

Towards Formal Specification of Autonomic Control Systems

Elena Troubitsyna
Åbo Akademi University, Dept. of IT

Joukhaisenkatu 3-5A, 20520, Turku, Finland
Turku, Finland

e-mail: Elena.Troubitsyna@abo.fi

Abstract— Autonomic systems represent the next generation of
software-intensive systems that merge software, computing,
communication, sensing and actuating to create intelligent self-
aware computing environment. Autonomic systems penetrate
majority of critical infrastructures be it air-, rail and road
traffic or power supply management. So far, little attention has
been paid to theory and techniques for ensuring safety and
resilience of such systems. Are autonomic systems to bring
benefits or devastating hazards? To ensure harmless
deployment of autonomic systems in critical infrastructures we
should significantly advance our understanding of principles
governing adaptive behaviour of such systems. Therefore, it is
important to create formal techniques for modelling adaptive
behaviour of autonomic control systems. In this paper, we
discuss issues in modelling autonomic control systems that
achieve self-adaptation through feedback loops and derive
general guidelines for their formal specification.

Keywords-autonomic computing; control systems; action systems;
formal specification

I. INTRODUCTION

Autonomic systems are software-intensive systems that
besides providing its intended functionality are also capable
to diagnose and recover from errors caused either by
external faults or unforeseen state of environment in which
the system is operating. Autonomic systems are typical
examples of self-adaptive systems. The concept of
autonomic systems has been introduced in the recognition of
complexity crisis. Currently the level of complexity of
software has reached unprecedented level and we are no
longer can reliably guarantee correct function of the system.
Even though complexity is perceived as a major threat to
dependability, self-adaptive systems are becoming more
and more widely used in critical infrastructures. It is
threatening situation that might cause catastrophic
consequences.

Originally, autonomic computing paradigm was
proposed in a very radical way: autonomic systems were
supposed to mimic self-adaptive living organisms that can
autonomously take care of themselves. In this paper, we are
taking a stand that in the domain of critical systems we
should take more moderate view and consider autonomic
behavior that converges to a formally verified model that

guarantees that the essential properties of the system are
preserved despite self-adaptation.

In this paper, we discuss the principles of structuring
formal models of autonomic control systems. We
demonstrate how to formally specify behaviour of autonomic
control system in the action systems formalism [2,3]. The
formalism provides us with a unifying framework for
developing terminating as well as reactive distributed
systems. Our main development technique is stepwise
refinement [4]. While developing a system by refinement,
we start from an abstract specification and refine it into an
executable program in a number of correctness preserving
steps – refinements. Stepwise refinement allows us to
incorporate system requirements into the specification
gradually and eventually arrive at system implementation,
which is correct by construction.

In this paper, we propose a general pattern for abstract
specification and refinement of autonomic control systems.
We present a novel pattern for an abstract specification of
autonomic manager -- a components that is responsible for
monitoring and adaptation of the control system. Our
refinement steps gradually introduce detailed representation
of data structures required to model autonomic system with a
feedback control loop.

The proposed approach provides the developers with a
rigorous framework for systematic development of fault
tolerant distributed systems.

The paper is structured as follows: in Section II we
describe a general architecture of the autonomic control
systems with feedback loop. In Section III we present our
formal modelling framework – the Action Systems
formalism. In Section IV we demonstrate how to specify the
autonomic manager and components of the autonomic
control systems. Finally, in Section V we discuss the
proposed approach and future work as well as overview the
related work.

II. AUTONOMIC CONTROL SYSTEMS
The complexity of modern software systems and volatile

environment in which they operate require novel computing
paradigms to ensure that the system delivers the desired
behaviour, i.e., is capable to adapt to the changing operating
conditions. The autonomic computing paradigm is a
promising research direction that puts the main emphasis on
system self adaptation capabilities. Essentially, self-

109Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

adaptation is a capability of the system to adjust its
behaviour without any human intervention.

