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Abstract— Autonomic systems represent the next generation of 
software-intensive systems that merge software, computing, 
communication, sensing and actuating to create intelligent self-
aware computing environment. Autonomic systems penetrate 
majority of critical infrastructures be it air-, rail and road 
traffic or power supply management. So far, little attention has 
been paid to theory and techniques for ensuring safety and 
resilience of such systems. Are autonomic systems to bring 
benefits or devastating hazards? To ensure harmless 
deployment of autonomic systems in critical infrastructures we 
should significantly advance our understanding of principles 
governing adaptive behaviour of such systems. Therefore, it is 
important to create formal techniques for modelling adaptive 
behaviour of autonomic control systems. In this paper, we 
discuss issues in modelling autonomic control systems that 
achieve self-adaptation through feedback loops and derive 
general guidelines for their formal specification.  
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I.  INTRODUCTION  
 

Autonomic systems are software-intensive systems that 
besides providing its intended functionality are also capable 
to diagnose and recover from errors caused either by 
external faults or unforeseen state of environment in which 
the system is operating. Autonomic systems are typical 
examples of self-adaptive systems. The concept of 
autonomic systems has been introduced in the recognition of 
complexity crisis. Currently the level of complexity of 
software has reached unprecedented level and we are no 
longer can reliably guarantee correct function of the system. 
Even though complexity is perceived as a major threat to 
dependability, self-adaptive systems  are becoming more 
and more widely used in critical infrastructures. It is 
threatening situation that might cause catastrophic 
consequences. 

Originally, autonomic computing paradigm was 
proposed in a very radical way: autonomic systems were 
supposed to mimic self-adaptive living organisms that can 
autonomously take care of themselves. In this paper, we are 
taking a stand that in the domain of critical systems we 
should take more moderate view and consider autonomic 
behavior that converges to a formally verified model that 

guarantees that the essential properties of the system are 
preserved despite self-adaptation.  

In this paper, we discuss the principles of structuring 
formal models of autonomic control systems. We 
demonstrate how to formally specify behaviour of autonomic 
control system in the action systems formalism [2,3]. The 
formalism provides us with a unifying framework for 
developing terminating as well as reactive distributed 
systems. Our main development technique is stepwise 
refinement [4]. While developing a system by refinement, 
we start from an abstract specification and refine it into an 
executable program in a number of correctness preserving 
steps – refinements. Stepwise refinement allows us to 
incorporate system requirements into the specification 
gradually and eventually arrive at system implementation, 
which is correct by construction.  

In this paper, we propose a general pattern for abstract 
specification and refinement of autonomic control systems.  
We present a novel pattern for an abstract specification of 
autonomic manager -- a components that is responsible for 
monitoring and adaptation of the control system. Our 
refinement steps gradually introduce detailed representation 
of data structures required to model autonomic system with a 
feedback control loop.  

The proposed approach provides the developers with a 
rigorous framework for systematic development of fault 
tolerant distributed systems. 

The paper is structured as follows: in Section II we 
describe a general architecture of the autonomic control 
systems with feedback loop. In Section III we present our 
formal modelling framework – the Action Systems 
formalism. In Section IV we demonstrate how to specify the 
autonomic manager and components of the autonomic 
control systems. Finally, in Section V we discuss the 
proposed approach and future work as well as overview the 
related work.   

II. AUTONOMIC CONTROL SYSTEMS 
The complexity of modern software systems and volatile 

environment in which they operate require novel computing 
paradigms to ensure that the system delivers the desired 
behaviour, i.e., is capable to adapt to the changing operating 
conditions. The autonomic computing paradigm is a 
promising research direction that puts the main emphasis on 
system self adaptation capabilities. Essentially, self-
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adaptation is a capability of the system to adjust its 
behaviour without any human intervention.  

In this paper, we consider issues in modelling systems 
that achieve self-adaption through feedback loops. In 
particular we focus on studying autonomic control systems. 
In general, a control system is a reactive system with two 
main entities: a plant and a controller. The plant behaviour 
evolves according to the involved physical processes and the 
control signals provided by the controller. The controller 
monitors the behaviour of the plant and adjusts it to provide 
intended functionality and maintain safety. The control 
systems are usually cyclic, i.e., at periodic intervals they get 
input from sensors, process it and output the new values to 
the actuators. The general structure of a control system is 
shown in Fig. 1. 

