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Abstract-Increasingly complex global scenarios require 

advanced simulations of human decision-making. Existing 

models often neglect the nuanced cognitive processes essential 

in dynamic environments, leading to oversimplified analyses. 

Leveraging John Boyd's conceptualization of the Observe, 

Orient, Decide, Act (OODA) loop, we propose a novel, agent-

based simulation exploring human agency and sensemaking 

within evolving competitive landscapes. By endowing agents 

with diverse cognitive capabilities across the OODA spectrum, 

we dissect the nuanced impacts of heterogeneous information 

processing and cognitive strategies on agent fitness and 

survival. While Boyd emphasized the strategic advantages of 

swiftly navigating the OODA loop or infiltrating an opponent's 

loop, we also explore the effects of diverse information 

processing and cognitive abilities on agent fitness. Central to 

our initial findings is the critical significance of the Orient and 

sensemaking phase, which emerges as a decisive factor in 

surpassing the mere possession of information, collection of 

data or swift and efficient execution of decisions and actions. 

We present several scenarios—ranging in complexity and 

resource availability— that underscore the superiority of deep 

sensemaking over other cognitive capabilities. Although only 

an initial step, we believe such approaches can expand both 

OODA loop's theoretical underpinnings and its practical 

relevance in enhancing strategic decision-making processes for 

human, behavioral, social, and cultural phenomena. 

Keywords-Agent-Based Modeling (ABM); OODA Loop; 

Complex Adaptive System; Co-Evolution. 

I.  INTRODUCTION 

The concept of the Observe, Orient, Decide, Act 

(OODA) loop [2], introduced by Colonel John Boyd in the 

military context, has transcended its original domain and 

found applications in various fields, including human 

decision-making. The theoretical underpinnings of OODA 

loops in human decision-making stem from Boyd's original 

framework, which emphasizes the iterative and dynamic 

nature of decision-making. According to Boyd, individuals 

continuously cycle through the phases of observation, 

orientation, decision, and action, with each iteration 

informing subsequent cycles. This dynamic process enables 

individuals to adapt to changing circumstances and 

outmaneuver opponents effectively. Our research seeks to 

understand how variations in cognitive capabilities within 

the OODA loop affect strategic decision-making, and to 

explore the implications of these variations for achieving 

strategic advantage and survival in competitive 

environments. 

Empirical research supports the efficacy of OODA 

loops in enhancing human decision making across various 

domains. For instance, in a study by González et al. [11], 

participants engaged in a simulated decision-making task 

involving time pressure and uncertainty. The results 

revealed that individuals who followed the OODA loop 

sequence exhibited faster response times and higher 

decision accuracy compared to those who adopted linear 

decision-making strategies. Similarly, in a neuroscientific 

investigation, Voss et al. [22] used functional Magnetic 

Resonance Imaging (fMRI) to examine the neural correlates 

of the OODA loop phases during decision-making. They 

found distinct patterns of brain activity associated with each 

phase, suggesting that the OODA loop framework 

corresponds to underlying cognitive processes in the brain. 

Furthermore, organizations can leverage OODA loops to 

enhance their decision-making processes and gain a 

competitive edge. By fostering a culture of rapid feedback 

and learning, organizations can adapt more quickly to 

market changes and exploit opportunities faster than their 

competitors [21]. 

In this paper, we agentize Boyd’s OODA loop across 

each step of the process to simulate human agency and 

sensemaking under dynamic, competitive environments. We 

do this by varying agents’ cognitive abilities in each step of 

the process. For Observe, we allow for different discrete 

levels of sensing their environments, ranging from local to 

global information. For the Orient step, we create two 

interactive vectors of cognitive abilities, one embracing 

determinism to stochasticity while the other focuses on the 

increasing complexity of mental models, to create a 

typology of twelve different mental models to make sense of 

competitive environments. For the Decide step, we 

instantiate three different levels of increasingly complex 

decision trees to capture various levels of agency. For the 

Act step, we then allow agents to execute their decision tree 

calculus with varying costs and time horizons. We then 

setup both single and double loop learning to occur, given 

agent OODA loop execution fitness scores. This enables us 
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to explore agents’ cognitive abilities both across and within 

each step of the OODA process.  

