
A Software Design Pattern Based Approach to Adaptive Video Games

Muhammad Iftekher Chowdhury, Michael Katchabaw

Department of Computer Science

University of Western Ontario

London, Canada

{iftekher.chowdhury, katchab}@uwo.ca

Abstract—To achieve success, it is becoming increasingly clear

that modern video games must be adaptive in nature –

malleable and able to reshape to the needs, expectations, and

preferences of the player. Failure to adapt results in a game

that is too inflexible, rigid, and pre-defined; one that is simply

ineffective, particularly for a large and diverse player

population. Developing and supporting adaptive games,

however, introduces many challenges. In this paper, we

describe a set of software design patterns for enabling

adaptivity in video games to address these challenges. We also

demonstrate the benefits of our pattern-based approach, in

terms of software quality factors and process improvements,

through our experience of applying it to a number of video

games for enabling a particular type of adaptivity, auto

dynamic difficulty.

Keywords-adaptive video game; software design patterns;

game development process; software quality

I. INTRODUCTION

Building rich and dynamic video games is surprisingly

complex [1], so much of the existing research and

development in this area has led to the creation of games

that are largely deterministic in nature. What occurs in

these worlds and how this is presented to the player is for

the most part fixed, and quite unable to adequately react to

the interactions of the player [2,3]. While interesting in

their own ways, these games are often too inflexible and

rigid to be able to effectively meet the needs and

expectations of a large and diverse player population

[2,4,5,6], especially as these needs and expectations change

as players mature, refine their skills, and form new

experiences [7]. In the end, this leads to a loss of

engagement, a break of immersion, and an overall

disappointing player experience [2,8,9]. The result is a

game that is unsuccessful critically and commercially.

As work in this area continues, it is becoming

increasingly clear that games must be adaptive in nature —

malleable and able to reshape to the needs, expectations, and

preferences of the player [2,3]. Adaptive systems are

designed to excel at situations that cannot be completely or

singularly modeled prior to development, and so they must

be able satisfy requirements that arise only after they are put

in use; this is very much the case in games. Nearly every

aspect of a game can be made adaptive in this way: the

game world (structural elements, composition); the

population of the world (the agents or characters in the

world); any narrative elements (story, history, or back-

story); gameplay (challenges, obstacles); the presentation of

the game to the player (visuals, music, sound); and so on.

In being adaptive, games can provide more compelling,

engaging, immersive, and perhaps personalized or

customized experiences to their player, leading to a

significantly better outcome for the player, and far more

success for the game in the end [2,4,5,6,8,9,10].
Previous attempts at adaptivity can be characterized as ad

hoc from a software engineering perspective; lacking rigor,
structure, and reusability, with custom solutions per game,
which is not acceptable [11,12]. There is a critical need for
reusable software infrastructure to enable the construction of
adaptive games [11,12]. Addressing this problem is the
broad goal of our research. While this is a difficult goal to
achieve [2,13], both from theoretical and practical
perspectives, we have found success in this area by
leveraging software design patterns [14].

In particular, we study adaptivity in games through an
exploration of a particular problem in this space, that of auto
dynamic difficulty. In this case, adaptations are focused on
adjusting game difficulty to match the expertise of the
player. According to the theory of flow or optimal
experience [15], players who lack the skill to suitably deal
with the challenges they face will feel anxiety or frustration
in their experience, while players whose skills are excessive
for the challenges faced will feel boredom or receive no
sense of accomplishment from their experience. A game that
is properly balanced, on the other hand, will be much better
received by the player [16]. A single difficulty level has
little chance of addressing the needs of a broad audience.
Multiple static difficulty levels in games also fail in this
context, as they expect the players to judge their ability
themselves appropriately before playing the game and also
try to classify them in broad clusters [11,12]. An adaptive
game supporting auto dynamic difficulty circumvents these
problems to deliver a more satisfying experience to players
by providing per-player skill-appropriate challenge.

In this paper, we discuss our general approach to
adaptive games and demonstrate the effectiveness of our
approach by examining auto dynamic difficulty, extending
our previous work in this area [11,12]. To do so, we
leverage the benefits of software design patterns, derived
from self-adaptive system literature [17], to construct an
adaptive system for video games that is reusable, portable,
flexible, and maintainable.

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

II. RELATED WORK

In recent years, adaptive video games and auto dynamic
difficulty have received notable attention from numerous
researchers. In the subsections below, we review key work
in this area and discuss the research gap that remains.