 
 
 
 
 
 
 

Figure 1. A general structure of a control system 
 
 
A general structure of an autonomous control system is 

shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. A general structure of an autonomic control system 
 
A self-adaptive control system has an additional feedback 

control loop – we call it autonomic control loop. The loop 
has four main functions: monitor, analyse, decide and act. 
The monitoring activities are implemented via external 
sensors or monitors that collect data from the system and its 
environment. Usually the data acquired in the process of 
monitoring are filtered and stored in a log. The aim of 
collecting the data is to obtain an accurate model of the 
system dynamics and its current state. The collected data 
form the basis for diagnostics of failures, trends in operating 
environment, etc. There is a large variety of methods used 
for the analysis of the collected data. There are two general 
approaches: the first group relies on a reference model – a 
model of the expected system that is encoded into the 
analysis procedure at the design phase. Another type of 

analysis relies on inferring the model of the behaviour at the 
run time, i.e, no predefined model is given and the system is 
gradually building the model. In our paper we focus on the 
modelling the former class of systems.  

Once the analysis of the collected data completes the 
planning phase takes place. The system decides on the 
strategy along which to continue its function. This strategy is 
then transformed into the control signals that are 
communicated to the actuators to implement the chosen 
strategy. This completed the cycle of the autonomic control 
loop.  

In this paper, we focus on the analysis of autonomic 
control systems with a centralized autonomic manager. The 
autonomic manager is responsible for executing autonomic 
control loop. By communicating with the components of the 
system it collects the data required for diagnostics of the 
internal system state. The queues of the internal service 
requests as well as environmental conditions are monitored 
to define the usage profile and plan how the system 
functioning should proceed. The autonomic manager 
periodically sends diagnostics requests to the system 
components as well as requests reading from the external 
monitoring sensors and monitors the external service 
requests. This information is input to the analyzing 
component of the autonomic manager. Essentially the 
analyzing component compares the obtained data with the 
reference model and passes the control to the planning 
component. The planning component decides on the further 
strategy. The developed strategy is passed to the actuating 
component that sends the required control signals.  The static 
view on the architecture of an autonomic manager is given in 
Fig. 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.Structure of autonomic manager 
 
As an example of an autonomic control system, let us 

consider an autonomic robot. Service robots form a quickly 
growing commercial area as well as research field. Service 
robots are designed to assist humans in performing services 
semi or completely automatically. There is a large variety of 
robots that are used for inspection, housekeeping,   office 
automation and assisting elderly people or people with 
disabilities. The example that we present in this paper is 
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inspired by the intelligent service robot developed to assist 
elderly people. The robot should be able recognize a voice 
command and bring a desired object (e.g., medicine) from a 
certain position. We focus on the function of autonomous 
navigation.  A user can command the robot to move to a 
specific position in the map to perform some task. For 
instance, the robot can navigate to its destination in the home 
environment via its sensors, which include laser scanners and 
ultrasonic sensors. The robot plans a path to the specified 
position, executes this path, and modifies it as necessary for 
avoiding obstacles. While the robot is moving, its constantly 
checks the data from its sensors.  

Obviously, despite the complexity the robot should 
guarantee a high degree of dependability. For instance, we 
should ensure that the robot does not collide to the obstacles 
(and gets broken as a consequence leaving the person 
without the assistance). To facilitate design of dependable 
autonomous systems we propose to rely on formal modelling 
that provides us with a rigorous basis for reasoning about 
system behavior. 
 

III. ACTION SYSTEMS 
  
The action systems formalism [1] is a state-based 

approach to formal specification and development of parallel 
and distributed systems. The formalism has proven its worth 
in the design of complex parallel, distributed and reactive 
systems [5,13,14]. Below, we briefly describe the action 
systems. 

A. Action Systems 
The action system A is a set of actions operating on local 

and global variables: 
 
A ::  |[ proc p1*=P1; …; pN*=PN;  q1=Q1; …; qM=QM; 
           var v*,u • Init;   
            do A1 []…[] AK od ]| : z 
 
The system A describes a computation, in which local 

variables u and exported global variables v* are first created 
and initialised in Init. Then, repeatedly, any of the enabled 
actions A1, …, An is non-deterministically  selected for 
execution. The computation terminates if no action is 
enabled, otherwise it continues infinitely. The actions 
operating on disjoint sets of variables can be executed in any 
order or in parallel. 

The local variables u are only referenced locally in A, 
while the exported global variables v* also can be referenced 
by other action systems. The imported global variables z are 
mentioned in the actions A1,…, AK but not declared locally. 
The identifiers of local, global imported and global exported 
variables are assumed to be distinct. 

