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Abstract—Opportunistic activity and context recognition sys-
tems draw from the characteristic to utilize sensors as they
happen to be available instead of predefining a fixed sensing
infrastructure at design time of the system. Thus, the kinds and
modalities of sensors are not predefined. Sensors of different types
and working characteristics shall be used equally if the delivered
environmental quantity is useful for executing a recognition task.
This heterogeneity in the sensing infrastructure and the lack
of a defined sensor infrastructure motivates the utilization of
sensor abstractions and sensor self-descriptions for identifying
and configuring sensors according to recognition tasks. This
paper describes how sensors of different kinds can be accessed
in a common way, and how they can be utilized at runtime by
using their semantic self-descriptions. The different steps within
the lifecycle of sensor descriptions are described to understand
the powerful concepts of self-describing sensors and sensor ab-
stractions. Furthermore, a prototypical framework realizing the
vision of opportunistic activity recognition is presented together
with a discussion of subsequent steps to adapt the system to
different application domains.

Keywords—Activity recognition; system adaption; opportunis-
tic activity recognition; heterogeneous sensors

I. INTRODUCTION

Common and established activity and context recognition
systems usually define the recognition task together with the
sensing infrastructure (i.e., the sensors, their positions and
locations, spatial and proximity relationships, sampling rates,
etc.) initially, at design time of the system. The successful
recognition of activities and more generally the context of
subjects is heavily dependent on the reliability of the sensing
infrastructure over a certain amount of time, which is often
difficult to achieve, due to sensor displacements or sensor
disconnects (e.g., a sensor may run out of power). In contrast
to that, opportunistic systems utilize sensor systems as they
happen to be available to execute a dynamically defined
recognition goal [1][2]. The challenge altered from deploying
application specific sensor systems for a fixed recognition task
to the utilization of sensors that happen to be available for
dynamically stated recognition goals [1][3][4]. The available
sensor systems have to be discovered, identified, and config-
ured to cooperative sensor ensembles that are best suited to
execute a certain recognition goal in a specific application
domain. Furthermore, an opportunistic system has to be robust
and flexible against spontaneous changes in the surrounding

sensor environment, allowing the continuity of the recognition
process even if sensors disappear (or appear) in the sensing
infrastructure [5]. Therefore, three crucial challenges (amongst
others) can be identified: (i) the utilization of sensor systems
of different kinds and modalities as data delivering entities,
(ii) the identification of sensors and their capabilities for
configuring ensembles according to recognition goals, and (iii)
the adaptation of an opportunistic activity recognition system
(together with the sensor representations and the low-level
algorithmic dependencies) to a specific application domain.
This paper presents the concepts of sensor abstractions [1][6]
and sensor self-descriptions [1] to cope with these challeng-
ing aspects. Furthermore, a reference implementation of an
opportunistic activity and context recognition system is pre-
sented, referred to as the OPPORTUNITY Framework [1][6][7]
accompanied with a discussion how the framework together
with the sensor representations (composed of abstractions and
self-descriptions) can be easily adapted to diverse application
domains.

The remainder of the paper is structured as follows. Section
II motivates and presents the concept of sensor abstractions,
which enables a common usage of different sensor systems.
Section III describes how sensor systems can be utilized and
configured dynamically according to an actual recognition
goal by using their self-description, and how the sensor
self-description evolves over time by illustrating the self-
description life-cycle. Section IV discusses how the OPPOR-
TUNITY Framework can be adapted to different application
domains. The final Section V closes with a conclusion and
summarizes the core contributions of this paper.

II. SENSORS IN THE OPPORTUNITY FRAMEWORK

Opportunistic activity and context recognition systems do
not predefine their sensing infrastructure initially, as it was the
usual case in decades of related systems (e.g., Salber et al.
[8], Bao and Intille [9], Ravi et al. [10], Tapia et al. [11],
and Ward et al. [12]). Instead, the system makes best use
of the currently available sensors for executing a recognition
goal. This aspect also includes heterogeneity within the sensing
infrastructure, as the lack of a defined sensing infrastructure
also includes missing definitions of the kinds and modalities
of the sensors involved in an ensemble. Therefore, an activity
recognition system that operates in an opportunistic way has to
be capable of handling different sources of environmental data.
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Fig. 1. An actual sensing infrastructure showing different types of available
sensors.

