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Abstract—In many manufacturing processes it is not possible
to measure on-line the state variable values that describe the
system state and are essential for process control. Instead,
only quantities related to the state variables can be observed.
Machine learning approaches are applied to model the relation
between observed quantities and state variables. The charac-
terization of a process by its state variables at any point in time
can then be used to adequately adjust the process parameters
to obtain a desired final state. Also, multiple process controls
of a process chain can be linked using standardized transfer
state variables between the single processes. This allows the
optimization of the entire process chain with respect to the
desired properties of the final workpiece. This paper proposes
a general method to extract state variables from observable
quantities by modeling their relation from experimental data
with data mining methods. After transforming the data to
a space of de-correlated variables, the relation is estimated
via regression methods. Using Principal Component Analysis
and Artificial Neural Networks we obtain a system capable of
estimating the process state in real time. The feasibility of our
approach is shown with data from numerical simulation of a
deep drawing process.

Keywords-statistical process model; hidden state prediction;
regression analysis; dimension reduction; deep drawing.

I. INTRODUCTION

Closed-loop controls are capable of reaching desired final
states by compensating disturbances in single processes or
by adapting to varying input in a process chain. Feedback
about the system state is essential for this purpose. The
measurement of the real state variables usually requires
large efforts and cannot be executed in process real time.
Only few process-related quantities can be measured by
real production machines during process execution. If these
observables can be related to state variables with sufficient
unambiguity and accuracy, a state-based closed-loop control
can be created. The final state can then be estimated as well
and the information be transferred to the control of the next
step in a process chain. In deep drawing, observables such as
forces and displacements in the tools and the workpiece are
accessible during process execution with reasonable mea-
surement effort. Mechanical stress distributions reflecting
the state of the sheet material can be used as controlled
variable as applied in [1] to optimize the blank holder force
for an experimental deep drawing environment. A control

system for deep drawing is presented in [2], based on the
identification of static material properties as proposed in [3].

Data mining methods for regression analysis such as
Artificial Neural Networks (ANNs) or Support Vector Re-
gression (SVR) are widely used in material science for
the prediction of static process quantities. In [4], thickness
strains have been computed, [3] presents a model to predict
material properties from process parameters and conditions.
These both affect the final result, however, conditions are
constant during execution and can not be used for on-line
state control. The texture of cold rolled steels has been
predicted from process conditions in [5]. A general overview
for the application of ANNs in material science is given in
[6] under consideration of model uncertainties and noise.

In our approach a feedforward, completely connected
ANN is used due to its capability of modeling the nonlinear
relation between observable quantities and the process state.
Principal Component Analysis (PCA) is applied for dimen-
sion reduction in observables and state variables to decrease
the complexity of their relations.

This paper is structured as follows. In Section II the statis-
tical process model and underlying data mining methods are
introduced. A proof of concept is given by the application of
the statistical model to data from numerical experiments of
a deep drawing process in Section III. Results for predicted
state quantities are presented and evaluated in Section IV.
Section V concludes and outlines future work.

II. MODELING

Numerical models based on first principles have the ability
to predict results accurately and reliably after they have been
validated by experimental results. However, the high quality
comes along with high computational costs. Phenomeno-
logical models are based on observations of first principles
and normally require less, but still substantial computational
resources. Both types of models can be used to describe
dynamic process behavior. If it comes to on-line process
control, however, high speed models are needed to make fast
predictions. Statistical models provide this property and thus
can be used to reproduce the relation between observable
quantities and process states on the one hand and the relation
between state variables and appropriate process parameters
on the other hand.
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Figure 1. Closed-loop adaptive process control

A. Relating Observables to State Variables

During process execution, the dynamic system moves
along in its state space where each state generates observable
values related to the respective state variable values. In mate-
rials processing, the state variables may be fields of intensive
magnitudes such as strains or stresses that are reflected in
observables like displacements, forces and temperatures.