A procedure declaration p=P consists of the procedure 
header p and the procedure body P. The procedures marked 
with * are declared as the exported procedures. They can be 
called from A and other action systems. The procedures 
q1,…, qM are the local procedures. They can be called only by 

A. The local and exported procedures are all assumed to be 
distinct. 

The action A is a statement of the form g(A)→s(A), 
where g(A) is a predicate over state variables (the guard of 
A) and s(A) is a statement of Dijkstra’s language of guarded 
commands [7] (the body of A). The action that establishes 
any postcondition is said to be miraculous. We take the view 
that an action is only enabled in those states in which it 
behaves non-miraculously. The guard of the action 
characterizes those states for which the action is enabled:  

g(A)=¬wp(A, false) 
 
The actions are assumed to be atomic, meaning that only 

their input-output behaviour is of interest. They can be 
arbitrary sequential statements. Their behaviour can 
therefore be described by the weakest precondition predicate 
transformer of Dijkstra [7]. In addition to the statements 
considered by Dijkstra, we use non-deterministic choice       
A [] B between statements A and B, simultaneous execution 
of statements A||B provided A and B do not share state 
variables and prioritizing composition, A//B. Note, that the 
prioritizing composition selects the first action, if it is 
enabled, otherwise the second (the choice being 
deterministic): 

 
A//B = A [] (¬g(A)→B) 

 
The detail description of these operators can be found 

elsewhere [3,11]. 
The procedure bodies and the actions may contain 

procedure calls. As a parameter passing mechanisms we 
consider call-by-value denoted p(val x), call-by-result 
denoted p(res x) and call-by-value-result denoted      
p(valres x), where x stands for the formal parameters. We 
assume that the procedures are not recursive. An extensive 
study of procedures in the action system formalism has been 
conducted elsewhere [12]. 

B. Refinement 
The main development technique for the action systems 

is stepwise refinement [2,3,4].  The action A is refined by the 
action C, written A≤C, if, whenever A establishes a certain 
postcondition, so does C: 

 
A ≤ C iff for all p: wp(A,p) ⇒ wp(C,p) 

 
A variation of refinement is if A is (data-) refined by C 

via the relation R, written A ≤R C. For this, assume A 
operates on the variables a,u and C operates on the variables 
c,u. The data refinement is defined as follows [2,3]:  
 
A ≤R C iff for all  p: R ∧ wp(A,p) ⇒wp(C, (∃a • R∧p))       (2) 

 
Data refinement allows us to replace the variables in the 

actions. The relation R defines the correspondence between 
the replaced variables a and the newly introduced variables 
c. 
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When carrying out refinement in practice, one seldom 
appeals to the definitions (1) and (2).  Instead certain pre-
proven refinement rules are used. ).  Instead certain pre-
proven refinement rules are used.  For instance, Rule 1 and 
Rule 2 below are examples of derived rules for verifying 
refinement between actions and action systems. Let assume 
that  A operates on variables a,z and C operates on variables 
c,z. Let R be the relation over a,c,z: 

 
Rule 1: A ≤R C   iff     

(i) R∧g(C) ⇒ g(A)  
(ii) ∀p.(R∧g(C)∧wp(sA,p)⇒ wp(sC, ∃a • R∧p)) 

 
Rule 2: For action systems A and C, A ≤R C, iff   

(i)    Initialization:  C0⇒(∃a • R∧C0), 
(ii)   Actions: Ai ≤R Ci for all i, 
(iii)  Exit condition: R∧(∨ig(Ai))⇒(∨ ig(Ci)) 

 
The proofs of these rules can be found elsewhere [2,3]. 

The action system formalism has been successfully used 
in component-based design. The formalism supports three 
most important modularization mechanisms: procedures, 
parallel composition and data encapsulation [3,12]. The 
components specified as action systems can communicate 
via shared variables, shared actions or remote procedure 
calls. Let us consider two action systems A and B 

 
A ::  |[ proc q1*=Q1; … qN*=QM;    

        pA1=PA1; … pAM=PAN;    
           var v*,a • InitA;         
           do A1 []…[] AK od ]| : z  

 
B ::  |[ proc r1*=R1; … rS*=RS; 
                   pB1=PB1; … pBT=PBT;   
           var w*,b • InitB; 
           do B1 []…[] BL od ]| : y 
 
where v* and  w*, a and b, z and y are pairwise distinct. 
Moreover, the local procedures pA1, … pAM, pB1, … pBT 
declared in A and B are distinct too. The parallel 
composition A||B of A and B is the action system C 
 

C ::  |[proc q1*=Q1; … qN*=QM;   
                    r1*=R1; … rS*=RS;   
                    pA1=PA1; … pAM=PAN; 
                   pB1=PB1; … pBT=PBT 
           var v*, w*,a, b • InitA||InitB; 
           do A1 []…[] AK [] B1 []…[] BL od ]| : z∪y 
 
