
PROTEUS: A Language for Adaptation Plans

Antinisca Di Marco, Francesco Gallo
University of L’Aquila

Department of Information Science
L’Aquila, Italy

antinisca.dimarco, francesco.gallo@univaq.it

Franco Raimondi
School of Engineering and Information Sciences

Middlesex University
London, UK

f.raimondi@mdx.ac.uk

Abstract—The purpose of this paper is to present PROTEUS,
a new language and, more in general, an approach for the
construction of reconfiguration plans to support adaptation
in systems belonging to different domains. The approach
allows the management of runtime adaptation, preventing that
running shared services are terminated and taken off-line while
being reconfigured, causing inefficiency and disruptions. We
introduce the new concept of virtual membrane, in order to
give the system ability to adapt itself at run time in front of a
new reconfiguration plans. We apply PROTEUS on an example
to show the expressiveness and power of the new language.

Keywords-Adaptive Systems. Reconfigurations Rule. DSL.
ADL.

I. INTRODUCTION

Modern software systems show a complexity and a size
that can often make difficult their maintenance and adap-
tation to environmental changes. Moreover, there is an
increasing need to satisfy functional and non-functional re-
quirements when a system lives in an environment composed
by independent and often competing entities, such as in the
web service market [1][2]. The current trend is to delegate
adaptation [3][4] and fault tolerance [5] to the system itself
by means of redundancy and other techniques.

To support these capabilities, we propose a new recon-
figuration language called PROTEUS, that aims at building
and managing rules to reconfigure software applications.
The new rules are generated and managed using a new
concept: the Virtual Membrane. A virtual membrane defines
one input for a new reconfiguration plan in which all the
resources involved are subject to adaptation. The intuition
is that rules represent views of a certain system and define
a “new” configuration for the system which is compatible
with the new state of the environment (i.e., the new context
in which the system lives). Note that it is out of scope
of this paper to define how the reconfiguration plans are
created. For this aim, we envisage an engine (local to the
system) able to interpret the context changes and to define
the suitable reconfiguration plan (expresses by means of
PROTEUS) to adapt the system to the new situation. In
our mind, such engine needs to be distributed across the
system modules/resources. The rest of the paper is organized
as follows: Section II describes PROTEUS and fundamental

concepts related to it, using a scenario that describes the
management of a WSN (Wireless Sensor Network) for the
detection of a traffic jam. In Section III and IV, we formally
introduce the main concepts of PROTEUS. Related work
is presented in Section V. Section VI provides concluding
remarks and future work.

II. MOTIVATIONAL EXAMPLE

In this section, we introduce the Traffic Jam case study
to which we apply some of the most significant actions of
reconfiguration introduced by PROTEUS and the concept
of virtual membrane. With this example, we want to show
the ability of PROTEUS to manage the system resources
at a high-level, and to introduce the concept of virtual
membranes, which allows to separate the behavior from the
system resources and organize them so as to have different
independent views.

Figure 1. Scenario

The scenario of Figure 1 shows an urban environment,
consisting of roads, buildings, cars and a traffic jam control
system composing of a series of sensor nodes installed along
the ways or on buildings. The system is composed of a
set of wireless nodes of various types and one base station
contained in the traffic light. The role of base stations is
created at run-time by means of clustering algorithms [6],
capable to elect a cluster head. In case of failure of the base

115Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

station, a new cluster head(base station) is elected among
the nodes with sufficient computing power. As we will see
in Section III-B, we identify the various components of the
system with a set of resources, namely RES. For the sake
of this example, RES is defined as follows:

RES = {t0, t1, t2, t3, c1, c2, c3, s1, s2}

where:
• t0 represents the base station/traffic light; it receives

data from various camera nodes and turns on the traffic
lights if necessary. It also has a greater computing
power than other nodes on the network;

• ti are cameras having the ability to rotate around
their vertical axis. They can not change their angle of
inclination and are equipped with temperature sensors
and sensors to detect CO2 levels;

• cj are cameras having the ability to rotate around their
vertical axis and to vary their angle of inclination.

• sk are fixed cameras that can cover only a limited part
of the road.

We assume that all nodes are powered by a solar panel,
can communicate with their neighbour nodes, and the base
station has two types of clients:

1) the system for the management of the traffic light that
is activated when a traffic jam is detected;

2) the system for detection of CO2 level. An alert is
triggered when this level exceeds a given limit value
of CO2.