The application of OODA loops in real-world decision-

making contexts offers several practical benefits. One such 

benefit is improved decision agility, as individuals can 

rapidly cycle through the OODA loop to respond effectively 

to evolving situations. This capability is particularly 

valuable in dynamic and uncertain environments, such as 

emergency response operations [9]. Furthermore, 

organizations can leverage OODA loops to enhance their 

decision-making processes and gain a competitive edge. By 

fostering a culture of rapid feedback and learning, 

organizations can adapt more quickly to market changes and 

exploit opportunities faster than their competitors [2].  

However, speed of OODA loop execution alone is only 

one small element: we focus on varying information and 

cognitive capabilities within each step of the loop to explore 

their respective implications for learning, competition, and 

efficiencies in dynamic environments. Below we outline our 

simulation approach, architecture and begin exploring its 

capabilities through running several scenarios across 

different dynamic resource landscapes as well as Simple, 

Moderate and Smart cognitive agents. While we only offer 

some initial findings, we believe that empirically calibrating 

and extending agentized OODA approaches such as this can 

provide significant insights into human agency and 

sensemaking in dynamic, competitive environments.  

The rest of the paper is structured as follows. In Section 

II, we present the related works. In Section III, we present 

the model design. In Section IV, we present the model 

results. Finally, we conclude our work in Section V. 

II. RELATED WORKS 

A. OODA 

In 1987, John Boyd originally developed the OODA 

loop as a decision-making model that could be applied in 

any competitive environment, be it military or business. 

This model encompasses four pivotal stages—Observe, 

Orient, Decide, Act—through which individuals 

continuously cycle, allowing each cycle to build upon the 

insights of the previous ones. This dynamic process enables 

individuals with environmental sensemaking and agency to 

adapt to changing circumstances and outmaneuver 

opponents effectively. Figure 1 outlines Boyd’s steps, with 

feedback loops for single “input-output” learning and 

double loop learning where outcomes can also foster change 

to specific OODA steps’ cognitive abilities given success or 

failures. 

First, observe the environment to gain new information. 

This includes collecting immediate sensory information as 

well as more abstract data, such as changes in the 

competitive landscape or shifts in social dynamics. The 

objective of this step is to create a comprehensive snapshot 

of the current situation to inform subsequent decisions and 

actions [7]. Observation can be achieved through various 

means, including direct sensory perception, the use of 

technological tools (e.g., radar, surveillance systems), the 

collection of big data, open-source information, intelligence 

espionage, etc. [6]. In the military domain, Boyd 

emphasized the importance of rapid and accurate 

observation capabilities to gain a strategic advantage over 

adversaries [17]. 

Second, combine this new information with previous 

experiences, culture, and mental models to “Orient” and get 

an understanding of the current situation [4][5]. Orientation 

is the most complex and critical part of the OODA loop 

because it sets the context for decisions and actions. It 

involves filtering and processing the observed information 

through a framework of existing knowledge, experiences, 

and expectations [13] [15]. This step determines how 

individuals and organizations interpret their environment, 

assess threats and opportunities, and consider potential 

actions. In their study, Klein et al. [16] extended Boyd's 

framework by highlighting the role of mental models in the 

orientation phase. They proposed that individuals' decision-

making processes are shaped by their mental representations 

of the environment, tasks, and goals. These mental models 

influence how individuals perceive, interpret, and respond to 

information, thereby affecting the effectiveness of their 

decisions. Orientation methodologies encompass cognitive 

processes, including situational awareness, mental 

simulation, schema activation, and decision-making under 

uncertainty. These processes are influenced by a myriad of 

factors, including training, cultural background, personal 

experiences, and the specific nature of the information 

received. 

Third, review the options to determine the best course 

of action. The "Decide" step is a critical phase in John 

Boyd's OODA loop framework, acting as the bridge 

between understanding the situation (Orient) and taking 

action (Act). This step involves making a decision based on 

the analysis and synthesis of information collected during 

the Observe and Orient phases, under both risk and 

uncertainty [14]. The decision-making process is where 

strategies, tactics, or plans are formulated before being 

implemented in the Act phase. The "Decide" step is where 

choices are made about which course of action to take. This 

step is crucial for effective execution, as it determines the 

direction that actions will take. The quality of the decision-

making process directly influences the outcome of the 

OODA loop, making it a pivotal point in the cycle. 

