ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

Testing the Reconfiguration of Adaptive Systems

Kai Nehring, Peter Liggesmeyer
AG Software Engineering: Dependability
University of Kaiserslautern
Kaiserslautern, Germany
Email: nehring @cs.uni-kl.de, liggesmeyer@ cs.uni-kl.de

Abstract—Adaptive systems can change their internal struc-
ture in order to respond to changes in their environment.
These changes can cause malfunctions if not applied correctly.
Current test approaches do not cover every aspect of the
reconfiguration sufficiently. In this paper, we present a novel
approach for testing the reconfiguration process of adaptive
systems with respect to structural changes. The approach
presents testers with guidelines for choosing the appropriate
test strategy for a certain aspect, such as order of recon-
figuration, state transfer, and transaction handling, of the
reconfiguration procedure.

Keywords-adaptive system; testing; reconfiguration; test pro-
cess model; structural changes

I. INTRODUCTION

Dynamically adaptive systems are a promising alternative
to static systems when a system must modify its structure
or behaviour due to changes in its executional context.
Testing such systems, however, can be a challenging task
since their structure and even their functionality may change
at runtime — a test approach would have to take this
into account. Current test- and verification approaches fo-
cus on the functionality and execution environment[4], the
adaption policy[5][7], and automated evaluation of struc-
tural changes[3], but not on the reconfiguration itself on
the executable system. Furthermore, some test approaches
require complex (formal) models of the system in order to
be applicable[6].

We have already illustrated how the visualisation and
inspection of structural changes in adaptive systems can help
to detect potential defects, and, at the same time, omit formal
models[1]. However, other aspects, such as the state transfer
from an object to its replacement, which are often interwo-
ven with structural changes remained uncovered, too. We
propose a novel approach to test the reconfiguration process
of adaptive systems with respect to structural changes. The
approach is designed as an additional test activity, hence it is
a supplement and not a replacement for the aforementioned
approaches.

In Section II, we propose a process model to test the
reconfiguration procedure. Section III summarises our expe-
rience when we applied the test process on adaptive systems.
Section IV completes with a conclusion and an overview of
the future work.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

II. TEST PROCESS MODEL

We propose a self-contained iterative test process model
that addresses issues that may arise when structural changes
are involved during the reconfiguration, such as replacing the
instance of component X with an instance of component Y.
The test process model is comprised of 6 iterations, each of
which focuses on a specific aspect of the reconfiguration,
such as the state transfer between a component and its
replacement. Furthermore, the process model can be tailored
to fit the system under test, i.e., iterations can be omitted if
they focus on an aspect that is not supported in the system
under test. Each iteration is further divided into three phases:

1) Preparation, in which workload, instrumentation
probes, etc. will be prepared

2) Execution, in which the workload will be executed in
order to collect data about the system’s behaviour

3) Evaluation, in which the obtained runtime data is
evaluated

Breaking down an iteration into phases not only allows the
reuse of information from other iterations, but also to split
and dispatch the procedure to multiple roles. The Domain
expert provides the workload (i.e., the input data) that is
executed at runtime. The expert also evaluates the result of
the processing and determines whether the system processes
the data correctly. Developer and System Manager execute
the workload on the instrumented system. The Architect
evaluates the structural changes.

The separation into phases has been omitted for simplicity
reasons in the following outlines of the iterations.

A. Iteration 1 — System Overview

Understanding the internal structure of a system is essen-
tial to estimate effects of changes in its structure. Design
documents are often a valuable source of knowledge, but
they are, however, not always very reliable for several
reasons:

« Development and maintenance can cause the system’s
structure to change over time. Changes in the source
code are not always reflected in the design documents.

o The system has not been implemented as specified.

e ctc.

14

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

Goal of Iteration 1 is to create a (virtually) complete
runtime model of the system, which can later be used
to select the actual components for further investigation.
However, the iteration can be omitted if detailed and reliable
knowledge of the system’s runtime composition is available.

Assignments to attributes, which hold references to other
objects and their values, must be tracked in order to create
a runtime model. Since design documents can be outdated,
inconsistent, or incomplete, the attributes are best collected
from the source code. Instrumentation probes must be cre-
ated for each attribute to track changes. Furthermore, a
representative workload must be prepared in order to execute
the system’s functionality in different states/configurations,
and to cause reconfigurations. An external trigger must
be prepared if the reconfiguration is not induced by the
workload itself.

The workload must be executed on the instrumented sys-
tem. Depending on the approach that is used to implement
the functionality, the workload might be required to run
twice — before and after the reconfiguration — to track
all utilised object—instances. Particularly components which
utilise lazy loading would be incomplete otherwise.

