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Abstract—In this paper, we introduce a framework for au-
tomatic generation of dynamic equations for modular self-
reconfigurable robots. The equations for kinematics and dynam-
ics are generated recursively in two steps by using geometrical
formulations and recursive Newton-Euler method. This frame-
work has the purpose to analyse the kinematics and dynamics for
serial as well as for branched multibody robot topologies with
different dyad structures. A multi-functional and easy to use
graphical interface provides functionalities such assembling of
topologies, visual feedback of trajectories and parameters editing.
Two benchmark examples show, that the proposed framework
results coincide with the results produced by classical Lagrangian
method.

Keywords-multi-body kinematics and dynamics; self-adaptive
systems; automatic model generator.

I. INTRODUCTION
Self-reconfigurable modular robots [1] open a spectrum of

applications especially in dangerous and hazardous environ-
ments [2]. Self-reconfiguration is necessary when robots are
operating completely autonomously without human interven-
tion. Modular systems are on the one hand advantageous in
comparison to specialized systems because they are adaptable
to different situations and applications; however on the other
hand, the complexity for modelling and control can grow
rapidly.

In classical mechanics dynamical systems are usually de-
scribed by setting up the equations of motion. The most
common methods in the robotics are Newton-Euler, Lagrange,
and Hamilton [3] formulations, all ending up with equivalent
sets of equations. Different formulations may better suit for
analysis, teaching purposes or efficient computation on robot.

Lagrange’s equations, for example, rely on energy properties
of mechanical systems considering the multibody system as a
whole [4]. This method is often used for study of dynamics
properties and analysis in control design.

More applicable on real robots are the Newton-Euler for-
mulation of dynamics. In this method, the dynamic equations
are written separately for each body. This formation consists
of two parts describing linear (Newton) and angular (Euler)
motion [5].

In case of modular reconfigurable multibody systems ob-
taining of equations of motions can be a challenging and time
consuming task. In this paper we use a method using geometric
formulation of the equation of motion originally introduced
by Park and Bobrow [6]. This method is based on recursive
formulation of robot dynamics using recursive Newton-Euler

combined with mathematical calculus of Lie groups and Lie
algebras. The description of motion is based on twist and
wrenches summarizing angular and linear velocities as well
as applied forces and moments in six-dimensional vectors.

In this approach, the Newton’s second law (F = ma) and
Euler’s equations are applied in two recursions: the forward
(outward) and the backward (inward) recursion. Therefore,
we speak about two-step approach. In the forward recursion
the velocities and accelerations of each link are iteratively
propagated from a chosen base module to the end-links of
multibody system. During the backward recursion the forces
and moments are propagated vice versa from the end-link
to the base forming the equations of motions step-by-step.
Recursive derivation of the equations makes it applicable
to different types of robot geometries and moreover allows
automatizing the process. There exist several publications gen-
eralizing this method for variety of applications [7], [8], [9].
Most of efficient results use Newton-Euler algorithms, for
example Luh, Walker, and Paul [10] expressing the equations
of motion in local link reference frames and by doing this
reduce the complexity from O(n3) to O(n). This approach
was lately improved by Walker and Orin [11] providing more
efficient recursive algorithm. Featherstone [12] proposed the
recursive Newton-Euler equations in terms of spatial notation
by combining the linear and angular velocities and wrenches
into six dimensional vectors (Plücker notation). His ‘Articu-
lated Body Inertia’ (ABI) approach becomes widely accepted
in current research and is also of complexity O(n).

In the projects Symbrion [14] and Replicator [15], we
develop autonomous modular reconfigurable robots that
are capable to build multi-robot organisms by aggregat-
ing/disaggregating into different topologies [2]. In this paper
we orientate our approach on the method proposed by Chen
and Yang [16], which allows generating the motion equations
in closed form based on Assembly Incidence Matrix (AIM)
representation for serial as well as for tree-structured modular
robot assemblies. The approach has been adapted to modular
robots Backbone and Scout, because the geometry of modules
differs from those proposed by Chen and Yang.

