency, binaural cues and other
sound properties represent distance, direction, and speed. The
system is designed primarily as a salient hazard detector.

In our previous work [5], we presented two different
approaches to 3D shape sonification: a method based on object
recognition techniques commonly used in cognitive robotics
applications that first recognizes an object and then chooses
an instrument to sonify it accordingly, and a method in which
sound waves are directly generated based on objects’ outlines
in an image - no attempt is made to account for the internal
shape of objects. Moreover, that system was tested using
artificially generated 3D objects on the problem of object
recognition. In contrast, although using a simple sonification
scheme, mapping object size or distance to frequency, the ear-
lier incarnation of our system [4] was tested in real scenarios,
on the problem of object localization. Conversely, the current
paper proposes a scheme for sonifying the interior shape of
an object, and compares it to the outline contour approach
implemented previously [5]; moreover, here we also introduce
new object tracking capabilities to adapt the approaches to
real physical scenarios on both tasks - object localization and
recognition.

III. TECHNICAL DETAILS

Figure 1 shows the full data-flow of our system, from
acquisition of a point cloud from the depth sensor to its soni-
fication, and reflects at a high level our software architecture.

Our system was conceived as an application of the soni-
fication of shape in the context of sensory substitution, to
make use of depth cameras like the Asus Xtion used in the
current experiments, which can access the 3D structure of most

Figure 2. Example of the best association between segments in two
consecutive frames (A and B). Letters show segment-ID, numbers show

track-ID and black dots show the centroid of the segments. Each matched
segment at frame t gets its track-ID number from its match at time t− 1. If

there is no match, it is given a new track-ID.

indoor environments directly, in the form of depth images and
point clouds. Indeed, advances in stereo vision, structure from
motion, and depth from monocular cues are rapidly making
the use of point clouds cheaper and more accessible.

A. Filtering and Segmentation
Our original aim was to segment the point-cloud scene

acquired by the camera into proto-objects based on structural
edges between relatively smooth surface parts; these proto-
objects we hereafter call segments. Segmenting objects in this
way provides proto-objects that are relatively simple in terms
of the local structure of their surface and as such suitable
for later mapping on to sound primitives. As this is the first
time this problem has been approached in the literature, in the
first instance we adapted a common segmenting trick used in
tabletop robotics [4] - removing the table from the scene and
finding connected segments in the remaining point cloud.

In the current work, we return to the proto-object concept
and segment and sonify multiple proto-objects in real-time
based on sharp changes in the orientation of surfaces in an
object, anticipating that their collective sound should help
identify the object from which they are made. However, we do
continue to filter out large planes, typically constituting walls
and floor, to enable users to focus on object understanding.

B. Segment Tracking
In previous work [4], we were able to sonify an object

by segmenting each new frame and playing a short sound
interpolated from the previous sound. Since frames are re-
ceived approximately every 1

30s, and each frame is treated
independently, we could only play sounds with a structure
lasting 1

30s. Moreover, because we sonified one segment/object
at a time, we did not face problems with segments being
confused with each other. However, in the present work we
use improved kinds of sonification, in which sounds can last
for several seconds, and we sonify multiple segments. We
need to keep track of the identity of correct segments over
multiple frames. Our approach is to keep the segmentation
part of our pipeline but to associate segments over time using
combinatorial optimization.

Figure 2 shows an ideal output of the tracker’s data
association. Due to noise, the sensitivity of camera to some
materials, and the sensitivity of the segmenter to thresholds,
objects might be segmented in different ways over time and
the order in which segments are output from segmenter can
change arbitrary from frame to frame. As can be seen in Figure
2 one segment (e.g., C) can split (into G and H) and two
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Figure 3. The proposed approach to shape sonification including internal
contours. Top: The 3D object face, and selected superimposed internal

contours from top to bottom (A,B,C). Bottom: corresponding waveforms;
combined, an entire waveform can be constructed.

segments (e.g., A and B), can merge (into F). Our tracker
handles merging and splitting by amalgamating close segments
if the amalgamated segment matches a previous segment well.
This is essential because appearing and disappearing segments
lead to ambiguous and confusing sound.

Our data association approach evaluates each set of asso-
ciations based on a cost function, which takes into account the
distance between centroids and the first moments of segments.
These features are simple, fast to compute and sufficient for the
task at hand. After generating possible associations and eval-
uating them, the association with best cost is selected, track-
IDs are allocated and segments are sent to the sonification
subsystem.