In this paper, we consider issues in modelling systems
that achieve self-adaption through feedback loops. In
particular we focus on studying autonomic control systems.
In general, a control system is a reactive system with two
main entities: a plant and a controller. The plant behaviour
evolves according to the involved physical processes and the
control signals provided by the controller. The controller
monitors the behaviour of the plant and adjusts it to provide
intended functionality and maintain safety. The control
systems are usually cyclic, i.e., at periodic intervals they get
input from sensors, process it and output the new values to
the actuators. The general structure of a control system is
shown in Fig. 1.

Figure 1. A general structure of a control system

A general structure of an autonomous control system is

shown in Fig. 2.

Figure 2. A general structure of an autonomic control system

A self-adaptive control system has an additional feedback

control loop – we call it autonomic control loop. The loop
has four main functions: monitor, analyse, decide and act.
The monitoring activities are implemented via external
sensors or monitors that collect data from the system and its
environment. Usually the data acquired in the process of
monitoring are filtered and stored in a log. The aim of
collecting the data is to obtain an accurate model of the
system dynamics and its current state. The collected data
form the basis for diagnostics of failures, trends in operating
environment, etc. There is a large variety of methods used
for the analysis of the collected data. There are two general
approaches: the first group relies on a reference model – a
model of the expected system that is encoded into the
analysis procedure at the design phase. Another type of

analysis relies on inferring the model of the behaviour at the
run time, i.e, no predefined model is given and the system is
gradually building the model. In our paper we focus on the
modelling the former class of systems.

Once the analysis of the collected data completes the
planning phase takes place. The system decides on the
strategy along which to continue its function. This strategy is
then transformed into the control signals that are
communicated to the actuators to implement the chosen
strategy. This completed the cycle of the autonomic control
loop.

In this paper, we focus on the analysis of autonomic
control systems with a centralized autonomic manager. The
autonomic manager is responsible for executing autonomic
control loop. By communicating with the components of the
system it collects the data required for diagnostics of the
internal system state. The queues of the internal service
requests as well as environmental conditions are monitored
to define the usage profile and plan how the system
functioning should proceed. The autonomic manager
periodically sends diagnostics requests to the system
components as well as requests reading from the external
monitoring sensors and monitors the external service
requests. This information is input to the analyzing
component of the autonomic manager. Essentially the
analyzing component compares the obtained data with the
reference model and passes the control to the planning
component. The planning component decides on the further
strategy. The developed strategy is passed to the actuating
component that sends the required control signals. The static
view on the architecture of an autonomic manager is given in
Fig. 3.

Figure 3.Structure of autonomic manager

As an example of an autonomic control system, let us

consider an autonomic robot. Service robots form a quickly
growing commercial area as well as research field. Service
robots are designed to assist humans in performing services
semi or completely automatically. There is a large variety of
robots that are used for inspection, housekeeping, office
automation and assisting elderly people or people with
disabilities. The example that we present in this paper is

Autonomic Manager

Computer

Sensors

Actuators

Plant

Computer

Sensors

Actuators

Plant

Autonomic Manager

Environment

Sensing

Analysis and
Diagnostics

Planning

Acting

110Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

inspired by the intelligent service robot developed to assist
elderly people. The robot should be able recognize a voice
command and bring a desired object (e.g., medicine) from a
certain position. We focus on the function of autonomous
navigation. A user can command the robot to move to a
specific position in the map to perform some task. For
instance, the robot can navigate to its destination in the home
environment via its sensors, which include laser scanners and
ultrasonic sensors. The robot plans a path to the specified
position, executes this path, and modifies it as necessary for
avoiding obstacles. While the robot is moving, its constantly
checks the data from its sensors.

Obviously, despite the complexity the robot should
guarantee a high degree of dependability. For instance, we
should ensure that the robot does not collide to the obstacles
(and gets broken as a consequence leaving the person
without the assistance). To facilitate design of dependable
autonomous systems we propose to rely on formal modelling
that provides us with a rigorous basis for reasoning about
system behavior.

III. ACTION SYSTEMS

The action systems formalism [1] is a state-based

approach to formal specification and development of parallel
and distributed systems. The formalism has proven its worth
in the design of complex parallel, distributed and reactive
systems [5,13,14]. Below, we briefly describe the action
systems.

