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Abstract—Due to the wide acceptance and distribution of
mobile devices, it has become increasingly important that
an application is able to adapt to a changing environment.
This implies the necessity to integrate varying functionality
at runtime being activated depending on the current context.
A common approach is to foresee and model all possible
influencing factors and to integrate the required software
building blocks in advance. But, due to the constant change
of the environment, as described by Lehman’s laws, it is
impossible to anticipate all future situations. Hence, modeling
the entire adaptation process at design time prohibits the
adaptation to unanticipated scenarios and, thus, is likely to
lead to the malfunctioning of the adaptive application in the
future. In this paper we focus on unanticipated, dynamic self-
variation of applications (i.e., without a central coordinator)
and propose a role-based composition system that enables the
adjustment of the structure and functionality of software-
objects in a fine-grained manner. Systems following our pro-
posed approach form a Smart Application Grid (SMAG). The
SMAGs-Approach is putting emphasis on dynamic collabora-
tions between components within an application and between
several different software systems. Therefore, role-modeling is
used to model and perform dynamic variation of applications
at runtime, whereby roles are stored in central repositories.
This allows the integration of previously unknown software-
building-blocks and the dynamic adaptation to situations that
were not foreseen.

Keywords-Dynamic Variation; Unanticipated Adaptation;
Role-Modeling; Composition; Repository.

I. INTRODUCTION

Software has become ubiquitous and plays an essential
role in almost every area of life, ranging from small personal
tasks in everyday life to coordination and partial autonomous
control of global economic processes. Our current world is
characterized by high dynamics and the pressure of con-
stantly adapting to a changing environment. This, however,
leads to the requirement that software applications have to
adjust themselves to changing requirements just as quickly.
These adaptation processes, which in most cases cannot be
predicted due to the complexity of open world scenarios,
traditionally rely on static software development life cycles.
As part of the establishment and widespread acceptance of
mobile devices, their applications are becoming a fundamen-
tal part of daily life. This further increases the pressure

to automatically adapt an application at runtime to its
constantly changing application context (e.g., location, time,
task and collaboration partners) [17]. In complex scenarios,
the possible values and changes in external conditions are
usually not predictable. This makes it impossible to plan all
potential adaptation operations at development time.

Unlike conventional product enhancements or patches
within the software development process, dynamic context
adaptations are small, spontaneous and fine-grained runtime
changes in both application structure and functionality. In
large, monolithic applications, where only large building
blocks can be exchanged, adaptation processes can become
very complex and costly. In contrast, dynamic networks
of small cooperating applications that are prepared on
variability in advance are more suitable for runtime
adaptation. In this way, the timespan from the occurrence
of a changed requirement to an adequate adaptation of
the application is significantly reduced and costly product
development cycles are avoided. The finer-grained the
interchangeable elements of the application are, the better
the impact of change operations on the integrity of the entire
system can be estimated. This is because the elements relate
to specific functions, which in the ideal case have only
limited effect on the correctness of the entire application.

The introduction of application platforms, especially in
the field of mobile devices, makes the modeling and descrip-
tion of collaborative relationships between individual apps
very important. Apps are usually small, isolated working
applications that serve a narrowed specific purpose. Multiple
apps form a complete system, whereby each individual
application serves one specific concern of the overall sys-
tem. In this context the modeling of collaborations makes
synergies visible. The main problem, however, is that ap-
plication developers can neither know, which other apps are
deployed on a target device nor what interfaces they may
offer. In addition, no statement can be made about, which
applications will be developed and published in the future,
which could be used to extend the overall functionality.
Unlike the composition of services in a Service-Oriented Ar-
chitecture (SOA) using orchestration or choreography [20],
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mobile platforms do not offer an additional layer to describe
composite processes. More, even if such a mechanism would
exist, the definition of such composite processes can always
only refer to those apps, which are known at design time of
the process. That is why the applications themselves need
to be able to establish dynamic collaboration relationships.

To realize dynamic, context-aware adaptation,
applications need to be modified at runtime. Role-
Oriented Programming (ROP) [15][26] is an appropriate
basis to realize dynamic variation in a fine-grained and
collaboration-based manner: This approach of modeling
and programming systems is an extension to the classic
object-oriented paradigm. The term role (or object role) is
not related and cannot be compared to the classical role
term in workflow systems - also called Role-Based Access
Control model (RBAC). In a role universe, core types (i.e.,
classes) and a set of role types exist. A core object (i.e.,
instance) can play role instances, if the respective core
type and role type are linked by a can-play-a relationship.
For example, a Person can play a Father and a Customer
role type. Players are able to start and stop playing roles
at runtime, without losing their own identity. Notably,
roles change the behavior of core objects (like aspects
in Aspect-Oriented Programming (AOP)) and are able
to store additional data, which is only applicable for the
respective role and not for the core itself. Beyond that,
the role-oriented approach provides a rich repertoire of
modeling concepts, which are suitable to describe the
semantics of individual exchangeable components and their
relationship with respect to the overall system. With ROP
roles can be used to model dynamic variation to manipulate
the structure, the functionality and the relationships of
objects within a single and between several applications.

