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Abstract—The inclusion of a progress indicator seems to be
a simple part during the construction of a web survey. This
paper shows that this is only true for linear surveys and does
not hold true for surveys with adaptivity (branches). Therefore,
we introduce a general model, which fits almost any kind
of survey. Based on this model, the difficulties of progress
computation are shown. As a solution, this paper proposes
a general equation and algorithm to compute the progress
dynamically. This algorithm predicts the number of remaining
items for each page. Since the remaining items depend on the
actual path through the survey, the algorithm was generalized
by a so-called selection operator allowing different prediction
strategies. With the help of this algorithm, it is possible to
compare different strategies for a given survey and to select the
best one. In examples, two prediction strategies are introduced
which estimate either the most or the least remaining items. The
paper concludes with a comparison of both strategies showing
that the choice of the best prediction strategy is not trivial and
depends highly on the structure of the survey.

Keywords–Progress Indicator; Computation; Adaptive Surveys;
Web Surveys; Questionnaire Model.

I. INTRODUCTION

Most web surveys use Progress Indicators (PIs) to give
the participants feedback about the degree of completion.
Such a feedback should motivate the participants to complete
the survey and, therefore, consequently reduce the break-off
rates [1][p. 146]. Usually, a PI shows the progress of a task
between its start and its completion. It is common practice
to calculate the progress in percentage and use 0% at its
start and 100% at its end. The current progress is a number
between both values.

A PI seems to be a simple feature during the construction
of a web survey in which not much time and resources
should be invested. For linear surveys this is obviously true
— a linear survey has no adaptivity, all questions have a
specific order, and this order is the same for each partic-
ipant. But the computation of the progress is difficult for
surveys with adaptivity (branches). In such surveys, a simple
computation approach produces jumps [1] in the progress
since some questions are not shown to each participant.
Sometimes those jumps are large and could be demotivating
and perceived as untrustworthy by the participant. But the
progress feedback should be truthful to the subjective sense
[2, p. 757]. For this reason, we need a trustworthy calculation
for those complex surveys.

Since there are a lot of survey tools currently on the
marked, comparing their PI approaches seemed to be a good
basis for a general progress calculation in complex surveys.

However, either those tools explicitly do not support PIs in
complex surveys like Survey Monkey [3], or their approaches
remain guarded: the consideration of other survey tools does
not help.

The Ph.D. thesis of Kaczmirek [1] is the best starting
point for the development of such an algorithm to the
authors’ knowledge. In his thesis, he developed the attempt
of a PI computation approach for complex surveys, which
unfortunately has not garnered a lot of attention in research.
One reason could be the neglect to describe his approach in
a concrete algorithm with a formal model.

We have developed a formal model for questionnaires
used in our own survey tool Coast [4]. The model is
based on mathematical graphs, which help to understand
the structure of a survey and create the possibility to apply
well-known algorithms of graph theory as shown in previous
work [5]. Based on this model, this paper defines a general
algorithm for the computation of the progress in surveys.
This algorithm allows arbitrary strategies to handle complex
questionnaires and compare them. As an example, this paper
formalizes the two proposed strategies of Kaczmirek (used in
its Ph.D. thesis) — using the maximal and minimal number
of remaining items. A comparison of both strategies shows
that choosing the best strategy for a given questionnaire is
not trivial. As a result, the proposed strategy of Kaczmirek
— taking the minimum of remaining items — should be
taken with caution. There is the need for more research for
defining more prediction strategies and for choosing a best
fitting strategy for each survey.

This paper considers current PI research at first (Sec-
tion II). In Section III, our questionnaire model is introduced,
which is based on mathematical graphs. Afterwards, the
general algorithm for computing the progress is derived in
Section IV. In Section V, this algorithm is used to explain
the two PI computation approaches of Kaczmirek. Further-
more, both approaches are compared and the difficulties of
selecting the right approach are shown. The paper closes
with a conclusion and a look into future work (Section VI).