A. Adaptive Game Systems

The study of adaptive systems in a broader sense is not

new. Unfortunately, it is difficult to directly apply adaptive

systems work from other domains to video games [11,12].

Games do more than deliver functionality as in other

software systems; there is a larger emphasis on engagement,

immersion, and experience, as well as greater demands on

interactivity and real-time performance and presence. These

factors require careful consideration often not required in

other domains. Furthermore, adaptations in games can go

beyond the tuning found in most other domains; there can

also be creative or generative aspects to adaptivity. There

exists a separation of logic or processing and content in

games; while both can be tuned, the content aspect can be

altered in fundamentally different ways that fall outside of

traditional approaches to adaptive systems. Consequently,

there is a need to study adaptivity in the context of games.

To date, efforts in doing so have been rather scant, with the

work of Charles et al. [5] one of the few examples.

Unfortunately, attempts in this area tend not to leverage

progress from the adaptive systems literature, and so are

typically too narrow, overly focused, and lack rigor from a

software engineering perspective.

That said, while not studying adaptivity in games

directly, many researchers studying other issues in this

space have created work that has been adaptive, at least to a

certain degree. This includes work on agent and story

adaptation [18,19,20,21,22,23], varying the structure of the

game world [10,24,25,26], and difficulty adjustment, as

discussed at length in the next section. Unfortunately, this

work is also quite ad hoc and cannot be readily generalized

or reused for other purposes.

B. Auto Dynamic Difficulty

There have been numerous attempts made towards
providing auto dynamic difficulty in video games over the
years. In this section, we highlight several of these works.

Bailey and Katchabaw [16] developed an experimental
testbed based on Epic’s Unreal engine that can be used to
implement and study auto dynamic difficulty in games. A
number of mini-game gameplay scenarios were developed in
the test-bed and these were used in preliminary experiments.

Rani et al. [27] suggested a method to use real time
feedback, by measuring the anxiety level of the player using
wearable biofeedback sensors, to modify game difficulty.
They conducted an experiment on a Pong-like game to show
that physiological feedback-based difficulty levels were
more effective than performance feedback to provide an
appropriate level of challenge. Physiological signals data
were collected from 15 participants each spending 6 hours in

cognitive tasks (i.e., anagram and Pong tasks) and these were
analyzed offline to train the system.

Hunicke [28] used a probabilistic model to design
adaptability in a first person shooter (FPS) game based on
the Half Life SDK. They used the game in an experiment on
20 subjects and found that adaptive adjustment increased the
player’s performance (i.e., the mean number of deaths
decreased from 6.4 to 4 in the first 15 minutes of play) and
that players did not notice the adjustments.

Hao et al. [29] proposed a Monte-Carlo Tree Search
(MCTS) based algorithm for auto dynamic difficulty to
generate intelligence of Non Player Characters (NPCs).
Because of the computational intensiveness of the approach,
they also provided an alternative based on artificial neural
networks (ANN) created from the MCTS. They also tested
the feasibility of their approach using Pac-Man.

Hocine and Gouaïch [30] described an adaptive approach
for pointing tasks in therapeutic games. They introduced a
motivation model based on job satisfaction and activation
theory to adapt task difficulty. They also conducted
preliminary validation through a control experiment on eight
healthy participants using a Wii balance board game.

C. Research Gap

It is clear from surveying the literature that a structured,

formalized study of adaptivity for video games is needed to

continue advancing the state of the art in this area. Indeed,

games could benefit greatly by having an infrastructure of

frameworks, patterns, libraries, and support tools to enable

adaptivity, as is the focus of this paper. In doing so,

developers can focus on creating their games and choosing

the adaptations desired, leaving the implementation of these

adaptations to the provided infrastructure.
Research on auto dynamic difficulty in games focuses on

tool building (including frameworks, algorithms, and so on)
and empirical studies, but they all use an ad hoc approach
from a software engineering perspective. Thus, in this paper,
we discuss a software design patterns based approach for
enabling adaptivity in games, and explore the application of
this approach to auto dynamic difficulty in particular.

III. DESIGN PATTERNS FOR ADAPTIVE GAMES

In this section, we overview our collection of four design
patterns for enabling adaptivity in video games. These
patterns were derived from the self-adaptive system literature
[17], and specialized and refined for games in particular. For
further details, the reader is encouraged to refer to [11] for
elaborated discussion and examples.