The paper is organized in the following way. In Section
II, we give basic theoretical background about geometrical
formulation for rigid body transformations. In Section III,
we describe how the robot kinematics can be formulated for
modular robots. In Section IV, robot assembly representation
technique is introduced. Section V contains the recursive
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Fig. 1. Modular robots developed in projects Symbrion and Repicator [13].
(a) Backbone, (b) Scout, (c) Robots docked.

approach for calculation of dynamics equations. In order to
evaluate the approach a graphical user interface (GUI) called
MODUROB is built and is explained in Section VI. Finally,
Sections VII concludes the work and gives a short outlook.

II. THEORETICAL BACKGROUND

For kinematics analysis two Lie groups play an important
role, the Special Euclidean Group SE(3) and the Special
Orthogonal Group SO(3). SE(3) group of rigid body motions
consist of matrices of the form[

R p
0 1

]
, (1)

where R ∈ SO(3) is the group of 3×3 rotation matrices and
p ∈ R3×1 is a vector.

Lie algebra is also an important concept associated with
the Lie groups. Lie algebra of SE(3), denoted as se(3), is a
tangent space at the identity element of G. It can be shown
that the Lie algebra of SE(3) consists of matrices of the form[

ω̂ v
0 0

]
∈ R4×4, (2)

where

ω̂ =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (3)

Lie algebra is defined together with the bilinear map called
Lie bracket, which satisfy following conditions:
• Skew-symmetry: [a,b] =− [b,a].
• Jacobi identity: [a, [b,c]]+ [c, [a,b]]+ [b, [c,a]] = 0

If elements are square matrices, the Lie bracket is a matrix
commutator [A,B] = AB−BA.

The connection between Lie Group SE(3) and Lie algebra
se(3) is the exponential mapping, which maps se(3) onto
SE(3). Exponential mapping allows an elegant way to for-
mulate rigid body motions. The formula originates from the
solution of the time-invariant linear differential equation for
velocity ṗ of a point that rotates about an axis ω

ṗ(t) = ω× p(t) = ω̂ p(t). (4)

By integrating the equation we receive

p(t) = eω̂t p(0), (5)

where p(0) is the initial position at t = 0 of the point. ω̂ ∈
so(3) is a skew symmetric matrix and the eω̂t is the so-called
the matrix exponential

eω̂t = I + ω̂t +
(ω̂t)2

2!
+

(ω̂t)3

3!
+ . . . (6)

Considering rotations with unit velocity (‖ω‖ = 1), the net
rotations can be formulated as follows:

eω̂q = I +qω̂ +
q2

2!
ω̂

2 +
q3

3!
ω̂

3 + . . . (7)

Using the Rodrigues’ formula, a closed-form expression of
this formula can be obtained without computing the full matrix
exponent and therefore more efficient from the computational
point of view.

eω̂q = I + ω̂ + sinq+ ω̂
2(1− cosq). (8)

The robot kinematics can be obtained by using the fact
that rigid body motion can be achieved by a rotation about
an axis combined with a translation parallel to it (Chasles’s
Theorem) [17].

In this case, the exponential mapping eŝq can be interpreted
as an operator that transforms a rigid body from their initial
pose to new pose combining rotations and translations at the
same time

gab(q) = eŝqgab(0), (9)

where gab(0) ∈ SE(3) is an initial pose and gab is the final
pose. A twist associated with a screw motion is formulated as

si =

[
−ωi× pi

ωi

]
=

[
vi
ωi

]
, (10)

where ω ∈ R3×1 is a unit vector showing in the direction of
the twist axis and qi ∈ R3×1 is an arbitrary point on the axis.
Revolute joints perform only pure rotations about an axis.
Therefore the twist has the form:

si =

[
0
ωi

]
. (11)

Analogous, the pure translation is much simpler,

si =

[
vi
0

]
, (12)
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where vi ∈ R3×1 is a unit vector facing in the direction of
translation.