In this paper, we present a new kind of software
architecture—SMAG (Smart Application Grid)—in which
applications are no longer monolithic, but composed of
many small, distributed applications that link to each other
dynamically like in a grid. Role-based modeling is used
to adapt these applications at runtime, by (a) fine-grained
structural and functional changes of application components
and (b) dynamically connecting components within one
and between several applications. To deal with changes
that the application developer did or could not foresee
at design-time, exchangeable building blocks are stored
in repositories, which can be retrieved and integrated at
runtime. This allows the integration of previously unknown
components and enables the adaptation to unanticipated
scenarios.

This paper is structured as follows: In Section II, we give
a short summary about software adaptation. In Section III,
we present an overview about the current state of the art
w.r.t. dynamic software composition techniques. The Smart

Application Grid approach is described in Section IV and
an example is described in Section V. Finally, Section VI
presents our conclusion and future work.

II. CONTEXT-AWARE SOFTWARE ADAPTATION

Applications that operate in highly dynamic environments,
in which context changes and resulting modified require-
ments often cannot be predicted, can hardly be developed
with traditional software development processes. Dynamic
adaptive systems (DAS) address this problem by explicit
specifications of possible context-triggered runtime changes
of the application’s functionality and structure during the
software development process [6]. The application context
is defined as the sum of all measurable properties of the
application itself and its environment. One possibility is to
manually change the application structure, which usually
implies high efforts, because of the potential high frequency
of context changes and the complexity of the required mod-
ification processes. Thus, application architectures are re-
quired, that provide runtime support automatically detecting
situations, where the application does not match the current
context, and to determine and execute the required change-
operations to adjust the application accordingly (adaptive
applications) [24]. Nevertheless, in recent years, numerous
development methods, software architectures and adaptation
systems for DAS have been developed that base on different
approaches [10][12][13][14][17][19], whereof most base on
the feedback loop [11]. Following this concept, DAS need
to (a) identify changed external conditions, (b) analyze the
application and its context, (c) make decisions based on
those findings on how to adapt and (d) manipulate the
system that it fits to the current application context. Another
distinguishing factor of DAS is the degree of anticipation
w.r.t. the adaptation process. Adaptive systems with antic-
ipated adaptation define all possible contextual situations,
application variants and their relationship at design time,
whereby the system variation is performed at runtime ac-
cording to predefined rules. In addition, an adaptation to
situations that have not been considered during the develop-
ment process is impossible. This contrasts with applications
that support unanticipated adaptation. Here, the context
model, the analysis mechanisms and the adaptation planning
must be open and extensible at runtime. Furthermore, new
components—that were not considered at design time—need
to be integrated into an application dynamically.

As stated in [13], adaptation can be classified as parame-
terized and compositional adaptation. Adaptation by param-
eterization is achieved by manipulating predefined parame-
ters of software entities. Adaptation by composition refers
to the replacement or extension of software components (cf.
Sect. III). The adjustment of software elements’ parameters
is the most trivial solution to adapt an application to a
changed environment, which makes the sphere of influence
rather limited. It is not possible to actually modify the
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functional parts of software units at runtime. Nevertheless, it
is possible to change their behavior in a predefined manner
by setting prescribed parameters. The implementation code
then has to be aware of these parameters, which leads
to the problem that adaptation logic is scattered over the
application logic. The replacement of software component
implementations, on the other hand, makes it possible to
actually replace functional and structural elements of an
application. When only a small functional part of a system
component needs to be altered to adapt it to the application
context—for example the enlargement of a message buffer
of a communication component—the complete replacement
of the component might not be suitable. For that reason, a
combination of both adaptation mechanisms is desirable.