A closed-loop adaptive process control based on hidden
state observation is shown in Figure 1. The dynamic system
is characterized by its state s(t) and is subject to a system
noise n(t) that has to be compensated by the controller
to reach a defined final state s(T ). The observer models
the relation between observables and state variables and
delivers estimated state variables ŝ(t). These are again used
by the controller to find appropriate process parameters c(t)
considering the reference s(T ) as definition for the final
state at time T . If multiple process controls are linked to
a process chain, the final state of the preceding process
serves as initial state of the current process s(t0). This
additionally influences the process parameters determined
by the controller during process execution.

The hidden state observer provides state information by
deriving the current estimated state ŝ(t) at time t from
observables between process begin at time t0 and the current
time t. Input and output quantities of the regression analysis
are high dimensional, whereas with reasonable measurement
effort only a limited number of samples can be provided by
experiments. Therefore, we propose to model the complex
relation between observables and state variables with an
ANN applying dimension reduction to input and output
before regression analysis is performed.

B. Regression Analysis

A feedforward, completely connected ANN is used to
model the nonlinear relation between observables (input) and
state variables (output). We choose a three layer network
topology (input, hidden, output), which is sufficient accord-
ing to the theorem of Kolmogorov [7]. Each of the neurons
in the subsequent layer is connected to all neurons of the
current layer, where each connection has assigned a certain
weight value. A logistic activation function is applied to the
superposition of the activations of preceding neurons and

the weights added up with a threshold value. The regression
analysis by means of ANNs consists of minimizing an error
cost function with respect to the weights and thresholds. For
the cost function, the sum of squared errors (SSE) between
the output values of the network and the output values of
the associated input values as given by a sample is selected.
The ANN is trained by the backpropagation algorithm [8].

The number of nodes in the hidden layer has been
determined according to (1), see [9]. The objective is to re-
trieve an overdetermined approximation, i.e., the number of
training samples must be greater than the number of degrees
of freedom, namely the number of connection weights.

KN = α(J(I +K) + J +K) (1)

Equation (1) reveals the relation between
• the number of input nodes (I)
• the number of hidden nodes (J)
• the number of output nodes (K)
• the number of training samples (N )
• the determinacy factor (α),

which is problem dependent. Starting from a minimum of
1.0 (exact determination), the optimal determinacy factor
α has been experimentally identified by evaluation of the
network’s performance function quantified by the mean
squared error (MSE). A first guess of determinacy has been
obtained by comparison of network performance results
between 1.0 and the maximum determinacy resulting from
a network with only one output node with a step width
of 10. Successive refinements by step widths of 1 and 0.1
have been performed around the value of the previous step
until the optimal determinacy is obtained with respect to the
network’s performance function.

The number of output nodes is on the one hand predefined
by the number of output dimensions of the regression
problem itself, but on the other hand the output nodes
do not necessarily have to belong to one single network.
An extreme configuration is to generate one network per
output dimension to reduce the complexity that has to be
described by the hidden layer. In our approach we use
only one network since the complexity of the regression
problem has already been reduced by dimension reduction.
The Levenberg-Marquardt algorithm is used to solve the
optimization problem of finding optimal connection weights.

C. Dimension Reduction
PCA is employed to reduce the dimensionality of ob-

servables and state variables by removing correlations in
space and time. Before applying the PCA algorithm, the
data spanned by the three dimensions

• the number of samples (I)
• the number of variables per time frame (J)
• the number of time frames (K)

have to be arranged in two dimensions. Reference [10] states
that only two of the six possible unfolding techniques have
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practical relevance. In A-unfolding (KI×J) the number of
time frames and the number of samples are aggregated in
the first dimension, the number of variables per time frame
characterizes the second dimension. D-unfolding (I ×KJ)
uses the number of samples as first dimension and combines
the number of time frames and the number of variables per
time frame in the second dimension. The latter is therefore
more appropriate to remove correlations between different
time frames as well as between variables within the same
time frame. In [11], dynamic process behavior is monitored
by Dynamic Principal Component Analysis (DPCA) consid-
ering a limited window of time lagged observations. In our
model we use the full history of observables to make use of
the complete information available to us.

The data in original dimensions X are subject to a
transformation of the principal axes by finding directions
of maximum variance. The first new axis points in the
direction of largest variance of the data X and is called the
first principal component. The second principal component
is orthogonal to the first one and points in the direction
of second largest variance. Additional components can be
found analogously, while higher ones describe less variance.