C. Sonification
The sonification subsystem takes as input the segments

extracted by the segmentation and their IDs as applied by
the tracking. It keeps track of which segments (IDs) are new,
which have previously been seen, and which have disappeared.
The cleanest sound was produced not by adjusting the sound
over time but instead reproducing the sound associated with
the segment as seen in the frame in which the sound started
playing. Once a sound is finished playing, the segment can
be sonified again. As long as an object is visible, the 3D
location of the sound is updated according to the present
centroid of the object and the initially calculated waveform is
fed incrementally to the sound rendering subsystem in such
a way as to minimize delay and artifacts, by tracking the
expected frame-rate. If an object stops being visible its sound
is faded out over the period of a frame (roughly 1

30s).
We use two approaches to generating the waveforms used

in the sonification: “external” and “internal” contour.
1) External Contour: This approach [5] works on the 2D

organized point cloud extracted from each segment. This is
essentially a calibrated depth image containing a channel for
each of x, y and z coordinates. Point clouds remain organized
in a 2D array even after segmentation and tracking in order to
maintain our high frame-rate. The organized point cloud for
each segment is a cropped window around the segment with
a mask defining the segment shape.

The external contour approach works by tracing the outline
(external contour) of the object in the organized point cloud
to create a carrier wave which is subsequently frequency and
amplitude modulated; the modulation is done by scanning the
object top-to-bottom and using the width of the object at each
vertical location to modulate the carrier [5].

2) Internal Contour: Gholamalizadeh et al. [5] discovered
that the lack of interior shape information (inside the ex-

ternal contour) was one drawback of the direct sonification
method compared to the indirect (recognition-based) method.
We attempt to rectify that by extracting information about
both external and interior contours of the segment/object to
be sonified. The new method is visualized in Figure 3. The
object is scanned top to bottom, and for each row of points
(essentially a row of pixels), the object depth at each point
becomes a sample in a waveform. Interpolation is done to
increase and decrease the frequency/speed of the wave. Thus,
the frequency of the sound will depend on the width of the
object as it is scanned top-bottom and the exact shape of
the waveform produced will depend on the horizontal cross-
sectional shape of the object.

Important caveats are attached to the current instantiation
of this approach. Firstly, it was planned that depths in the
object be produced relative to the average depth of the object.
However, for an object with no significant internal contours,
such as a flat surface facing the camera, this produces no
sound. We could normalize the amplitude of the wave but
this then vastly amplifies noise. So instead of relative depth
of each point, we use the depth from the camera center to the
point. However, the depth to the camera greatly overwhelms
any other value and produces essentially a square wave no
matter the shape of the object. Thus, in order to transmit
internal contours to the user, in addition to the above-described
scheme, we average multiple rows of the object and use the
resulting averaged 1D array to do amplitude modulation of the
object while the relevant part of the object is being sonified.
This results in a consciously discernible oscillation in the wave
that serves to encode cross-sectional shape.

IV. TRAINING AND EXPERIMENTS

We investigated the ability of users to localize and recog-
nize objects in a restricted indoor physical scenario, comparing
internal and external contour shape sonification approaches.
For this purpose, we designed an experiment involving both lo-
calization and recognition tasks, where each of 10 participants
(mean age 25, 9:1 male/female ratio) participated in either an
ABA or BAB experiment. Due to the experimental nature of
the prototype, we only worked with sighted individuals. 50%
of participants had experience with a previous iteration of the
system. Half of participants used the system with internal
contour sonification (A), followed by the external contour
sonification (B), and again the internal contour sonification
(A). The other half of participants used the external (B) then
internal (A) then external contour based sonification (B).

The main idea behind conducting ABA/BAB experiments
is to investigate the order effect of conditions [9]. Since we
have limited time with each participant as well as a limited
number of participants, we wanted to evaluate both conditions
with each participant - moreover, random-sample based ex-
periments require an order of magnitude greater sample size
compared to matched experiments. We also want to analyze
the effect of experience with the system on performance.
Before conducting each of the three tests in the ABA or BAB
sequence, an independent training session was conducted. In
each test, participants are asked to first localize a single object
in their near environment and then recognize it.

For the localization task, blindfolded users were asked to
localize an object placed in one of six possible locations by
walking and pointing. A map of the environment and possible
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Figure 4. Map of the experiment room with six possible object positions.
LN: left near, LF: left fat, CN: center near, CF: center far, RN: right near,

RF: right far, H: Home location of the participant.

locations for objects is in Figure 4. After the localization task,
users were asked to use the system to recognize the object.

Six arbitrary objects with disparate shape, size and com-
plexity were chosen as an initial challenge to the capability of
our sonification method. The objects and output of segmenter
for each object are illustrated in Figures 5 and 6, respectively.

Next, training and test protocols are described.

A. Training sessions
The training protocol was exactly same for both encoding

approaches (internal and external). First, a short verbal expla-
nation of the system, encoding approaches, and the rules for
experiments were given by the experimenter; this took five

Figure 5. Set of objects used in experiments.