To actually adapt an application to a changed environ-
ment, two things are essential: the application structure has
to be (1) queried and analyzed and (2) the application
needs to be modifiable. Under this assumption, component-
based software development (CBSD) seems to be best suited
for the implementation of adaptive systems. A component-
based application consists of reusable components, explicit
interfaces and connections. All information that is necessary
to use a component is defined in its interface description
which will not change frequently. Thus, components having
the same interface description are syntactically substitutable,
which allows changing the application’s functionality by
replacing individual components. According to Szyperski
“a software component can be deployed independently and
is subject to third-party composition” [28]. This definition
provides the basis to transfer the idea of components-off-
the-shelve to DAS. Components are stored in a central
repository and grouped by their interface descriptions, so
that an application developer can choose from a set of
existing components to compose a software system. At
runtime those building blocks can be exchanged, based on
the current application context as well as the functional
and non-functional properties of the different component-
implementations.

In this paper, we focus on the process of runtime appli-
cation modification (i.e., the act phase (d) of the feedback
loop). We will outline why traditional component replace-
ments lead to problems, how extended software development
techniques, like AOP, are able to address them and show
the limitations of these extended techniques. Afterwards, we
present a novel dynamic software architecture, based on role-
oriented modeling, which overcomes these limitations. We
will present a role-based composition system, which pro-
vides basic functionality for dynamic, unanticipated adapta-
tion.

III. RELATED WORK

This section describes possible methods and state-of-the-
art approaches for runtime changes of the structure and
functionality of software systems. Our goal is to outline the

problems and limitations of known techniques w.r.t. dynamic
adaptation.

A. Classical Component Replacement

Some adaptive systems, such as the three-layer energy
auto-tuning runtime environment (THEATRE) of the energy
auto-tuning approach (EAT) [14], realize (non-)functional
runtime variability by exchanging component implementa-
tions. This method is based on architectural modeling, where
each component type can have multiple implementations. At
runtime, for each component type a concrete implementation
is chosen to compose the actual system. If the application
context changes and the currently selected component is not
best suited for it, the adaptation system will replace the
specific instance by another component that implements the
same component type.

This, however, leads to several problems. Since software
components can become very large units, the replacement
of a whole component implementation produces much over-
head, especially when only a small set of functionality is
subject to change. Beyond that, the state of the replaced
component needs to be transferred to its substitute or gets
lost [12]. Furthermore, all connections between other com-
ponents and the replaced one need to be updated accordingly.
Depending on how long it takes to setup the new component
instance, the system state can be temporarily inconsistent.

B. Aspect-oriented Programming

AOP is a paradigm for object-oriented programming,
which enables the separation of code fragments that do
not relate to the actual core functionality and occur at
several points in the program (e.g., security, logging, trans-
action) from the actual application logic (separation of
concerns) [18]. Run-time weavers allow for dynamic aspect
integration at execution time. By this means, the application
logic can be changed at execution time, making AOP an
excellent foundation for implementing dynamic adaptive
systems, such as in the DiVA-System [2]. Traditional as-
pect implementations (e.g., AspectJ [1]) are implemented
as white-box code-composition systems imposing a huge
complexity for large systems. To cope with this complexity,
Model-Driven Software Engineering (MDSE) is used, be-
cause model-based representations of an application at run-
time allow for an appropriate degree of abstraction [19]. In
the DiVA-Project a combination of model-based techniques
and AOP was used to support dynamic application variation
through aspects, which is called SmartAdapters [19]. The
SmartAdapters-approach is a generic composition mecha-
nism, but relies on aspects, which still suffer from some
fundamental problems: First of all, aspects in general do
not have a state. Let us suppose an aspect, which is im-
plementing a message buffer. This aspect would potentially
be deployed if the network bandwidth of a communication
component decreases. The buffer size, however, would be
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implicitly implemented in the advice code and could neither
be queried nor changed after the advice was integrated.
Second, aspects do not offer a notation to describe collab-
oration relationships. If the implementation of an advice
needs access to the functionality of another component,
this connection would be hidden in the advice code. This
makes the explicit change of collaboration partners nearly
impossible. Because aspect weaving is a code-composition
technique, all dynamic variations are class-based modifica-
tions. This hinders an instance-based adaptation, because in
programming languages like Java all objects share the same
method declaration.

C. Context-oriented Programming

Context-oriented programming (COP) is a programming
approach based on object-oriented programming that treats
context-awareness as a first-class citizen on the level of a
programming language [16]. COP extends the collaboration-
based dispatch presented in [25] by another context-
dimension. Therefore, within a class definition several layers
can be declared. Each layer can contain several methods that
override given methods of its enclosing class. At runtime the
caller of such a method can either explicitly or implicitly
specify, whether a layer is active or not. When a layer is
active, the call is dispatched to the method of this layer
first. By means of this approach, dynamic adaptation through
context-dependent dispatch can be realized. Nevertheless,
the adaptation-capabilities are rather limited. First of all,
there is neither a mechanism to describe dependencies be-
tween several layers, nor how layers relate to the application
context. The layer activation/deactivation is based on the
code that is calling a method on a layer-enabled object.
This enables instance-based adaptation because the layer
activation/deactivation depends on the context, in which the
method of an individual object is called. Like aspects, layers
do neither provide a state nor collaboration models. Further-
more, unanticipated adaptation is not possible because layer
declarations have to be specified inside a class definition at
design-time.