These sources do not have to necessarily be physical sensors
(e.g., acceleration, orientation, temperature, etc.), but can also
be immaterial devices that can provide valuable information
to a system [6]. Sensor abstractions [1][6] provide a common
and easy accessible interface to handle different kinds of
material and immaterial devices as general type Sensor (e.g.,
physical, online, playback, synthetic, and harvest sensors). The
abstractions hide the low level access and connection details
and provide methods to handle different devices in a common
way. This concept enables the inclusion of sensors in ensemble
configurations (the set of sensors that is best suited to execute a
recognition goal [2][4]) of different kinds, types and modalities
as they happen to be available.

The OPPORTUNITY Framework [1][7] is a prototypical
implementation (written in Java/OSGi) of a system that recog-
nizes human activities in an opportunistic way. By enabling
the utilization of sensors of different modalities, thus does
not restrict the sensing infrastructure to be composed of
a predefined set of specific sensors, the system is flexible
towards the generation of ensembles for activity recognition.
By further utilizing the concept of self-describing sensors
(see Section III) the system is robust against changes in the
sensing infrastructure, thus can react on spontaneous changes
on the sensors’ availability by reconfiguring the corresponding
activity recognition chains and the ensemble [5]. Furthermore,
since also immaterial devices like a PlayBackSensor [6] - that
replays a pre-recorded data source, thus simulates an actual
sensor - can be utilized at runtime of the system, this allows the
configuration of hybrid simulation scenarios made of physical
and simulated (playback) devices. The different classes that
implement the hardware access (in case of PhysicalSensors),
the connection to a remote data source (OnlineSensor), or the
reading of datasource for PlayBackSensors are all derived from
a common interface. This means from the framework’s point
of view all these devices and sources of environmental data
can be accessed and utilized in a common way.

Figure 1 displays an example for an actual sensing infras-
tructure with two active recognition goals (the two red rectan-
gles) within the OPPORTUNITY Framework. This schematic

Fig. 2. Impressions of the (physical) sensor systems that are available within
the OPPORTUNITY Framework.

illustration is available as visualization in the OPPORTUNITY
Framework and presents the current available sensor devices,
the active sensing mission, and the active data flows between
the involved units. The entire actual sensing infrastructure
in this example consists of 17 sensors, each illustrated by
a colored ellipse, whereas 13 are of type PlaybackSensor
(green), 2 are of type PhysicalSensor (yellow), respectively one
of type OnlineSensor (blue), and one of type SyntheticSensor
(orange). The arrows in the figure indicate the dataflows
from sensors to active recognition goals, and between sensors
themselves. Thus, an ensemble is the best configurable set
of sensors that cooperates to execute a recognition goal,
whereas different types of sensors can be utilized by accessing
them in a common, standardized way by providing interfaces
and APIs to hide the low-level access details. The following
Table I provides an overview of the currently available sensor
abstractions in the OPPORTUNITY Framework.

The data sources for the sensors of type PlaybackSensor
in Table I have been recorded in two recording sessions.
First, a kitchen scenario in May 2010 was set up, where 72
sensors with more than 10 modalities have been utilized, and
12 subjects performed early morning activities, each 6 runs.
Second, another kitchen equipped with sensors in December
2011, where 5 subjects performed activities like coffee prepa-
ration, coffee drinking, and table cleaning. These recording
sessions are described in detail in [13] and [3]. Figure 2
provides impressions of the sensors that are made available
as PlaybackSensor or PhysicalSensors in the OPPORTUNITY
Framework. This means, they can be replayed anytime and
behave as if they would be physically present. This enables
the configuration of hybrid and powerful simulation scenarios
for opportunistic activity recognition.