Analysis of the collected information will not only unveil
the object/component composition at runtime but also the
order of changes during the reconfiguration. However, the
vast amount of information may be overwhelming and may
make further analysis more difficult since potentially lots
of objects are displayed although they are not linked to the
reconfiguration. Furthermore, the runtime behaviour of the
system might be altered due to the instrumentation overhead,
which may cause the system to change the reconfiguration
strategy[2].

B. Iteration 2 — Structural Changes

The order of instructions required to perform a recon-
figuration is usually flexible to some degree. Although
all considered execution paths eventually lead to a valid
composition or configuration, quality-of-service and system
integrity might be affected by a particular strategy. A recon-
figuration strategy which focuses on system integrity might
passivate all components before changes are performed —
this might result in a reduced quality-of-service since the
system is either unavailable or operates in a gracefully
degraded mode (for a longer period of time). A quality-of-
service based approach might try to minimise the downtime
by performing as many steps as possible parallel to normal
operation, which may increase the risk of inconsistencies in
the system’s data. The structural changes in the course of
the reconfiguration are evaluated in Iteration 2.

Typically, only few components are affected by a recon-
figuration. Tracing changes in such components can help in
breaking up the complex system into partitions. The result of
Iteration 1 can be used to eliminate unnecessary components,
which results in a smaller set of probes to instrument the

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

system. A component can be considered unnecessary, if it
is neither involved in, nor affected by the reconfiguration.

The workload must fulfil the same requirements as in
Iteration 1, and it can even be reused if Iteration 1 has
been executed. It must then be executed on the instrumented
system.

Analysis of the trace is best done using a graphical
representation, such as a series of object diagrams[1]. In
such an approach, the trace will be transformed into a series
of object diagrams, at which each state, caused by a change
in the structure, is expressed by a new object diagram.
Developers and architects evaluate each diagram and decide
whether the system passed through an illegal state. Unlike
other methods, such as AMOEBA-RT([3], this approach does
not require a formal model, such as a temporal logic model,
to describe the system states.

C. Iteration 3 — Data Integrity

The system is in a transitional state during the recon-
figuration. It can operate with either reduced or mixed
functionality, be non-functional at all, or, in the worst case,
in an inconsistent operational state. The approach used to
achieve adaptability not only has a great influence on the
observable behaviour, but also on system integrity and data
integrity. Iteration 3 tests the data integrity in presence of a
(increasing) load, such as incoming user requests.

The type of workload depends on the strategy used
to achieve adaptability, and is distinguished between step
load and ramp load. While ramp load slowly increases the
workload on the system, step load suddenly puts a lot of
pressure on the system, displayed in Figure 1. The system’s
behaviour on step load can point to potential defects, if
the system implements a load-based adaptation strategy[2].
Furthermore, if the system is designed to buffer user requests
while it is reconfigured, then a step load-like increase of
requests could cause the buffer to run out of space before the
reconfiguration has been completed. To test the behaviour of
the system under these conditions, the load must be sized
accordingly.

The system should not show unexpected behaviour, such
as crashes, or lost requests, that can be traced back to the
reconfiguration. Furthermore, it is advisable to verify that
all structural changes during the reconfiguration have been
applied correctly in order to preclude the possibility that a
faulty trigger prevented the reconfiguration. If a queue (or,
in more general, a “buffer”) is used to buffer user requests,
additional tests are required to ensure that it satisfies the
following requirements:

o The queue/buffer must either be properly sized or be
resizable in order to prevent the loss of user requests
according to the quality requirements.

o The order of requests must be preserved, if not other-
wise specified.

15

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

A
Load
(b)
(a)
"""""""""""""""""""""""""""""" Threshold
Time
Figure 1. Ramp load vs. step load: ramp load (a) changes continuously

whereas step load (b) changes suddenly. Reconfiguration of the system
occurs if the load exceeds a predefined threshold.

o All buffered requests must be processed after the re-
configuration has been completed, or actions have to
be taken if the reconfiguration failed. The order of
the execution must be equal to the order in which the
requests were buffered, if not otherwise specified.

o New requests must be buffered until all previously
received requests have been executed, if not otherwise
specified.

D. Iteration 4 — State Transfer

A stateful component may be instructed to transfer its
internal state to the replacement if it is about to be replaced.
Iteration 4 checks whether the state of a component will be
transferred correctly to its replacement, and, if necessary,
type conversion is done in a way so that the replacement
is fully operational. Furthermore, potential access violations
due to the reconfiguration on concurrent systems can be
checked.