As mentioned above, only the nodes of type ti have the
capacity to measure the level of CO2. We call this feature f1,
and we extend the set of resources RES with this additional
feature:

RES = {t0, t1, t2, t3, c1, c2, c3, s1, s2, f1}

The two base station clients have a different logic view of
the network, since they have different monitoring purposes.
In our approach these two logic views can be synthesized
by two virtual membranes:

v1 = {t0, t1, t2, t3, c1, c2, c3, s1, s2}

and
v2 = {t0, t1, t2, t3, f1}

In our formalism, virtual membranes are members of the
set of resources, and thus

RES = {t0, t1, t2, t3, c1, c2, c3, s1, s2, f1, v1, v2}

Consider now the following scenario: due to a technical
problem, some of the nodes belonging to the membrane v1
start sending incorrect data to the base station t0, causing
improper behaviour of the traffic lights.

At this point we need to ensure that the base station does
not continue to receive incorrect data from sensors in v1,

still guaranteeing the management of the traffic light in case
a traffic jam is detected.

It is also necessary to select in an appropriate way the
system resources that will be affected by the reconfiguration
plan. We do this by defining a predicate P1 defined as
follows:
• P1 = {ri == v1}
Intuitively, the predicate is true for a resource iff that re-

source is the virtual membrane v1. We employ this predicate
in PROTEUS to send a reconfiguration message that de-
activates the v1 virtual membrane; that is, it makes inactive
the corresponding system view or behavior. The syntax for
this reconfiguration plan is as follows:

{∀ ri ∈ RES : P1(ri) = true)} =⇒
program { vInactive(self, vMembrane v1);
}
We refer to [7] for the definition of the full syntax of

PROTEUS. We want to recall by turning off v1, the behavior
implemented by it is inhibited. Whereas, inactivating v1
does not inactivate or stop the resources belonging to it.
This means that, if the resources used by v1 are shared
with other virtual membranes, the manipulation of v1 is
absolutely transparent to them since the shared resources
continue to work for them. In our example, this means that
all the resources in v2 shared with v1 continue to work even
if v1 is inactive.

Once the virtual membrane v1 is inactive, to continue to
provide the traffic light management in case a traffic jam
occurs, we use membrane v2: the excessive production of
CO2 in a particular point of a road network presumes a
large number of combustion engines in transit, or a high
density of vehicles not in motion, hence a traffic jam.

We can then use f1 to enable the semaphore when the
CO2 level exceeds a certain threshold by means of the
following property and reconfiguration plan:
• P2 = {ri == f1}
{∀ ri ∈ RES : P2(ri) = true)} =⇒
program {
vCreate v3{
v3(P2){
if(f1 == threshold){active(self, t0)
}
if(f1 < threshold){deactive(self, t0)
}

}
In this reconfiguration plan, a new virtual membrane is

created (namely v3) that is composed only by f1. Note that
the reconfiguration plan makes use of f1 to turn on or off
the traffic light depending on the CO2 level. Indeed, f1 is
a feature implemented by the resources in v2 hence v3 uses
implicitly the resources belonging to v2. Even if v2 and v3
share implicitly and explicitly the same resources, they do
not affect each other since the former is transparent to the
latter and viceversa.

116Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

III. SETTING THE CONTEXT

In this section, we provide an abstract formalization of
the concepts introduced in the previous section. An adaptive
system is a system able to provide adaptation features, fol-
lowing the application of specific capabilities. In PROTEUS,
an adaptive system is composed of two logical layers:

Application Layer, which represents the application logic
of the system where all hardware and software features, and
their relationships are defined and managed;

Adaptation Layer, providing features for reconfiguration
and adaptation. In particular, this layer is able to process the
reconfiguration specified by PROTEUS.

A. Event Concept

The adaptation is triggered by external or internal events;
once the system has captured one of these events, it creates
a virtual membrane that selectively aggregates the resources
necessary to implement the plan of reconfiguration.

Formally, an event is a logical predicate, which can have
the following forms:

{∀ ri ∈ RES : P (ri) = true)} =⇒ reconf
or

{∃ ri ∈ RES : P (ri) = true} =⇒ reconf

where P is a property from a properties set, which
determines the resource set to select; reconf is the new
behaviour to be implemented. At the present, we assume
that the reconfiguration plan is generated manually or by an
external entity.

B. Resource Concept

In PROTEUS, the concept of resource plays a crucial role;
it is an aggregation of features and attributes, as described
in Figure 2. Both features and attributes are the resources
on which it is possible to act directly.