Figure 2(a) shows the MotionJacket sensor [14], which
contains five XSens MTx units, mounted on the upper and
lower arms, and one on the upper back position. Furthermore,
one bluetooth accelerometer is mounted on the knee of the
person, and one SunSPOT device is attached on the shoe toe-
box. Figure 2(b) displays a reed switch as it was used in the
dataset recording session in [13]. These magnetic switches
were mounted in the environment, on different fitments and
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TABLE I. OVERVIEW OF CURRENTLY AVAILABLE SENSOR ABSTRACTIONS IN THE OPPORTUNITY FRAMEWORK.

Short Name Sensor Type # of Sensors Further Details
Reed Switch PlaybackSensor 13 HAMLIN MITI-3V1 Magnetic Reed Switch
USB Accel PlaybackSensor 8 USB ADXL330 3-axis Accelerometer
BT Accel PlaybackSensor 1 Bluetooth ADXL330 3-axis Accelerometer
Ubisense PlaybackSensor 1 UBISENSE Location Tracking System
Shoetoebox PlaybackSensor 2 Sun SPOT LIS3L02AQ Accelerometer
Motionjacket PlaybackSensor 5 XSENS Xbus Kit MTx
Motionjacket PhysicalSensor n XSENS Xbus Kit MTx
Ubisense PhysicalSensor 1 System (n tags) UBISENSE Location Tracking System
TI Chronos PhysicalSensor n Texas Instruments eZ430 Chronos
SunSpot PhysicalSensor n Sun SPOT LIS3L02AQ Accelerometer
RFID PhysicalSensor n Inside Contactless M210-2G
MEMS Microphone PhysicalSensor n —
IPhone4 PhysicalSensor n Iphone4 Sensor Platform
IntertiaCube3 PhysicalSensor n InterSense Wireless InertiaCube3
TI EZ430 PhysicalSensor n Texas Instruments EZ430 Chronos
AxisCamera OnlineSensor n AXIS 2120 Network Camera
FSA Pressure SyntheticSensor n XSENSOR PX100:26.64.01

household appliances (e.g., drawers, fridges, doors, etc.). Fig-
ure 2(c) shows an InterSense Wireless Inertiacube3 capable
of 3 DOF tracking (acceleration, gyro, and magnetometer),
mounted on the shoes of persons. Clipping (d) of Figure 2
contains an off-the-shelf wrist worn device (i.e., the Texas In-
struments EZ430 Chronos) in a watch-like form, that provides
acceleration at a maximum sampling rate of 100Hz. The last
clipping (e) shows multiple sensors as used in [13] and [3], and
as made available in the OPPORTUNITY Framework as sensor
abstraction. First, two of the XSens MTx systems (i.e., the
MotionJacket) mounted on the upper and lower right arm are
visible. Second, three of the bluetooth acceleration (the white
devices) are shown. These self-constructed devices contain a
simple acceleration sensor, a bluetooth communication unit
and power supply.

The OPPORTUNITY Framework is meant to be open-
ended. This means on the one hand that the abstraction concept
is not restricted to the yet identified six abstractions (i.e.,
PhysicalSensor, PlaybackSensor, OnlineSensor, SyntheticSen-
sor, HarvestSensor, and ProxySensor) [6]. Furthermore, the
available sensors and sensor abstractions as presented in Table
I and Figure 2 are a starting point in the OPPORTUNITY
Framework and subject to add further (abstracted) sensors
on demand. The following Section III describes the second
important concept in opportunistic systems on the sensor level:
sensor self-descriptions.