Linear mapping between an element of a Lie group and its
Lie algebra can be performed by the adjoint representation.
When X is given by X = (R, p) ∈ SE(3), then the adjoint map
AdX : se(3) 7→ se(3) acting on y∈ se(3) is defined by AdX (y) =
XyX−1. In [8] is also shown that AdX (y) admits the 6× 6
matrix representation

AdX (y) =
[

R p̂R
0 R

][
v
ω

]
, (13)

where p̂ is the skew-symmetric matrix representation of p ∈
R3. Linear mapping between an element of Lie algebra and
its Lie algebra can be performed via the Lie bracket

adx(y) = [x,y] (14)

Given x=(v1,ω1)∈ se(3), and y=(v2,ω2)∈ se(3), the adjoint
map admits corresponding 6×6 matrix representation

adx(y) =
[

ω̂1 v̂1
03×3 ω̂1

][
v2
ω2

]
. (15)

Similar to twists that contain angular and linear velocities
in one vector, wrenches or general forces are described in
a similar way. Wrenches are vector pairs containing forces
(angular components) and moments (rotational component)
acting on a rigid body.

F =

(
f
τ

)
, (16)

where f ∈ R3 is a linear force component and τ ∈ R3 repre-
sents a rotational component. In contrast to general velocities
as elements of se(3), wrenches are acting on se(3)∗, the dual
space and therefore behaves as covectors. For this reason
wrenches transform differently under a change of coordinates
by using so called adjoint transformation,

Fa = AdT
gba

Fb, (17)

where forces acting on the body coordinate frame B are written
with respect to coordinate frame A. In spatial representation,
this is equivalent as if the coordinate frame A were attached
to the object.

III. ROBOT KINEMATICS

In modular reconfigurable systems the robot kinematics
varies according to modules that are connected to each other.
In homogeneous systems with the same physical parameters
the kinematics depends only on the orientations of modules
relative to each other. Such modular design is advantageous
for autonomous systems. Using heterogeneous modules the
complexity grows with the number of different modules that
are used. Therefore, in most cases we assume identical or
similar structure of the modules with similar physical proper-
ties. Both robots have been designed with similar geometry,
same docking units and differ mostly in several insignificant
properties such as number of sensors, different sensors or

actuators. Nevertheless, even if the differences are not crucial,
we speak about heterogeneous modules because of the addi-
tional Degree of Freedom (DOF) in Scout robot that is able to
rotate the docking element even if only in limited way. Table I
summarizes the mechanical properties of Backbone and Scout
modular robots.

Cubic Link Mod-
ules (Chen)

Backbone / Scout (Symbrion /
Replicator)

Module
types

homogeneous
(large/small)

heterogeneous

Joint types revolute,
prismatic

revolute

# ports 6 4
DOFs rot.: ±180◦ Backbone: bend.:±90◦; Scout:

bend.:±90◦, rot.: ±180◦

TABLE I
MAJOR DIFFERENCES BETWEEN MECHANICAL PROPERTIES OF

SCOUT/BACKBONE ROBOTS.

Using only revolute joints without any prismatic joints
simplify additionally the autonomous and recursive model
generator for kinematics and finally for the dynamics model.

A. Dyad Kinematics

Dyad dependencies are common in recursive formulations
because the calculation proceeds from one module to the next
comprising only two modules. The calculation is done from
the base module to all pendant links. In the approach proposed
by Chen and Yang [16], a dyad is defined as two adjacent
modules (vi,v j) connected by a joint e j (Figure 2(a)). A link
assembly is defined by taking one of those modules (link)
together with one joint. The relative position and orientation of
one frame attached to one module with respect to next frame in
the second module can be described under joint displacement
by a homogeneous 4×4 matrix Hi, j(q) ∈ SE(3):

Hi, j(q j) = Hi, j(0)eŝ jq j , (18)

where ŝ j ∈ se(3) is the twist of joint e j and q j is the angle
of rotation. The relative position and orientation between the
modules can be recognized by the robot through different kind
of on-board sensors such as accelerometers, compass or by vi-
sion system. In project Symbrion and Replicator the geometry
of the Backbone (Figure 1(a)) and Scout (Figure 1(b)) robots
differ from modules proposed by Chen and Yang. Backbone
and Scout modules consist of two moving parts and one main
hinge motor placed inside of each module and for this reason
already implies a complete dyad as defined by Chen and
Yang in each robot. In order to adapt the recursive kinematics
approach to Backbone and Scout robot we need to extend the
system boundaries of a dyad (Figure 2(b)). Since the most
weight is concentrated in the middle of the modules where
the main motors are placed, the attached coordinate frames
for each module coincide with the centre of mass. Because of
two robots and hence two revolute joints in a dyad only one
joint is involved into calculation in each recursive step.
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Fig. 2. (a) A dyad defined by Chen and Yang [16], (b) Dyad for two Scout
robots.