II. STATE OF THE ART

Human-Computer Interaction (HCI) has considered PIs
for a long time. It focuses on the duration of a task and how
PIs help the user to be aware of that duration. A result is
that people prefer to have a PI in comparison to not having
one and that the perceived duration depends on the progress
speed [6][7]. Harrison et al. found out that a user suggests
a task runs faster if the PI is faster at the end of a task [8].
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However, PIs in web surveys are different from those
classic PIs in HCI. Villar et al. state that the tasks in web
surveys are usually longer, and that the user can influence
the PI and has to focus on the task. Furthermore, users of
classic computer tasks want the goal of the progress, e. g.,
transferred money, loaded files, etc.; whereas web survey
participants do not necessarily have an interest on the result.
Because of those differences, PIs in web surveys should be
considered with another focus as PIs in classic HCI [2].

In 1998, Dillman et al. defined some principles for the
design of a web survey. These principles include PIs with
less implementation costs [9]. Some years later, Conrad et
al. considered different speeds of PIs for the first time: 1)
constant, 2) fast-to-slow, and 3) slow-to-fast speeds [10].
The speed of a PI varies if there is a difference between
the displayed and the true progress. The true progress is the
progress when the remaining number of questions would be
known at each point. If the difference of the displayed to
the true progress is always positive, the displayed progress
runs faster at the beginning and has to become slower at the
end (fast-to-slow). If the difference is always negative, the
displayed progress is slower at the start and becomes faster
at the end (slow-to-fast).

The work of Conrad et al. was the first consideration of a
divergence between the displayed and the true progress. It is
especially interesting since they take notice of a correlation
between the break-off rates and the speed of the PIs. It seems
to be that a slow-to-fast progress is more discouraging and
causes a higher break-off rate. On the contrary, a fast-to-
slow progress seems to encourage the participants to finish
the survey. These results were supported by Matzat et al.
[11] and succeeding studies of Conrad et al. [12]. Villar
et al. combined all those studies in a meta-analysis. Their
results were: 1) For most studies, the decrease of break-
offs is significant when showing a fast-to-slow PI instead of
having none. 2) The break-off rates increases significantly
for most studies if a slow-to-fast PI is applied. 3) It poses
an ethical problem if the speed of the PI is manipulated
on purpose in order to deceive the participants. Sometimes,
however, the varying speed is not deceptive if it tries to
accurately mirror the true progress [2]. A study about 25,000
real world surveys seems to state the contrary, i. e., that the
PI has no effect on the break-offs [13].

Although there are a lot of studies considering the dif-
ferences in PI speeds, there is missing research, which
consider, how to compute the progress accurately. This
question becomes important especially for surveys with high
adaptivity. To the best knowledge of the authors, the thesis
of Kaczmirek [1] is the only published work, which tries to
answer this question. In one of his studies, he explains that a
simple computation approach produces jumps and, therefore,
he introduced a new dynamic strategy, which converges more
to the true progress. A little study in his thesis suggests that
the application of his dynamic approach does lead to less
break-offs as the simple approach.

A problem of all progress computation approaches in
adaptive web surveys is the logical lack of knowledge, which
“path” through the survey a participant takes. Therefore,
the true progress is only known after the participation.

Kaczmirek [1] proposes two strategies to predict the remain-
ing number of pages (and therefore the path): either the 1)
maximum or the 2) minimum number of remaining pages
is taken for the calculation. In a little study in his thesis,
the break-off rates of the minimum are less than those of
the maximum approach. This corresponds to the results of
Villar et al. since the minimum strategy is similar to a fast-
to-slow and the maximum approach is similar to a slow-
to-fast PI. However, instead of manipulating the progress
speed by design, Kaczmirek is not deceptive as he does it
to approximate the true progress as good as possible.

III. QUESTIONNAIRE MODEL

It is important to know how surveys are structured for
the definition of an algorithm for the computation of the
progress. Since surveys are like computer programs, the
structure can be described precisly as a directed graph. A
directed graph (or digraph) G = (N,E) consists of a set
N = N(G) of nodes and of a set E = E(G) of edges. E
forms a set of ordered pairs, E ⊆ N×N [14, pp. 432]. The
sets .n and n/ describe the sets of all incoming and outgoing
edges of a node n, respectively, i. e., .n = {(n′, n) ∈ E}
and n/ = {(n, n′) ∈ E}.