III. UTILIZING SENSORS

One major research challenge in an opportunistic activity
recognition system is the fact that the sensor devices are
not known at design time of the system. This means the
system has to be able to handle devices of different modalities
and kinds, and has to react on spontaneous changes in the
sensing infrastructure. For enabling an opportunistic system
to handle and access a possible variety of different devices
and modalities - even material and immaterial devices - we
discussed the concept of Sensor Abstractions in the previous
Section II. Since not only the sensor infrastructure is subject
to changes over time, but also the recognition goal is not
defined in an opportunistic system, thus can be stated by users
or applications at runtime [1][2][4], the set of sensors has
to be identified that can be utilized for a recognition goal.
This means that each sensor needs a description on a semantic
level that provides the information to the system what it can

be used for, how it has to be configured (e.g., which sensor
signal features and classification algorithms have to be used,
which parameters are required, etc.), and what is the expected
performance. Therefore we propose the concept of Sensor Self-
Descriptions providing information what the sensor can be
used for and how it has to be configured [1].

The sensor self-description - as the name already tells -
describes a sensor, thus provides relevant information about
the physical and working characteristics and the recognition
capabilities to the opportunistic activity and context recog-
nition system. The description itself is tightly coupled to a
sensor and has to meet different requirements, like (i) machine-
readability, (ii) human-readability, (iii) ease of access, and
(iv) extensibility. Taken these requirements, the decision about
the format for the sensor self-descriptions is obvious: XML,
respectively SensorML [15]. This XML language specification
provides standard models, schemes and definitions for describ-
ing sensors and measurement processes.

The self-description of sensors is designed to semantically
describe the sensing device on a meta-level regarding its
working and physical characteristics (e.g., dimensions, weight,
power consumption, sampling rate, etc.), and its recognition
capabilities and assignment in sensor ensembles for specific
recognition goals. These two use cases of the sensor self-
descriptions emerge the need to segment them into one part
of the description that holds the technical details as they
are defined in the corresponding fact sheet delivered by the
manufacturer, and into a second part that enables the dynamic
configuration of the sensor in cooperative ensembles that
aim at executing a recognition goal as accurate as possible.
The dynamic part of the sensor self-descriptions contains so-
called ExperienceItems (Figure 3 shows the important parts
from an exemplary ExperienceItem, like the required classifier,
the modality of the sensor, the location of the sensor, the
recognizable activities together with the DoF value, and the
required feature extraction method) [1][16].

Each ExperienceItem acts as snapshot to memorize the
sensor capabilities in form of recognizable activities and fur-
ther information about the sensor (e.g., location, orientation,
topology of the place, etc.), thus describes a complete recog-
nition chain [17] (i.e., data preprocessing and segmentation,
feature extraction, classification, and decision fusion) and the
specific methods. Each ExperienceItem features a correspond-
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Fig. 3. Selected parts of an exemplary ExperienceItem as part of the sensor
self-description [16].

ing Degree of Fulfillment (DoF), which is a quality-of-service
metric in the range of [0, 1], which expresses how well a
certain activity is recognized (i.e., the DoF is an estimate of
the expected accuracy) [1]. The ExperienceItem is used by the
framework to configure an available sensor with the required
machine learning algorithms and the correct training data (i.e.,
the complete activity recognition chain) to recognize a certain
set of activities. ExperienceItems can either be generated
offline by a human expert, or autonomously by the system at
runtime. The manual generation of ExperienceItems requires
offline labeling and training to gather a classifier model and
the translation of the configured algorithms into SensorML,
respectively self-description syntax. The more interesting way
of generating ExperienceItems is done autonomously by the
system by applying transfer learning (a sensor ”learns” how
to recognize certain activities from other sensors, experience
is transferred to enhance the system’s overall recognition
capabilities) [14].