Decision-making methodologies in the context of the 

OODA loop can include analytical models, intuition-based 

approaches, decision theory, game theory, and scenario 

planning, among others depending on levels of uncertainty 

and risk. The chosen methodology often depends on the 

complexity of the situation, the amount of information 

available, and the time constraints faced by the decision-

maker. 
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Finally, upon deciding, the chosen action is 

implemented. In the OODA loop, the "Act" step is where 

theory and planning confront reality. It's the execution phase 

where strategies and decisions are translated into concrete 

actions with the aim to achieve a desired outcome. This step 

is critical for the loop to be effective, as it is the point at 

which the individual or organization interacts directly with 

the environment to effect change. The methodologies for 

action can vary widely depending on the context, ranging 

from military operations, where it could involve 

maneuvering forces or engaging targets, to business 

strategies, where it might involve launching a new product 

or adjusting marketing tactics. The key is to act in a manner 

that is both timely and relevant to the information and 

orientation developed in the earlier steps of the OODA loop. 

Although referred to as the OODA loop, in reality, it 

functions not as a circular process with independent steps 

but as a continuous operation [17], across multiple 

interconnected and coupled steps to produce outcomes. 

Since its introduction, it has become a popular framework 

for decision-making, especially under uncertainty [18]. 

Boyd identified several keys to success, including getting 

inside your opponent’s OODA loop or running through your 

OODA loop more efficiently [3].   

 

Figure 1. Boyd’s OODA Loop [10]. 

B. An Agentized OODA Model 

With the massive improvements in computational 

power and the popularization of agent-based modeling given 

complexity theory, the past several decades have seen many 

forays into simulating decision-making within complex 

adaptive systems [2][8][12][19]. These models employ a 

mix of game theory, rationality, and learning to simulate 

decision-making in dynamic complex systems under 

uncertainty [23]. Even relatively simple games, such as the 

El Farol problem, can yield intriguing results, unveil new 

strategies, and dynamic equilibria with slight increases in 

complexity [2][20]. Single-Loop and Double-Loop learning 

add a crucial dimension to these models, enabling actors to 

adapt to changing environments and optimize their fitness 

functions [24].    

Complex adaptive systems are pervasive throughout the 

world, in domains such as business and military, and 

inherently operate under significant uncertainty and time 

constraints. Heterogeneous agents, by optimizing their 

fitness functions, create meso-level competitive social dyna- 

 

 

 

mics. These dynamics, in turn, shape macro-outcomes that 

influence decisions at all levels, both present and future [1]. 

Observing these interactions within a dynamic landscape, 

alongside agents' single and double-loop learning processes, 

offers opportunities to identify emergent, non-linear 

behaviors and potentially, resulting novel strategies. It also 

highlights the critical impact of varying agent capabilities 

across outcomes.  

III. MODEL DESIGN 

Figure 2 provides an overview of our agentized system. 

Individuals possess varying cognitive capability values on 

each one of the OODA vectors that influence their overall 

decision-making processes. These instantiate into local 

competitions on varying environmental landscapes, directly 

influencing outcomes and thereby increasing or decreasing 

agent wealth. The magnitude of these gains or losses 

triggers positive or negative feedback loops, prompting 

agents to update their capabilities given learning and 

expectations. This adaptation is crucial for their survival in 

dynamically evolving landscapes.  
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                                                                              Figure 2. Agentized OODA Loop Architecture. 

The Observe phase is a critical conduit for information 

gathering, enabling agents to perceive their local 

environment, competitors, and landscape. At the most basic 

levels, agents can either identify the resources available in 

each area or the positions of other agents within the local 

environment. Consequently, agents have three critical pieces 

of information to consider in the Orient step, encompassing 

resources, agent positions, and local landscape that 

influences their strategic planning. This provides four 

different discrete Observation levels for agents in Figure 3. 

 

Figure 3. Observation Module Types and Level. 

