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Abstract—This paper presents a modified gravitational 
clustering algorithm applied to the neurons of self-organizing 
maps in order to enhance the visualization of clusters through 
the U-matrix technique. For a given neuron, the proposed 
method considers the attraction among its k nearest neighbors 
in the data space, where k decreases monotonically over time 
and its value may vary according to the local pattern density. 
The attraction between neurons that are considered as not 
belonging to the same close-knit group is penalized. The results 
obtained for some synthetic and real world data sets are 
presented. 

Keywords-self-organizing maps; gravitational clustering; 

visualization techniques  

I.  INTRODUCTION 
Nowadays, a plethora of data from the most diverse 

sources is collected and stored [1]. Data mining is one of the 
fields that aim to transform this information into useful 
knowledge. Among the main problems faced in this field, 
may be cited the data scalability and dimensionality, as well 
as its complexity, heterogeneity and quality (noise and 
outliers). Therefore, the analysis of databases requires 
careful interpretation of the results obtained with the 
mathematical models and the visualization techniques 
applied [2]. Visualization consists of the conversion of the 
data attributes into a visual structure, so as to observe its 
characteristics and properties [3]. 

The self-organizing maps (SOM) [4] are artificial neural 
networks widely used in the data mining field, mainly due 
to the mapping of a high dimensional input space (data 
space) to an output space of lower dimensionality (fixed 
grid of neurons), while preserving data topology. In this 
sense, the SOM network is a nonlinear generalization of 
principal component analysis [5]. It is used for clustering as 
well as for visualization. The U-matrix [6] is a well-known 
visualization technique associated with the SOM network. 
Its main issue concerns its resolution when applied to 
decreasing map sizes, i.e. on small maps the visualization is 
compromised, while on large maps the definition of clusters 
becomes increasingly clear in data sets where distance 
metrics are relevant. 

Recently, gravitational-based clustering algorithms have 
been used to perform the clustering task [7]-[9]. These 
algorithms are hierarchical and agglomerative, i.e. they 
progressively define clusters from a database given a 

similarity metric, while forming a tree structure: in its base, 
each pattern is a cluster, and, at the top, there is only one 
cluster. 

This paper focuses on improving the U-matrix 
visualization through the application of an algorithm based 
on the gravitational principles on the SOM neurons, as a 
way of increasing inter-cluster distances and decreasing 
intra-cluster distances. More specifically, the objective is to 
determine an updating rule for the weights associated with 
the SOM neurons, in order to perform a post-processing and 
provide a visualization in which separation between clusters 
is sharper. 

The remainder of the paper is organized as follows. 
Section II provides general considerations of the SOM 
network, while Section III discusses some of its well-known 
visualization techniques. In Section IV, a brief description of 
some gravitational algorithms is provided. In Section V, the 
proposed method is defined, and, in Section VI, the data sets 
used in the experiments are concisely described. The 
simulation results and discussions are presented in Section 
VII. In Section VIII, some conclusions are drawn. 

II. SELF-ORGANIZING MAPS 
Self-organizing maps consist of a set of topologically 

ordered neurons situated in a static lattice (output space). 
The neuron grid can be either rectangular or hexagonal, 
differing in the number of immediate neighbors - four or six 
respectively. In general, the network grids are 1-D or 2-D. 
Although higher dimensionalities are possible, they 
generally are not used, since visualization becomes more 
difficult or not even feasible. Each neuron has an associated 
weight vector in the data space (input space), so a projection 
from a higher to a lower dimensional space is obtained. The 
SOM network can be seen as an adaptive vector 
quantization algorithm. The learning process involved is 
unsupervised and encloses the following three principles: 
competition, cooperation and adaptation. For each pattern 
presented to the network, the neurons compete with each 
other, so that a winner (best matching unit - BMU) is 
defined as the one with the minimum Euclidean distance to 
this pattern: 

 
                  ‖     ‖  ‖     ‖          (1) 
 

where ‖ ‖  is the Euclidean norm,        is a weight 
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vector (   is the BMU),        is a pattern from the data 
set, and   is the dimension of the data space. However, not 
only the winner neuron, but its neighborhood also 
participates in the learning process. The adaptation rule is 
given by (2) [4] 

 
             (   )    ( )   ( )    ( )[     ( )] (2) 

 
where   is time,   ( ) is the weight vector associated with 
the jth neuron,    is the ith pattern from the data set 
presented to the network,  ( ) is the learning rate,     ( ) is 
the neighborhood kernel. The neighborhood kernel (which 
is centered on the BMU and is usually Gaussian) and the 
learning rate must be monotonically decreasing as the 
training algorithm progresses [4].  