The segmented sensor self-description has different stages
that can be described by the corresponding sensor lifecycle.
Figure 4 shows the lifecycle for an exemplary sensor to-
gether with the stages and their transitions (i.e., (i) sensor

manufactured, (ii) sensor enrolled, (iii) expert knowledge, (iv)
sensor active, (v) sensor ready, and (vi) sensor out of service).
The lifecycle-stages of the sensor and its self-description are
described in the following list:

(i) Sensor manufactured: the sensor is ready to use and
delivered with its technical specification. In Figure 4,
the example on the left hand side shows an InterSense
InertiaCube3 sensor with the corresponding datasheet.
Neither the technical self-description, nor the dynamic
description (in SensorML [15] syntax, as required
in an opportunistic activity and context recognition
system) is yet available at this stage in the lifecycle.
The base for specifying and generating the technical
self-description is given with the datasheet delivered
with the device by the manufacturer.

(ii) Sensor enrolled: this stage in the sensor lifecycle
occurs once the technical sensor self-description is
available. This means the sensor is ready to be used
within an opportunistic activity recognition system but
still has no ExperienceItems in its dynamic descrip-
tion that enable the involvement in the execution of
recognition goals.

(iii) Expert knowledge: this stage can be seen as extension
to the previous stage (sensor enrolled). A human
expert, who manually adds ExperienceItems to the
dynamic sensor self-description, can extend the avail-
able (dynamic) self-description. This involves offline
training and the manual extension of the dynamic
sensor self-description by adding ExperienceItems.

(iv) Sensor active: The sensor is active, which means it
is involved in the process of executing a recognition
goal. The role of the sensor can either be that it is
integrated in a running ensemble, or that it is involved
as learner. That means its sensor self-description is
extended autonomously by the system, by adding
further ExperienceItems by observing the configured
ensemble and its recognition results.

(v) Sensor ready: The sensor is ready to be used within
the execution of specific recognition goals but is not
currently involved in a running ensemble. That means
its self-description already contains one or more Ex-
perienceItems. In this passive mode, the enhancement
of the self-description can be done again by a human
expert in an offline way.

(vi) Sensor out of service: The sensor is outdated, which
can be the case once a newer version of a spe-
cific sensor type is available. The corresponding self-
description is versioned and made available for future
use with the newer sensor device. The technical de-
scription might be outdated but the gathered experi-
ence in the dynamic sensor self-description could be
of high value for the new device in future recognition
goals.

The combination of the two concepts on the sensor level
(i.e., sensor abstractions and sensor self-descriptions) rep-
resents a data delivering entity in an opportunistic activity
recognition system. The step towards a whole new paradigm in
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Fig. 4. The lifecycle of sensors and the corresponding self-descriptions in the OPPORTUNITY Framework.

activity recognition without the application dependent deploy-
ment of sensors and the reliability of the sensing infrastructure
is done and opens new challenges (and possibilities) in open-
ended systems. The foundation for flexible and robust activity
recognition in an opportunistic way is given, the following Sec-
tion IV discusses necessary steps to adapt the OPPORTUNITY
Framework (and the accompanying sensor representations) to
different application domains.

IV. FRAMEWORK ADAPTATION

The OPPORTUNITY Framework together with the ma-
chine learning technologies, the sensor representations and
high-level goal processing concepts has to be adaptable to
different domains with less possible efforts. The developed
concepts operate application and domain independent, they
have to be taken and adapted accordingly. Based on the avail-
able reference implementation or an already existing domain-
or application specific adapted release of the framework, the
adaption process itself consists of at most three independent
steps:

(i) Activity knowledge extension or replacement.

(ii) Sensor system inclusion to enhance the set of possible
and accessible sensors.

(iii) Extension of the sensors self-descriptions.

An example for a necessary framework adaptation is the
deployment of the system in private households for activity
recognition in order to implicitly control electronic devices.
This adaptation of the OPPORTUNITY Framework for opti-
mized energy consumption in private households is described
in detail in [18]. There, a field study has been conducted to

evaluate the energy saving potentials based on the inhabitants
activities (e.g., if someone is not watching television, the
TV set can be safely switched off). The OPPORTUNITY
Framework (which was used for activity recognition) has been
adapted accordingly to meet the requirements and character-
istics in such an application. Sensor abstractions have been
added to make the expected sensors (i.e., smart phones, wrist-
worn accelerometers, Ubisense positioning sensors) available
in the application. New sensor descriptions have been added
and existing descriptions have been modified to represent the
recognition capabilities based on activity representations and
relations (in form of an OWL-ontology). The system was able
to (i) run stable over a two-week period in each household and
to (ii) handle dynamically varying sensor settings.