Figure 6. Segmented 3D images obtained from the objects in Figure 5.
Top-left: plant, Top-middle: box, Top-right: drawer, Bottom-left: stool,

Bottom-middle: ball, Bottom-right: bucket.

minutes. Then, three objects, namely box, drawer and bucket
were placed in locations LF, CF and RF and participants were
allowed to familiarize themselves with the system with open
eyes, look at the objects from different view points, and listen
to the sounds on the headphones; this took 12 minutes. Then,
five minutes of training were allocated to learning about the
localization task, where users were instructed to stay in the
home location, scan the environment from left to right and
down to up, walk towards objects and localize them. During
all training sessions, users were allowed to move the camera
freely with their hand, which was more comfortable for all
users. They could see the output of the tracker on the computer
display (as with Figure 6) and were suggested to also listen
to the sound with closed eyes. After the first set of objects, a
second set of objects - plant, stool and ball - were provided
in locations LF, CF and RF, respectively. After learning with
both sets of objects, users were allowed to interact freely with
all objects placed at locations that they requested, for up to
six minutes. As such, the maximum allowed training time for
each test was 5 + 12 + 5 + 12 + 5 + 6 = 45 minutes. These
durations were selected considering the trade-off between our
unpaid participants’ time and the need to test our system with
experienced users. The amount of time used to train with the
system in these experiments is low compared to that which
would be expected if the system were to be used day-to-day.

B. Test sessions
In test sessions, one randomly selected object was placed

in a randomly selected location and blindfolded participants
located at the home location were given three minutes to
walk towards the object and localize it by pointing. Here,
six trials with six different objects were conducted with each
participant, plus an extra unrecorded trial with a random object,
conducted to prevent the participant from guessing the object.
Localization performance was evaluated as precise, poor or
failed and participants were informed about the correctness of
their answer. Precise localization meant the participant was
able to point to the center of the object, poor localization
meant the participant could point to the boundary of the object,
and a failed localization meant the participant was unable to
find the object. In the case of poor localization or failure, the
experimenter helped the participant to precisely localize the
object for the recognition phase of the test.

After localization of each object, participants were given
two minutes to move the depth camera around the same object,
listen to its sound and identify it. The experimenter then gave
the correct answer, as participants were invariably curious
considering their limited experience with the system during
the training. The use of our ABA/BAB protocol controlled for
the effect of experience during testing.

V. RESULTS

A. Localization performance
Figure 7 illustrates results of ABA and BAB experiments

on the localization task for all participants. The internal
approach with 73.3% precise localizations, 23.3% poor local-
izations and 3.3% failed localizations showed a similar per-
formance to the external approach with 66.6% precise, 26.6%
poor and 6.6% failed localizations (unpaired T-test, N = 15,
p = 0.31). Localization performance for internal-external-
internal and external-internal-external experiments increased
by 22% and 30%, from the first to third test, respectively.
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Figure 7. Results of ABA and BAB experiments for localization
performance of all participants. Top: internal-external-internal order. Bottom:

external-internal-external order. The black regions specify percentage of
precise localizations and the shaded regions specify poor localizations.

For some objects, like plant, stool and bucket, the system
had difficulty in detecting the objects when in distant locations
like LF, CF or RF and when the user was at H. In these
cases, participants tried to take a step forward and scan the
environment again until they could find something. On the
other hand, our system could detect the ball, drawer and
box from the home position without a problem. For both
approaches, participants reported that they had difficulty in
localizing the drawer, because the large size of drawer created
confusion. Therefore, the average localization time of drawer
in both approaches was more than the average localization time
for other objects. Moreover, among all experiments participants
hit the object three times (1.6% of experiments); in two cases
the object was the drawer and in one case bucket.

The system generated noisy sounds when the camera
pointed at the walls and windows surrounding the test envi-
ronment. In first training and then testing sessions, participants
were confused when the system sonified segments related to
part of the wall or window. Later, in the second and specially
third tests, most participants showed that they can distinguish
those noises, and they tried to change camera view to eliminate
the noises and focus on the object.

B. Recognition performance
Results of ABA and BAB experiments for recognition

performance of all participants can be seen in Figure 8. For the
recognition task, results are independent of the order of condi-
tions, with 4.7% improvement for internal-external-internal ex-
periment and 8.3% deterioration for external-internal-external
experiment, from the first to third test.

The internal contour approach, with an overall accuracy of

Figure 8. Results of ABA and BAB experiments for recognition performance
of all participants (Pn: participant number n). Top: internal-external-internal

order. Bottom: external-internal-external order.

73%, did not show a significantly different performance from
the external approach, with overall accuracy of 77% (unpaired
T-test, N = 15, p = 0.58). Recognition accuracy showed
individual differences. For example, one of the participants,
who was a musician, obtained an accuracy of 100%, 83% and
100% on external, internal and external tests, respectively.