Figure 2. Resource concept

From a formal point of view, resources are assimilable to
elements that belong to a multiset (the concept of multiset is
a generalization of the concept of set where the multiplicity
of any element could be greater than one.): this allows us to
group together instances of various types (and possibly the

Figure 3. Resource and Feature

same type), and act on them in a distributed mode. More
formally, we identify resources with the set RES, where:

Definition: RES = {r1, r2, ..., rn, vm1, ..., vmk} is a
multiset in which all the resources that are part of the
application layer are collected. Each of these resources has
a status that tells the user if it is active or not active. The
multiset can contain both hardware and software resources,
but also logical features represented by virtual membranes.

Whenever the system is involved in an adaptation, PRO-
TEUS is able to add or remove resources, enable or disable
existing features, etc..

Thanks to the concept of attribute, PROTEUS is able
to further enhance the capabilities of a resource, allowing
the user to change the state of the resource or activate
components of the resource made temporarily silent, or
added later (where possible). In this sense, we have:

application-depended features, that specialize the
generic concept of feature resources, depending on the
application domain and;

adaptation-depended features, that express the logic to
adapt the features of the application layer. Figure 3 describes
the concept of abstraction that PROTEUS introduces: it
allows us to keep separate the application logic of the
system from the logic of adaptation, ensuring the following
advantages:

• the adaptation layer is generic, i.e., it is not bound
in any way to the application layer. In this way the
complexity of the application layer of the system is not
weighed down by specific reconfiguration logic;

• the application layer can be customized according to
the domain application, to support specific needs of
adaptation.

C. Resource Type

Each resource has a type that characterizes and distin-
guishes it in the system. Our approach provides two kinds
of resource types:

Adaptation Related resource types are the mechanism
through which our approach allows to insert new behaviors

117Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

in an application, or update a resource or collection of re-
sources. This corresponds, for example, to adding a method
mj to a class Ci or to deactivating a feature, or a part of it.

Application Related resource types are determined by the
application domain. For example, consider the WSN domain
described in Section II: an application type may be defined
by a particular sensor, called Sensorj .

IV. PROTEUS MAIN FEATURES

In this section, we present the main features of PROTEUS
such as the adaptation actions (in Section IV-A), properties
(in Section IV-B) virtual membrane (in Section IV-C) and
the actions PROTEUS defines for it (in Section IV-D). The
interested reader can refer to [7] for the complete syntax of
PROTEUS.

A. Adaptation Action

In this section, we describe the principal actions that
PROTEUS provides.

In Proteus a reconfiguration plans is a sequence of adap-
tation actions as summarized in Table I. These actions are
described as follows:
• add allows the user to add some resource to the

system. We recall that a resource can be: vMembrane,
feature, attribute or domain specific. For example, if
the application domain is a wireless sensor network,
we may want to add to the network a new type of
sensor, called Sensorj ;

• bind between resources. For example, considering a
WSN, a bind may reflect the need to initiate a commu-
nication between a base station and a peripheral sensor;

• remove resources. For example, considering a WSN,
remove a resource could mean that a node is unavaible
due to failure;

• update resources. For example, this allows the user
to update an old version of a software component,
change the communication protocol between nodes on
a network, etc.;

• activate resources. For example, it allows to activate
one particular sensor of the WSN nodes;

• deactivate resources. For example, if a network of
sensors needs to reduce energy consumption, the user
can disable one or more of the sensing node modules.

• domain specific defines domain specific adaptation
actions the application developer wants to introduces
in the language. For example, a developer could build
reconfiguration actions that are a combination of those
above in order to make atomic a sequence of them or
reconfigure a WSN according to a certain policy.

B. Properties

For each resource identified, we associate a set of con-
straints required to change the current configuration of the
system or subsystem. We can simultaneously select a set

of resources to apply an adaptation plan consisting of a
sequence of actions. The resources spaces (features) involved
are selected through the use of properties, formally defined
as:

Properties:: PROj={1..m} = {constraints+}, is the
set of properties that the system must satisfy. Each property
is defined by one or more constraints, represented by logical
predicates.

C. Virtual Membrane
In order to adapt a single resource or a pool of resources,

we introduce, through PROTEUS, the concept of Virtual
Membrane that provide tools that support the ability to
adapt the system to internal or external events. A virtual
membrane defines the boundaries of the portion of the ap-
plication subject to adaptation. The purpose of a membrane
is to select a resource or group of resources belonging to the
system, to define new interactions within the system and,
consequently, new behaviors, or to modify the behavior of
the internal resources of the application.