 

The Orient phase comprises two components: 

complexity and stochasticity, which together create a matrix 

of various mental model levels that determine how agents 

perceive their current situation. Agents’ complexity value 

determines the equation into which observed values are 

input, ranging from a simple mental model of  Yt = Yt-1 

where the past experiences will be the same as future, to 

complex specifications where Yt = Yt-1 + X1t-1 + X2t-1 … + 

Xp 
kt-n to incorporate more complex past history and 

exogenous polynomial expressions. The stochasticity value 

influences the degree of random noise or interference added 

to each equation, reflecting the spectrum of uncertainty or 

misperceptions from deterministic (no impact) to entirely 

random (total impact). Figure 4 illustrates how various 

combinations of complexity and stochasticity influence the 

equations underlying the mental models. 
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         Figure 4. Orient Module Vectors of Randomness and Complexity for Mental Model.

 

        The Decide phase presents agents with decision trees 

that vary in complexity from simple, single-level trees to 

more complex structures with three levels as shown in 

Figure 5. With each additional level, the decision tree 

expands, offering a broader set of choices for the agents to 

consider. At the simplest level, agents decide whether to 

move or not, with an associated move cost. Increasing 

cognitive decision capabilities, at the next level agents can 

decide to move towards desirable resource locations or 

move towards competitors. At the highest cognitive decision 

level, agents evaluate complex decisions: whether to stay 

put, move away from competition, approach resources, and 

whether their movement should be full or partial given costs 

and competitors.  

 

Figure 5. Decide Module Decision Tree Calculus and Depth. 

The Act module enables agents to navigate their 

decision tree to identify optimal courses of action that 

maximize expected utility. Simpler agents process the 

decision tree, evaluating each potential decision's outcomes 

and costs before selecting the action that yields the greatest 

expected utility. If agents have additional capacity, they can 

anticipate the future landscape at time t+1, and act 

strategically by integrating foresight into their decision tree  
 

 

to refine their strategy before executing the course of action. 

This strategic foresight allows the agents to identify the 

competitive landscape of their destination patch and update 

the expected utility of the destination accordingly.  

 

Figure 6. Act Module Decision Tree Calculus. 

After progressing through the OODA loop, an agent 

executes its action: either moving or capturing resources. 

The discrepancy between an agent's expected and actual 

outcome dictates the feedback loop, influencing how agents 

update their mental models. Minimal or no discrepancies 

between agent outcomes and expectations, signify slight 

improvements or deteriorations in fitness, and result in the 

absence of single-loop learning. Significant discrepancies 

between expected and actual outcomes present single-loop 

learning opportunities, prompting agents to adjust the Orient 

phase to more closely align with reality.  

For double-loop learning, the rate of change in 

outcomes dictates the frequency, strength, and type of 

feedback. Small changes in outcomes do not trigger 

feedback, whereas significant changes can lead to either 

positive or negative feedback learning opportunities. 

Positive feedback leads the agent to further enhance the 

capacity of the OODA step it last improved, provided it has 

not reached its maximum. Negative feedback prompts the 

agent to roll back any previous enhancements in capacity. 

Through the interplay of single-loop and double-loop 
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learning capturing ‘lessons learned’ agents can adeptly 

navigate a dynamically evolving landscape, adjusting to 

changes in environmental resources and the co-evolution of 

competitors to optimize their fitness functions.  

IV. RESULTS 

A. Baseline 

Here, we first establish a baseline to gauge typical 

performance of agents within our OODA simulation, setting 

the standard for comparison. This baseline involves 

generating normal distributions for the initial values of each 

individual OODA component. To ensure a realistic 

environment, we craft a landscape that maintains a balance 

between scarcity and abundance of resources. 

We employ various scenarios that deviate from this 

baseline to examine how agents respond to shifts in agent 

capabilities and environmental factors. These scenarios are 

critical for evaluating the robustness and adaptability of the 

agents' decision-making processes. These scenarios are 

assessed using metrics that measure resource management, 

survival, and decision-making capability, offering insights 

into the effectiveness of cognitive strategies within the 

OODA loop. By comparing agent performance across these 

varied scenarios with the baseline, we draw nuanced 

conclusions about the efficacy of different strategies 

embedded in the OODA loop framework. 