A. Sensor Factory

The sensor factory pattern is used to provide a systematic
way of collecting data on a game and its players while
satisfying resource constraints, and provide those data to the
rest of the adaptive system. Sensor (please see Figure 1) is
an abstract class that encapsulates the periodical collection
and notification mechanism. A concrete sensor realizes the
Sensor and defines specific data collection and calculations.
The SensorFactory class uses the “factory method” pattern

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 1. Sensor factory design pattern

to provide a unified way of creating any sensors. It takes the
sensorName and the object to be monitored as input and
creates the sensor. Before creating a sensor, the
SensorFactory checks in the Registry data structure to see
whether the sensor has already been created. If created, the
SensorFactory just returns that sensor instead of creating a
new one. Otherwise, it verifies with a ResourceManager
whether a new sensor can be created without violating any
resource constraints.

B. Adaptation Detector

With the help of the sensor factory pattern, the
AdaptationDetector (please see Figure 2) deploys a number
of sensors in the game and attaches observers to each sensor.
Observer encapsulates the data collected from sensor, the
unit of data (i.e., the degree of precision necessary for each
particular type of sensor data), and whether the data is up-to-
date or not. AdaptationDetector periodically compares the
updated values found from Observers with specific
Threshold values with the help of the ThresholdAnalyzer.
Each Threshold contains one or more boundary values as
well as the type of the boundary (e.g., less than, greater than,
not equal to, etc.). Once the ThresholdAnalyzer indicates a
situation when adaptation might be needed, the
AdaptationDetector creates a Trigger with the information
that the rest of the adaptation process might need.

C. Case Based Reasoning

While the adaptation detector determines the situation
when an adjustment is required by creating a Trigger, case
based reasoning (please see Figure 3) formulates the
Decision that contains the adjustment plan. The

Figure 2. Adaptation detector design pattern

Figure 3. Case based reasoning design pattern

InferenceEngine has two data structures: the TriggerPool
and the FixedRules. FixedRules contains a number of Rules.
Each Rule is a combination of a Trigger and a Decision. The
Triggers created by the adaptation detector are stored in the
TriggerPool. To address the triggers in the sequence they
were raised in, the TriggerPool should be a FIFO data
structure. The FixedRules data structure should support
search functionality so that when the InferenceEngine takes a
Trigger from the TriggerPool, it can scan through the Rules
held by FixedRules and find a Decision that appropriately
responds to the Trigger.

D. Game Reconfiguration

Once the adaptive system detects that an adjustment is
necessary, and decides what and how to adjust the various
game components, it is the task of the game reconfiguration
pattern (please see Figure 4) to facilitate smooth execution of
the decision. The AdaptationDriver receives a Decision
selected by the InferenceEngine (please see case based
reasoning in previous subsection) and executes it with the
help of the Driver. Driver implements the algorithm to make
any attribute change in an object that implements the State
interface (i.e., that the object can be in ACTIVE,
BEING_ACTIVE, BEING_INACTIVE or INACTIVE
states, and outside objects can request state changes). As the
name suggests, in the active state, the object shows its usual
behaviour whereas in the inactive state, the object stops its
regular tasks and is open to changes.

Figure 4. Game reconfiguration design pattern

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

The Driver takes the object to be reconfigured (default
object used if not specified), the attribute path (i.e., the
attribute that needs to be changed, specified according to a
predefined protocol such as object oriented dot notation) and
the changed attribute value as inputs. The Driver requests the
object that needs to be reconfigured to be inactive and waits
for the inactivation. When the object becomes inactive, it
reconfigures the object as specified. After that, it requests the
object to be active and informs the AdaptationDriver when
the object becomes active. The GameState maintains a
RequestBuffer data structure to temporarily store the inputs
received during the inactive state of the game. (If the
reconfiguration is done efficiently, however, it should be
completed within a single tick of the main game loop, and
this buffering should be largely unnecessary.) The
GameState overrides Game’s event handling methods and
game loop to implement the State interface.

E. Integration of Design Patterns

In [31], Salehie and Tahvildari described integration of
four generic steps for an adaptation process namely
monitoring, detecting, deciding, and acting. The four design
patterns discussed in previous sections work on the same
process flow. In this Section, we briefly re-discuss how they
work together to create a complete adaptive system (please
see Figure 5). The sensor factory pattern uses Sensors to
collect data from the game so that the player’s state and the
game’s state can be measured. The adaptation detector
pattern observes Sensor data using Observers. When the
adaptation detector finds situations where the game needs to
be adjusted, because either the player or the game is in a sub-
optimal state, it creates Triggers with appropriate additional
information. Case based reasoning is then notified about
required adjustments by means of Triggers. It finds
appropriate Decisions associated with the Triggers and
passes them to the adaptation driver. The adaptation driver
applies the changes specified by each Decision to the game,
to adjust the functioning of the game accordingly, with the
help of the Driver. The adaptation driver also makes sure that
the change process is transparent to the player. In this way,
all four design patterns work together to create a complete
adaptive system for a particular game.