The orientation of axes of rotations depends on how robots
are docked to each other. The relative pose can be described
by 4×4 homogeneous matrix like in Eq. 18.

B. Forward Kinematics

Forward kinematics for modular reconfigurable robotic sys-
tems determines the poses of the end-links providing joint
angles as an input. In this section, we introduce the mod-
elling technique for forward kinematics based on local frame
representation of the Product-of-Exponential (POE) formula
originally proposed in [18] or in [8]. This technique can be eas-
ily applied to tree-structured robots with many branches (e.g.,
multi-legged robots). Based on recursive dyad kinematics, the
calculation can be done simultaneously for all branches. In
this paper, all robots are considered to be cube shaped robots
based on Backbone or Scout geometries consisting of one
major DOF. In general case, the forward kinematics for serial
connected robots can be obtained for an arbitrary number of
links by simply multiplying the exponential maps as follows:

gst(q) = eŝ1q1eŝ2q2eŝ3q3 . . .eŝnqngst(0), (19)

where ŝ1 to ŝn have to be numbered sequentially starting
with the chosen base module (Figure 3).

Fig. 3. Multi robot organism [19].

For a tree or branch structured robot configurations, the
forward kinematics can be obtained in parallel way starting

the calculation from a chosen base module to each pendant
end-link in all branches. One possibility how the connecting
order can be obtained is to use the AIM proposed by Chen and
Yang [16]. For branched type of robots, two traversing algo-
rithms are common to find the shortest paths: the Breadth-first
search (BFS), and the Depth-first search (DFS) algorithms.
The forward kinematic transformations for the branched robot
configuration starting from base to each of the pendant links
an of path k with m branches can be formulated as follows:

H(q1,q2, . . . ,qn) =



H1
H2
...

Hk
...

Hm


=



. . .

. . .
...

∏
n
i−1(Hai−1ai(0)e

ŝai qai )
...
. . .


,

(20)
where H(q1,q2, . . . ,qn) represent all poses of all pendant

end-links by using homogeneous 4×4 matrix representation.

IV. ROBOT ASSEMBLY REPRESENTATIONS

Matrix notation is a powerful method to represent modular
robots kinematic dependencies. The most common matrices
used in robotics are the Adjacency and the Incidence ma-
trix. Both matrices represent the connections between the
neighbouring nodes. In [16], Chen proposes a method based
on AIM that allows to represent the whole robot assembly
consisting from links and joints additionally carrying the
information about the type of robot and about used joints.
A dynamic model for modular robot assembly is created
autonomously from the AIM. This method was developed for a
homogeneous kind of robots varying only in size with different
joint possibilities including revolute or prismatic joints. Scout
and Backbone robots contain only revolute joints however the
number is not limited to one DOF. Therefore, the approach
proposed in [16] cannot be directly used for this kind of
modules and need to be adapted.

A. Adapted Assembly Incidence Matrix

The Backbone and the Scout robots are both cubic shaped
robots, however provide only four sides that are equipped
with docking units. Therefore, using the notation of gam-
ing dice only ports 2− 5 are able to set a connection. A
difference between modular robots proposed in [16] and the
Scout/Backbone modules is that joints are not considered as a
separate mechanical parts (joint modules), which are required
to connect two modules, but rather are placed inside each of
the modules. For these reasons each robot builds a full dyad
already.

For simplicity, we allow docking only in horizontal plane
and we also use the principle of gaming dice for side notations.
Robot organisms have to go into initial configuration when
additional robots decide to dock. Using this assumption, we
distinguish between three major dyad configuration classes:
the serial DS, the parallel DP and the orthogonal DO dyad
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class, where the second letter determines the axes of rotation
of module j with respect to module i. A serial coupled dyad
(DS) is given when the axes of rotation are in one line.
When the rotational axes are parallel than the dyad becomes
a member of a parallel class (DP). Finally, when the axes
are orthogonal to each other, the robots are classified as the
orthogonal to each other connected robot assembly (DO).
This information can be easily extracted from the matrix and
used for direct computation. Additionally, the symmetry of the
platform allows neglecting the sign of the orientation because
it does not affect the calculation. Table II summarizes all
possible configurations considering that top and bottom side
of the robots and hence the sides 1 and 6 of a gaming dice do
not contain docking units.