D. Composition Filter

The composition filters approach [7] enables dynamic
adaptation by intercepting messages. In contrast to AOP,
the composition filters approach achieves the addition and
removal of aspect logic, without changing the core class.
Furthermore, the conventional object model is extended so
that incoming and outgoing messages can be manipulated.

A composition filter class consists of one or more internal
classes. Around the composition filter object, an interface
part is introduced, which forms the access layer to attributes
and methods of the actual core objects. Within this access
layer, filters can be added and removed. For each filter,
rules are defined that specify, which messages are actually
processed and, which are ignored. When a new message

arrives, each filter checks if the message is relevant to them.
If this is the case, the filter can manipulate the message,
forward it to other objects, throw an error or run external
code. Subsequently, the potentially modified message will
be forwarded to the next filter, until it finally arrives at the
actual addressee.

Filters can be dynamically composed in a black-box style
and are declared and implemented transparently without
the necessity of class-code manipulation. That is why they
are very suitable for the implementation of a dynamic
composition system and realization of dynamic adaptive
applications. In Section IV, this approach is extended with
explicit collaborative relationships, by combining composi-
tion filters with role-based programming.

IV. SMART APPLICATION GRIDS

Smart Application Grids consist of many small, dis-
tributed applications that are linked dynamically. To adapt
these composite applications at runtime to context changes,
the individual applications are dynamically modified and
collaboration relationships are changed depending on exter-
nal conditions (i.e., conditions of the context) using roles.
The main goal is to develop a composition system that is
transparent, supports reuse of composition programs and is
technology-independent. In addition, through metamodeling
it should be possible to investigate the application structure
using models at runtime, where model changes should affect
the running application transparently. This paper specifically
focuses on the underlying dynamic role-based composition
system, not on specific adaptation mechanisms. Therefore,
first the concepts of role-based modeling are summarized
and, subsequently, the concepts of our proposed role-based
composition system as well as the associated repository are
introduced. According to Aßmann, a composition system
consists of a component model, a composition technique and
a composition language [5]. In the following, the SMAG
composition system is presented according to these three
aspects. Finally, an exemplary adaptation architecture and
our reference implementation in Java are presented.

A. Role Modeling

Although there is no uniform understanding of the concept
of roles in software engineering, a consensus has emerged
that roles are an important element of software design. In
this work the concept of a role is used according to the work
of Riehle [23] and Reenskaug [21] and is briefly summarized
in this section.

A role is a dynamic view or a dynamic service of
an object in a specified context, offering the possibility
of separation of concerns, interface-structuring, dynamic
collaboration description, and access restriction. A role is
clearly specified by a role type and can be played and
removed from an object at runtime. When an object plays a
role, they both share the same identity (i.e., a role does not
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have its own identity), whereas the number of roles played
simultaneously is not limited. It is also possible that a role
plays other roles. Let us consider a role Employee which
is played by an instance of a class Person. This role could
play another role of the type Software Developer.
Roles have their own properties and methods, whereas the
role-playing object behaves according to the functionality,
defined by the role. Furthermore, the object state is extended
by the properties of the roles it is playing. If an object of
the class Person is playing the Employee role, it might
get an additional attribute salary and an additional method
work(). Any call to the core object is first dispatched to its
roles. Because roles can have references to other roles and
because they must be played by objects, roles provide means
for describing dynamic collaborations, spanning a varying
network of dynamic relationships.

In a class diagram, classes and their relations are modeled.
Analogously, a role model specifies role types and their
relationships. In this way, it describes object collaborations,
since the instantiated roles necessarily have to be played
by objects or other roles. Usually classes expose public
methods, which are used to establish interaction between
objects (i.e., instances of those classes) by exchanging
messages (i.e., calling methods and passing parameters).
Associations in class diagrams however, neither provide
means for describing under which circumstances objects
collaborate nor which part of its interface (i.e., set of
attributes and methods) is relevant w.r.t. this relationship. A
role model on the other hand, describes only a single concern
of the object collaboration which allows for separation of
concerns. Role models can then be composed hierarchically
to express multi-concern object collaboration [22]. This
increases the degree of reuse because domain dependencies
can be controlled in a fine-grained manner. In this way,
partial architectures can be specified, shared and reused.