During the training stage, the SOM network behaves as 
an elastic net that molds itself to the intrinsic shape formed 
by the patterns. The neuron’s placement reflects the data set 
density distribution: the number of neurons in a certain 
region of the input space is related to the number of patterns 
in that region, what is known as the magnification factor. 

The quality of a given trained SOM can be measured by 
the following figures of merit: the quantization error (3) [4] 
and the topographic error (4) [10], 
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where   is the number of patterns of the data set,    is the 
kth pattern from the data set,     

   is the BMU of the 
pattern   . The function  (  ) is equal to zero if the first 
and second BMU of the pattern    are adjacent. Otherwise 
the function  (  ) is equal to one. 

The quantization error discloses the network resolution, 
while the topographic error depicts when there is a 
divergence between the neighborhood of neurons in the 
input and output spaces. An extensive discussion of 
topology in neural networks based on vector encoding can 
be found in [11]. 

III. VISUALIZATION TECHNIQUES 
In order to suitably view clusters in a given trained SOM 

network, visualization techniques must be applied. That is, a 
post-processing stage using its prototypes is needed so as to 
infer characteristics of the dataset. Typically, visualization 
techniques take into account not more than one metric 
within its definition, for example, distances between 
prototypes, as the U-matrix, component planes [12], 
component gradients matrix [13], or pattern density, as in 
the hit histogram,  P-matrix [14], CONNvis [15] and 
Smoothed Data Histogram (SDH) [16]. There are methods 
that take into consideration both distance among prototypes 
and pattern density associated with them, such as the 
CONNDISTvis [17] and the U*-matrix [18]. 

The U-matrix is one of the most popular visualization 
techniques, and consists of a matrix whose positions are 
filled with the Euclidean distances between the neurons in 
the data space. Consider that a map has a rectangular grid of 
size    , then the U-matrix has the size (    )  (   
 ). The relative positions of the neurons themselves in the 
matrix are obtained by a function   of the neighboring 
distances in the grid, where generally   is a mean or a 
median function of neighboring values. The Euclidean 
distances in the U-matrix can be calculated on the basis of 
all attributes or specific ones with the use of masks. The 
particular case where a U-matrix is calculated for each 
attribute of data form the component planes. 

The P-matrix aims to estimate the probability density of 
the data [19]-[20]. It has a structure that is the same size as 
the map grid. In the P-matrix, the value at the position 
related to the neuron    consists of the number of patterns 
inside a hypersphere of radius    centered on that neuron. 
The radius is a fixed parameter for all neurons and is called 
Pareto radius. The U*-matrix is an enhanced visualization 
method that is generated by using information provided by 
both the U-matrix and the P-matrix. It has the same size of 
the latter. Its value    for the relative position of each 
neuron    in the grid is obtained by (5) [18] 

 

                     (  )   (  ) [
 (  )   ̅

 ̅      

  ] (5) 

 
where  (  ) and  (  ) are the values of the P-matrix and 
U-matrix associated with the neuron   ,  ̅ and      are the 
mean and maximum values of the P-matrix, respectively.  

IV. GRAVITATIONAL CLUSTERING ALGORITHMS 
The gravitational algorithm and its application to the 

clustering task were first proposed by Wright [21] and rely 
on the law of universal gravitation. It may be classified as 
an agglomerative hierarchical algorithm, as it begins with a 
set of N objects and ends with only one. However, contrary 
to classic hierarchical agglomerative algorithms where 
patterns are static, in the gravitational algorithm all patterns 
are considered as mobile particles subjected to the 
gravitational fields of one another. The results obtained 
using such method can be seen as a dendrogram. The 
strength of a given cluster structure is greater the larger the 
interval of time during which the system remains in that 
clustering state. 

A variant of the clustering algorithm was proposed by 
Gomez et al. [7], in order to automatically determine the 
number of clusters, remove noise and generate prototypes 
representing the database. This approach differs from the 
latter in the sense that the particles are always considered 
with unitary mass (as opposed to the original algorithm 
where the mass changes when there is a mergence), and the 
stopping criterion is the number of iteration. The algorithm 
is very sensitive to the gravitational constant and its decay 
function, which may lead to a generation of only one cluster 
or none at all. According to the model, the particles move as 
described in (6)-(7) [7] 
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where   is the gravitational constant that decreases 
monotonically over time,   and   are patterns randomly 
chosen from the dataset, and ‖ ‖  is the Euclidean norm. 
Particles are merged when separated by a minimum distance 
which is an input parameter. 