F. Enabling Auto Dynamic Difficulty

When used together, these software design patterns are
sufficient to implement a wide range of adaptivity in
gameplay. To demonstrate their use, we explore the

Figure 5. Four design patterns working together in a game

particular adaptation of game challenge delivered to the
player in the form of auto dynamic difficulty.

In this application, Sensors would be used to collect data
from the game to assess the player’s perceived level of
difficulty. As above, the adaptation detector pattern observes
Sensor data using Observers. When the adaptation detector
finds situations where difficulty needs to be adjusted,
because the game is currently too easy or too hard for the
player, it creates Triggers with appropriate additional
information. This information details the in-game activity
that gave rise to the Triggers, provides more information on
the player’s state, and includes anything else needed to assist
in formulating a Decision or carrying out reconfiguration.
These Triggers are passed to case based reasoning, which in
turn finds appropriate Decisions to bring game difficulty
back in line with player skill and expertise. These Decisions
are then passed to the adaptation driver, which applies the
changes specified by each Decision to the game, to adjust the
difficulty of the game appropriately, with the help of the
Driver. In doing so, the situation is corrected, and game
difficulty is tuned according to the needs of the player.

IV. OVERVIEW OF STUDIED GAMES AND ADAPTATIONS

The software design patterns in Section III have been
implemented as a Java framework that can be used to enable
adaptivity in games. As there is nothing Java-specific to our
patterns, bringing this framework to other platforms with
other language bindings is part of on-going work.

To date, we have used three very different games
developed in Java for studying our approach to adaptivity,
with a focus on auto dynamic difficulty. In our earlier work
([11,12]), two casual prototypical games were used. The first
game is a variant of Pac-Man and was developed specifically
for the purposes of our research. The second game,
TileGame, is a slightly modified version of a platform game
described in [32]. Even though we were successful in using
our approach in these two games, the code for these games
was either written by ourselves or well documented and
simple enough to be easily understood and reshaped
accordingly. Thus, recently we have selected a commercially
successful sandbox game – Minecraft [33] to extend our
study. Minecraft is commercially available for several
platforms, but we focus on the desktop version also
developed in Java. In the subsections below, we briefly
describe each of the games and examples of adaptations that
were implemented using our framework.

A. Pac-Man

In this game, the player controls Pac-Man in a maze
(please see Figure 6). There are pellets, power pellets, and 4
ghosts in the maze. Pac-Man has 6 lives. Usually, ghosts are
in a predator mode and touching them will cause the loss of
one of Pac-Man’s lives. When Pac-Man eats a power-pellet,
it becomes the predator for a certain amount of time. When
Pac-Man is in this predator mode and eats a ghost, the ghost
will go back to the center of the maze and will stay there for
a certain amount of time. Eating pellets gives points to Pac-
Man. The player tries to eat all the pellets in the maze
without losing all of Pac-Man’s lives. The player is

43Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 6. Screen captured from the Pac-Man game

motivated to chase the ghosts while in predator mode, as that
will benefit them by keeping the ghosts away from the maze
for a time, allowing Pac-Man to eat pellets more freely.
Ghosts only change direction when they reach intersections
in the maze, while Pac-Man can change direction at any
time. A ghost’s vision is limited to a certain number of cells
in the maze. Ghosts chase the player if they can see them. If
the ghosts do not see Pac-Man, they try to roam the cells
with pellets, as Pac-Man needs to eventually visit those areas
to collect the pellets. If the ghosts do not see either Pac-Man
or pellets, they move in a random fashion.

B. TileGame

The level structure and gameplay of this game is similar
to the popular Super Mario game series. In this game, the
player controls the player character in a platform world
(please see Figure 7). There are three levels, each having
different tile based maps. Each level is more difficult and
lengthier than the previous level, but has more points to give
the player a sense of progress and accomplishment.