Since nodes are connected by edges, it is possible to travel
from one node to another node via a sequence of edges.
Such a sequence of edges is called a path. In a digraph
G = (N,E), a sequence W = (n0, . . . , nm), m ≥ 0, of
nodes, n0, . . . , nm ∈ N , is a path, if each node of the
sequence is connected via an edge to the next node in the
sequence: ∀ 0 ≤ i < m : (ni, ni+1) ∈ E [15, p. 1180]. A
path is called acyclic if all nodes on the path are pairwise
different. A digraph is acyclic if each of its paths is acyclic.
Otherwise, the digraph contains a loop and is cyclic. A
digraph is connected if its undirected pendant (adding an
edge (a, b) for each edge (b, a)) has a path between each
two (different) nodes [16, S. 547].

In our model, a survey is an elicitation that uses a
questionnaire as measurement method. Such a questionnaire
consists of items [17, p. 18]. An item is a concrete question
sometimes with some answer possibilities. In almost all
questionnaires, more than one item is presented in sequence.
Mostly, they are grouped thematically on pages.

Definition 3.1 (Page): A page S = {i1, i2, . . .} (S for
sheet of paper) is a set of items i1, i2, . . ..

It is known from test theory that the structure of a
questionnaire influences the measurement results [18, S. 68
ff.]. For this reason, a questionnaire cannot be defined only
using a set of pages since this set is unsorted. We have
to define an order of the pages. From our experience, it is
promising to describe the structure of a questionnaire as an
acyclic, connected digraph:

Definition 3.2 (Q-Graph): A Q-graph Q is an acyclic,
connected digraph (S,E) with a set of pages S and a set
of edges E connecting the pages. A Q-graph Q has exactly
one page without any incoming edges, the start page, and
exact one page without any outgoing edge, the end page.

The previous definition describes the structure of a ques-
tionnaire as a Q-graph. From a detailed described Q-graph, a
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Figure 1. A linear a) and non-linear b) Q-graph

web survey can be automatically derived [4]. However, this
derivation is not part of this work due to the lack of space.

IV. A GENERAL PROGRESS ALGORITHM

In the last section, a Q-graph described the structure of a
questionnaire as a graph. The complexity of the computation
seems to depend on the complexity of the describing Q-
graph. The Q-graph can be either simple or complex.

A. Simple Case
Sometimes, a questionnaire is a simple sequence of pages

without any adaptivity and filters. Its Q-graph is, therefore,
a chain of pages as illustrated in Figure 1 a). More formally,
each page (except the end page) has exactly one outgoing
edge. Such a Q-graph is called linear in the following.

In the case of a linear Q-graph Q, it is possible to assign
a position to each page depending on its distance back to
the start page: the start page gets position 1, the first page
after the start page gets position 2, etc. Finally, the end page
has position |S(Q)|. We write St for the page on position t.

If a participant is on a page St of a Q-graph, then there
are two interesting moments regarding the progress: 1) the
moment the participant reaches the page and 2) the moment
the participant leaves the page. Obviously, the progress when
reaching the current page is equal to the progress when
leaving the previous page. It is assumed in the following,
that the progress ρ(St) on page St reflects the progress at
the moment, the participant reaches the page St. Since, there
is no previous page of the start page, the progress ρ(S0) is
defined as 0 at position t = 0.

For example, if a participant reaches page S7 of the
Q-graph in Figure 1 a), already 7/10 of the Q-graph are
processed and the progress ρ(S7) is 70%. After leaving this
page, the progress is 8/10 = 80% = ρ(S8). If a participant
just started a questionnaire, then the progress is ρ(S0) = 0%.

Since there is a linear association between the page
position and the progress, the progress ρ(St) on a page St
of a Q-graph Q can be computed with:

ρ(St) =
t

|S(Q)|
(1)

This equation was proposed by Kaczmirek [1][p. 147]
and he called it “static” calculation approach. However, it
has its limitation if the progress should be computed in
more precision by the number of processed items. After
finishing a page St, |St| items were processed (|St| =
|{item0, . . . , itemm}| = m, m ≥ 0, since a page is a set of
items regarding Definition 3.1). Finishing page St expands
the progress by a term |St|

|
⋃

S∈S(Q) S|
, where |

⋃
S∈S(Q) S| is the

total number of all items of the Q-graph. This term is added
to the progress of the previous page (ρ(St−1)). It results in
a general, recursive and non-recursive equation to compute
the progress of a linear Q-graph with item precision:

ρ(St) = ρ(St−1) +
|St|

|
⋃
S∈S(Q) S|

=

∑t
i=1 |Si|

|
⋃
S∈S(Q) S|

(2)

This equation cannot be simplified as long as the number
of items varies from page to page. If the progress should be
computed only with page precision, it can be assumed that
on each page lies only one item. The formula simplifies to:

ρ(St) = ρ(St−1) +
1

|S(Q)|
=

t∑
1

1

|S(Q)|
=

t

|S(Q)|

which is equal to the equation of Kaczmirek [1][p. 147].