X =

n∑
i=1

αiei (2)

The data can be represented by (2), where n stands for the
number of dimensions of X , e represents the basis vectors
and α describes the data in the new coordinate system.
Dimension reduction can be achieved by removing higher
principal components since they do not explain much of the
variance in the data.

K =
1

n− 1
XTX (3)

Related eigenvectors and eigenvalues can be calculated from
the covariance matrix K, see (3), where X has been mean-
centered before. Pairs of eigenvalues and eigenvectors are
then sorted such that the largest eigenvalue is associated
with the first principal component explaining most variance
[12]. The covariance matrix can be seen as a description of
the rotation in the transformation of the principal axes, the
data centroid corresponds to the displacement of the origin
of the new coordinate system with respect to the initial one.

If the number of variables is much greater than the number
of samples, which might apply to observables, [13] advises
to use Singular Value Decomposition (SVD) according to
(4) to determine eigenvalues and eigenvectors efficiently.

X = USV T (4)

The eigenvalues α can be extracted from the diagonal
matrix S by (5) where m corresponds to the number of
samples, while the orthonormal matrix V contains associated
eigenvectors e.

α =
1

m− 1
STS (5)
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Figure 2. Architecture of the statistical process model

D. Statistical Process Model

The statistical process model for hidden state observation
displayed in Figure 2 is divided into a training and a pre-
diction block. For each requested point in time t the system
collects previously sampled observables o(t0), . . . , o(t) and
current state variables s(t). First, PCA is applied to both
observables o and state variables s of which a subset is used
to train the ANN as input co and target cs, respectively. After
successful training the ANN is able to predict state variables
in reduced dimensions cŝ(t) from previously unseen observ-
ables o(t0), . . . , o(t), reduced to cõ(t0, . . . , t), that have not
been included in training. The predicted state quantities cŝ(t)
are subject to an inverse dimension transformation to obtain
their counterparts ŝ(t) in the original, high dimensional
space for visualization and validation.

III. APPLICATION TO DEEP DRAWING

The feasibility of the proposed approach is tested with
an elementary sample process, the cup deep drawing of a
metal sheet. In cup deep drawing, a metal sheet is clamped
between a die and a blank holder. A punch presses the
sheet that undergoes a traction-compression transformation
into the die opening to obtain a cup-shaped workpiece. The
assembly is displayed in Figure 3. Statistical samples have
been generated by experiments performed in a numerical
simulation environment. Fur this purpose an axisymmetric
finite element deep drawing model has been implemented in
ABAQUS (finite element analysis software).

Observable quantities are displacements and forces, tem-
perature behavior has been neglected. Displacements in the
cup bottom in direction of the moving punch have been
recorded as well as displacements in the sheet edge in
orthogonal direction to reflect sheet retraction. Additional
displacements in punch and blank holder have been acquired.
Reaction forces in the tools have been recorded in both
radial and axial direction. Arising partial correlations in
observables are removed by the PCA. The state of the deep
drawing process is characterized by the von Mises stress
distribution within the workpiece.
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Figure 3. Workpiece and tools in axisymmetric deep drawing

In the performed parametric study, the blank holder force
has been varied in the range of [70, 100] KN, process
conditions such as drawing height or lubrication have been
kept constant. For each sample observables and state vari-
ables have been collected for all time frames. A time frame
equalization ensures common time frames for all samples.
200 samples have been generated, each consisting of 131
time frames, which in turn contain nine observables and
400 state variables. The extracted data have been randomly
partitioned into a training set (80%) and a test set (20%).
Dimension reduction has been applied to all samples, where
the training data were split again randomly into a training
set (80%) and a validation set (20%) for regression analysis.
The test set has been used for overall validation of the
statistical model. Resampling and subsequent remodeling
has been performed to select the best model and to prove
independence of specific data sets.

IV. DISCUSSION OF THE RESULTS

Two use cases were identified for state estimation. The
first use case refers to the prediction of the final process
state based on the observable values during the entire process
execution. This provides a subsequent process with detailed
information about its input, allowing it to optimally adjust its
parameters. The single process controls of a process chain
can be linked by the state information in a standardized
way, resulting in an overall quality improvement. This use
case is described in Section IV-A. Prediction of the state
evolution during process execution is employed in process
control as discussed in Section IV-B. The latter can be seen
as a generalization of the former.