In the following, these three steps are described in de-
tail, and Figure 5 presents an illustration of the adaptation-
workflow. Either all of the steps are executed or a subset of
them, which is shown in the figure, to come from the starting
basis of the framework (left-hand side) to the domain-adapted
framework (right-hand side), depending on the situation.

A. Knowledge Representation Modification

The activity knowledge representation is composed using
the W3C standard language OWL. Its purpose is to describe
activities, the relations among them and more generally the
context for a specific application domain. It is left to the
application developer how this knowledge is designed, whether
it is for example following the development criteria of a
taxonomy (strictly hierarchical), or other semantic structures
(e.g., ontologies, topic maps, etc.). In [1] we present an
example for an ontology, which provides activities, movable
and environmental objects, as network of relations for a kitchen
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Fig. 5. The application-/domain-specific framework adaptation as three step process.

scenario, containing more than 130 different classes. The
ontology itself builds the knowledge base for an application by
providing a vocabulary and relations between terms explaining
their relationship to each other.

B. Sensor System Inclusion

As already discussed, an opportunistic system does not
restrict the kinds and modalities of sensors that act as input
sources for environmental quantities. Therefore, to adapt the
framework to a new domain, it might be necessary to add sen-
sor abstractions to meet the requirements of possibly occurring
sensors. This means, that an application developer, who adapts
the framework has to add sensor abstractions by using the
defined and common API in form of an interface that acts as
common base for having a general way of accessing sensors.
Once the abstraction for a sensor device is included in the
framework, all appearing sensors of this type can be accessed
equally and operate as general type sensor. The challenging
aspects within the sensor system inclusion step are the low
level access details, which have to be implemented once. From
the framework’s point of view - as all devices are derived from
the interface that defines a sensor - those low level details of
accessing the device are hidden. Not only material devices
(e.g., acceleration, temperature, humidity, orientation sensors)
are possible as sources of environmental quantities, but also
immaterial sources, like online accessible webservices (e.g.,
weather or traffic information) can be of high value in an
activity and context recognition system.

C. Self-Description Extension

The final step in the framework adaptation work flow is the
extension of the sensor self-descriptions. If a completely new
sensor type has been added in the previous step as new sensor
abstraction, the inclusion of an accompanying new technical
description is necessary (see Figure 4). This has to be done

only once for each sensor type, since the technical description
is static and shared among sensor of the same type. The
modification of the dynamic sensor self-description can either
make an extension of the existing descriptions and Experien-
ceItems necessary, or a definition of completely new dynamic
descriptions. The first case occurs, whenever existing sensor
devices are re-utilized for a new application domain. This
makes the extension of the existing dynamic self-descriptions
necessary to cover the new activity definitions according to the
accompanying ontology by adding new ExperienceItems. The
second case occurs, whenever new sensor devices are added
and utilized in a new application (domain). This means, new
dynamic self-descriptions have to be generated for each device
initially. The extension of recognition capabilities in form of
ExperienceItems can either be done before operation manually,
or during runtime of the system autonomously (as described
in [14]).