The advantages of introducing the concept of virtual
membranes are the following:
• the adaptation operations are performed at runtime,

ensuring continuity of service;
• the creation of a virtual membranes allows the selection

of a set of resources, generating a specific view of (the
portion of) the system involved in the change. This view
does not interfere with the various other views of the
system since they are behaviors;

• the previous point has the consequence that the adap-
tation is completely transparent to the user. Each view
gives a level of abstraction that is only accessible to
the user/subsystem which are enabled, Figure 4;

Figure 4. Virtual Membrane

• once created, the virtual membranes are comparable
to system resources; in fact they can be manipulated
through specific actions.

Definition:
Virtual Membrane:: A virtual membrane vmj = {ri ∈

RES : PROj(ri) = true, i = {1..n})}j={1..m} is a set that
contains all elements of the system that verify the property
PROj .

118Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

Adaptation Action Description
Add The action allows the user to add some element to the system. The element type can be:

vMembrane, feature, attribute or domain specific.
Bind The action creates a bind between two system’s resources.
Remove The action allows the user to remove a resource from the system. The removal of a resource

is final and it can not be used any longer.
Update The action updates a system resource.
Activate This action allows the user to enable existing resource.
Deactivate This action allows the user to disable temporarily or permanently a resource.
+domain specific Developers can define their own action, depending on particular applications needs.

Table I
ADAPTATION ACTION

Virtual Membrane Sets: VM = {vmj}j={1..m} is the
set of all virtual membranes generated in the system.

In PROTEUS virtual membranes are considered as stan-
dard resources: this is to be able to adapt the virtual mem-
brane in a uniform way with others concepts. In this way, the
virtual membrane is itself adaptable and it can evolve over
time. To manage this type of resource we defined specific
actions, called Virtual Actions, specified in the following
section.

D. Virtual Action

PROTEUS specifies a set of actions to create and manip-
ulate virtual membranes that are listed in Table 2. Recall
that a virtual membrane is a logical resource of the system,
and thus the actions reported affect the behavior associated
with the virtual membrane, rather than the resources that
implements it.

V. RELATED WORK

In this section, we summarize the characteristics of some
architectural styles and frameworks useful to develop and
manage reconfiguration in various types of software systems.

We discuss the state of the art by comparing it with
PROTEUS. To this end we organize the presentation of the
main features of the related work in Table III. Each row
of the table is dedicated to an approach whereas the first
row is related to PROTEUS and provides the reconfiguration
actions of PROTEUS that we consider as the minimum
set for the construction of a language able to define a
reconfiguration plan.

The approaches described here are applicable to levels of
granularity ranging from the reconfiguration of the architec-
tural elements to objects in the actual running the system.

The various tools considered are as follows:
• FScript [8], a Domain-Specific Language used for

reconfigurations of Fractal architectures.
FSCript introduces a new notation, called FPath, which
is designed to express queries on a FRACTAL archi-
tecture and navigate it, selecting items on the basis of
logical predicates. FScript provides access to all of the
primitive actions present in Fractal reconfiguration, and
enables the user to define customized reconfiguration.

• FORMAware [9], incorporates component-based de-
velopment and architecture knowledge. Furthermore,
this framework provides flexible mechanisms to recom-
pose components at runtime to address scalability, mo-
bility and general architecture evolutionary scenarios.

• Dynamic Contextual Adaptation with a DSL [10],
defines high-level declarative constructs that can be
used to specify the adaptation of the application be-
haviour to specific situations. The language is supported
by a framework that enables the exchange and merge
of behaviours on-the-fly.

• DSL for ATRON robots [11], is a role-based language
that allows the programmer to define roles and be-
haviour for a physical module that is activated when
the structural invariants associated with the role are
fulfilled.

• Representational state transfer (REST) [12], is a
paradigm for Web applications that allows the manipu-
lation of resources using methods GET, POST, PUT and
DELETE of the HTTP protocol. Basing its foundations
on the HTTP protocol, the REST narrows its paradigm
field of interest to applications that use this protocol to
communicate with other systems.

• CLOUD Computing [13], refers to a collection of
technologies that allow store/archive and/or data pro-
cessing (via the CPU or software) typically in the form
of a service offered by a provider to the customer,
through the use of hardware/software on a distributed
and virtualized network.