A. Action Systems
The action system A is a set of actions operating on local

and global variables:

A :: |[proc p1*=P1; …; pN*=PN; q1=Q1; …; qM=QM;
 var v*,u • Init;
 do A1 []…[] AK od]| : z

The system A describes a computation, in which local

variables u and exported global variables v* are first created
and initialised in Init. Then, repeatedly, any of the enabled
actions A1, …, An is non-deterministically selected for
execution. The computation terminates if no action is
enabled, otherwise it continues infinitely. The actions
operating on disjoint sets of variables can be executed in any
order or in parallel.

The local variables u are only referenced locally in A,
while the exported global variables v* also can be referenced
by other action systems. The imported global variables z are
mentioned in the actions A1,…, AK but not declared locally.
The identifiers of local, global imported and global exported
variables are assumed to be distinct.

A procedure declaration p=P consists of the procedure
header p and the procedure body P. The procedures marked
with * are declared as the exported procedures. They can be
called from A and other action systems. The procedures
q1,…, qM are the local procedures. They can be called only by

A. The local and exported procedures are all assumed to be
distinct.

The action A is a statement of the form g(A)→s(A),
where g(A) is a predicate over state variables (the guard of
A) and s(A) is a statement of Dijkstra’s language of guarded
commands [7] (the body of A). The action that establishes
any postcondition is said to be miraculous. We take the view
that an action is only enabled in those states in which it
behaves non-miraculously. The guard of the action
characterizes those states for which the action is enabled:

g(A)=¬wp(A, false)

The actions are assumed to be atomic, meaning that only

their input-output behaviour is of interest. They can be
arbitrary sequential statements. Their behaviour can
therefore be described by the weakest precondition predicate
transformer of Dijkstra [7]. In addition to the statements
considered by Dijkstra, we use non-deterministic choice
A [] B between statements A and B, simultaneous execution
of statements A||B provided A and B do not share state
variables and prioritizing composition, A//B. Note, that the
prioritizing composition selects the first action, if it is
enabled, otherwise the second (the choice being
deterministic):

A//B = A [] (¬g(A)→B)

The detail description of these operators can be found

elsewhere [3,11].
The procedure bodies and the actions may contain

procedure calls. As a parameter passing mechanisms we
consider call-by-value denoted p(val x), call-by-result
denoted p(res x) and call-by-value-result denoted
p(valres x), where x stands for the formal parameters. We
assume that the procedures are not recursive. An extensive
study of procedures in the action system formalism has been
conducted elsewhere [12].

B. Refinement
The main development technique for the action systems

is stepwise refinement [2,3,4]. The action A is refined by the
action C, written A≤C, if, whenever A establishes a certain
postcondition, so does C:

A ≤ C iff for all p: wp(A,p) ⇒ wp(C,p)

A variation of refinement is if A is (data-) refined by C

via the relation R, written A ≤R C. For this, assume A
operates on the variables a,u and C operates on the variables
c,u. The data refinement is defined as follows [2,3]:

A ≤R C iff for all p: R ∧ wp(A,p) ⇒wp(C, (∃a • R∧p)) (2)

Data refinement allows us to replace the variables in the

actions. The relation R defines the correspondence between
the replaced variables a and the newly introduced variables
c.

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

When carrying out refinement in practice, one seldom
appeals to the definitions (1) and (2). Instead certain pre-
proven refinement rules are used.). Instead certain pre-
proven refinement rules are used. For instance, Rule 1 and
Rule 2 below are examples of derived rules for verifying
refinement between actions and action systems. Let assume
that A operates on variables a,z and C operates on variables
c,z. Let R be the relation over a,c,z:

Rule 1: A ≤R C iff

(i) R∧g(C) ⇒ g(A)
(ii) ∀p.(R∧g(C)∧wp(sA,p)⇒ wp(sC, ∃a • R∧p))

Rule 2: For action systems A and C, A ≤R C, iff

(i) Initialization: C0⇒(∃a • R∧C0),
(ii) Actions: Ai ≤R Ci for all i,
(iii) Exit condition: R∧(∨ig(Ai))⇒(∨ ig(Ci))

The proofs of these rules can be found elsewhere [2,3].