It is also stated that a good performance of the algorithm 
does not necessarily need the entire database to be used, 
which thereby opens the possibility to use vector 
quantization techniques, such as the SOM network, before 
its application. Therefore, recently, a gravitational clustering 
of the SOM (gSOM) [8] based on the work of Gomez et al. 
[7] was proposed. It consists of two steps: in the first phase, 
a SOM network is trained with the data set. In the second 
phase, the interpolating neurons, that is, those neurons that 
are not associated with any pattern are eliminated, as well as 
their connections. The gravitational algorithm is then 
applied to the remaining neurons. 

Each time a random pair of objects is selected, according 
to predefined probability functions, the gravitational 
algorithm is applied. The stopping criterion can be either the 
number of iterations or the maximum number of clusters to 
be found. The gSOM has also been used in a clustering 
ensemble [9], in which the different partitions obtained, due 
to its stochastic nature, are analyzed in a consensus function 
in order to define the final partition. Other variants of the 
gravitational algorithms and applications were proposed in 
the literature, such as [22]-[23]. 

V. PROPOSED APPROACH 
The proposed method, the k-gSOM algorithm, is 

concerned with distance information between close neurons 
on the map as well as pattern density in their vicinity. It is 
assumed that due to the attraction exerted by the patterns to 
the neurons in the network, the overwhelming majority of 
neurons are located in high density places, while a minority 
make the connection between these groups (interpolating 
neurons).  The proposed method relates to the work of Ilc 
and Dobnikar [8], consisting of two stages: in the first stage, 
a SOM network is trained using its standard algorithm, and, 
in the second stage, the proposed method is applied to the 
network neurons.  

The technique is based on gravitational principle and on 
a hit histogram variant. It is a gravitational clustering 
algorithm as the neurons are subjected to attraction forces of 
one another, and they all tend to gather at the same position 
when time becomes sufficiently large. The information of 
pattern density and distance among close neurons is used to 
adapt their weights and collapse them in order to obtain an 
improved U-matrix visualization.  

The hit histogram consists of an accumulation array of 
the same size as the map, where each bin is associated with 
the position of a neuron in the SOM grid. The hit histogram 
depicts the number of patterns that each neuron is the BMU. 

As opposed to the U-matrix, the information provided by a 
hit histogram is more useful when dealing with small sized 
maps, in which the pattern to neuron ratio is usually greater 
than 1. Otherwise, due to the dissolution phenomenon, the 
matrix associated with the hit histogram becomes very 
sparse, which impedes the proper display of the data 
characteristics. The P-matrix and SDH are examples of 
visualization techniques that surpass this issue by using 
hyperspheres with Pareto radius and considering more than 
one BMU for each pattern, respectively. In this work, the 
values of the hit histogram consist of how many patterns are 
within a hypersphere centered on each neuron. The radius of 
the hypersphere is regarded as the minimum for which all 
the neurons have at least one associated pattern. By doing 
this the division by zero in (9) is avoided (the neuron 
masses are associated with the hit histogram) as there are no 
neurons without a pattern associated.  

Therefore, a neuron    at time   will be moved 
according to the attraction forces among its    neighbors   . 
The pairwise force between neurons    and    is related to 
their proximity in the input space and the ratio of patterns 
shared by their associated hyperspheres. The overall number 
of neighbors    depends on whether    is in a denser region 
or not. The direction and magnitude of the movement is 
given by the resultant of all the attraction forces between    
and its neighbors. The movement will occur until the 
stopping criterion is reached, which is the number of 
iterations. The equations governing the adaptation are as 
follows 

 
                      (   )     ( )     ( ) (8) 
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where    is the jth neuron,    is the effective number of 
neighbors of neuron   . The parameter    is proportional to 
the pattern density where    is located, and its maximum 
possible value is predetermined at time   as     . The ‖ ‖ is 
the Euclidean norm,    is the mass of the neuron    and 
corresponds to the number of patterns inside the 
hypersphere centered on    at time  . The distance      is 
normalized in the interval       regarding all pairwise 
distances between neurons, and also negated in (9) so as to 
be transformed from a dissimilarity to a similarity measure. 