Hence, the parallel composition combines the state 

spaces of the constituent action systems, merging the global 
variables and global procedures and keeping the local 
variables distinct. The prioritizing composition of action 
systems is defined similarly. However, in the resultant action 
system A//B the preferences are given to the actions of the 
action system A. The refinement of component systems is 

usually carried out by application of the following 
refinement rules: 
Rule 3:  A1||A2 ≤R C1||C2 if A1≤R C1 and A2≤R C2 
Rule 4: A1//A2 ≤R C1//C2 if A1≤R C1 and A2≤R C2 and  

      R∧g(A1) ⇒ g(C1)  
 

The action systems and refinement provide us with a 
suitable framework for formal specification and verification 
of the behaviour of autonomic control systems. The aim of 
this paper is to propose patterns for modelling autonomic 
control systems that rely of a feedback loop for their self-
adaptation. 

 

IV. SPECIFYING AUTONOMIC CONTROL SYSTEM 
AS ACTION SYSTEMS 

A. Autonomic component 
We start deriving a formal specification of an autonomic 
control system from defining a structure of an autonomic 
manager.  Our specification follows the architecture 
depicted in Fig. 3.  Essentially, it can be seen as a sequential 
composition of the actions modelling data collection, data 
analysis and error diagnostics, planning of the next control 
step and setting actuators accordingly. Formally, we define 
it as follows: 
 
AM :: |[ const 

eval: DATA x DATA x DATA x STATE 
planning : STATE x DATA x PLAN 
acting: PLAN x A_STATE 
next_exp_state: STATE x A_STATE x DATA 

 var int_data, ext_data, ref_data: DATA 
                    cur_state :STATE 
                    cur_plan :PLAN 

     act_state:A_STATE 
    flag: {sen,an,pl,act}• 

              INIT int_data, ext_data, ref_data:: DATA 
        cur_state := init_state  

                     cur_plan := nil_PLAN 
     act_state:=idle  
    flag: =sen; 

          do 
              flag=sen -> int_data, ext_data:: DATA || flag:= an 
          []  flag=an ->  
             cur_state:= eval(int_data, ext_data,ref_data)  
             || flag:=pl  
          []  flag=pl -> 
              cur_plan := planning(ext_data,cur_state)  
              || flag:= ac 
          []  flag=ac-> 
              act_state := acting(cur_plan)  

|| ref_data:=next_exp_state(cur_state,act_state) 
              || flag:= ac 
          od]| 
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In the const clause, we have defined a number of 
abstract functions. The function eval models the analysis of 
data. Essentially, it compares the data obtained from the 
internal and external sensors with the reference model. The 
function planning takes as an input the data obtained from 
the external sensors and the current system state to decide 
on the next system behaviour. The behaviour is modelled by 
an abstract set PLAN.  The function acting defines the new 
states of actuators based on the defined plan and their 
current state. Finally, the function next_exp_state  defines 
the next value of reference model against which the system 
state will be compared.  

In the var clause, we have defined the variables of the 
model.  The variables int_data and ext_data represent 
readings of internal and external sensors correspondingly. 
The variable ref_data defines the next expected value of the 
reference model. The variable cur_state  defines the current 
state of the system. Finally, the variable act_state abstractly 
models the state of the actuators.  The variable flag is an 
auxiliary variable modelling the progress of system 
execution. 

Let us now describe the actions modelling the behaviour 
of the autonomic component. The first action models the 
results of monitoring via the external and internal sensors. 
The internal sensors supply the information regarding the 
state of the system components. This information can be 
used to detect occurrence of failure and deviations from the 
expected behaviour. The external sensors bring the fresh 
information about the operating environment of the system. 
For instance, in the case of the autonomic robot, the external 
sensors will signal about the obstacles detected on route. 
These data are compared against the reference data. The 
general mechanism used for the comparison is to ensure that 
the detected system state matches the expected system state. 
Based on that comparison, the variable cur_state obtains the 
new value. The next action relies on the results of the 
analysis to define the current plan. In general, a plan 
corresponds to a certain mode of the components. As soon 
as the plan is defined, the new states of the actuators can be 
computed. By relying on the assigned states of the actuators, 
we can also compute the expected value of the reference 
model.  This value will be used in the next cycle to diagnose 
the state of the system.  

The actions are executed cyclically. At each iteration, 
the autonomic manager repeats the same sequence of 
actions, as defined by our model AM.  

 
B. Specification of the autonomic component 
 

Next, we demonstrate how to specify a self-aware 
component. A self-aware component besides providing its 
intended functionality also detects errors in its own functioning 
and raises corresponding exceptions, if the requested service 
cannot be executed. The self-awareness capabilities not only 
allow us to build the system in a well-structured way but also 
enable an effective fault tolerance. 