Participants, for both approaches, were encouraged to try to
understand the logic of the encoding of object sounds. One of
the strategies that participants were using for recognition was
rotating the camera or going to other sides of the object to see it
from different view points. These movements lead to different
sounds for some objects due to the orientation-dependent top
to bottom encoding in both approaches. It was observed that
this cue helped users to distinguish between box and bucket in
both approaches, and ball and stool in the external approach.
Additionally, the other cue that was used heavily by users was
the number of played sounds. By viewing some objects from
different views, a different number of sounds could be heard.
For example, by viewing a box from the front, just two sounds
could be heard (one for the top segment and one for the side
segment), whereas by viewing the same box from the side,
three sounds could be heard (one for the top segment and two
for side segments). On the other hand, for the ball and stool,
just one sound could be heard. In the internal approach, some
participants reported occasional interference of sounds of an
object with multiple segments like box and bucket, making it
hard for participants to distinguish number of segments. This
led participants to confuse the stool with box and bucket. We
attribute this effect to the square-wave nature of the internal
contour encoding method we currently use.

For both approaches and for all objects, participants were
able to successfully identify objects most of the time, as can
be seen from the bold numbers in Table I. The two objects
with the best recognition accuracy in both approaches were
plant and ball, with 93% and 100% accuracy, respectively.
The plant is distinctive because of a high number of segments
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TABLE I. CONFUSION MATRICES FOR OBJECT RECOGNITION
EXPERIMENTS. NUMBERS ARE PERCENTAGES (N = 15).

Internal Response
approach plant box drawer stool ball bucket

A
ct

ua
l

plant 93 1
3 6 2

3

box 60 6 2
3 6 2

3 26 2
3

drawer 20 66 2
3 13 1

3

stool 33 1
3 40 13 1

3 13 1
3

ball 100

bucket 6 2
3 6 2

3 86 2
3

External Response
approach plant box drawer stool ball bucket

A
ct

ua
l

plant 93 1
3 6 2

3

box 40 33 1
3 6 2

3 20
drawer 6 2

3 86 2
3 6 2

3

stool 73 1
3 26 2

3

ball 100

bucket 6 2
3 6 2

3 6 2
3 6 2

3 73 1
3

and the ball because of its size and recognizable contour. As
expected, confusion is seen between objects similar in shape
like box, drawer and bucket, the most confusions occurring
between box and bucket, and also drawer and box in both
approaches. Confusion between stool and ball also arises
because of similarity of the contour of the two objects.

C. Learning and testing duration
Although we allocated a maximum of 45 minutes for

training for each test, results shows that learning and using our
system is possible in a shorter time. In both internal-external-
internal and external-internal-external orders, the training time
of participants decreased from the first test to the third test.
In the internal-external-internal sequence (N = 15), the
average training time for the first test was 23.5 minutes, which
decreased by 47% for the third test; similarly, for the external-
internal-external order (N = 15), time in the first test was
18.8 minutes, decreasing by 64% to the third test. Furthermore,
the average time spent localizing and recognizing each object
decreased from 181s by 22% and from 139s by 26%, from
the first to third test. However, an unpaired T-test (N = 15,
p = 0.48) verifies that there is no significant difference
between internal and external contour in training and testing
time.

D. Questionnaire
After the experiment, users were given a three-question

questionnaire asking them to rate on a scale of one to five
the quality of sound in each approach and the usability of
our system. Most participants reported that they found the
generated sound of the external contour approach (average
score of 3.3 out of 5) more pleasant than the sound of the
internal approach (average 2.6 from 5), most likely due to
the fact that the internal approach always generated roughly
a square wave (see the description of the method above),
though participants acknowledged the suitability of the internal
approach for sonifying the curvature of objects like a ball.
With respect to usability, the average score was 3.2 out of
5, along with feedback that users considered that the system
has usefulness in the current simplified scenario but cannot
guess how it might be used with more objects and in more
unstructured scenarios.

VI. CONCLUSION

This is the first time that sensory substitution from 3D
shape has been attempted. An internal contour based encoding
method for sonification of 3D objects was presented. This
method is able to encode depth and curvature of objects, and is
compared with our previous external contour based approach.
A data-association based tracking system was introduced to
enable the use of these sonifications in real interactive physical
scenarios.

An ABA/BAB experiment was performed to evaluate the
ability of blindfolded participants in localization and recogni-
tion of different objects, and to investigate order effects and the
effect of experience. Results show similar performance of users
in localization and recognition of objects in both approaches
and quick mastery of the system. The internal approach was
expected to show a better performance in recognition due to
encoding more information but in its current iteration suffers
from an inability to represent a variety of contours and produce
harmonious sounds at the level of carrier wave.

The next steps in this work are developing the internal
encoding to produce more pleasant and informative sound and
exploring more approaches for dealing with background noises
to make our system work in more general scenarios.
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