A set of instrumentation probes should be prepared in
order to monitor the runtime composition. If a component
X 1is about to be replaced with Y, and both X and Y are
instances of the same type, then the instrumentation facility
must be able to distinguish them, e.g., by recording their
memory addresses.

Furthermore, two workloads must be prepared. The first
workload is applied on the system before the component is
about to be replaced — the preload phase. It is responsible
to set up the state of the instance of component X that
must then be transferred to the replacement Y. The sec-
ond workload must be executed either during or after the
reconfiguration, depending on whether the system utilises
concurrency.

On a purely single threaded system, the second workload
is executed solely to verify that the new instance Y is fully
operational and (optional required) conversion of the internal

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

state has been successfully carried out.

On a multi threaded system, the second workload must
be executed while the reconfiguration is running to test the
following situations:

o The system must not alter the state of instance X once
the state transfer has begun, i.e., user requests have to
be stored in a buffer, if not otherwise specified.

o The system must be fully operational after the recon-
figuration, i.e., the state transfer has been successfully
carried out.

After the state transfer (of instance X) has been per-
formed and workload 2 has been executed, the replacement
(instance Y') should be comprised of the required data of
instance X and of the new data. Depending on the type of
system, this can manifest in the following situations:

o All data, e.g., items in a shopping trolley, have been
added to the replacement.

« All data, e.g., GPS coordinates of a route, have been
added to the replacement and the order has been
preserved. In addition, all new data have been appended
to the previous ones.

« A new state, e.g., a new random number, has been cal-
culated correctly using the previous state of instance X .

E. Iteration 5 — Transaction Handling

The reconfiguration of a system can impact transaction
capable components either directly, if the component is
target of a reconfiguration, or indirectly, if the transaction
capable component utilises a component that is part of
the reconfiguration or vice versa. Iteration 5 checks the
transaction handling during a reconfiguration.

The system specification should provide information
about the observable behaviour when a reconfiguration is
triggered while a transaction is running. It can most likely
be narrowed down to the following two situations:

1) The reconfiguration must be delayed until the trans-
action has been finished. A finished transaction can
be either successful or unsuccessful in which case
rollback has to be performed.

2) The transaction must be aborted and a rollback must
be performed to undo changes. Nevertheless, the re-
configuration must be delayed until the rollback has
been completed to ensure data integrity.

The progress of a transaction is, however, of no interest,
i.e., a component X must not be passivated (e.g., in order
to replace it) even if its job is done. In case of a rollback,
which can still occur if the last operation in the transaction
fails, the component X might be needed again.

A set of instrumentation probes should be prepared in
order to monitor the component composition. Also a work-
load must be prepared to utilise the system. Furthermore,
the reconfiguration must be triggered while a transaction is
running.

16

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

During the execution, a snapshot of the datasource that
is about to be altered should be made to simplify the
integrity check after the reconfiguration has been performed.
The reconfiguration must not only be triggered while the
workload is executing but also while a transaction is running.

The evaluation of the reconfiguration encompasses several
steps. First, the system composition must be checked —
the system must be in an operational state. This includes
that no crashes or deadlocks occurred at runtime due to an
incomplete system composition (e.g., crashes due to null
pointer exceptions) or passivated components.

Depending on the specification of the system, the trans-
action must be either be rolled back or the reconfiguration
must be delayed until the transaction has been finished. The
latter includes a rollback, i.e., the system must not change
its composition while a transaction is running.

In the last step, the data integrity must be evaluated. The
data must either be unaltered (in case of a rollback) or fully
updated.

F. Iteration 6 — Identity

It is in some cases important to know whether one or more
components use the same instance of a component X or
instances of the same type 7', where X is an implementation
or a subtype of T Iteration 6 focuses on the identity of the
instances.

A typical workload must be executed on an instrumented
system. The instrumentation facility must be able to distin-
guish multiple instances of the same type. Common practice
is to record the memory address of each instance. Developers
then compare the utilised objects and determine whether the
usage scenario is acceptable.

III. EVALUATION

We have evaluated the test approach on three systems so
far:

1) adaptive Tic-Tac-Toe: a version of the well known
game Noughts and Crosses, which automatically ad-
justs the game level of the computer player in relation
to the human player’s skills

2) an adaptive ERP system, which utilises a local cache
if the connection to the off-site master ERP system
is faulty. It automatically synchronises and utilises the
off-site ERP as soon as it becomes available again

3) an Emergency Detection System, which can be used to
monitor humans in an ambient assisted living scenario.
The system utilises a variety of sensors, such as pulse
sensors, fall sensors, etc. A new sensor will be utilised
after it becomes available to the system and if the
quality-of-service level can be improved by the new
sensor

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

A. adaptive Tic-Tac-Toe

The only reconfigurable component in the program is the
computer player, whose playing strategy (Easy, Medium, and
Advanced) can be adjusted after each match according to the
following predefined rules:

1) The game level shall be increased to the next higher
level if the computer loses two consecutive matches.
The game level remains unaltered if the highest game
level has already been reached.