Figure 7. Screen captured from the TileGame game

There are power ups and non-player characters (i.e.,
enemies) in each level. There are three different types of
power ups: basic power ups, bonus power ups, and a goal
power up. Basic power ups and bonus power ups give
certain points to the player. In each level there is one goal
power up that can be found at the end of the level. The goal
power up takes the player from one level to another. There
are two different types of non-player characters: ants and
flies. Ants and flies move in one direction and change
direction when blocked by the platforms. The player
character can run on and jump from platforms. When the
player character jumps on (i.e., collides from above) non-
player characters, the non-player character dies. If the player
character collides with non-player character in any other
direction, then the player character dies instead. The player
character has 6 lives. When the player character dies, it loses
one life and the game restarts from the beginning of that
level. The player character and ants are affected by gravity;
flies are not. In this game, three map variants were created
for each level. For a particular level, the same objects were
placed in the map but positioned slightly differently. One
map variant was the default version and other two were
easier and harder versions of the default map.

C. Minecraft

Minecraft [33] is an exceptionally popular sandbox game
that allows players to explore, gather resources, combat, craft
and build constructions out of textured cubes in a
procedurally generated 3D world. The terrain of the game
world, consisting of plains, mountains, forests, caves, and
waterways, are composed of rough 3D objects (primarily
cubes) representing different materials (for example dirt,
stone, tree trunks, water, and so on) and arranged in a fixed
grid pattern. Players can break (please see Figure 8) and
collect these material blocks and craft these blocks to form
other blocks (for example, furnaces, bricks, and stairs) and
items (for example sticks, axes, and buckets). Players can
place collected or crafted blocks and items elsewhere to
build structures. The world is divided into biomes (such as
deserts, jungles, and snow fields). The time in the game goes
through a day-night cycle every 20 real time minutes.

Figure 8. Screen captured from Minecraft

44Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

There are various NPCs known as mobs (including
animals, villagers, and hostile creatures). Non hostile animals
(such as cows, pigs, chickens, and so on) spawn during the
daytime and can be hunted for food and crafting materials.
Hostile mobs (such as spiders, zombies, and creepers, a
Minecraft-unique creature) spawn during nighttime and in
dark areas. There are two primary game modes: creative and
survival. In creative mode, players have access to unlimited
resources, and are not affected by hunger or environmental
or mob damage. On the other hand, in survival mode, players
need to collect resources (and craft them) and have both a
health bar and a hunger bar that must be managed to stay
alive and continue playing. The game also features single
player and multiplayer options. For this research, we focused
on the single player option played in survival mode.

While Minecraft is not open-source, its source code can
be readily obtained through the use of a toolchain [34]
provided by an active and extensive modding community
that decompiles the game back to its source code. The
creators of Minecraft accept this practice while an official
modding interface is under development.

D. Adaptations Implemented

In Table I, we provide examples of different adaptations
that we have implemented in the above games. The first
column shows the name of the game. The next three columns
show the details of the adaptations implemented. Please note
that these columns: metrics for sensors, attributes for
modification, and adaptation scenarios also represent the
questions: when to adapt, what to adapt, and how to adapt
respectively, which is part of the methodology for eliciting
essential requirements for adaptive software [31].

TABLE I. EXAMPLES OF ADAPTATIONS IMPLEMENTED

Many adaptations that we have implemented focus
primarily on tuning attributes of the game (please see Pac-
Man and Minecraft examples in Table I), while others focus
on content modifications (please see the TileGame example
of usage of different versions of maps in Table I).

V. DISCUSSION

In this section, we discuss the benefits of using a
software design pattern approach for implementing
adaptivity in video games.

A. Reusable Source Code

Reusability refers to the degree to which existing code
can be reused in new applications. Since design patterns
provide a reusable solution, it is expected that reusable
source code can be created for such solutions as well. In
[12], we reported an empirical investigation involving source
code analysis of the Pac-Man and TileGame games. In that
study, we experienced 77.52% and 79.68% code reusability
in Pac-Man and TileGame respectively while implementing
the adaptive systems using our software design patterns.
Recently, we have extended this study to the popular
commercial game Minecraft [33] and found comparable
results. In Figure 9, we show a summary of these studies,
identifying reusable and application-specific logical Source
Lines of Code (SLOC). As we can see, 600 SLOC (74.26%
in Minecraft; 79.68% in TileGame; and 77.52% in Pac-Man)
of the adaptive system remained unchanged across all three
games.

Reusability of source code reduces implementation time

and increases the probability that prior testing has eliminated
defects.

B. Repeatable Process

In our design pattern-based approach, since the high level
structure of the solution is already known, it is possible to
create a step-by-step method for developing adaptive video
games. From our experience in implementing adaptivity into
Pac-Man and TileGame [11,12], we formalized such a
process and applied it to the Minecraft game. In Table II, we
provide a generalized description of the process to
incorporate the concepts of adaptive gameplay discussed in
the previous section.