TABLE 1. BASELINE INITIAL CONDITIONS AND 

PARAMETER VALUES 

Parameters Description Base value 

Population Total number of agents 25 

Agent 

Resources 

The initial number of 

resources for agents 

75:25 

Environment 

Resources 

The initial number of 

resources for environment 
75:25 

Observation Range How many steps the agents 

can see around them 

4:1.25  

Move Cost The resource cost for 

agents to move one step. 
1 

Regrow Time The number of ticks it 

takes for the environment 

to regrow their resources. 

1 

Energy Loss An absolute attrition value 

in resources for agents 

each tick. 

1  

Observe Score The Observe Step score of 

agents 
2.5:0.75 

Complexity  

Score 

The Complexity Step score 

of agents 

2:1 

Stochasticity Score The Stochasticity Step 

score of agents 

1.5:0.75 

Decide Score The Decide Step score of 

agents 

2:0.5 

Act Score The Act Step score of 

Agents 

1.5:0.25 

Figure 7 below depicts four separate simulation plots. 

The first one is the starting environment given initial 

conditions. Agents are yellow circles, with the color 

indicating their overall sum of their OODA scores, lighter 

colors indicate lower values, while darker hues signify 

higher values. The environment is characterized given 

resource density, with higher resource values in darker 

shades of blue. The second plot is a phase portrait of the 

populations’ average summed OODA score by their average 

fitness score outcomes. The third times series plot details 

Simple, Moderate and Smart agents’ average fitness 

outcomes over 1000 iterations. Finally, the last plot shows 

the resulting environment and competitive landscape at the 

end of the simulation.  

 
Figure 7. Baseline Environment, Time Series and Phase Portrait Plots.  

In our baseline scenario, agents quickly reach 
equilibrium within the first two hundred iterations, with 
Simple agents perishing and Moderate and Smart agents 
achieving relatively stable, but oscillatory fitness outcomes. 
Moderate agents consistently emerge as the most successful 
agent type, having the highest average outcome on fitness 
scores. The phase portrait illustrates that agents quickly 
identified and adhered to a stable equilibrium, with the 
average OODA score hovering around 8, indicating little 
double loop learning. This suggests that the agents are 
capable but not maximally intelligent and stop learning early. 
The time series plot reveals a population bifurcation of 
OODA scores: a few extremely smart agents with the highest 
scores survive, alongside a larger group of agents with 
moderate intelligence. Diving into individual module score 
details, interestingly for Observe, Decide, and Act 
components, agents do not require the highest capacity 
scores to survive. This demonstrates that rather than having 
additional capacity to observe the landscape, decide among 
more options, or predict one step into the future, the most 
critical ability for agents is synthesizing observations using 
the highest capability mental model and is consistent with 
prior literature. Simply put, agents that lack sensemaking 
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orientation of their environment, despite access to 
information, decision-making process and action execution, 
do not survive. 

B. A Low Resource Landscape 

We define the first scenario by modifying the baseline 

conditions to create an environment with scarce resources 

and increasing energy loss. Previously, the environment had 

resource ranges from 25 to 125 units; this has been adjusted 

to 0 to25. Additionally, we have doubled the energy loss of 

move costs from 1 to 2. This creates a harsher, more 

competitive environment as agents must now vie for a 

significantly reduced pool of resources. 

 

Figure 8. Scenario 1 Environment, Time Series and Phase Portrait Plots. 

In this challenging scenario, only six agents survive: 

four are classified as Smart and two as Moderate in overall 

summed OODA score intelligence. In this harsh landscape, 

while Smart agents have a higher survival rate, Moderate 

agents achieve slightly better outcomes, though by a smaller 

margin than the baseline. Under this scenario, survival is 

exclusive to agents with the highest capacity for Orientation. 

The most complex equation and no noise are required to 

survived. Contrary to the baseline scenario, a premium is 

placed on the observational ability, as evidenced by most 

agents possessing the highest Observe scores. Decision and 

Act capacity remains low, as agents survive and thrive by 

being reactive quickly. Also, Smart agents remain 

stationary, exploiting resources from their immediate 

location given higher move costs in a resource poor 

environment. Conversely, Moderate agents actively seek out 

better resources while incurring higher costs. 

C. Low Resource Landscape with Global 

Knowledge 

In our second scenario, agents have the added 

advantage of perceiving a significantly wider environmental 

range while maintaining the same harsh environment as in 

the above scenario. Previously limited to a view range of 0 

to 5, agents can now perceive an expanded range of 0 to 20. 