2) The game level shall be decreased to the next lower
level if either

a) two consecutive matches end with a draw, or
b) the computer player wins two consecutive
matches.

The game level remains unaltered if the lowest game
level has already been reached.

Applicable iterations are:

« Iteration 2 to create an overview of the reconfiguration
process and to track structural changes
« Iteration 6 for an overall view of the used instances

The structure of the game is rather simple since only the
play strategy can be varied. In the course of tailoring, the
remaining iterations have been removed for the following
reasons:

o The structure of the computer player is simple; an
complete overview is unnecessary

o The play strategy cannot be replaced while a match is
running

« No state transfer among the game strategies is sup-
ported

o The game does not utilise transactions

Furthermore, the tracing of the program would deliver
identical results for Iteration 2 and Iteration 6, which is
why we reused the tracing results of Iteration 2 for further
analysis in Iteration 6.

The evaluation of the trace unveiled abnormal behaviour
whenever the human player repeatedly won matches in the
game level Advanced. The computer player reconfigured
itself even though it already utilised the Advanced strategy
level, which contradicts the requirements. Also, we could
observe a strange behaviour where the Advanced level was
replaced with another instance of the same class, which
does not change the behaviour of the computer player.
Further examinations located the defect in the method which
increases the game level. The method did not identify
the level Advanced correctly. Traditional testing did not
uncover the defect since Advanced is the highest level in the
current version of the game. Furthermore, the game did not
expose unusual behaviour to justify further investigations.
However, the defect would have caused stagnancy in the
level Advanced once further levels would have been added
to the game.

17

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

B. ERP System

The class diagram in Figure 2 shows a simplified overview
of the system. The CashRegisterController com-
prises a reference to an implementation of the ERP interface.
This reference is subject to change if the master ERP is
replaced with the cache, and vice versa.

package Project [[£] Infrastructure]J

|

cashregistersystem]

erp
& isterController i ERP @
-register : CashRegister [*]

+articleForID(id : int) : Article
+sold(id : int) : void

7! R
—ﬁ 7 \

model ERPCache

InMemERP

Article

-id : int
—description : String
—price : float

+articleForID(id : int) : Article
+sold(id : int) : void

+articleForID(id : int) : Article
+sold(id : int) : void

Figure 2. ERP class diagram (Key: UML class diagram)

A full system trace in not required since the reconfigurable
portion of the system is rather small. The current version
does not allow a cash register system to operate while the
system is being reconfigured, which is why Iteration 3 is
not applicable. Neither is Iteration 5 since the system does
not utilise transactional components beyond the database
management system. Besides the reconfiguration process
itself (Iteration 2) and the state transfer test (Iteration 4), the
component identity (Iteration 6) is subject to test to ensure
that the same master ERP system is used, i.e, the same server
address and identical login credentials are used.

Two sets of data were prepared in order to test the state
transfer. The first set was used to preload the system with in-
formation, which were stored in the master ERP’s database.
The second data set was used to populate the ERPCache
after the reconfiguration “master ERP to ERPCache”. That
data was transferred to the master ERP once it became
available again, which resulted in a combined set of data.

Two snapshots were created to gather the internal state
of the master ERP — one before the first reconfiguration
and one after the final reconfiguration. The analysis of the
ERP-data did not unveil deviations from the expected data,
i.e., the state transfer has been implemented correctly.

The tracing results of Iteration 2 were reused to check
whether the master ERP was the same before the first
reconfiguration (transition to the ERPCache) and after the
second reconfiguration (transition back to the master ERP).
The hash codes of the utilised master ERP instances were
equal in both cases, i.e., the same ERP system was used.

C. Emergency Detection System

The Emergency Detection System (EDS) is a monitoring
system, applicable for example in an ambient assisted living

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

scenario. It constantly evaluates informations which it ac-
quires from several sources, such as blood pressure sensors,
pulse sensors, and location sensors. If it detects a critical
situation, it can execute a variety of protocols, e.g., notify
emergency medical staff. A critical situation can be caused,
for example, by a sudden change in vital signs, or by a fall
of the monitored person. The system automatically selects
a sensor configuration to offer the highest possible service
quality. Furthermore, it reconfigures itself to utilise newly
added sensors without service interruption.