Figure 9. Source code reusability found in adaptive games developed

using our design patterns

G
a

m
e

Metrics for

Sensors

Attributes for

Modification
Adaptation Scenarios

P
a

c
-M

a
n

Total score,

Number of

times player

dies

Ghost’s speed, the

ghost’s vision

length, duration of

Pac-Man’s predator

mode, and so on

Modify ghost’s speed, duration of

Pac-Man’s predator mode and so on

based on how the average score per

life compared to specific thresholds

T
il

e
G

a
m

e
 Current level

number,

Total score,

Number of

times player

dies

Load different

versions of the

map where default

objects and

enemies are placed

in slightly different

positions

Load different versions of the map

when the player character goes to

the next level or in the next loading

of the same level (such as when the

player character dies) based on

score and lives lost in last level.

Which day in

game,

Number of

times player

dies

Display hints

about collecting

resources and

building shelters

If the player is continuously dying

during the first night, give the

player some hints to progress

through the game to make it easier.

M
in

e
c
r
a

ft

Number of

items of

particular

materials in

player’s

inventory

Hardness of those

particular items

Modify the hardness of a particular

resource in the game world as the

player’s inventory of that particular

item changes, making it easier or

harder to collect the resource.

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

TABLE II. ADAPTIVE GAME IMPLEMENTATION PROCESS

Activity Output

1
Identify the aspects of the game that will be

adaptively adjusted.

2
For each of the aspects identified in step-1 repeat

step-3 to step-9.

3 Define or reuse available sensors. Sensors

4 Identify or introduce attributes that can be adjusted.

5
Identify adaptation scenarios involving sensors and

attributes from step-3 and step-4.

6

Define thresholds based on the scenarios identified

in step-5 for the sensors defined in step-3, and define

observers to relate thresholds to sensors.

Thresholds,

Observers

7
Define triggers to represent each scenario, and

develop adaptation detector logic from the scenarios.

Triggers

8

Use attributes identified in step-4 to create decisions

to modify game functionality according to the

scenarios identified in step-5.

Decisions

9
Define rules to relate triggers to decisions based on

the adaptation scenarios identified in step-5.

Rules

A well-defined process for adaptivity is important for

industrial adoption as it enables progress tracking, planning,
and automation. Furthermore, it allows developers to focus
more on gameplay design and adaptive logic design, rather
than implementation details. Unlike ad hoc approaches, a
well-defined process is repeatable with consistent results
across various games. Our study on three different games
using the process described above is a primary validation of
consistent repeatability of the process. Since the process is
defined in a step-by-step method with specific artifacts
expected as outputs from each step (please see the third
column in Table II), it will be possible to define specific
metrics to estimate project size and later measure progress as
the project moves forward.

C. Impact on Quality Factors

In [12], we examined how different software quality
factors are impacted by the usage of our design patterns. We
have already discussed the impact on reusability in
subsection A, and so we briefly discuss the impact on other
quality factors below.

Integrability: Integrability refers to the ability to make
the separately developed components of a system work
correctly together. As we can see in Figure 5, the integration
points among the design patterns and with the game are
clearly defined. Because of these clearly defined integration
points, the four design patterns can be integrated with each
other and a game rather easily.

Portability: Portability is the ability of a system to run

under different computing environments. A framework- or

middleware-based approach for creating a self adaptive-

system is usually specific to a particular programming

language and or platform, whereas a design pattern-based

approach is highly portable across different platforms and

programming languages [17]. These design patterns were

derived from the self-adaptive system literature in the

context of adaptivity in video games, with a particular focus

on auto dynamic difficulty. This indicates the portability of

these design patterns across domains. Also, in our research,

we managed to port them (as a solution) from one game to

another within the platform (Java). This indicates

portability across systems on the same platform. In the

future, we plan to examine the portability of these design

patterns across platforms as well.

Maintainability: Maintainability refers to the ease of the

future maintenance of the system. As discussed earlier,

different parts of the design patterns have specific concerns

(e.g., Sensors will collect data, Drivers will make changes to

the game, and so on), and so the resulting source code will

have high traceability and maintainability. Furthermore, as

the use of these design patterns provides source code

reusability (please see Figure 9), this will increase the

probability that prior testing has eliminated defects while

being used in a new game.