The action system formalism has been successfully used
in component-based design. The formalism supports three
most important modularization mechanisms: procedures,
parallel composition and data encapsulation [3,12]. The
components specified as action systems can communicate
via shared variables, shared actions or remote procedure
calls. Let us consider two action systems A and B

A :: |[proc q1*=Q1; … qN*=QM;

 pA1=PA1; … pAM=PAN;
 var v*,a • InitA;
 do A1 []…[] AK od]| : z

B :: |[proc r1*=R1; … rS*=RS;
 pB1=PB1; … pBT=PBT;
 var w*,b • InitB;
 do B1 []…[] BL od]| : y

where v* and w*, a and b, z and y are pairwise distinct.
Moreover, the local procedures pA1, … pAM, pB1, … pBT
declared in A and B are distinct too. The parallel
composition A||B of A and B is the action system C

C :: |[proc q1*=Q1; … qN*=QM;
 r1*=R1; … rS*=RS;
 pA1=PA1; … pAM=PAN;
 pB1=PB1; … pBT=PBT
 var v*, w*,a, b • InitA||InitB;
 do A1 []…[] AK [] B1 []…[] BL od]| : z∪y

Hence, the parallel composition combines the state

spaces of the constituent action systems, merging the global
variables and global procedures and keeping the local
variables distinct. The prioritizing composition of action
systems is defined similarly. However, in the resultant action
system A//B the preferences are given to the actions of the
action system A. The refinement of component systems is

usually carried out by application of the following
refinement rules:
Rule 3: A1||A2 ≤R C1||C2 if A1≤R C1 and A2≤R C2
Rule 4: A1//A2 ≤R C1//C2 if A1≤R C1 and A2≤R C2 and

 R∧g(A1) ⇒ g(C1)

The action systems and refinement provide us with a
suitable framework for formal specification and verification
of the behaviour of autonomic control systems. The aim of
this paper is to propose patterns for modelling autonomic
control systems that rely of a feedback loop for their self-
adaptation.

IV. SPECIFYING AUTONOMIC CONTROL SYSTEM
AS ACTION SYSTEMS

A. Autonomic component
We start deriving a formal specification of an autonomic
control system from defining a structure of an autonomic
manager. Our specification follows the architecture
depicted in Fig. 3. Essentially, it can be seen as a sequential
composition of the actions modelling data collection, data
analysis and error diagnostics, planning of the next control
step and setting actuators accordingly. Formally, we define
it as follows:

AM :: |[const

eval: DATA x DATA x DATA x STATE
planning : STATE x DATA x PLAN
acting: PLAN x A_STATE
next_exp_state: STATE x A_STATE x DATA

 var int_data, ext_data, ref_data: DATA
 cur_state :STATE
 cur_plan :PLAN

 act_state:A_STATE
 flag: {sen,an,pl,act}•

 INIT int_data, ext_data, ref_data:: DATA
 cur_state := init_state

 cur_plan := nil_PLAN
 act_state:=idle
 flag: =sen;

 do
 flag=sen -> int_data, ext_data:: DATA || flag:= an
 [] flag=an ->
 cur_state:= eval(int_data, ext_data,ref_data)
 || flag:=pl
 [] flag=pl ->
 cur_plan := planning(ext_data,cur_state)
 || flag:= ac
 [] flag=ac->
 act_state := acting(cur_plan)

|| ref_data:=next_exp_state(cur_state,act_state)
 || flag:= ac
 od]|

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

In the const clause, we have defined a number of
abstract functions. The function eval models the analysis of
data. Essentially, it compares the data obtained from the
internal and external sensors with the reference model. The
function planning takes as an input the data obtained from
the external sensors and the current system state to decide
on the next system behaviour. The behaviour is modelled by
an abstract set PLAN. The function acting defines the new
states of actuators based on the defined plan and their
current state. Finally, the function next_exp_state defines
the next value of reference model against which the system
state will be compared.