Set DS: Set DP: Set DO:
Dyad: Serial Axes Dyad: Parallel Axes Dyad: Orthogonal Axes

1st Mod. 2nd Mod. 1st Mod. 2nd Mod. 1st Mod. 2nd Mod.
2 2 3 3 2 3
2 5 3 4 2 4
5 2 4 3 3 2
5 5 4 4 3 5

4 2
4 5
5 3
5 4

TABLE II
DYADS LOOK-UP TABLE FOR SCOUT AND BACKBONE.

The autonomous docking procedure is based either on IR
sensor communication or also can be fulfilled by using vision
system [20], [21]. Backbone and the Scout robots have one
revolute joint as a major actuator, therefore the information
about the kind of actuators in the last row of the AIM is
unnecessary. Instead, we use the last row for the three types
of docking orientations for serial, parallel or orthogonal case.
The last column in the AIM contains the information about
the kind of robot, which is used. We denote the modified AIM
as AIMSB, where index ‘SB‘ denotes the first letters of both
robots: the Scout and the Backbone robot.

2

5

4 31

25

4

3

1

2

5

4 31

2 5

4

3

1

2

5

43 1

2

5

4 31

2

5

4

31

2

5

4 31

2

5

4 31

Path1

Path2

Path3

0 1 2

34

5

67

8

(a) (b)

Fig. 4. (a) Multi robot organism example, (b) Directed graph representation.

In Figure 4, a small example of an organism and the
corresponding graph is shown. The AIMSB for this organism
is shown in Figure 5.

Fig. 5. AIM of robot assembly from Figure 4(a).

B. Direct/Indirect Recursive Transformations

Structuring the kinematics dependencies into an AIMSB, we
are able to apply the transformations Ti j between the modules
directly once the AIM is determined. By reusing the already
calculated dependencies that are stored into lists it is fast and
efficient to calculate the kinematics for big robot organisms.
We use two lists: one list containing transformation results
between consecutive joints, we call it a Direct-Transformation-
List (DTL) and another list called Indirect-Transformation-List
(IDTL) for non-consecutive transformations between joints
however still in the same kinematics path.

In DTL as shown in Table III, each line represents one direct
transformation. The first two columns indicate the connected
modules and the last two columns hold the information, which
sides are connected. IDTL contains the indirect transforma-
tions, which are calculated by two successive transformations
(Ti j = Tix · Tx j). The first two columns denote the desired
transformation. Next four columns hold two multiplied trans-
formations that are stored in DTL or in IDTL. Both tables
refer to the example shown in Figure 4.

DTL
Ti j Sides

i j from to
0 1 3 2
1 2 5 3
0 3 5 2
3 4 4 3
4 5 5 2
0 6 2 5
6 7 4 2
7 8 4 5

IDTL
Ti j = Tix · Tx j

i j i x x j
0 2 0 1 1 2
0 4 0 3 3 4
3 5 3 4 4 5
0 5 0 4 4 5
0 7 0 6 6 7
6 8 6 7 7 8
0 8 0 7 7 8

TABLE III
DIRECT AND INDIRECT TRANSFORMATION LISTS.

A short example demonstrates the first traversing calcula-
tions using both lists:

T01 = T01(0)eŝ1q1 direct
T12 = T12(0)eŝ2q2 direct
T02 = T01 ·T12 indirect

...
...

(21)

This algorithm can be compared with DFS algorithm,
providing a flexible way to calculate the order in which all
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possible transformations can be calculated during runtime. ACreateTcell(,AIM,twists,q,L,module=0)

Module i has connection on 
this joint?

Next Joint

j = connected Module

AIM
i=currentModule

set currentJoint=1

Calculate Direct Transformation
T{i,j}=AGetTijFromPair()

Calculate Indirect Transformations
T{x,j}=T{x,i}*T{i,j}

x durchläuft sämtliche Module

ACreateTcell2(AIM,twists,q,L,j)

RECURSIVE!!!