A. Prediction of the Final Process State

The statistical model for hidden state observation has been
validated by a test set of 40 samples (see Section III). The
relative prediction error of the 400 state variables never
exceeds 0.0110 for all samples, the resulting distribution is
shown in Figure 4. The absolute frequency of the number
of state variables is high for small errors and drops rapidly
with increasing error. Different colors stand for individual
samples. The quality of the results shows the principle
feasibility of the method. One must be aware that this
might be partly due to the simplicity of the experiments:
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Figure 4. Relative error distribution for predicted state variables

the variance in observables and state variables is not very
large since the blank holder force has been the only varied
parameter. Investigations with more realistic process models
and real experimental data are subject of ongoing work.

The prediction quality was further analyzed as follows.
It has been shown that the variation of predicted results is
substantially smaller than the variance of the generated data.
For this, we have defined the model uncertainty σ by

σ =
1

n

n∑
i=1

MSE i

Var i
, (6)

which corresponds to the mean value over all dimensions i
of the MSE over all samples divided by the corresponding
sample variance Var . In (6), n stands for the number of
dimensions, i.e., the number of state variables. A low model
uncertainty is characterized by a σ value close to zero,
whereas values approaching 1.0 indicate high uncertainty.
For our experiment σ is 0.0045, which indicates the high
accuracy and low uncertainty of the predicted results.

The quality of the statistical model has been quantified by
the coefficient of determination R2, which can be applied to
nonlinear regression analysis by (7) according to [14]

R2 = 1− SSE

SST
. (7)

The SSE describes the sum of the squared deviations
between original data in the test set and associated predicted
results. It is divided by the SST , which quantifies the
variation in the test set calculated by summed squared
deviations of the original state variables from their means.
Both quantities are computed over all state variables for
all samples in the test set. A resulting R2 value of 0.9991
confirms the good quality of the statistical model. The MSE
of the predicted state variables serves as a base for the
determination of a confidence interval for the prediction
error. The precision of the estimation amounts to a mean
value of 0.0440, which has been calculated over all predicted
state variables for a 95% confidence interval.

The overall error of the statistical model is composed of
a time frame equalization error, the error from dimension
reduction and the ANN prediction error. The MSE of the
ANN amounts to 0.0019 at a typical range of [400, 800] MPa
of the predicted von Mises stresses. Observables have been
reduced from 1179 (9 observables per time frame × 131 time
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Figure 5. Comparison of results of the finite element model and the statistical model

frames) to nine dimensions with a predefined precision of
99.999% and thus a relative error of 0.001%. State variables
have been reduced from 400 to seven dimensions with a
precision of 99.900%, i.e., a relative error of 0.1%. On the
one hand dimension reduction implies information loss that
cannot be recovered, but on the other hand it enables the
ANN to find correlations in the reduced data. A worse result
might have been obtained without the usage of dimension
reduction due to the huge number of additional degrees of
freedom to be determined by the ANN.

Some results for a representative of the test set visualized
in ABAQUS are depicted in Figure 5. It displays the absolute
von Mises stress values in MegaPascal predicted by the
statistical model in Figure 5b, which are in very good
agreement with the results of the finite element model
illustrated in Figure 5a. To outline the deviation of the
predicted results from the original data the relative error in
the range of [0, 0.0024] is presented in Figure 5c. Errors are
low in regions with small sheet deformations, while higher
errors occur in areas with high deformation gradients.

Robust predictions are characterized by bounded predic-
tion errors despite of model uncertainties and disturbances.
In our work we first applied a white noise of 5% to the
observables to model a measurement error. State variables
have then been predicted with a relative error in the range
of [0.0, 0.0569] and a corresponding mean value of 0.0024.
The model uncertainty σ amounts to 0.1069, while the model
quality is characterized by a R2 value of 0.9313. Increasing
the noise to 10% results in a relative error range of [0.0,
0.1115] with a mean of 0.0033, a model uncertainty σ of
0.1990 and a R2 value of 0.8412. The size of the error
range does not solely represent the quality of prediction,
also the model uncertainty affecting the distribution within
this range has to be considered. The results indicate that
our model is robust to small disturbances and still delivers
satisfactory results for small manipulations in observables.
However, with increasing noise model quality decreases as
uncertainty increases.