In the var clause, we have defined the variables of the
model. The variables int_data and ext_data represent
readings of internal and external sensors correspondingly.
The variable ref_data defines the next expected value of the
reference model. The variable cur_state defines the current
state of the system. Finally, the variable act_state abstractly
models the state of the actuators. The variable flag is an
auxiliary variable modelling the progress of system
execution.

Let us now describe the actions modelling the behaviour
of the autonomic component. The first action models the
results of monitoring via the external and internal sensors.
The internal sensors supply the information regarding the
state of the system components. This information can be
used to detect occurrence of failure and deviations from the
expected behaviour. The external sensors bring the fresh
information about the operating environment of the system.
For instance, in the case of the autonomic robot, the external
sensors will signal about the obstacles detected on route.
These data are compared against the reference data. The
general mechanism used for the comparison is to ensure that
the detected system state matches the expected system state.
Based on that comparison, the variable cur_state obtains the
new value. The next action relies on the results of the
analysis to define the current plan. In general, a plan
corresponds to a certain mode of the components. As soon
as the plan is defined, the new states of the actuators can be
computed. By relying on the assigned states of the actuators,
we can also compute the expected value of the reference
model. This value will be used in the next cycle to diagnose
the state of the system.

The actions are executed cyclically. At each iteration,
the autonomic manager repeats the same sequence of
actions, as defined by our model AM.

B. Specification of the autonomic component

Next, we demonstrate how to specify a self-aware
component. A self-aware component besides providing its
intended functionality also detects errors in its own functioning
and raises corresponding exceptions, if the requested service
cannot be executed. The self-awareness capabilities not only
allow us to build the system in a well-structured way but also
enable an effective fault tolerance.

In our initial specification, we assume that functioning
modes of the autonomic components are transparent to the
entire system. Such an abstraction allows us to significantly
simplify the initial specification. The real communication
mechanism is introduced at the consequent refinement steps.

When a component is not involved in executing a request
sent by the autonomic manager, it is in the state idle. The
autonomic manager may request a certain service by placing
the corresponding data in req_buffer. If a component is idle and
a request arrives then the component starts to execute this
request and enters the state executing. Upon completing the
requested service the component becomes idle again.

Therefore, the autonomic component AC can be
specified as follows:

 AC :: |[var req_buffer*: Buffer
 resp_buffer*:Buffer
 int_exc:Exceptions
 state:{idle,executing,failed}
 do N || F od]|

where

N :: |[do state=idle /\ req_buffer ≠empty /\ no_exc →

 state:= executing || req_buffer:=tail(req_buffer)
 [] i: 1..N state:= executing /\

 no_exc /\ event_i →
 reaction_i

 [] int_exc := exc
 [] reaction_i ||
 state:= idle||
 resp_buffer:= resp_buffer^result

 od]|

F::|[do[]j:1..Mint_exc→internal_exc_handling||

 rec::{OK,Failed}
 [] j:1..M int_exc/\ rec=OK→ int_exc:= Nil
 [] j:1..K int_exc/\ rec=Failed→ state:=failed
 [] od]|

The action system N defines the intended functionality of
the autonomic component, i.e., executing requests that are
sent to it by the autonomic manager. When a request is
chosen for execution, it is deleted from the buffer of requests
req_buffer. When the autonomic component successfully
completes request execution, the result is put into the
response buffer resp_buffer. The action system N models
successful service provisioning

Upon detecting an error, an exception int_exc is raised
and control is passed to the subsystem F. The action system
F specifies handling of errors. If error handling succeeds
then the component resumes its normal function, i.e., control
is passed to the subsystem N. However, if error handling
fails, the component state is changed to failed.

113Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

B. Specification of the overall architecture
We aim at defining the overall system architecture by
composing models of components of control systems with the
model of autonomic manager. To enforce separation of
concerns we introduce self-awareness capabilities into the
model of system components.

Assume that AC = {AC0, …, ACM} is a set of autonomic
components. We specify an autonomic control system as a
prioritizing composition of the autonomic manager and the
action systems specifying the autonomic components:

S:: AM//AC0 || AC1 ||…|| ACM

Initially, the components communicate via shared

variables. In the refinement process, we replace shared
variables by the remote procedures. Further refinement steps
(omitted here) allow us eventually decompose the system
into independent components.