Subsequently, role and class models are merged to role-
type-class-models, by binding all role types to classes.
Riehle describes several role restrictions that can be used
to control, how role types can be applied to classes [23].
The set of all role types of a class is called role-type set
which specifies what types of roles an instance can play.
Traditionally in class modeling, static associations are used
to express possible interaction relationships between objects.
The modeling of object collaborations through role types
allows for a fine-grained description of dynamic collabora-
tions between several objects under certain conditions (role
context). Through this modeling approach, both interactive
relations that change at runtime and the subset of methods
that are involved in this interaction can be documented.
Figure 1 gives an example. The two role models ”Strategy”
and ”Observer” are composed to new role model ”Strategy
and Observer”, by introducing a role-equivalent restriction.
This restriction claims that every object that plays a role of
the role type Strategy must also be capable to play a role

<<RoleType>> 

StrategyClient 
<<RoleType>> 

Strategy 

Role-Model: Strategy 

<<RoleType>> 

Subject 
<<RoleType>> 

Observer 

Role-Model: Observer 

Role Model: Strategy and Observer 

<<RoleType>> 

StrategyClient 
<<RoleType>> 

Strategy 
<<RoleType>> 

Subject 
<<RoleType>> 

Observer 

+ 

Class Diagram: Car Computer 

NaviSys 

Display 

Routeplanner 

NaviSys Display 

Routeplanner 

+ 

Role-Type-Class-Model: Car Computer 

<<RoleType>> 

Subject 
<<RoleType>> 

Observer 

<<RoleType>> 

StrategyClient 

<<RoleType>> 

Strategy 

Role- 
equivalent 

Figure 1. The Relationship between the SMAG Component Model and
Role-Based Modeling.

of the role type Subject and vice versa. This role model
is then combined with a class diagram ”Car Computer” to
a role-type-class-model. This model describes, which class
instances are able to play a given set of roles. Lets consider
an instance of the class NaviSys is playing a role of the
role type Subject, it is related an object playing the role
Observer. After the role has been removed, this relationship
is removed either.

The role-based software development approach is primar-
ily an approach on the modeling level, whereas different
approaches were suggested on how to implement the role-
based approach. The lack of a silver-bullet solution leads to
a deep gap between design and implementation. There is the
possibility of using classical object-oriented concepts, such
as interfaces, multiple inheritance or mixin inheritance to
realize the presented concepts [27]. However, this means
that roles can not be acquired or removed at runtime.
Another solution is the Role Object Pattern (ROP) [8] which
separates the core and the role objects into different classes,
using delegation to interact between them. This leads to
a nontransparent role-binding mechanism, because the core
object has to manage its roles. In addition, several attempts
have been made to integrate the role concept in programming
languages. ObjectTeams/Java (OT/J) [4], an extension of the
Java programming language and part of the Eclipse platform,
is one of them. Despite the current OT/J implementation
does not fully realize the role-concept described earlier, it
was still used for the reference implementation of SMAGs
for Java (cf. Section IV-E), due to the lack of mature
alternatives.
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Figure 2. The Relationship between the SMAG Component Model and
Role-Based Modeling.

B. Component Model

SMAG Components are stateful, self contained software
modules that can be developed and deployed independently.
They are described by a ComponentType which describes
the functional interface of a component by grouping several
PortTypes. A PortType represents a language-independent
interface description which can be offered or required by a
component. Each PortType has a unique name and specifies
the services of those components that provide this interface.
It defines both a functional view by method signatures
and a state-based view by a list of externally manipulable
parameters. Each PortType is implemented by one or several
Ports which are the elements that can be added or removed
at runtime. There are, however, certain state attributes that
have to be preserved in spite of the substitution process.
To realize this requirement, without the use of elaborate
mechanisms for transferring each individual state value, a
PortType can specify a set of attributes (SharedMemory) that
are managed within a component and not within a replace-
able unit. Furthermore, a PortType can specify a number
of other PortTypes that are required to provide the desired
functionality. Each required PortType is annotated with a
multiplicity to specify how many instances can be managed
by a Port. In analogy to the ACOE-component model [10],
PortTypes are further distinguished in BehavioralPortTypes
and EventPortTypes. A BehavioralPortType allows access to
application functionality defined by it, whereas an Event-
PortType provides an event at which other components can
register on. Besides the actual application functionality, a
Port which is implementing a given PortType, must declare
some metadata to give information about whether it is
suitable for the requirements of the specific domain. As
mentioned earlier, the composition system is optimized for a
possible runtime adaptation. Therefore, metadata should be
automatically computable. This can be achieved by using
semantic technologies like URIs to concepts of shared
ontologies [9]. Finally, a component is implemented, us-
ing a specific programming language. First, the language-
independent ComponentType declaration is transferred into

a language artifact. This is done automatically using a
platform-specific IDL compiler. The component can offer a
standard-implementation for any method that was specified
in the provided Port-Types. In addition, they can implement
an install script and an uninstall script that is executed when
the component is instantiated or destroyed. In this way, any
required resources can be allocated or released.