The parameter       is the Jaccard coefficient [24] 
defined by the ratio of the intersection and union 
cardinalities of the sets containing the patterns covered by 
the hyperspheres of the neurons    and    at time   
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where | | is the set cardinality,    and    are the number of 
patterns inside the hyperspheres centered on the neurons    
and   , respectively. The parameter      is defined as 
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where    corresponds to the mass of one of the    neurons 
whose distance to    is less or equal to the parameter   at 
time   (Fig. 1). The attraction force is penalized by the 
parameter      if a neuron    is very far regarding a close 
group of neurons around    that is defined by  . Thus, a 
neuron    cannot attract a single neuron from within this 
group, but in fact, the whole group, thereby diminishing the 
attraction force and compensating    if it is overly 
estimated. 

The attraction among a decreasing number of 
neighboring neurons in the input space is considered as the 
algorithm progresses. For each neuron   , at each iteration, 
the effective number of neighbors is a fraction of      that 
is proportional to the density of patterns in the region that 
the neuron is currently situated:    is the value of the hit 
histogram generated at time   and associated with neuron 
  . The values of    are normalized in the range [0.1;1] so 
   is a nonzero percentage of     . By doing this we 
prevent that neurons in small clusters have the same 
neighborhood size as neurons in large clusters, and therefore 
reducing the influence of the latter over the first. The role of 
the parameter   consists of defining the minimum distance 
for which a set of neurons should be considered as a group. 
It relates to the minimum distance of mergence in the 
traditional gravitational algorithms. However, in the 
proposed method neurons are not merged nor eliminated: 
the number of neurons is constant throughout the algorithm 
steps, there is only an update to their position in the input 
space. 

The Jaccard coefficient is included so as to add a second 
term of attraction between neuron    and a given neighbor 
  : if they have patterns in common while considering a 
given hypersphere, they should be brought together 
proportionally to the intersection divided by the overall 
patterns associated with them. At each iteration of the 
algorithm, the pairwise distances between all prototypes are 
calculated, as well as the hypersphere radius, the neuron 
masses, the Jaccard coefficients and the effective number of 
neighbors for each neuron, before using their respective 
values in (9). The parameters      ,    and    are ultimately 
dependent on the radius of the hypersphere, which is 
calculated at each iteration of the algorithm. The attraction 
among a decreasing number of neighboring neurons in the 
input   space   is   considered  since        is  monotonically 

   
Figure 1. Illustrative case where the attraction between    (red dot) 

and    (green dot) is penalized by      (mean mass of the group of neurons 
inside the circle of radius α). All neurons whose distances to    are less or 
equal to   are considered as belonging to the same close-knit group (black 
dots), and therefore the parameter      related to their attraction forces is 
equal to unity. 

 
decreasing while the algorithm progresses, as well as the 
parameter  . In this work, both       and   were set to 
decrease linearly with time   according to (14)-(15) 
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)     (15) 

 
where   is the total number of iterations,    and    are the 
initial and final values of  , respectively. The parameters    
and    are the initial and final values of      , respectively. 

The summary of the algorithm is presented in Table I: 

TABLE I.  K-GSOM ALGORITHM 

1. Initialize kmax and α as well as their 

decreasing functions.  

2. Determine the hypersphere radius, calculate 

the masses of each neuron and generate the 

normalized hit histogram H. 

3. Calculate and normalize the pairwise 

distance between all neurons. 

4. For each prototype wj 

a. Find kj nearest neighbors by multiplying 

the current kmax by the value of Hj in the position 

associated to wj. 

b. Calculate Δwj. If a neuron wi is not close 

enough to wj (distance defined by the parameter α) 

their attraction is penalized by dividing it by 

pi,j, otherwise pi,j is equal to unity. 

5. Update wj (sequential algorithm). 

6. If the stopping criterion was not met, 

return to step 2. 
  