In our initial specification, we assume that functioning 
modes of the autonomic components are transparent to the 
entire system. Such an abstraction allows us to significantly 
simplify the initial specification. The real communication 
mechanism is introduced at the consequent refinement steps. 

When a component is not involved in executing a request 
sent by the autonomic manager, it is in the state idle. The 
autonomic manager may request a certain service by placing 
the corresponding data in req_buffer. If a component is idle and 
a request arrives then the component starts to execute this 
request and enters the state executing. Upon completing the 
requested service the component becomes idle again. 

Therefore, the autonomic component AC can be 
specified as follows:  

 
 AC ::  |[   var  req_buffer*: Buffer 
                       resp_buffer*:Buffer 
                     int_exc:Exceptions 
                     state:{idle,executing,failed} 
                do N || F od ]| 
 
where   
 
N :: |[ do state=idle /\ req_buffer ≠empty /\ no_exc → 

             state:= executing || req_buffer:=tail(req_buffer) 
             [] i: 1..N  state:= executing /\  

          no_exc  /\ event_i →  
 reaction_i  

                                               [] int_exc := exc  
            []  reaction_i ||  
                state:= idle||  
 resp_buffer:= resp_buffer^result 

           od]| 
 
F::|[do[]j:1..Mint_exc→internal_exc_handling|| 

         rec::{OK,Failed} 
              [] j:1..M   int_exc/\ rec=OK→ int_exc:= Nil 
              [] j:1..K  int_exc/\ rec=Failed→ state:=failed 
              []   od ]| 
 

The action system N defines the intended functionality of 
the autonomic component, i.e., executing requests that are 
sent to it by the autonomic manager. When a request is 
chosen for execution, it is deleted from the buffer of requests 
req_buffer. When the autonomic component successfully 
completes request execution, the result is put into the 
response buffer resp_buffer. The action system N models 
successful service provisioning 

Upon detecting an error, an exception int_exc is raised 
and control is passed to the subsystem F. The action system 
F specifies handling of errors. If error handling succeeds 
then the component resumes its normal function, i.e., control 
is passed to the subsystem N. However, if error handling 
fails, the component state is changed to failed.  
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B. Specification of the overall architecture 
We aim at defining the overall system architecture by 
composing models of components of control systems with the 
model of autonomic manager. To enforce separation of 
concerns we introduce self-awareness capabilities into the 
model of system components. 

Assume that AC = {AC0, …, ACM} is a set of autonomic 
components. We specify an autonomic control system as a 
prioritizing composition of the autonomic manager and the 
action systems specifying the autonomic components:  

 
S:: AM//AC0 || AC1 ||…|| ACM 

 
Initially, the components communicate via shared 

variables. In the refinement process, we replace shared 
variables by the remote procedures. Further refinement steps 
(omitted here) allow us eventually decompose the system 
into independent components. 

The proof-based verification associated with the 
refinement allows us to reason about preservation of 
important system properties, such as correctness, safety and 
fault tolerance in presence of self-adaptation. Moreover, by 
instantiating the abstract functions with their concrete 
counterpart, we arrive at the additional properties ensuring 
correct execution of self-adaptation scenarios. In the large 
distributed systems ensuring these properties at the 
architectural level brings benefits of early problem 
discovery. Hence, it allows us to arrive at a more robust 
design and speed up the development cycle. 

 
 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we proposed guidelines for structuring formal 
models of autonomic control systems based on feedback loops. 
The approach is based on the formal derivation of correct by 
construction system via stepwise refinement. We demonstrated 
how to derive system architecture in a formal way and structure 
specifications of self-aware components and autonomic 
manager.  

A variety of approaches has been proposed to model 
autonomic control systems (e.g., see [4,5] for review). 
However, majority of these approaches focus on modeling 
details of self-adaptation mechanisms or their implementation 
details. In our work, we aimed at defining high-level 
architectural guidelines for modeling autonomic systems. 

Sensoria project [8] has significantly advanced the area of 
formal modelling of adaptive systems. It has developed a 

number of modelling and programming primitives for just-in-
time composition. Moreover, mathematical models for 
reasoning about correctness as well as quantitative analysis 
have been proposed as well. However, the project mainly 
aimed at modelling services and service-oriented systems rather 
than autonomic control systems – the goal that we have 
pursued in this paper. 

As a future work, we aim at validating the proposed 
approach by a number of case studies. Moreover, it would be 
interesting to develop patterns for knowledge collection and 
representation in the formal model of autonomic control 
systems. 
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