In Table III, we show the reconfiguration actions that the
various frameworks provide. For simplicity, the names of the
actions of reference used are those introduced by PROTEUS:
in each corresponding cell there is a brief description of
the semantics of the action in reference to the particular
framework.

With regard to REST, the adaptation can be conceived as
the ability of the system (web) to expose applications and
features, such as services (web), in the form of callable API
from a client. Through the use of various kinds of connectors
we can define a large number of interactions between
clients and resources, facilitating the system scalability and

119Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

Virtual Action Description
vCreate This action allows to build the membrane by means of a constructor that is capable of

aggregating elements of the systems that satisfy the properties introduced by the event that
triggered the adaptation.

vCompose This action allows to combine two virtual membrane through a compose operation set. The
operations are union, difference and intersection. The use of these operators are allowed in
their standard sense because the system resource set is defined as multiset.

vRemove This action allows to remove from the system the constraints that generated the specific
virtual membrane.

vActive This action allows to enable the specific behaviour implemented a virtual membrane. This
action affects the status field.

vInactive This action allows to disable the specific behaviour implemented a virtual membrane. This
action affects the status field.

Table II
VIRTUAL ACTION

Adaptive Action
PROTEUS Add Bind Remove Update Activated Inactivated Customization
FRACTAL ADL module: - Com-

posite components; -
Instantiation a com-
ponent from a ADL
definition (Java code
generation); - Shared
components; - Con-
tent Controller (add
sub component);
- Binding
Controller:
- bind;

Communication
path between
component
interfaces: -
Primitive Binding,
is a binding
between one client
interface and one
server interface, in
the same address
space; - Composite
Binding, is a
communication
path between an
arbitrary number
of component
interfaces, of
arbitrary language
types;

Content Controller:
- remove sub compo-
nent;
Binding Controller:
- unbind;

FScript, FPath

FORMAware - Style Manager;
- Architecture Graph;
- Architecture Man-
agement;

- Style Manager;
- Architecture Man-
agement;

- Style Manager;
- Architecture Graph;
- Architecture Man-
agement;

- Style
Manager;
- Architec-
ture Man-
agement;

ADL

Dynamic
Adaptation
with a DSL

- Exchange
Behaviour;
- Merge Behaviour;

Start Con-
text

Stop Con-
text

DSL

DSL for
ATRON Robots

Role based Role based Role based Role based Role based Role based Role based

Table III
ADAPTIVE ACTION IN RECONFIGURATION TOOLS

adaptability of the clients that use it. However, the following
considerations apply:
• the client is bound by the number of exposed services;
• the client cannot act on the characteristics of resources,

because these are completely transparent to the client.
CLOUD computing extends the concept of service per-

formed in REST, adding two more levels: in the first, the
services are identified by a platform (PaaS: Platform-as-a-
Service), and services are identified by a set of programs
or libraries. In the second, the services are provided by
an entire hardware infrastructure (IaaS - Infrastructure as a
Service). Even in the case of the CLOUD, the characteristics

of resources are not visible to the client, which is just a user
resource consumption, and it is obviously ”limited” by the
available services.

From Table III, it is clear how the management of the
reconfiguration of a system, depending on an external or
internal event, is often delegated to the architectural level. It
is therefore significant the use of Architecture Description
Language (ADL)[14] for modelling the system. In addition
to architectural languages, we considered Domain Specific
Languages (DSL)[15], which can model a particular domain
or a particular technical solution. The combination of these
two technologies allows to:

120Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

• navigate in a selective way the elements constituting
the software architecture and;

• operate dynamically reconfiguration operations on the
elements that constitute the system.

Differently from all the approaches here surveyed, PRO-
TEUS introduces the concept of Virtual membrane and the
corresponding action (virtual actions) to manage it at run
time as a usual resource. These aspects make PROTEUS
innovative and powerful.

VI. CONCLUSIONS AND FUTURE WORK

In this article, we introduced PROTEUS. This language
is characterized by the concept of virtual membranes, an
abstraction that is designed to support the capacity of a
system to meet the needs of an adaptation of its behavior,
caused by an internal or external event.

Furthermore, we presented a simple application of PRO-
TEUS, to show how the language can be used to implement
reconfiguration plans. PROTEUS is still at an early stage of
development, so it needs refinement and development. A for-
mal semantics is currently being developed, in conjunction
with a concrete implementation, to assess its ability to be
used in different application contexts, its performance and
its ability to scale in front of a large number of adaptations
and its ease of use.