VI. DATA SETS 
The proposed method was applied to the following 

synthetic data sets from the Fundamental Clustering 
Problem Suite [25]: Hepta and Tetra. Another artificial 
dataset consisting of two Gaussian clusters mixed with noise 
was considered. The Wine data set [26] was also used in the 
experiments. All datasets were normalized in the hypercube 
       as a pre-processing stage. The Tetra data set consists 
of 400 patterns that form four very close clusters in    so 
that density information is more relevant than distance 
among prototypes. The Hepta data set consists of 212 
patterns that form seven well defined clusters in   , each 



w
i

w
j
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one with different variances. The Noisy Gaussian data set 
consists of two Gaussian clusters with 400 patterns and 100 
patterns that represent noise. The Wine data set is a real 
world database that consists of 178 patterns that forms three 
clusters in a 13 dimensional space. All previously 
mentioned data sets are depicted in Fig. 2. 

VII. RESULTS AND DISCUSSION 
The experiments were carried out with SOM networks 

whose grid sizes were all 10x10, and were trained in the 
first stage using the SOM Toolbox [27]. For the second 
stage, the initial value of      was set to 80% of the total 
number of neurons and it was decreased linearly over the 
iterations until it reaches 1. The parameter  was also 
decreased linearly over the iterations from 10-1 to 10-3. 

The SOM network trained with the Noisy Gaussian 
dataset is depicted in Fig. 3, along with the distances to the 
closest pattern to each neuron. The maximum pairwise 
distance between a neuron and its closest pattern is then 
used as the hypersphere radius; therefore the least populated 
hypersphere will have 1 pattern. This information is used in 
order to generate the hit histogram and to calculate the 
Jaccard coefficient (Fig. 4). The steps of the algorithm 
shown in Figs. 3 and 4 are repeated continuously. The 
movement of neurons as the proposed algorithm progresses 
is depicted in Fig. 5. After 250 iterations, the final 
placement of the neurons is depicted in Fig. 6, as well as the 
values over time for: the hypersphere radius, the parameters 
     and  . The effective neighbor number for each neuron 
at each iteration is shown in Fig. 7. 

It is perceptible in Fig. 6(d) that the radius tends to a 
permanent regime, that is, after a certain number of 
iterations it remains in a specific value with small 
fluctuations. Therefore, the computational cost may be 
reduced by setting the stop criterion as the sum of the radii 
differences between one iteration to the next: if it remains 
within a certain range ε for a fixed number of iterations then 
the algorithm stops. In Fig. 8, the trained SOM network and 
the best results of the proposed algorithm are shown. They 
were obtained for the Tetra, Hepta, Noisy Gaussian, and 
Wine data sets after 85, 125, 250 and 190 iterations, 
respectively. The Fig. 9 (a) and (b) depict the U-matrix and 
the U*-matrix (generated using the SOMVIS Package) 
obtained from the original SOM, respectively. In Fig. 9 (c) 
the U-matrix of the SOM network resulting from the 
application of the proposed method is shown.  

As depicted in Fig. 9, the borders of the clusters are 
visually sharper than the original U-matrix and the U*-
matrix. Albeit the final positions of the neurons do not 
correspond to the positions of the clusters’ centroids 
(phenomenon resulting from the gravitational effect) a 
repositioning may be achieved by relating the neurons that 
converged to a centroid to their original map positions in the 
input space. 

In order to measure the performance of the method, first 
the MBSAS [28] was applied so as to obtain the centroids 
resulting from the neurons’ movement. The radius 
parameter was set to αf. The number of centroids found and 
the prototypes they represent were stored and separated  into  

(a) (b) 

  
(c) (d) 

  
Figure 2. (a) Elements of the Noisy Gaussian data set. (b) Elements of 

the Hepta data set. (c) Elements of the Tetra data set. (d) Elements of the 
Wine data set using a 2-D PCA (principal component analysis) projection. 
Each class in each data set is depicted in a specific color. 

 
(a) (b) 

  
Figure 3.  (a) The red and yellow dots correspond to the Noisy 

Gaussian data set patterns and the SOM neurons, respectively. The blue 
lines indicate which is the closest pattern to each neuron. (b) Stem plot 
regarding the Euclidean distances of the closest pattern to each neuron. 

 
(a) (b) (c) 

  
 

(d) (e) (f) 

  
 

Figure 4.  (a) The red and black dots correspond to the data set patterns 
and neurons, respectively. The yellow dot is a neuron which is the center of 
its correspondent hypersphere, which is depicted as the blue circle. All 
patterns inside this circle are linked to the neuron by blue lines. (b) Stem 
plot of the number of pattern inside each neuron hypersphere. (c) Hit 
histogram generated with the number of patterns inside the hyperspheres. 
(d) The red and black dots correspond to the data set patterns and neurons, 
respectively. The green dots are the intersection between the circles around 
two neighboring neurons. (b) Stem plot of the number of patterns in the 
intersection of neurons    and   . (f) Jaccard coefficient matrix whose 
values are calculated among neurons that are 4-neighbor on the lattice 
(output space). 
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Figure 5.  Positions of the neurons at epochs 5 to 30. The neurons are 

gathering in the densest regions of the Noisy Gaussian data set. 
 