As already mentioned, the presented composition system
implements the ideas of role-based software development
with the semantics of the composition filter approach [7].
Figure 2 shows the relationships of the elements of the
component model to the concepts of role-based designs. A
PortType corresponds to a Role-Type, a Port to a Role, a
ComponentType to a Class and a Component to an object.
Under this assumption, the specification of PortTypes coin-
cides with the creation of a role model, whereas the required
PortTypes of a given PortType form the collaborations. The
declaration of ComponentTypes is similar to the design of a
class-role-type-model, as PortTypes, representing role types,
are mapped to ComponentTypes. At runtime, an instance
(Component) may play roles (Ports), thereby changing its
behavior.

The proposed component model defines software com-
ponents as modular units with explicitly defined interfaces.
Thereby, components that implement the same Component-
Type as well as Ports that implement the same PortType are
syntactically substitutable. Initially when a component calls
a method of a connected component via a required/provided
PortType, the base implementation of this method within
the actual component is executed. When however, a Port
is bound to a provided PortType of a component, then
the method implementation of this Port is called first. As
described in the next section, the Port can process the
method call completely or partially, by adding additional
functionality and passing the call to the underlying imple-
mentation (i.e., another Port or the base implementation
of the Component). Ports can be bound to Components
dynamically, thus changing their structure and behavior w.r.t.
to a specific PortType. Ports in addition, offer internal state
variables as well as external parameters, to tailor them w.r.t.
to a concrete reuse context.

C. Composition Technique

At runtime, the required PortTypes of a component in-
stance have to be connected with offered PortTypes of other
components. This is done by passive connectors. In some
systems, architectural connectors are active elements which
perform type conversions or protocol adjustments. As we
will explain, these requirements can still be implemented,
using specific Ports. Components can either be extended
by inheritance at design-time or by an extend operator at
runtime. The extend operator introduces new PortTypes,
by manipulating the architectural model that is managed
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Figure 3. The Bind, Adapt and Filter Composition Operators with an
Example.

dynamically. Each change in the architectural model is then
transferred to a change of the corresponding application.

The main composition operators of the presented compo-
sition system are the bind and the unbind operator, which
bind a Port to a Component respectively removing a Port
from a Component. By binding a Port to a Component, all
invocations of methods that are specified in its PortType
will first be dispatched to the Port. Depending on the
implementation, the Port can provide the whole functionality
or just performs some extra tasks and then forwards the call
to the actual component or an underlying stacked Port. By
removing a Port, the internal state gets lost. For this reason,
each component manages a shared memory which keeps
state information regardless of the existence of bound Ports.
In the presented approach, connectors can connect provided
and required Ports only, if they share the same PortType.
In practice, however, it is common that the interfaces of
reused components differ from the needed ones. In this
case, an interface adaptation can be carried out by special
AdapterPorts. An AdapterPort is usually a lightweight Port
that implements exactly one PortType and has exactly one
required PortType. Figure 3 illustrates this concept. In the
implementation of the adapter, the two interfaces can be
mapped by translating each call to the offered interface
Pa to an appropriate call to the required interface Pb. A
special case of adaptation is the remote communication
between distributed components. If the required functionality
is provided by a component that is not deployed on the
same system, an AdapterPort can automatically be generated
which translates each local to a remote call.

To separate cross cutting concerns (e.g., persistence, log-

ging, security) from the actual application functionality,
which is realized through Ports or the component imple-
mentation, FilterPorts can be used. A Filter implements a
given PortType and requires a Port of the same type. In
analogy to the role modeling, in which a role can also play
other roles, a port instance can be decorated with several
FilterPorts. Depending on the implementation of the filter,
both incoming and outgoing messages can be processed.
Figure 3 shows this process schematically. Furthermore,
FilterPorts can be used to offer a set of methods of a
component to other applications by providing a remote
interface. Therefore a RemoteFilter would publish some
kind of remote interface (e.g., as a web-service) during the
binding process. This service can then be published in a
central repository, making the offered functionality visible
to other applications. This creates a dynamic heterogeneous
network of collaborating applications.