If a new sensor is registered at the EDSManager, which
is a centralised administration component to keep track
of all available sensors, its contribution to the system is
analysed. The system will be reconfigured to utilise the new
sensor if the new sensor is considered valuable. A sensor
is rated valuable if the EDS-evaluation-algorithm can create
a sensor configuration that results in a higher quality-of-
service, either by adding new kind of sensor, which was
not available before (e.g., a fall sensor), or by replacing
an existing sensor with a higher grade sensor (e.g., higher
Safety Integrity Level (SIL)). The sensors are connected to
a an implementation of the TEDSHand1ler-interface. Each
supported configuration is represented by its own implemen-
tation, i.e., an implementation that supports only a pulse
sensor and a pressure sensor can be distinguished from an
implementation that supports pulse sensor, pressure sensor,
and a location sensor. Each TEDSHand1er-implementation
processes the sensor-signals and sets off the alarm if a
critical situation is detected. This design offers flexibility
since a new handler can be set up in the background. If it
is fully constructed, the new handler replaces the old one
without service interruption.

According to the system description, sensor signals are
not processed while the handler is replaced, and historic data
is not transferred either. Hence, Iteration 3 and Iteration 4
are not applicable. The system does not support transaction,
which is why Iteration 5 is not applicable, too. The com-
ponent identity (Iteration 6) is of interest to identify which
sensors are utilised at a particular point in time.

The reconfiguration test had been divided into three
stages:

1) The initial system configuration comprises a blood

pressure sensor (SIL 2) and a pulse sensor (SIL 2)

2) A location sensor (SIL 1) is added — the system
should integrate the location sensor.

3) A new pulse sensor (SIL 3) is added — the system
should replace the previously used SIL 2 pulse sensor
with the SIL 3 pulse sensor.

Starting from the initial configuration, the location sensor
was added. The system incorporated the location sensor
without service interruption. Then the new pulse sensor was
added. The evaluation of the object diagrams showed that a
new handler was created, which utilised the pressure sensor,
the location sensor, and the new (SIL 3) pulse sensor.

18

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

The system went through a total of 33 states from startup
to the final configuration. Analysis of the object diagrams
showed that the integrity was not compromised at any time.

IV. CONCLUSION AND FUTURE WORK

Structural changes may not be the only concern in an
adaptive system when a reconfiguration is performed. In
order to test state transfer, transaction handling, etc., a
more rigour testing strategy is necessary. In this paper, we
presented an approach to test the reconfiguration procedure
of adaptive systems with respect to structural changes having
regard to the special properties, such as state transfer. The
iterative process model can be tailored to fit the system
under test. Furthermore, the process model is designed to
be an additional test activity, not a replacement for other
processes and therefore focuses on the reconfiguration only,
i.e., component test, etc. remain unaffected.

There are extensions to this work, which have not been
discussed yet. Quality requirements, such as maximum tol-
erable reconfiguration time, have not been included to the
test process model, which is to be addressed in future work.

REFERENCES

[1] K. Nehring and P. Liggesmeyer, “Tracing structural changes of
adaptive systems,” in ADAPTIVE 2010: The Second Interna-
tional Conference on Adaptive and Self-Adaptive Systems and
Applications, 2010, pp. 142-145.

[2] S.-W. Cheng, D. Garlan, and B. Schmerl, “Architecture-
based self-adaptation in the presence of multiple objectives,”
in Proceedings of the 2006 international workshop on Self-
adaptation and self-managing systems, SEAMS 06, 2006, pp.
2-8.

[3] H. J. Goldsby, B. H. Cheng, and J. Zhang, “AMOEBA-RT:
Run-Time Verification of Adaptive Software,” 2008, pp. 212—
224

[4] Component+ Partners, “Built-in testing for component-based
development,” in EC IST 5th Framework Project IST-1999-
20162 Component+, Technical Report D3, 2001.

[5] F. Munoz and B. Baudry, “Artificial table testing dynamically
adaptive systems,” CoRR, abs/0903.0914, 2009.

[6

—

J. Zhang and B. H. C. Cheng, “Using temporal logic to
specify adaptive program semantics,” in Journal of Systems
and Software, Volume 79(10), 2006, pp. 1361-1369.

[7] J. Zhang, H. J. Goldsby, and B. H. Cheng, “Modular verifi-
cation of dynamically adaptive systems,” in AOSD ’09: Pro-
ceedings of the 8th ACM international conference on Aspect-
oriented software development, 2009, pp. 161-172.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

19