(a) (b) 

  
(c) (d) 

  
Figure 6.  (a) The red and black dots corresponds to the initial and final 

positions of the neurons, respectively. The evolution of each parameter 
over time is shown in: (b) maximum possible number of neighbors (c) 
maximum distance for which neurons are considered as belonging to the 
same group (d) hypersphere radius for a given neuron   . 

 
(a) (b) 

  
Figure 7.  (a) Matrix plot of the effective number of neighbors for each 

neuron over time (b) Surface plot of ‘a’. Neurons in regions with fewer 
patterns are seen as streaks or valleys, as it is expected. The effective 
number of neighbors is a fraction of      that is proportional to the density 
of the region the neuron is located. 

 
classes, that is, which neurons converged to each position 
(see the representative colors depicted in Fig. 8). Then a 
cross tabulation was performed with the datasets’ man given 
groundtruth so as to appropriately compare the classes. The 
classification accuracies were then calculated (see Table II) 
in order to evaluate the partitions visible in the new U-
matrix. The classification accuracy is defined as (16) [29] 
  

                       
                             

          
 (16) 

 (a.1) (b.1) (c.1) 

   
(a.2) (b.2) (c.2) 

   
Figure 8.  Neurons of the 10x10 SOM network trained with the Tetra 

(a.1), Hepta (b1) and Noisy Gaussian (a.1) data sets. Neurons resulting 
from the application of the proposed method in ‘a.1’, ‘b.1’ and ‘c.1’ are 
depicted in (a.2), (b.2) and (c.2), respectively. Neurons with the same color 
in the plots with indexes ‘1’ converged to the same point in their associated 
plots with indexes ‘2’. 

 
(a.1) (b.1) (c.1) 

   
(a.2) (b.2) (c.2) 

   
(a.3) (b.3) (c.3) 

   
(a.4) (b.4) (c.4) 

   
Figure 9. U-matrix (a) and U*-matrix (b) of the 10x10 trained self-

organizing maps. U-matrix (c) of the SOM network whose neurons result 
from the application of the proposed method. The indexes 1 to 4 
correspond to the following data sets: Tetra (1), Hepta (2), Noisy Gaussian 
(3) and Wine (4).   

 

TABLE II.  PERFORMANCE SUMMARY 

Data set Number of centroids found Classification accuracy 

Tetra 4 0.9775 
Hepta 7 1 
Noisy Gaussian 2 1 
Wine 3 0.9719 
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The proposed algorithm is dependent of the iteration 
number, since the quantity of neighbors was defined as a 
function of it. In the experiments no universal value for the 
iteration number was suitable for all datasets as it affects the 
parameters       and  , and therefore, it must be set for 
each database. 

VIII. CONCLUSIONS AND FUTURE WORK 
A gravitational approach for enhancing the cluster 

visualization through the U-matrix technique was presented. 
It takes advantage of the U-matrix increasingly higher 
resolution while using larger SOM grid sizes and the 
neurons concentration achieved with the gravitational 
algorithm. The main concern is to define the neighborhood 
size and number of iterations as they directly influence the 
quality of the final map. The experiment parameters were 
kept equal for all data sets, except for the number of 
iterations. As the latter becomes larger, the neurons tend to 
converge to the same point, as it is expected from a 
gravitational algorithm. In all cases, the proposed approach 
was able to provide an improved visualization of the clusters 
using the U-matrix that was generated with the repositioned 
neurons. 

The final result of the proposed algorithm does not 
represent the real position of the cluster centers due to the 
tendency of all particles to collapse at the same point, 
however as the interest consists primarily in visualizing and 
defining the number of clusters, it is not considered an issue, 
as the geometry relations are preserved and the 
visualizations obtained are sharper while remaining 
coherent. 

Future works will focus on an heuristic for automatic 
selection of the total number of iterations, the parameters 
     and  , as well as their decreasing functions based on 
information from the data and SOM network, in order to 
achieve a suitable combination regarding the tradeoff 
between results and the computational cost. 
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