D. Automation

 Using our approach, it is possible to implement tools

that will guide developers through the process of enabling

adaptivity in their games. We are currently designing a

semi-automatic tool to help developers to easily integrate a

game into the tool and then identify metrics for sensors,

brainstorm adaptation scenarios, identify attributes to adjust

in the game, maintain traceability between these artifacts,

and so on. The benefits of such semi-automatic tools include

reducing development effort and defects, standardization,

ease of progress tracking, and improving maintainability.

VI. CONCLUDING REMARKS

Adaptivity is becoming increasingly essential to modern

video games. Previous attempts at adaptivity in games can

be characterized as ad hoc from a software engineering

perspective; lacking rigor, structure, and reusability, with

custom solutions per game. There is a critical need for

software frameworks, patterns, libraries, and tools to enable

adaptive systems for games. Thus, in this paper, we leverage

the benefits of software design patterns to construct a

framework for adaptive games. Based on studies of three

different games, including the large commercial game

Minecraft, we discussed how the usage of these software

design patterns results in a reusable approach both in terms

of source code and process and improves a number of other

quality aspects.

There are many possible directions for future work in

this area. We plan to extend our work, enabling auto

dynamic difficulty in additional games, exploring other

forms of adaptivity, and bringing our framework to other

platforms. While our approach is designed to be

generalizable, and work to date supports this, further work is

necessary to fully assess this and identify limitations to our

approach. To further assess the effectiveness and efficiency

of our approach, we will conduct extensive user testing and

performance testing. Since a key goal of adaptivity in

games is an improved player experience, this user testing is

essential. Lastly, to assist developers, we will continue

developing semi-automatic and automatic tools to enable

adaptivity with minimal effort on their part.

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

REFERENCES

[1] G. Dolbier and A. Goldschmidt, The Business of Interactive

Entertainment. IBM Digital Media Solutions Technical

Report G565-1461-00, May 2006.

[2] A. Glassner, Interactive Storytelling: Techniques for 21
st

Century Fiction. A K Peters, Ltd., 2004.

[3] P. Sweetser, Emergence in Games. Charles River Media,

2008.

[4] G. Andrade, G. Ramalho, H. Santana, and V. Corruble.,

“Challenge-Sensitive Action Selection: An Application to

Game Balancing”. In the 2005 IEEE/WIC/ACM International

Conference on Intelligent Agent Technology, Compiègne,

France, September 2005, pp. 194-200.

[5] D. Charles, M. McNeill, M. McAlister, M. Black, A. Moore,

K. Stringer, J. Kücklich, and A. Kerr, “Player-Centred Game

Design: Player Modelling and Adaptive Digital Games”.

Proceedings of DiGRA 2005 Conference: Changing Views

Worlds in Play, June 2005, pp. 285-298.

[6] P. Langley, Machine Learning for Adaptive User Interfaces.

Kunstiche Intellugenz, 1997.

[7] D. Charles and M. Black, “Dynamic Player Modelling: A

Framework for Player-Centered Digital Games”. In

Proceedings of the International Conference on Computer

Games: Artificial Intelligence, Design and Education,

Microsoft Campus, 2004, pp. 8-10.

[8] B. Pfeifer, “Creating Emergent Gameplay with Autonomous

Agents”. Proceedings of the Game AI Workshop at AAAI-

04, San Jose, California, July 2004, pp.20.

[9] B. Reynolds. How AI Enables Designers. Appeared in the

Proceedings of the 2004 Game Developers Conference, San

Jose, California, March 2004, pp. 20.

[10] G.N. Yannakakis and J. Hallam, “Real-time Game Adaptation

for Optimizing Player Satisfaction”. IEEE Transactions on

Computational Intelligence and AI in Games, 1(2), 2009, pp.

121-133.

[11] M. Chowdhury and M. Katchabaw, “Software Design

Patterns for Enabling Auto Dynamic Difficulty in Video

Games”. Proceedings of the 17th International Conference on

Computer Games: AI, Animation, Mobile, Interactive

Multimedia, Educational and Serious Games. Louisville,

Kentucky. July, 2012, pp. 76-80.

[12] M. Chowdhury and M. Katchabaw, “Improving Software

Quality Through Design Patterns: A Case Study of Adaptive

Games and Auto Dynamic Difficulty”. Proceedings of

GameOn 2012. Magala, Spain. November, 2012, pp. 41-47.

[13] E. Adams, Fundamentals of Game Design, Second Edition.

New Riders, 2010.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vissides, Design

Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley. 1995.