This dynamic aims to explore how balancing the 

challenging environment with the agents' enhanced global 

environmental Observe capabilities affects their mental 

models and leads to the evolution of agents optimized to 

maximize their fitness function. Such adaptations parallel 

the evolution technology to increase human situational 

awareness. 

 

Figure 9. Scenario 2 Environment, Time Series and Phase Portrait Plots. 

Here, we see Smart agents dominating the landscape, in 

contrast to Moderate and Simple agents who exhaust 

themselves in an attempt to capture all possible gains by 

expending excessive energy. Smart agents leverage their 

superior OODA summed capacity to accurately assess the 

landscape, recognizing the advantage of patient anticipation 

over frantic movement in this harsh, resource poor 

environment. Although they do not surpass Moderate 

agents’ early gains during the simulation, they maintain 

consistency in fitness outcomes. This consistency may 

highlight additional benefits of Decision and Action phases, 

empowering agents with a considerably broader range of 

strategic courses of action.   

D. Harsh World, Smart Agents 

Given observed difficulties agents face in challenging 

environments, we now adjust the scenario to agent at high 

levels of summed OODA intelligence. Within their 

observation range, which remains extensive, each agent can 

now perceive all other actors, resources, and landscapes. 

Each agent also consistently employs the most sophisticated 

mental model available. Each agent can use the full decision 

tree to see which option is best. Finally, each agent can see 

the best outcome with the next tick in mind, inducing 

strategic behavior. 

82Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-163-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

ACHI 2024 : The Seventeenth International Conference on Advances in Computer-Human Interactions



 

Figure 10. Scenario 3 Environment, Time Series and Phase Portrait Plots. 

Even with the above cognitive advantages, this harsh 

environmental scenario proves too challenging for long term 

fitness achievement and survival. In a multitude of 

simulation runs, all agents inevitably perish within the first 

few hundred iterations. Agents consistently exhibit low 

average outcomes, demonstrating their inability to 

sufficiently adapt to the landscape. Actors with the highest 

OODA scores incur significant costs due to the increased 

complexity of their decision-making processes. This 

complexity makes each action more resource intensive as 

they navigate their decision trees. In a resource poor 

environment, the cost of strategic complexity is high. 

E. Harsh World, Simple Agents 

Building on the above, our final scenario assesses agent 

performance given with the lower OODA capacities in 

harsh, resource poor environments.  

In the same extremely harsh environment, agents with 

low OODA scores demonstrate performance comparable to 

that of their more sophisticated counterparts. Whereas Smart 

agents employ complex models and strategize to endure 

difficult environments for future gains, agents with minimal 

OODA capacities react more spontaneously. However, 

given resource scarcity and competition costs, these produce 

almost equally ineffective outcomes on fitness scores. 

 

Figure 11. Scenario 4 Environment, Time Series and Phase Portrait Plots. 

V. CONCLUSION 

In this paper, we set out to explore cognitive simulation 

capabilities, by agentizing Boyd’s OODA loop in a 

dynamic, competitive environment. By specifying and 

controlling cognitive abilities in each OODA module, we 

focused on fitness outcomes based upon varying levels of 

capabilities at each step. Our findings demonstrate that this 

approach opens a myriad of simulation possibilities. 

Furthermore, we observed the interactive effects of 

increasing or decreasing cognitive capabilities.  

Some of our next steps include extending scenarios to 

include adding varying degrees of agent competition across 

dynamic resource landscapes to further calibrate OODA 

modules and feedbacks. Once complete, we will perform 

quasi-global sensitivity testing to extract key model drivers 

and dependencies to make inferences on cognitive behavior 

across each OODA step. This also allows detailed 

exploration of both single and double loop learning 

mechanisms across different competitive environments. 

We believe the development of OODA loops for human 
decision-making represents a significant advancement in 
understanding and improving decision-making processes. 
Building on Boyd's original framework, many other 
researchers have validated the foundations, provided 
empirical evidence, and outlined practical implications for 
incorporating OODA loops into multiple domains and 
contexts. By explicitly embracing the dynamic and iterative 
nature of human decision-making, hopefully both individuals 
and organizations can enhance their ability to navigate 
increasingly complex environments. 
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