Concerning the implementation, we have already identi-
fied some tools to realize the concept of virtual membranes.
In particular, we plan to use the SCALA language [16], and
the concepts of traits [17] and class boxes [18].

ACKNOWLEDGMENT

This work has been supported by the EU-funded VISION
ERC project (ERC-240555).

REFERENCES

[1] H. T. Pu and Y. W. Wong, “User navigation behavior of
a selective dissemination of web information service.” in
iConference, 2012, pp. 453–455.

[2] D. Vazhenin, “Cloud based web service for health 2.0.” in
HCCE, 2012, pp. 240–243.

[3] J. Dowling, T. Schäfer, V. Cahill, P. Haraszti, and
B. Redmond, “Using reflection to support dynamic
adaptation of system software: A case study driven
evaluation,” in Proceedings of the 1st OOPSLA Workshop
on Reflection and Software Engineering: Reflection and
Software Engineering, Papers from OORaSE 1999. London,
UK, UK: Springer-Verlag, 2000, pp. 169–188. [Online].
Available: http://dl.acm.org/citation.cfm?id=646954.713478

[4] C. Ghezzi, M. Pradella, and G. Salvaneschi, “An
evaluation of the adaptation capabilities in programming
languages,” in Proceedings of the 6th International
Symposium on Software Engineering for Adaptive and
Self-Managing Systems, ser. SEAMS ’11. New York,
NY, USA: ACM, 2011, pp. 50–59. [Online]. Available:
http://doi.acm.org/10.1145/1988008.1988016

[5] L. Sitanayah, K. N. Brown, and C. J. Sreenan, “Fault-tolerant
relay deployment based on length-constrained connectivity
and rerouting centrality in wireless sensor networks.” in
EWSN, 2012, pp. 115–130.

[6] E. Ever, R. Luchmun, L. Mostarda, A. Navarra, and P. Shah,
“UHEED - an unequal clustering algorithm for wireless
sensor networks.” in Sensornets 2012, 2012.

[7] A. Di Marco, F. Gallo, and F. Raimondi, “Proteus language,”
http://www.slrtool.org/proteus/index.php/Proteus, University
of L’Aquila, Tech. Rep., 2012. Last access 04/05/2012, Uni-
versity of L’Aquila, Tech. Rep., 2012.

[8] P.-C. David and T. Ledoux, “Safe dynamic reconfigurations
of fractal architectures with fscript,” in Proc. Fractal CBSE
Workshop, ECOOP’06, 2006.

[9] R. S. Moreira, G. S. Blair, and E. Carrapatoso, “FORMAware:
Framework of reflective components for managing architec-
ture adaptation.” in SEM, 2002, pp. 115–129.

[10] S. Fritsch, A. Senart, and S. Clarke, “Addressing dynamic
contextual adaptation with a domain-specific language,” in
Proceedings of the 29th International Conference on Software
Engineering Workshops, ser. ICSEW ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 188–. [Online].
Available: http://dx.doi.org/10.1109/ICSEW.2007.26

[11] U. Schultz, D. Christensen, and K. Stoy, “A domain-specific
language for programming self-reconfigurable robots,”
APGES 2007, Automatic Program Generation for Embedded
Systems, 2007.

[12] R. T. Fielding, “Architectural styles and the design of
network-based software architectures,” University of Califor-
nia, IRVINE - 2000.

[13] P. Mell and T. Grance, “The NIST definition of cloud
computing,” National Institute of Standards and Technology,
U.S Department of Commerce - Special Publication 800-145,
2011.

[14] N. Medvidovic and R. N. Taylor, “A classification
and comparison framework for software architecture
description languages,” IEEE Trans. Softw. Eng., vol. 26,
no. 1, pp. 70–93, Jan. 2000. [Online]. Available:
http://dx.doi.org/10.1109/32.825767

[15] A. van Deursen, P. Klint, and J. Visser, “Domain-specific
languages: an annotated bibliography,” SIGPLAN Not.,
vol. 35, no. 6, pp. 26–36, Jun. 2000. [Online]. Available:
http://doi.acm.org/10.1145/352029.352035

[16] M. Odersky, “Scala language,” online: http://www.scala-
lang.org/.

[17] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts, “Stateful
traits and their formalization,” Journal of Computer Lan-
guages, Systems and Structures, vol. 34, no. 2-3, 2008, pp.
83-108.

[18] S. Ducasse, “Supporting unanticipated changes with traits and
classboxes,” in In Proceedings of Net.ObjectDays (NODE05,
2005.

121Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