Delete ModulConnection From AIM

Initial Call: function(AIM,module=base=0)

Next 
Module

j = connected Module

Call traverse(AIM,module)

joint = 1
i=module

Calculate Direct Transformation
-> SaveToList('direct')

Calculate Indirect Transformations
T{i,j}=T{i,x}*T{x,j}

-> SaveToList('indirect')

Recursive Call
traverse(AIM,module=j)

Next 
Joint

Yes

No

module has 
connection on this 

joint?

(a)

Fig. 6. Traversing algorithm.

The flowchart of the algorithm is illustrated in Figure 6.

V. MODULAR ROBOT DYNAMICS

In general, two main branches of robot dynamics problems
are mostly considered, namely the forward and the inverse
dynamics problems. Forward dynamics play an important role
in simulation of multibody systems, also called as direct dy-
namics. Forward dynamics problem determines accelerations
and external reaction forces of the system giving initial values
for positions, velocities and applied internal/external forces,
whereas the inverse dynamics problem determines the applied
forces required to produce a desired motion. The first problem
that appears in modular self-reconfigurable robotics is that
the model of the robot assembly cannot be known a priori.
Therefore, the robot should be able to generate its own model
autonomously without human intervention.

A. Recursive Two-Step Approach

The original idea for recursive formulation and computation
of the closed form equation of motion was introduced by Park
and Bobrow [6]. The idea was extended by Chen and Yang by
introducing the AIM. Starting with the AIM, that contains the
information about how robots are assembled, the formulation
of equations of motion is done in two steps: first applying
forward transformation from base to the end-link, followed
by the second recursion backwards from the end-link to the

base module. Finally, we get the equation of motion in a
closed-form. Before starting the recursion, some assumption
and initializations should be done. In the first step, the system
has to choose the starting module denoted as the base module.
Starting from this module, the AIM is filled based on path
search algorithms such as BFS or DFS. After the AIM is built
and all paths are determined the recursive approach can be
started.
• Initialization: Given V0, V̇0, Fe

n+1

Vb =V0 = (0 0 0 0 0 0)T (22)

V̇b = V̇0 = (0 0 g 0 0 0)T (23)

• Forward recursion: for i = 1 to n do

Hi−1,i = Hieŝiqi (24)
Vi = AdH−1

i−1,i
(Vi−1)+Siq̇i (25)

V̇i = AdH−1
i−1,i

(V̇i−1)−adAd
H−1

i−1,i
(Vi)+Siq̈i (26)

where Vb and V0 denote generalized velocities expressed in the
starting frame 0 and all other quantities are expressed in link
frame i. Fn+1 is the force acting on the end-link of chained
robots. This values can either be estimated or read from force
sensors attached to the robots.
• Backward recursion: for i = n to 1 do

Fi = Ad∗
H−1

i,i+1
(Fi+1)−Fe

i +MiV̇i−ad∗Vi
(MiVi) (27)

τi = sT
i Fi (28)

Here, Mi is the generalized mass matrix of the form

Mi =

[
I 0
0 mI3

]
, (29)

where I is 3×3 inertia matrix and I is the identity matrix. The
non-diagonal terms are zero because in our case the center of
mass coincides with the origin. Fi is the total generalized force
traversed from link i−1 to i consisting of internal and external
wrenches and τi is the applied torque by the corresponding
actuator.

B. Equations of Motion

By expanding the recursive equations (25) to (28) in body
coordinates, it can be shown that the equations for generalized
velocities, generalized accelerations and forces can be obtained
in matrix form:

V = T Sq̇ (30)
V̇ = TH0V̇0 +T Sq̈+TadSq̇V (31)

F = T T Fe +T T MV̇ +T T ad∗V MV (32)

τ = ST F (33)
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where

q̇ = column[q̇1, q̇2, . . . , q̇n] ∈ Rn×1

q̈ = column[q̈1, q̈2, . . . , q̈n] ∈ Rn×1

V = column[V1,V2, . . . ,Vn] ∈ R6n×1

V̇ = column[V̇1,V̇2, . . . ,V̇n] ∈ R6n×1

F = column[F1,F2, . . . ,Fn] ∈ R6n×1

Fe = column[Fe
1 ,F

e
2 , . . . ,F

e
n ] ∈ R6n×1

τ = column[τ1,τ2, . . . ,τn] ∈ Rn×1

S = diag[S1,S2, . . . ,Sn] ∈ R6n×n

M = diag[M1,M2, . . . ,Mn] ∈ R6n×6n

adSq̇ = diag[−adS1q̇1 ,−adS2q̇2 , . . . ,−adSnq̇n ] ∈ R6n×6n

ad∗V = diag[−ad∗V1
,−ad∗V2

, . . . ,−ad∗Vn
] ∈ R6n×6n

The index n represents the number of elements containing also
virtual joints that are required to move the robot in a space
[22].