B. Complex Case

Now, it is assumed, the Q-graph is non-linear (adaptive),
i. e., there is at least one page in the graph, which has at least
two outgoing edges (cf. Figure 1 b)). As a consequence,
the paths throughout the Q-graph depend on the answers
given by the participants resulting in multiple possible paths.
Each possible path can have a different number of pages
and items. Therefore, it is not possible any more to use the
total number of pages |S(Q)| or the total number of items
|
⋃
S∈S(Q) S| for the computation of the progress.

Take the Q-graph of Figure 1 b) as an example. The total
number of pages is 10. For the moment, it is assumed that
each page consists of a single item and that we apply (2)
for linear Q-graphs. If a participant answers the questions
on the first five pages, the progress increases to 5/10 = 50%.
If the participant takes the lower path, the path shortens to 8
pages. In this case, the participant reaches the end page with
an incorrect progress of 80%. Another variant is to skip the
progress of the pages 6 and 7 such that the progress finishes
with 100%. But this produces a big jump in the progress,
which can be misleading.

Kaczmirek proposes a dynamic computation of the
progress in questionnaires with adaptivity. His approach
considers the remaining progress and the contribution of the
current page to the overall progress [1, p. 148]. His resulting
equation resembles (2):

ρ(St) = ρ(St−1) +
1− ρ(St−1)

|remaining pages|

The equation flattens the jumps and, furthermore, allows a
dynamic changing of the number of remaining pages. There-
fore, this solution allows to compute the progress for non-
linear Q-graphs. However, we identified some disadvantages
on the above equation:

1) The equation considers only page precision rather
than item precision (except there is only one item
on each page).

2) The term remaining pages is vague and has to be
discussed in more detail.
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To overcome the first disadvantage, we reformulate the
equation as follows:

ρ(St) = ρ(St−1) + |St|
1− ρ(St−1)

|remaining items|
(3)

This equation multiplies the number of items on the
current page, |St|, and considers the remaining items instead
of pages. The number of remaining items includes the items
of the current page, |St|, as we still consider the progress at
the moment when reaching a page. In other words, the term

1−ρ(St−1)
|remaining items| describes the influence for a page with a single

item, whereas |St| 1−ρ(St−1)
|remaining items| describes the influence of

all items on the current page on the progress. Although
the progress actually depends on the current answers of the
participant, the equation would become long and difficult
to read. Therefore, we ignore an explicit inclusion of the
current answers into the equations.

In (3), a detailed description of the remaining items is
still missing. The difficulty of describing the number of
remaining items is that it is highly dependent on the answers,
a participant has already given, and in the case of future
branching paths on the answers, the participant has to give
in future. As it is impossible to forecast which path of the
Q-graph will be taken by the participant, it is impossible to
predict the remaining items accurately.

The exact number of remaining items on the current page
St depends on the remaining, individual path W to the end
page. Since there may be different paths W1,W2, . . . ,Wm,
m ≥ 1, to the end page with the same number of remaining
items, it is not of interest to predict the exact path to the
end page rather than that number of remaining items. This
remaining items prediction function rem depends on the
current page St. The resulting equation for computing the
progress in non-linear Q-graphs is:

ρ(St) = ρ(St−1) + |St|
1− ρ(St−1)
rem(St)

(4)

Theorem 1 in the appendix of this paper shows that (4)
is equal to (2) for linear Q-graphs.

C. Compute Remaining Items
While most of the last equation can be computed easily

during the survey of a participant, the remaining items
function rem is still challenging. In the following, let Q
be a Q-graph with an end page E and St the current page.

Basically, there are three different situations one can
encounter on each page St: either St has a) no successor
page, it has b) exactly one direct successor, or it has c) at
least two direct successors. This is illustrated in Figure 2.

In the first situation a), the participant reached the end of
the Q-graph. Therefore, the number of remaining items is
known as it is equal to the number of items on the end page
(n = |E|), i. e., rem(E) = |E| (cf. Figure 2 a)).