The proof-based verification associated with the
refinement allows us to reason about preservation of
important system properties, such as correctness, safety and
fault tolerance in presence of self-adaptation. Moreover, by
instantiating the abstract functions with their concrete
counterpart, we arrive at the additional properties ensuring
correct execution of self-adaptation scenarios. In the large
distributed systems ensuring these properties at the
architectural level brings benefits of early problem
discovery. Hence, it allows us to arrive at a more robust
design and speed up the development cycle.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed guidelines for structuring formal
models of autonomic control systems based on feedback loops.
The approach is based on the formal derivation of correct by
construction system via stepwise refinement. We demonstrated
how to derive system architecture in a formal way and structure
specifications of self-aware components and autonomic
manager.

A variety of approaches has been proposed to model
autonomic control systems (e.g., see [4,5] for review).
However, majority of these approaches focus on modeling
details of self-adaptation mechanisms or their implementation
details. In our work, we aimed at defining high-level
architectural guidelines for modeling autonomic systems.

Sensoria project [8] has significantly advanced the area of
formal modelling of adaptive systems. It has developed a

number of modelling and programming primitives for just-in-
time composition. Moreover, mathematical models for
reasoning about correctness as well as quantitative analysis
have been proposed as well. However, the project mainly
aimed at modelling services and service-oriented systems rather
than autonomic control systems – the goal that we have
pursued in this paper.

As a future work, we aim at validating the proposed
approach by a number of case studies. Moreover, it would be
interesting to develop patterns for knowledge collection and
representation in the formal model of autonomic control
systems.

REFERENCES

[1] T. Anderson and P.A. Lee. Fault Tolerance: Principles and Practice.

Prentice-Hall, Englewood Cliffs, 1981.
[2] R.J.R. Back, “Refinement calculus, Part II: Parallel and reactive

programs”. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg
(Eds.), Stepwise Refinement of Distributed Systems, pp. 67-93. New
York, Springer-Verlag, 1990.

[3] R.J.R. Back and K. Sere, “From modular systems to action systems”,
Software –Concept and Tools 17, pp. 26-39, 1996.

[4] R.J.R. Back and J. von Wright, Refinement Calculus: A Systematic
Introduction. New York, Springer-Verlag, 1998.

[5] M. Butler, E. Sekerinski, and K. Sere, “An Action System Approach
to the Steam Boiler Problem”, In J.-R. Abrial, E. Borger and H.
Langmaack (Eds.), Formal Methods for Industrial Applications:
Specifying and Programming the Steam Boiler Control, pp. 129-148,
New York, Springer-Verlag, 1996.

[6] F. Cristian. “Exception Handling”. In T. Anderson. Dependability of
Resilient Computers, pp. 68–97. BSP, 1989.

[7] E. W. Dijkstra, A Discipline of Programming. Englewood Cliffs, NJ:
Prentice Hall, 1976.

[8] EU FP6 Project Sensoria: Software Engineering for Service-Oriented
Overlay Computer. http://www.sensoria-ist.eu/

[9] J.-C. Laprie, Dependability: Basic Concepts and Terminology. New
York, Springer-Verlag, 1991.

[10] N.G. Leveson, Safeware: System Safety and Computers. Addison-
Wesley, 1995.

[11] E. Sekerinski and K. Sere, “A Theory of Prioritizing Composition”,
The Computer Journal, 39(8), pp. 701-712, 1996.

[12] K. Sere and M. Waldén, “Data Refinement of Remote Procedures”,
Formal Aspects of Computing, 12(4), pp. 278–297, 2000.

[13] K. Sere and E. Troubitsyna, “Safety Analysis in Formal
Specification”, Proc. World Congress on Formal Methods in the
Development of Computing Systems, pp. 1564-1583, Springer, 1999.

[14] E. Troubitsyna, “Developing Fault-Tolerant Control Systems
Composed of Self-Checking Components in the Action Systems
Formalism”, Proc. The Workshop on Formal Aspects of Component
Software, pp. 167-186, 2003.

114Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