[15] M. Csikszentmihalyi., Creativity: Flow and the Psychology of

Discovery and Invention. New York, NY: Harper Collins

Publishers. 1996.

[16] C. Bailey and M. Katchabaw, “An Experimental Testbed to

Enable Auto-Dynamic Difficulty in Modern Video Games”.

In Proceedings of the 2005 North American Game-On

Conference. Montreal, Canada. August 2005, pp. 18-22.

[17] A. Ramirez and B. Cheng, “Design Patterns for Developing

Dynamically Adaptive Systems”. Proceeding of the ICSE

Workshop on Software Engineering for Adaptive and Self-

Managing Systems. Cape Town, South Africa, May 2010, pp.

49-58.

[18] P. Baillie-de Byl, Programming Believable Characters in

Games. Charles River Media, 2004.

[19] J. Dias, S. Mascarenhas, and A. Paiva, “FAtiMA Modular:

Towards an Agent Architecture with a Generic Appraisal

Framework”. Workshop on Standards in Emotion Modeling,

Leiden, Netherlands, August 2011, pp. 12.

[20] A. Guye-Vuilleme and D. Thalmann, A High-Level

Architecture For Believable Social Agents. Virtual Reality,

Volume 5, Number 2, 2001, pp. 95-106.

[21] M. Nelson, C. Ashmore, and M. Mateas, “Authoring an

Interactive Narrative with Declarative Optimization Based

Drama Management”. Proceedings of the Second Artificial

Intelligence and Interactive Digital Entertainment

International Conference (AIIDE). Marina del Rey,

California, June 2006, pp. 127-129.

[22] P. Spronck, “A Model for Reliable Adaptive Game

Intelligence”. IJCAI-05 Workshop on Reasoning,

Representation, and Learning in Computer Games, 2005, pp.

95-100.

[23] R. Zhao, Applying Agent Modeling to Behaviour Patterns of

Characters in Story Based Games. PhD Thesis, University of

Alberta, 2010.

[24] K. Compton and M. Mateas, “Procedural Level Design for

Platform Games”. Proceedings of the Second Artificial

Intelligence and Interactive Digital Entertainment Conference

(AIIDE). Marina del Rey, California, June 2006, pp. 109-111.

[25] C. Pedersen, J. Togelius, and G. Yannakakis, “Optimization

of Platform Game Levels for Player Experience”. Proceedings

of the Fifth Artificial Intelligence and Interactive Digital

Entertainment Conference (AIIDE), Oct., 2009, pp. 191-192.

[26] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards

Automatic Personalised Content Creation in Racing Games”.

Proceedings of the 2007 IEEE Symposium on Computational

Intelligence and Games. April 2007, pp. 252-259.

[27] P. Rani, N. Sarkar, and C. Liu. “Maintaining Optimal

Challenge in Computer Games Through Real-time

Physiological Feedback”. Proceedings of the 11th Intl. Conf.

on Human-Computer Interaction. Las Vegas, USA, July 2005,

pp. 184-192.

[28] R. Hunicke, “The Case for Dynamic Difficulty Adjustment in

Games”. Proceedings of the 2005 ACM SIGCHI International

Conf. on Advances in Computer Entertainment Technology.

Valencia, Spain, June 2005, pp. 429-433.

[29] Y. Hao, S. He, J. Wang, X. Liu, J. Yang, and W. Huang.,

“Dynamic Difficulty Adjustment of Game AI by MCTS for

the Game Pac-Man”. Proceedings of the Sixth Int. Conference

on Natural Computation. Yantai, China, August 2010, pp.

3918-3922.

[30] N. Hocine and A. Gouaïch, “Therapeutic Games’ Difficulty

Adaptation: An Approach Based on Player’s Ability and

Motivation”. Proceedings of the 16th Intl. Conf. on Computer

Games. Louisville, Kentucky, USA, July 2011, pp. 257-261.

[31] M. Salehie and L. Tahvildari, “Self-Adaptive Software:

Landscape and Research Challenges”. In ACM Transactions

on Autonomous and Adaptive Systems, Vol. 4, No. 2, Article

14, May 2009, pp. 1-42.

[32] D. Brackeen, B. Barker, and L. Vanhelsuwé, Developing

Games in Java. New Riders, 2004.

[33] Mojang, Minecraft. Retrieved from: https://minecraft.net. Last

accessed: Jan 29, 2013.

[34] MCP Team, Main Page – Minecraft Coder Pack, Retrieved

from: http://mcp.ocean-labs.de/. Last accessed: Jan 29, 2013.

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