B. State Prediction During Process Execution

Process execution time determines the timespan in which
process parameters can be adjusted to control the process
state. State information is not necessarily needed for each
single time frame, since controllers are usually liable to a
certain delay in their impact. The implementation of the
statistical model offers the selection of time frames that are
crucial for control. In this work some representatives have
been chosen to demonstrate the feasibility of state evolution
prediction. Time frame numbers 1, 45, 90 and 131 have been
selected, the results are outlined in Table I.

The parameters of the statistical process model have been
set as follows. The respective determinacy of the ANN has
been identified incrementally by evaluating the network’s
performance function (see Section II-B), the precision for
dimension reduction has been chosen as 99.999% for ob-
servables and 99.900% for state variables. The number
of observables and state variables in reduced dimensions
each grows with increasing time since their inner relations
become more complex. The number of hidden nodes in-
creases as well due to the more complex relation between
observables and state variables. Between time frame number
45 and 90 the number of hidden nodes however decreases.
At this point the number of input nodes of the ANN given

Table I
PREDICTION CHARACTERISTICS DURING PROCESS EXECUTION

Time frame number 1 45 90 131
# PCA observables 1 1 6 9
# PCA state variables 1 2 3 7
# ANN hidden nodes 33 36 26 38
ANN determinacy 1.3 1.8 1.5 1.4
MSE PCA observables 1.2453 1.3612 51.8063 80.0205
MSE PCA state variables 4 · 10−5 4 · 10−4 0.0026 0.0667
MSE ANN 2 · 10−5 7 · 10−6 3 · 10−4 0.0019
R2 statistical model 0.9999 0.9999 0.9998 0.9991
σ statistical model 0.1452 0.0003 0.0028 0.0045
Mean relative error 0.0047 8 · 10−6 3 · 10−5 2 · 10−4

Max relative error 0.1071 0.0021 0.0020 0.0110
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by the number of observables in reduced dimensions is for
the first time higher than the number of output nodes given
by the number of state variables in reduced dimensions.
The MSE caused by dimension reduction in observables and
state variables rises with increasing time and thus increasing
complexity. The performance of the ANN evaluated by its
MSE decreases between time frame number 1 and 45 and
then increases. This behavior is also reflected in the relative
error distribution specified by its mean and maximum value.
The explanation is composed of two opposed effects. The
model uncertainty σ is on the one hand very high at the
beginning of the process, since not much process knowledge
by means of observables is available. On the other hand
there is not much variance in the state variables at this
point, because the impact of different applied blank holder
forces is not yet strong, but will play a more important
role with increasing time. Although the model uncertainty
is very high for time frame number 1, the prediction result
is still characterized by a high quality index due to the low
variance in the process state. The uncertainty decreases with
increasing time, but then also complexity grows and has a
stronger impact on the prediction result. The overall model
quality R2 as well as the relative error distribution show that
the predictions are in good agreement with the original data.

V. CONCLUSION AND FUTURE WORK

It has been shown that the statistical process model for
hidden state observation applied to a deep drawing process
can be successfully used for process state prediction based
on observations. The results outlined in Section IV are very
promising and can therefore be taken as a solid base for
process control. Process parameters can thereon be adjusted
by observing the evolution of the process state implementing
a suitable control law. The control of one single process can
be extended to process chain optimization by multiple linked
process controls. For this purpose workpiece properties are
to be deduced from the final state of the final process serving
as set value for the optimization procedure. One drawback
of the statistical process model is the high uncertainty in
state prediction at the beginning of the process. This can be
overcome by not considering those early predictions with
high uncertainty in process control and by further extensions
of the presented approach. Significant time frames for the
observation of the process state evolution have to be iden-
tified to enable process control. The proposed approach for
observation of hidden states for adaptive process controls can
be transferred to any process characterized by state variables
that can be extracted from related observable quantities.
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