V. CONCLUSION AND FUTURE WORK

This paper presents the two concepts of sensor abstractions
and sensor self-descriptions that are big steps towards the
vision of recognizing human activities in an opportunistic way
(shown in a reference implementation called OPPORTUNITY
Framework). The capability of utilizing heterogeneous devices
by abstracting them to a generalized type - which can be of
material and immaterial nature - enables flexible, continuous
and dynamic activity recognition with presumably unknown
sensor settings. The sensor self-descriptions provide semantic
information about individual devices with respect to their
capability of recognizing specific activities. This allows for (i)
dynamically configuring activity recognition chains at system
runtime, and (ii) to react on spontaneous changes in the
sensing infrastructure in terms of appearing and disappearing
sensor devices. The sensor (self-description) lifecycle and the
stepwise adaptation of the OPPORTUNITY Framework to
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specific application domains is discussed, whereas this can be
broken down to three subsequent steps (i.e., (i) knowledge
representation extension, (ii) sensor system inclusion, and
(iii) self-description extension). The major contributions of
this paper can be summarized to (i) the discussion and the
proof of concept of the sensor representation composed of
abstractions and self-descriptions, (ii) the identification of a
sensor lifecycle representing the sensor’s evolution over time,
and (iii) - based on the previous items - the stepwise adaptation
of an opportunistic activity recognition system to specific
application domains.

Future work within the topic of utilizing heterogeneous
sensors for accurate activity recognition will tackle the multi-
sensor combination with sensor fusion technologies [19] for
the specific activity classes. As discussed in related work
(e.g., Kuncheva and Whitacker [20]), the prediction of the
accuracy of multi-sensor combinations (i.e., ensembles) is a
very challenging task. Currently, research work is conducted
that utilizes the mutual information of pairwise sensor com-
binations in order to predict the accuracy of dynamically
configured ensembles. Furthermore, shaping and optimization
is currently investigated, meaning that the set of sensors that is
included in an ensemble has to be well selected. If a desired
activity can be recognized by a lot of sensors, including all
of them in the ensemble does not necessarily mean that the
accuracy is higher than including only a subset of sensors (the
accuracy can even be worse). Therefore, the ensembles have
to be optimized towards a maximized expected accuracy for
the activities that have to be recognized.
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H. Sagha, R. Chavarriaga, J. del R. Millán, D. Bannach, K. Kunze,
and P. Lukowicz, “The opportunity framework and data processing
ecosystem for opportunistic activity and context recognition,” Inter-
national Journal of Sensors, Wireless Communications and Control,
Special Issue on Autonomic and Opportunistic Communications, vol. 1,
December 2011.

[2] D. Roggen, K. Förster, A. Calatroni, T. Holleczek, Y. Fang, G. Troester,
P. Lukowicz, G. Pirkl, D. Bannach, K. Kunze, A. Ferscha, C. Holzmann,
A. Riener, R. Chavarriaga, and J. del R. Millán, “Opportunity: Towards
opportunistic activity and context recognition systems,” in Proceedings
of the 3rd IEEE WoWMoM Workshop on Autonomic and Opportunistic
Communications (AOC 2009). Kos, Greece: IEEE CS Press, June
2009.

[3] G. Hölzl, M. Kurz, and A. Ferscha, “Goal oriented opportunistic
recognition of high-level composed activities using dynamically con-
figured hidden markov models,” in The 3rd International Conference
on Ambient Systems, Networks and Technologies (ANT2012), August
2012.

[4] ——, “Goal processing and semantic matchmaking in opportunistic
activity and context recognition systems,” in The 9th International
Conference on Autonomic and Autonomous Systems (ICAS2013), March
24 - 29, Lisbon, Portugal, March 2013, p. 7.

[5] M. Kurz, G. Hölzl, and A. Ferscha, “Dynamic adaptation of op-
portunistic sensor configurations for continuous and accurate activity
recognition,” in Fourth International Conference on Adaptive and Self-
Adaptive Systems and Applications (ADAPTIVE2012), July 22-27, Nice,
France, July 2012.

[6] M. Kurz and A. Ferscha, “Sensor abstractions for opportunistic activity
and context recognition systems,” in 5th European Conference on
Smart Sensing and Context (EuroSSC 2010), November 14-16, Passau
Germany. Berlin-Heidelberg: Springer LNCS, November 2010, pp.
135–149.

[7] M. Kurz, A. Ferscha, A. Calatroni, D. Roggen, and G. Tröster, “Towards
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