In the second situation b), the current page St has exactly
one direct successor. If the remaining items are known for
the direct successor as a, then it is also known for the current
page as a+ n, where n = |St| (cf. Figure 2 b)).

n
a+n

a) b)

a b

c)

a

a+n

or 

b+n

Figure 2. Three situations: a) no successor, b) one direct successor, c)
two direct successors

In the last case c), the difficulties arise since the current
page St has at least two direct successors. Assume the
remaining items on one successor is a and on the other
successor is b (in the simple case of two direct successors).
The current page now has either a+ n or b+ n remaining
items, n = |St| (cf. Figure 2 c)). The exact remaining items
are only known if a = b. Otherwise, we have to predict,
which direct successor page of St will be visited by the
participant and, therefore, which remaining items a + n or
b+ n are taken for the computation of the progress.

For such a prediction, there are different strategies. For
example, Kaczmirek [1] proposes two strategies: always take
1) the maximum or 2) the minimum number of remaining
items. Both strategies are considered in the next section as
examples. At this stage, a selection operator t is introduced,
which combines the solutions a+n and b+n, e. g., t can be
the minimum, maximum, or another arbitrary function. The
introduction of this selection operator t makes it possible
to define a general algorithm:

The prediction algorithm gets a Q-graph Q and a selection
operator t as input. We emphasize that t is an input
parameter of the algorithm and can be chosen individually.

At first, each page gets an initial value 0 as remaining
items (the steps of the algorithm can be followed at Fig-
ure 3). Afterwards, the pages of the Q-graph will be put
into a work list in an arbitrary order. This work list contains
all pages without computed remaining items. Furthermore,
there is a set visited, which contains all computed pages.
In a while-loop, the algorithm extracts the first page S of
the work list and tries to compute the remaining items.
This is only possible for S if all of its direct successors
are in visited. The computation then follows our previous
ideas corresponding to Figure 2. Otherwise, if S cannot be
computed, S will be placed on the end of the work list.
Finally, the algorithm terminates when the work list is empty,
i. e., when each page was computed.

With Figure 3, we have found a general algorithm to
compute the remaining items for each page of a Q-graph and
for arbitrary strategies. Combined with (4), the progress can
be calculated for arbitrary Q-graphs and selection operators
allowing the comparisons of different strategies. This is ex-
plained in detail on two examples in the next section. Since
the Q-graph is acyclic, the algorithm of Figure 3 always
terminates. It can be easily checked, that the asymptotic
runtime complexity of the algorithm depends on the t-
operator if the pages are put topologically sorted into the
work list [15, pp. 612].
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Input: Q-graph Q and selection operator t.
Output: For each S ∈ S(Q) the remaining items rem(S).

/** Initialize **/
for all S ∈ S(Q) do

rem(S)← 0

worklist← S(Q), visited← ∅
/** Iterate **/
while worklist 6= ∅ do

S ← takeF irstOf(worklist)
dirSucc← {succ : (S, succ) ∈ S/}
if dirSucc ⊆ visited then

if dirSucc = ∅ then
rem(S)← |S|

else if |dirSucc| = |{succ}| = 1 then
rem(S)← |S|+ rem(succ)

else
rem(S)← |S|+

⊔
succ∈dirSucc

rem(succ)

visited← visited ∪ {S}
else

putAtEnd(worklist, S)

Figure 3. General algorithm for remaining items
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Figure 4. A sample Q-graph with page numbers (black), number of items
on this page (grey), most (number above the edge) and least (number

below the edge) remaining items.

V. EXAMPLE STRATEGIES

To accentuate (4) and the algorithm of Figure 3 and to
show how they can be firstly used to compare arbitrary
strategies, they are applied on two example selection op-
erators in this section. Both selection operators base on the
proposed strategies of Kaczmirek [1][pp. 158-159]:

1) Select the most remaining items (longest case).
2) Select the least remaining items (shortest case).

A. Most Remaining Items (Longest Case)
Taking a t operator, which always selects the direct

successor with the most remaining items, means that it
chooses the maximum number of remaining items of all
direct successors, t = max.

Figure 4 shows a Q-graph with a unique page index (the
black number in the page) and the number of items on each
page (the grey number in the page). Take page 5 of the
Q-graph as an example. It has 1 item and three direct suc-
cessors. It can be easily reconstructed that 10 items remain
following the upper path (S5, S6, S7, S8). On the path in the
middle, there are 11 items, and, finally, on the lower path,
there are only 9 remaining items. Since the maximum of all
three paths is taken, we get 1+max(10, 11, 9) = 1+11 = 12
remaining items for page 5 following Figure 3.