D. Composition Language

For developers of SMAG applications, two different
modeling levels are available, on which they can describe
architectures. On the one hand, there is the possibility
to specify metaarchitectures, which are modeled by only
using Component- and PortTypes. As explained earlier,
this approach is in direct connection with the creation of
a role-model and the generation of role-type-class-model.
Nevertheless, no statement is made, which concrete Com-
ponent implementations will be used and what Ports will be
deployed at runtime. Since Component- and PortTypes are
independent of a concrete programming language, which are
implemented by artifacts of a concrete platform, it is possible
to specify platform-independent and reusable architectures.
Those partial architectures can be reused through model
composition.

On the basis of the metamodel, an architectural model can
be specified by choosing a component implementation for
each ComponentType. At runtime, the architecture descrip-
tion is preserved, so the runtime environment can create a
direct connection between the instantiated software artifacts
and corresponding model elements. The runtime environ-
ment is always able to translate changes in the application
model to changes in the application itself. In general, object-
oriented programming languages support introspection, en-
abling the runtime environment to collect information about
the objects. In most cases this approach can also be used to
derive an application model at runtime which leads to the
realization of a complete round-trip. When both strategies
are applied, it can be ensured that the architectural model
and the structure of the actual application are synchronous.

E. SMAG-Repositories

To reuse SMAG model elements and software artifacts
efficiently and finding them at runtime, they must be pub-
lished in a central location. This idea is not new and
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has already been implemented several times. Thus, web
services for example can be published and discovered using
a uniform standardized directory service, called Universal
Description, Discovery and Integration (UDDI). Although
UDDI has been standardized by OASIS, it did not become
very popular. One of the main reasons is the required effort
implied by large specification and the complex process of
service publication. For this reason, we tried to keep the
specification of SMAG-Repositories as simple as possible.

A SMAG-Repository has three main tasks. On the one
hand, artifacts must be published and managed as well
as searched and reused. On the other hand, applications
must be able to publish functionality at runtime that can
be used by other SMAG applications. SMAG repositories
consist of a static directory for Component- and PortTypes,
MetaArchitectures, Architectures, Components and Ports.
Each artifact is identified by a unique URI and can be
described using various metadata that is made computable
by referencing OWL concepts. Through an administration
interface they can be published, unpublished or modified.
Components and PortTypes, MetaArchitectures are stored
as platform-independent models, whereas Components and
Ports are stored as platform-specific binary packages. A
publish interface allows a SMAG application to provide a
remote service by specifying a PortType, a calling address
and a description of the used communications technology.
Other applications are able to query this directory services,
which enables the setup of dynamic collaboration between
various applications. This corresponds to the implementation
of a Trader Service, which is looking for a service based on
its functional properties and characteristics. Each repository
can reference an unlimited number of partner directories,
so queries can be forwarded if a repository is not able to
deliver results for a given request. Figure 4 illustrates the
structure and relationship of the SMAG repositories. Each
SMAG Repository in turn is a SMAG application whose
architecture is based on a fixed metaarchitecture. Thus, it can
be implemented for different target systems and dynamically
changed, according to specific needs. The three public
interfaces (a) administrative, (b) search and (c) runtime

publication, are made available through RemotePorts.

F. Reference Implementation

The idea of Smart Application Grids is basically platform-
and technology-independent. The model-based description
of ComponentTypes and Ports does not make any statements
about a specific programming language. However, Compo-
nents and Ports will be implemented in a specific language
using a specific runtime environment. Thus, the component
model has to be mapped to concepts of the target language,
whereas the runtime environment has to implement the given
composition operators.

A reference implementation was created using the Java
programming language in combination with the role-based
language extension ObjectTeams/Java. Accordingly, Com-
ponentTypes and PortTypes are mapped to Java interfaces,
Components to classes and role models to abstract OT/J-
Teams. Ports are implemented through specific OT/J-Roles.
Since OT/J currently only supports load-time-weaving, theo-
retically, no new roles can be added after the class, that
should play the role, was loaded. This hinders the promised
support for the dynamic introduction of previously unknown
Ports. To circumvent this drawback, a proxy team is gen-
erated, which contains proxy roles for each PortType. The
Ports are added to the proxy teams at runtime by delega-
tion. This workaround, however, does satisfy all presented
requirements regarding transparent role playing. To perform
the composition operations at the application level, the
runtime environment must manage a model representation
of the application architecture. For both the metaarchitecture
and the architecture, Ecore-based metamodels were created.
Based on this representation, models are used to query
and modify the application at runtime. By model-to-text
transformation, all Java artifacts can be generated, that are
not reused and all reused elements can be obtained from a
repository.