TH0 =


AdH−1

0,1

AdH−1
0,2

...
AdH−1

0,n

 ∈ R6n×6 (34)

T =



I6×6 06×6 06×6 · · · 06×6
AdH−1

1,2
I6×6 06×6 · · · 06×6

AdH−1
1,3

AdH−1
2,3

I6×6 · · · 06×6

...
...

...
...

...
AdH−1

1,n
AdH−1

2,n
AdH−1

3,n
· · · I6×6


∈ R6n×6n,

(35)

where T is the transmission matrix for the whole robot
assembly. The elements Hi, j in TH0 and in T can be read out
directly from the DTL and IDTL lists.

The closed-form equation of motion of the classical form

M(q)q̈+C(q, q̇)q̇+N(q) = τ (36)

is obtained by substituting the equations 30 to 33, where
M(q) is the mass matrix; C(q, q̇) describes the Coriolis and
centrifugal accelerations and N(q) represents the gravitational
forces as well as the external forces.

M(q) = ST T T MT S (37)

C(q, q̇) = ST T T (MTadSq̇ +ad∗V )T S (38)

N(q) = ST T T MTH0V̇ +ST T T Fe (39)

VI. MODUROB - MODULAR ROBOTICS SOFTWARE TOOL

MODUROB is a tool built in MATLAB R© that contains
a possibility to build robot topologies by simply clicking
on Topology Matrix Grid (Figure 8). Currently, two types
of robots are provided: the Backbone (Figure 1(a)) and the

Scout robot (Figure 1(b)). For simplification, robots are only
allowed to assemble or disassemble in planar configurations
on the ground. The automatic model can be built in two
ways: analytically or numerically. The symbolic formulation
in MATLAB is done by using the symbolic toolbox. For
solving of differential equations the user can choose between
the numerical integrators that are provided by MATLAB.
In order to move the robot in a joint space, different gait
generators are provided either using rhythmic generators based
on rhythmic functions [22] or gait generators that use chaotic
map. We use an approach proposed in, [23], that allows
to generate periodic gaits that result from synchronization
effects of coupled maps. Such approach can help to control
complex multibody structures by mapping the active joints to
an individual chaotic driver [24].

For evaluation or benchmarking of the framework two
examples are implemented based on Lagrangian equations and
can be compared with the geometrical approach. One example
is a double pendulum example (Figure 8(a)) for example
derived in [25] and the second is an extended pendulum that
is movable on a shaft like a crane. In the second example, we
use a virtual joint that allows moving the crane along one axes
(Figure 8(b)).

(a)

(b)

Fig. 7. Verification (dashed line) of geometrical POE approach with
Lagrangian method using two examples: (a) Double pendulum model, (b)
Crane model.

Both examples (Figure 7) show absolutely identical be-
haviour with examples implemented based on Lagrangian
equations as well as with the geometrical approach based on
twist and wrenches and therefore evaluates the approach.

VII. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate a MATLAB framework that
allows analysing the kinematics and dynamics of modular
robots. The calculation of self-adaptive models is based on
recursive geometrical approach built on Screw Theory [26].
The proposed algorithm is inspired by the work from Chen and
Yang and has been modified and adapted to the needs of robot
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(a)

(b)

Fig. 8. (a) Implemented benchmark example of a double pendulum [25], (b)
Crane example.

modules developed in projects Symbrion and Replicator. Such
tool can not only be used for studying of topology behaviours
of modular robots but also open a easy way to understand
the theory behind the geometrical recursive approach. After
we are able to build the models for kinematics and dynamics
autonomously the next step will be to investigate different
control design strategies such as feedback linearisation, self-
organized and learning control mechanisms.
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