TABLE I
PROGRESSES ON PATH (S1, S2, S13, S14, S12, S7, S8) FOR THE MOST,

LEAST AND TRUE REMAINING ITEMS.

Progress Most Items Least Items True Items

ρ(S1) 14.29 % 20.00 % 15.38 %
ρ(S2) 21.43 % 30.00 % 23.08 %
ρ(S13) 33.21 % 40.50 % 34.62 %
ρ(S14) 64.64 % 68.50 % 65.38 %
ρ(S12) 72.50 % 75.50 % 73.08 %
ρ(S7) 92.14 % 93.00 % 92.31 %
ρ(S8) 100.00 % 100.00 % 100.00 %

Applying the algorithm of Figure 3 to the Q-graph initial-
izes each page at the begin with a remaining number of items
0. Afterwards, it puts each page in the work list. For the sam-
ple Q-graph, the work list contains the following pages in a
perfect order: (S8, S7, S6, S9, S12, S5, S4, S3, S11, S10, S14,
S13, S2, S1). In this order, each page only has to visited
once, since when a page S occurs, then all successor pages
occurred before (this can be simply checked by comparing
the order with the Q-graph). The algorithm computes the
number of remaining items with max as selection operator.
This results in the number of most remaining items of
Figure 4 (numbers above the edges), where this number for
a page is annotated on its incoming edges.

If our dynamic equation (4) is used with these values, the
progress on each page can be computed. Please note, the
progress depends on the visited path. For example, if the path
(S1, S2, S13, S14, S12, S7, S8) is taken by a participant, the
resulting progress can be found in the second column, “Most
Items”, of Table I. If instead of page S13 the participant goes
to page S3, (. . . , S3, S4, S5, . . .), the progress changes on
page S3 to ρ(S3) = 26.34% instead of ρ(S13) = 33.21%
— a difference of more than 6%. Remember, the computed
progress ρ describes the progress after finishing the current
page and, therefore, the progress at the start of the next page.

B. Least Remaining Items (Shortest Case)
The determination of the least remaining items is similar

to the determination of the most items although the selection
operator is min. In this case, the values of remaining
items of the Q-graph of Figure 4 change to the numbers
below the edges in the same figure. The progresses for the
path (S1, S2, S13, S14, S12, S7, S8) can be found in the third
column, “Least Items”, of Table I.

C. Comparison of Both Strategies
In the last two subsections, it was explained, how the

most and least remaining items strategies work. Although the
same path (S1, S2, S13, S14, S12, S7, S8) of the Q-graph of
Figure 4 was considered, the progresses on the pages diverge
between both approaches (cf. Table I). But is it possible to
decide, which of the both strategies is the better one?

As mentioned in the introduction, we need a trustworthy
calculation of the progress [2, p. 757]. There is a lot of
discussion if a computed progress is trustworthy or not.
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We would argue that a computed progress is as trustworthy
as it can be if the difference to the true progress is as
small as possible. Remember, the true progress can only
be determined after a participant has finished the survey,
because at this point of time, we know exactly which path
was taken and which was the total number of items. With
this information, we can compute the true progress for each
page easily by (2) for simple questionnaires.

Let us consider the true progress on each page of the
previous example path. The total number of items is 26 on
this path. Therefore, each item influences the progress by
1/26 and the resulting progresses on the pages can be found
in the last column, “True Items”, of Table I.

The differences of the true progress on each page with
the values of the computed progress with the most and least
remaining items are visualized in Figure 5. The axes of the
chart show the progress in percent.

The figure shows that on the least items strategy, the
progress is overestimated, whereas on the most items ap-
proach, the progress is underestimated; both regarding the
true progress. This is always true since the maximum
number of remaining items is always greater or equal to the
number of the true remaining items as well as the minimum
number is always less or equal to the true number of items.
Therefore, the progress with the least items strategy grows
faster than the true progress at the beginning. The progress
using the most items approach grows slower.

Considering the state of the art in Section II, the least
items approach may be the better choice since there is a
significant tendency in most studies that a fast-to-slow PI
reduces break-offs. However, this was the consideration of
one path of the Q-graph of Figure 4 only, and although the
least remaining items approach fits to the hypothesis of the
state of the art, it it is not sure that this approach is more
trustworthy too.