V. EXAMPLE

To demonstrate the presented results, an exemplary adap-
tation system was developed. Figure 5 shows the basic
architecture. First, a distinction is made in a real and a
virtual context, whereas sensors (sensor layer) monitor the
real-world context and transfer measured values into an
object-oriented representation. The inference layer is notified
of context changes. It then can put the different context
characteristics into relation or generate new knowledge.
The adaptation layer makes sure that the running SMAG
application fits the current application context. Therefore, the
application architecture is queried using the query interface
of the SMAG runtime environment and is compared to the
requirements that result from the context. Subsequently, if
necessary, it creates a reconfiguration script that consists of
individual reconfiguration operators that are executed against
the manipulation interface of the runtime environment. The
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adaptation system was implemented as a SMAG application.
This allows to alter the algorithms and mechanisms that
are used to gather and process information as well as the
execution of adaptation operations at runtime. This, however,
in combination with the possibility to integrate Ports that
were not known at design-time, enables the realization of
unanticipated adaptation. The adaptation methods that were
used for evaluation, are based on ECA-rules using the JBoss
Drools system [3]. Nevertheless, this approach is neither
new nor sophisticated, it is still suited to ensure the proper
functioning of the dynamic composition system.

In Figure 6, the runtime architecture of an exam-
ple system is shown, which consists of four compo-
nents: CarComputer, NavigationSystem, Radio
and SmallDisplay. The NavigationSystem compo-
nent offers a PortType RoutePlanner, which provides the
functionality to calculate a route. In the shown configuration,
a port is attached to the component, which is implementing
an A*-algorithm, based on locally stored maps. When the
memory of the system exceeds a specified threshold and an
Internet connection is available, this port is dynamically re-
placed by an implementation, which is using a web service.

The Radio component provides an interface to query all
radio channels that are available. Depending on, which driver
was detected an whether any profile information is available,
a channel filter can be deployed dynamically, which only
shows radio channels relevant to the current driver. When
the driver changes, the RadioGenreFilter is either
parameterized with another genre or is removed.

The SmallDisplay component however provides
an interface to display a list of strings, whereby the
CarComputer component requires an interface to display
a list of radio channels. Those interfaces can me mapped
using an adapter port.
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Figure 6. A Simplified Diagram of the Run-Time Architecture of an
Example Application.

VI. CONCLUSION AND FUTURE WORK

In this paper, it was shown that role-based modeling
can be transferred to component-based software design, in
order to create applications that can be manipulated in a
very fine-grained manner at runtime. Furthermore role-based
modeling is putting emphasize on dynamic collaborations,
which makes it possible to create dynamic relationships
between several components within one application and
between several ones. The proposed SMAGs concept allows
to create clearly structured and reusable application archi-
tectures using role-based modeling, which makes it an ideal
candidate for the realization of dynamic adaptive systems.
This is because roles are stateful, functional units with
clearly defined interfaces that can be dynamically merged
with objects. Notably, the role-based modeling approach
can be connected with the basic principle of composition
filters very well. The implementation effort of SMAG ap-
plications is limited to the implementation of the actual
application logic, since the majority of software artifacts can
be generated automatically using models. Even though the
presented adaptation mechanisms are merely exemplary, the
adaptation logic could be clearly separated from business
logic and the software system could be changed at runtime,
supporting unanticipated dynamic adaptation. The concept
is largely based on the use of a central repository to manage
all modeling and implementation artifacts. In this way,
implementations of ports that were not known during design-
time can be integrated into a running application or old
versions of existing ports can be replaced with newer ones,
enabling hot updates.
However, many open issues remain that need to be refined in
future work. The most important aspect is the support of the
development process by appropriate tools. Furthermore, it
needs to be discussed, how the consistency of an application,
in terms of structural changes by composition operations,
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can be guaranteed. Since the concept describes structural
changes at the level of architectural models, model-based
validation would be appropriate. In addition, the semantic
substitutability of different port implementations needs to
be ensured. This corresponds to the fundamental problem
of trust within components-of-the-shelf, so it needs to be
evaluated, whether certification can solve this problem. The
presented adaptation architecture needs to be equipped with
advanced adaptation mechanisms, based on the semantic
description of context values. In addition, it may be possible
to correlate the role context, in which an object is playing
a role, with the application context, to automatically deploy
role bundles and maybe enable autonomous and unantici-
pated dynamic adaptation.
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