As mentioned before, in our approach, a strategy (or selec-
tion operator t) is as trustworthy as possible if the difference
between the computed progress to the true progress is as
small as possible. In other words, the area between the
computed and true progress should tend to be 0. In the chart
of Figure 5, the area between the most items approach to the
true progress is smaller than the area between the least items

approach and the true progress, i. e., the most remaining
items approach fits better to the true progress than the least
remaining items approach. Remember, this is valid for the
current considered path and should not be generalized. For
an other path (e. g., the upper path in Figure 4), the least
items approach could be the better choice.

As it was shown in this comparison, there are different
arguments supporting both strategies. According to which
survey and even path is given, either the most or least
remaining strategy is more trustworthy. Furthermore, there
could be other strategies, which fits better to a given survey
than the two introduced one. Therefore, it is not easy to
select the best item prediction strategy for a given survey.
Furthermore, the proposed strategy of Kaczmirek [1][pp.
164-166] — taking the least remaining items — should be
handled with care.

VI. CONCLUSION

Including a progress indicator in a web survey seems to be
a simple part of implementation. We have shown that this is
only true for linear surveys and does not hold true any more
for surveys with adaptivity (branches). This paper introduced
a questionnaire model, which is named Q-graph. Based on
this Q-graph, the difficulties of calculating the progress in
Q-graphs with branches were shown. As a solution, we
propose a general equation and algorithm to compute the
progress dynamically based on the ideas of Kaczmirek [1].
The algorithm predicts the number of remaining items. Since
this number depends on a prediction strategy, the algorithm
needs a so-called selection operator as input. This makes
it possible to compare different prediction strategies in the
first place. Two examples of such operators were illustrated,
which estimate the most or the least remaining items. The
paper concluded with a comparison of both strategies and
avenues for future research.

Since it is not trivial to choose the best strategy for a
given survey, it is of interest to formulate an optimization
problem for the selection of a best fitting selection operator
for a given survey. This should be accentuated by a case
study of different Q-graphs. It is also of interest to find other
selection operators, which are, for example, more intelligent
by using more information about the survey. One possible
idea is to check conditions in our model and to determine
the resulting path for a participant as early as possible.

APPENDIX

Theorem 1: Let Q = (S,E) be a linear Q-graph. There
is exact one path (S1, S2, . . . , Sm), m ≥ 1, where S1 is
the start and Sm is the end page. Let Ii be the number of
remaining items on page Si. Since Q is linear, this number
of remaining items Ii can be computed as follows:

rem(Si) = Ii = Ii−1 − |Si−1| = I1 −
i−1∑
j=1

|Sj | (5)
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In the case of a linear Q-graph, (4) is equal to (2):

ρ(Si)
(4) & (5)
= ρ(Si−1) + |Si|

1− ρ(Si−1)
Ii

(6)

=

ρ(Si)
(2) & (5)
= ρ(Si−1) +

|Si|
I1

(2)
=

1

I1

i∑
j=1

|Sj | (7)

Proof: The proof is done by mathematical induction.
Base: Proof for i = 1 and i = 2:
i = 1:

ρ(S1)
(6)
= ρ(S0) + |S1|

1− ρ(S0)

I1

ρ(S0)=0
=

|S1|
I1

X (8)

i = 2:

ρ(S2)
(6)
= ρ(S1) + |S2|

1− ρ(S1)

I2

(8)
= ρ(S1) + |S2|

1− |S1|
I1

I1 − |S1|
1=

I1
I1= ρ(S1) + |S2|

I1−|S1|
I1

I1 − |S1|
= ρ(S1) +

|S2|
I1

X

Step case: It is assumed that the theorem holds true for i.
Proof for i+ 1:

ρ(Si+1)
(6)
= ρ(Si) + |Si+1|

1− ρ(Si)
Ii+1

theorem
= ρ(Si) + |Si+1|

1− 1
I1

∑i
j=1 |Sj |

I1 −
∑i
j=1 |Sj |

1=
I1
I1= ρ(Si) + |Si+1|

I1−
∑i

j=1 |Sj |
I1

I1 −
∑i
j=1 |Sj |

= ρ(Si) +
|Si+1|
I1

X
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